more explicit theory name
authorhaftmann
Wed, 15 Sep 2010 13:44:10 +0200
changeset 39395 a1aa9fbcbd3d
parent 39394 955ce6038aa5
child 39396 e9cad160aa0f
more explicit theory name
src/HOL/ex/NormalForm.thy
src/HOL/ex/Normalization_by_Evaluation.thy
src/HOL/ex/ROOT.ML
--- a/src/HOL/ex/NormalForm.thy	Wed Sep 15 13:44:10 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,131 +0,0 @@
-(*  Authors:  Klaus Aehlig, Tobias Nipkow *)
-
-header {* Testing implementation of normalization by evaluation *}
-
-theory NormalForm
-imports Complex_Main
-begin
-
-lemma "True" by normalization
-lemma "p \<longrightarrow> True" by normalization
-declare disj_assoc [code nbe]
-lemma "((P | Q) | R) = (P | (Q | R))" by normalization
-lemma "0 + (n::nat) = n" by normalization
-lemma "0 + Suc n = Suc n" by normalization
-lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization
-lemma "~((0::nat) < (0::nat))" by normalization
-
-datatype n = Z | S n
-
-primrec add :: "n \<Rightarrow> n \<Rightarrow> n" where
-   "add Z = id"
- | "add (S m) = S o add m"
-
-primrec add2 :: "n \<Rightarrow> n \<Rightarrow> n" where
-   "add2 Z n = n"
- | "add2 (S m) n = S(add2 m n)"
-
-declare add2.simps [code]
-lemma [code nbe]: "add2 (add2 n m) k = add2 n (add2 m k)"
-  by (induct n) auto
-lemma [code]: "add2 n (S m) =  S (add2 n m)"
-  by(induct n) auto
-lemma [code]: "add2 n Z = n"
-  by(induct n) auto
-
-lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization
-lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
-lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
-
-primrec mul :: "n \<Rightarrow> n \<Rightarrow> n" where
-   "mul Z = (%n. Z)"
- | "mul (S m) = (%n. add (mul m n) n)"
-
-primrec mul2 :: "n \<Rightarrow> n \<Rightarrow> n" where
-   "mul2 Z n = Z"
- | "mul2 (S m) n = add2 n (mul2 m n)"
-
-primrec exp :: "n \<Rightarrow> n \<Rightarrow> n" where
-   "exp m Z = S Z"
- | "exp m (S n) = mul (exp m n) m"
-
-lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
-lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
-lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization
-
-lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization
-lemma "split (%x y. x) (a, b) = a" by normalization
-lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization
-
-lemma "case Z of Z \<Rightarrow> True | S x \<Rightarrow> False" by normalization
-
-lemma "[] @ [] = []" by normalization
-lemma "map f [x,y,z::'x] = [f x, f y, f z]" by normalization
-lemma "[a, b, c] @ xs = a # b # c # xs" by normalization
-lemma "[] @ xs = xs" by normalization
-lemma "map (%f. f True) [id, g, Not] = [True, g True, False]" by normalization
-
-lemma "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs"
-  by normalization rule+
-lemma "rev [a, b, c] = [c, b, a]" by normalization
-normal_form "rev (a#b#cs) = rev cs @ [b, a]"
-normal_form "map (%F. F [a,b,c::'x]) (map map [f,g,h])"
-normal_form "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))"
-normal_form "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])"
-lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" 
-  by normalization
-normal_form "case xs of [] \<Rightarrow> True | x#xs \<Rightarrow> False"
-normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) xs = P"
-lemma "let x = y in [x, x] = [y, y]" by normalization
-lemma "Let y (%x. [x,x]) = [y, y]" by normalization
-normal_form "case n of Z \<Rightarrow> True | S x \<Rightarrow> False"
-lemma "(%(x,y). add x y) (S z,S z) = S (add z (S z))" by normalization
-normal_form "filter (%x. x) ([True,False,x]@xs)"
-normal_form "filter Not ([True,False,x]@xs)"
-
-lemma "[x,y,z] @ [a,b,c] = [x, y, z, a, b, c]" by normalization
-lemma "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]" by normalization
-lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" by normalization
-
