tuned Approximation: separated general material from oracle
authoreberlm <eberlm@in.tum.de>
Wed, 26 Apr 2017 17:01:10 +0200
changeset 65582 a1bc1b020cf2
parent 65581 baf96277ee76
child 65586 91e451bc0f1f
tuned Approximation: separated general material from oracle
src/HOL/Decision_Procs/Approximation.thy
src/HOL/Decision_Procs/Approximation_Bounds.thy
--- a/src/HOL/Decision_Procs/Approximation.thy	Wed Apr 26 13:41:32 2017 +0200
+++ b/src/HOL/Decision_Procs/Approximation.thy	Wed Apr 26 17:01:10 2017 +0200
@@ -1,2806 +1,14 @@
  (* Author:     Johannes Hoelzl, TU Muenchen
    Coercions removed by Dmitriy Traytel *)
 
-section \<open>Prove Real Valued Inequalities by Computation\<close>
-
 theory Approximation
 imports
   Complex_Main
-  "~~/src/HOL/Library/Float"
-  Dense_Linear_Order
   "~~/src/HOL/Library/Code_Target_Numeral"
+  Approximation_Bounds
 keywords "approximate" :: diag
 begin
 
-declare powr_neg_one [simp]
-declare powr_neg_numeral [simp]
-
-section "Horner Scheme"
-
-subsection \<open>Define auxiliary helper \<open>horner\<close> function\<close>
-
-primrec horner :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> real \<Rightarrow> real" where
-"horner F G 0 i k x       = 0" |
-"horner F G (Suc n) i k x = 1 / k - x * horner F G n (F i) (G i k) x"
-
-lemma horner_schema':
-  fixes x :: real and a :: "nat \<Rightarrow> real"
-  shows "a 0 - x * (\<Sum> i=0..<n. (-1)^i * a (Suc i) * x^i) = (\<Sum> i=0..<Suc n. (-1)^i * a i * x^i)"
-proof -
-  have shift_pow: "\<And>i. - (x * ((-1)^i * a (Suc i) * x ^ i)) = (-1)^(Suc i) * a (Suc i) * x ^ (Suc i)"
-    by auto
-  show ?thesis
-    unfolding sum_distrib_left shift_pow uminus_add_conv_diff [symmetric] sum_negf[symmetric]
-    sum_head_upt_Suc[OF zero_less_Suc]
-    sum.reindex[OF inj_Suc, unfolded comp_def, symmetric, of "\<lambda> n. (-1)^n  *a n * x^n"] by auto
-qed
-
-lemma horner_schema:
-  fixes f :: "nat \<Rightarrow> nat" and G :: "nat \<Rightarrow> nat \<Rightarrow> nat" and F :: "nat \<Rightarrow> nat"
-  assumes f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)"
-  shows "horner F G n ((F ^^ j') s) (f j') x = (\<Sum> j = 0..< n. (- 1) ^ j * (1 / (f (j' + j))) * x ^ j)"
-proof (induct n arbitrary: j')
-  case 0
-  then show ?case by auto
-next
-  case (Suc n)
-  show ?case unfolding horner.simps Suc[where j'="Suc j'", unfolded funpow.simps comp_def f_Suc]
-    using horner_schema'[of "\<lambda> j. 1 / (f (j' + j))"] by auto
-qed
-
-lemma horner_bounds':
-  fixes lb :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" and ub :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
-  assumes "0 \<le> real_of_float x" and f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)"
-    and lb_0: "\<And> i k x. lb 0 i k x = 0"
-    and lb_Suc: "\<And> n i k x. lb (Suc n) i k x = float_plus_down prec
-        (lapprox_rat prec 1 k)
-        (- float_round_up prec (x * (ub n (F i) (G i k) x)))"
-    and ub_0: "\<And> i k x. ub 0 i k x = 0"
-    and ub_Suc: "\<And> n i k x. ub (Suc n) i k x = float_plus_up prec
-        (rapprox_rat prec 1 k)
-        (- float_round_down prec (x * (lb n (F i) (G i k) x)))"
-  shows "(lb n ((F ^^ j') s) (f j') x) \<le> horner F G n ((F ^^ j') s) (f j') x \<and>
-         horner F G n ((F ^^ j') s) (f j') x \<le> (ub n ((F ^^ j') s) (f j') x)"
-  (is "?lb n j' \<le> ?horner n j' \<and> ?horner n j' \<le> ?ub n j'")
-proof (induct n arbitrary: j')
-  case 0
-  thus ?case unfolding lb_0 ub_0 horner.simps by auto
-next
-  case (Suc n)
-  thus ?case using lapprox_rat[of prec 1 "f j'"] using rapprox_rat[of 1 "f j'" prec]
-    Suc[where j'="Suc j'"] \<open>0 \<le> real_of_float x\<close>
-    by (auto intro!: add_mono mult_left_mono float_round_down_le float_round_up_le
-      order_trans[OF add_mono[OF _ float_plus_down_le]]
-      order_trans[OF _ add_mono[OF _ float_plus_up_le]]
-      simp add: lb_Suc ub_Suc field_simps f_Suc)
-qed
-
-subsection "Theorems for floating point functions implementing the horner scheme"
-
-text \<open>
-
-Here @{term_type "f :: nat \<Rightarrow> nat"} is the sequence defining the Taylor series, the coefficients are
-all alternating and reciprocs. We use @{term G} and @{term F} to describe the computation of @{term f}.
-
-\<close>
-
-lemma horner_bounds:
-  fixes F :: "nat \<Rightarrow> nat" and G :: "nat \<Rightarrow> nat \<Rightarrow> nat"
-  assumes "0 \<le> real_of_float x" and f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)"
-    and lb_0: "\<And> i k x. lb 0 i k x = 0"
-    and lb_Suc: "\<And> n i k x. lb (Suc n) i k x = float_plus_down prec
-        (lapprox_rat prec 1 k)
-        (- float_round_up prec (x * (ub n (F i) (G i k) x)))"
-    and ub_0: "\<And> i k x. ub 0 i k x = 0"
-    and ub_Suc: "\<And> n i k x. ub (Suc n) i k x = float_plus_up prec
-        (rapprox_rat prec 1 k)
-        (- float_round_down prec (x * (lb n (F i) (G i k) x)))"
-  shows "(lb n ((F ^^ j') s) (f j') x) \<le> (\<Sum>j=0..<n. (- 1) ^ j * (1 / (f (j' + j))) * (x ^ j))"
-      (is "?lb")
-    and "(\<Sum>j=0..<n. (- 1) ^ j * (1 / (f (j' + j))) * (x ^ j)) \<le> (ub n ((F ^^ j') s) (f j') x)"
-      (is "?ub")
-proof -
-  have "?lb  \<and> ?ub"
-    using horner_bounds'[where lb=lb, OF \<open>0 \<le> real_of_float x\<close> f_Suc lb_0 lb_Suc ub_0 ub_Suc]
-    unfolding horner_schema[where f=f, OF f_Suc] by simp
-  thus "?lb" and "?ub" by auto
-qed
-
-lemma horner_bounds_nonpos:
-  fixes F :: "nat \<Rightarrow> nat" and G :: "nat \<Rightarrow> nat \<Rightarrow> nat"
-  assumes "real_of_float x \<le> 0" and f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)"
-    and lb_0: "\<And> i k x. lb 0 i k x = 0"
-    and lb_Suc: "\<And> n i k x. lb (Suc n) i k x = float_plus_down prec
-        (lapprox_rat prec 1 k)
-        (float_round_down prec (x * (ub n (F i) (G i k) x)))"
-    and ub_0: "\<And> i k x. ub 0 i k x = 0"
-    and ub_Suc: "\<And> n i k x. ub (Suc n) i k x = float_plus_up prec
-        (rapprox_rat prec 1 k)
-        (float_round_up prec (x * (lb n (F i) (G i k) x)))"
-  shows "(lb n ((F ^^ j') s) (f j') x) \<le> (\<Sum>j=0..<n. (1 / (f (j' + j))) * real_of_float x ^ j)" (is "?lb")
-    and "(\<Sum>j=0..<n. (1 / (f (j' + j))) * real_of_float x ^ j) \<le> (ub n ((F ^^ j') s) (f j') x)" (is "?ub")
-proof -
-  have diff_mult_minus: "x - y * z = x + - y * z" for x y z :: float by simp
-  have sum_eq: "(\<Sum>j=0..<n. (1 / (f (j' + j))) * real_of_float x ^ j) =
-    (\<Sum>j = 0..<n. (- 1) ^ j * (1 / (f (j' + j))) * real_of_float (- x) ^ j)"
-    by (auto simp add: field_simps power_mult_distrib[symmetric])
-  have "0 \<le> real_of_float (-x)" using assms by auto
-  from horner_bounds[where G=G and F=F and f=f and s=s and prec=prec
-    and lb="\<lambda> n i k x. lb n i k (-x)" and ub="\<lambda> n i k x. ub n i k (-x)",
-    unfolded lb_Suc ub_Suc diff_mult_minus,
-    OF this f_Suc lb_0 _ ub_0 _]
-  show "?lb" and "?ub" unfolding minus_minus sum_eq
-    by (auto simp: minus_float_round_up_eq minus_float_round_down_eq)
-qed
-
-
-subsection \<open>Selectors for next even or odd number\<close>
-
-text \<open>
-The horner scheme computes alternating series. To get the upper and lower bounds we need to
-guarantee to access a even or odd member. To do this we use @{term get_odd} and @{term get_even}.