-lemma "last [a, b, c] = c" by normalization
-lemma "last ([a, b, c] @ xs) = last (c # xs)" by normalization
-
-lemma "(2::int) + 3 - 1 + (- k) * 2 = 4 + - k * 2" by normalization
-lemma "(-4::int) * 2 = -8" by normalization
-lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
-lemma "(2::int) + 3 = 5" by normalization
-lemma "(2::int) + 3 * (- 4) * (- 1) = 14" by normalization
-lemma "(2::int) + 3 * (- 4) * 1 + 0 = -10" by normalization
-lemma "(2::int) < 3" by normalization
-lemma "(2::int) <= 3" by normalization
-lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
-lemma "4 - 42 * abs (3 + (-7\<Colon>int)) = -164" by normalization
-lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization
-lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization
-lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization
-lemma "[Suc 0, 0] = [Suc 0, 0]" by normalization
-lemma "max (Suc 0) 0 = Suc 0" by normalization
-lemma "(42::rat) / 1704 = 1 / 284 + 3 / 142" by normalization
-normal_form "Suc 0 \<in> set ms"
-
-lemma "f = f" by normalization
-lemma "f x = f x" by normalization
-lemma "(f o g) x = f (g x)" by normalization
-lemma "(f o id) x = f x" by normalization
-normal_form "(\<lambda>x. x)"
-
-(* Church numerals: *)
-
-normal_form "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
-normal_form "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
-normal_form "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
-
-(* handling of type classes in connection with equality *)
-
-lemma "map f [x, y] = [f x, f y]" by normalization
-lemma "(map f [x, y], w) = ([f x, f y], w)" by normalization
-lemma "map f [x, y] = [f x \<Colon> 'a\<Colon>semigroup_add, f y]" by normalization
-lemma "map f [x \<Colon> 'a\<Colon>semigroup_add, y] = [f x, f y]" by normalization
-lemma "(map f [x \<Colon> 'a\<Colon>semigroup_add, y], w \<Colon> 'b\<Colon>finite) = ([f x, f y], w)" by normalization
-
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Normalization_by_Evaluation.thy	Wed Sep 15 13:44:10 2010 +0200
@@ -0,0 +1,131 @@
+(*  Authors:  Klaus Aehlig, Tobias Nipkow *)
+
+header {* Testing implementation of normalization by evaluation *}
+
+theory Normalization_by_Evaluation
+imports Complex_Main
+begin
+
+lemma "True" by normalization
+lemma "p \<longrightarrow> True" by normalization
+declare disj_assoc [code nbe]
+lemma "((P | Q) | R) = (P | (Q | R))" by normalization
+lemma "0 + (n::nat) = n" by normalization
+lemma "0 + Suc n = Suc n" by normalization
+lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization
+lemma "~((0::nat) < (0::nat))" by normalization
+
+datatype n = Z | S n
+
+primrec add :: "n \<Rightarrow> n \<Rightarrow> n" where
+   "add Z = id"
+ | "add (S m) = S o add m"
+
+primrec add2 :: "n \<Rightarrow> n \<Rightarrow> n" where
+   "add2 Z n = n"
+ | "add2 (S m) n = S(add2 m n)"
+
+declare add2.simps [code]
+lemma [code nbe]: "add2 (add2 n m) k = add2 n (add2 m k)"
+  by (induct n) auto
+lemma [code]: "add2 n (S m) =  S (add2 n m)"
+  by(induct n) auto
+lemma [code]: "add2 n Z = n"
+  by(induct n) auto
+
+lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization
+lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
+lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
+
+primrec mul :: "n \<Rightarrow> n \<Rightarrow> n" where
+   "mul Z = (%n. Z)"
+ | "mul (S m) = (%n. add (mul m n) n)"
+
+primrec mul2 :: "n \<Rightarrow> n \<Rightarrow> n" where
+   "mul2 Z n = Z"
+ | "mul2 (S m) n = add2 n (mul2 m n)"
+
+primrec exp :: "n \<Rightarrow> n \<Rightarrow> n" where
+   "exp m Z = S Z"
+ | "exp m (S n) = mul (exp m n) m"
+
+lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
+lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
+lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization
+
+lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization
+lemma "split (%x y. x) (a, b) = a" by normalization
+lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization
+
+lemma "case Z of Z \<Rightarrow> True | S x \<Rightarrow> False" by normalization
+
+lemma "[] @ [] = []" by normalization
+lemma "map f [x,y,z::'x] = [f x, f y, f z]" by normalization
+lemma "[a, b, c] @ xs = a # b # c # xs" by normalization
+lemma "[] @ xs = xs" by normalization
+lemma "map (%f. f True) [id, g, Not] = [True, g True, False]" by normalization
+
+lemma "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs"
+  by normalization rule+
+lemma "rev [a, b, c] = [c, b, a]" by normalization
+value [nbe] "rev (a#b#cs) = rev cs @ [b, a]"
+value [nbe] "map (%F. F [a,b,c::'x]) (map map [f,g,h])"
+value [nbe] "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))"
+value [nbe] "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])"
+lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" 
+  by normalization
+value [nbe] "case xs of [] \<Rightarrow> True | x#xs \<Rightarrow> False"
+value [nbe] "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) xs = P"
+lemma "let x = y in [x, x] = [y, y]" by normalization
+lemma "Let y (%x. [x,x]) = [y, y]" by normalization
+value [nbe] "case n of Z \<Rightarrow> True | S x \<Rightarrow> False"
+lemma "(%(x,y). add x y) (S z,S z) = S (add z (S z))" by normalization
+value [nbe] "filter (%x. x) ([True,False,x]@xs)"
+value [nbe] "filter Not ([True,False,x]@xs)"
+
+lemma "[x,y,z] @ [a,b,c] = [x, y, z, a, b, c]" by normalization
+lemma "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]" by normalization
+lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" by normalization
+
+lemma "last [a, b, c] = c" by normalization
+lemma "last ([a, b, c] @ xs) = last (c # xs)" by normalization
+
+lemma "(2::int) + 3 - 1 + (- k) * 2 = 4 + - k * 2" by normalization
+lemma "(-4::int) * 2 = -8" by normalization
+lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
+lemma "(2::int) + 3 = 5" by normalization
+lemma "(2::int) + 3 * (- 4) * (- 1) = 14" by normalization
+lemma "(2::int) + 3 * (- 4) * 1 + 0 = -10" by normalization
+lemma "(2::int) < 3" by normalization
+lemma "(2::int) <= 3" by normalization
+lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
+lemma "4 - 42 * abs (3 + (-7\<Colon>int)) = -164" by normalization
+lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization
+lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization
+lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization
+lemma "[Suc 0, 0] = [Suc 0, 0]" by normalization
+lemma "max (Suc 0) 0 = Suc 0" by normalization
+lemma "(42::rat) / 1704 = 1 / 284 + 3 / 142" by normalization
+value [nbe] "Suc 0 \<in> set ms"
+
+lemma "f = f" by normalization
+lemma "f x = f x" by normalization
+lemma "(f o g) x = f (g x)" by normalization
+lemma "(f o id) x = f x" by normalization
+value [nbe] "(\<lambda>x. x)"
+
+(* Church numerals: *)
+
+value [nbe] "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
+value [nbe] "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
+value [nbe] "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
+
+(* handling of type classes in connection with equality *)
+
+lemma "map f [x, y] = [f x, f y]" by normalization
+lemma "(map f [x, y], w) = ([f x, f y], w)" by normalization
+lemma "map f [x, y] = [f x \<Colon> 'a\<Colon>semigroup_add, f y]" by normalization
+lemma "map f [x \<Colon> 'a\<Colon>semigroup_add, y] = [f x, f y]" by normalization
+lemma "(map f [x \<Colon> 'a\<Colon>semigroup_add, y], w \<Colon> 'b\<Colon>finite) = ([f x, f y], w)" by normalization
+
+end
--- a/src/HOL/ex/ROOT.ML	Wed Sep 15 13:44:10 2010 +0200
+++ b/src/HOL/ex/ROOT.ML	Wed Sep 15 13:44:10 2010 +0200
@@ -8,7 +8,7 @@
   "Efficient_Nat_examples",
   "FuncSet",
   "Eval_Examples",
-  "NormalForm"
+  "Normalization_by_Evaluation"
 ];
 
 use_thys [