-\<close>
-
-definition get_odd :: "nat \<Rightarrow> nat" where
-  "get_odd n = (if odd n then n else (Suc n))"
-
-definition get_even :: "nat \<Rightarrow> nat" where
-  "get_even n = (if even n then n else (Suc n))"
-
-lemma get_odd[simp]: "odd (get_odd n)"
-  unfolding get_odd_def by (cases "odd n") auto
-
-lemma get_even[simp]: "even (get_even n)"
-  unfolding get_even_def by (cases "even n") auto
-
-lemma get_odd_ex: "\<exists> k. Suc k = get_odd n \<and> odd (Suc k)"
-  by (auto simp: get_odd_def odd_pos intro!: exI[of _ "n - 1"])
-
-lemma get_even_double: "\<exists>i. get_even n = 2 * i"
-  using get_even by (blast elim: evenE)
-
-lemma get_odd_double: "\<exists>i. get_odd n = 2 * i + 1"
-  using get_odd by (blast elim: oddE)
-
-
-section "Power function"
-
-definition float_power_bnds :: "nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float * float" where
-"float_power_bnds prec n l u =
-  (if 0 < l then (power_down_fl prec l n, power_up_fl prec u n)
-  else if odd n then
-    (- power_up_fl prec \<bar>l\<bar> n,
-      if u < 0 then - power_down_fl prec \<bar>u\<bar> n else power_up_fl prec u n)
-  else if u < 0 then (power_down_fl prec \<bar>u\<bar> n, power_up_fl prec \<bar>l\<bar> n)
-  else (0, power_up_fl prec (max \<bar>l\<bar> \<bar>u\<bar>) n))"
-
-lemma le_minus_power_downI: "0 \<le> x \<Longrightarrow> x ^ n \<le> - a \<Longrightarrow> a \<le> - power_down prec x n"
-  by (subst le_minus_iff) (auto intro: power_down_le power_mono_odd)
-
-lemma float_power_bnds:
-  "(l1, u1) = float_power_bnds prec n l u \<Longrightarrow> x \<in> {l .. u} \<Longrightarrow> (x::real) ^ n \<in> {l1..u1}"
-  by (auto
-    simp: float_power_bnds_def max_def real_power_up_fl real_power_down_fl minus_le_iff
-    split: if_split_asm
-    intro!: power_up_le power_down_le le_minus_power_downI
-    intro: power_mono_odd power_mono power_mono_even zero_le_even_power)
-
-lemma bnds_power:
-  "\<forall>(x::real) l u. (l1, u1) = float_power_bnds prec n l u \<and> x \<in> {l .. u} \<longrightarrow>
-    l1 \<le> x ^ n \<and> x ^ n \<le> u1"
-  using float_power_bnds by auto
-
-section \<open>Approximation utility functions\<close>
-
-definition bnds_mult :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<times> float" where
-  "bnds_mult prec a1 a2 b1 b2 =
-      (float_plus_down prec (nprt a1 * pprt b2)
-          (float_plus_down prec (nprt a2 * nprt b2)
-            (float_plus_down prec (pprt a1 * pprt b1) (pprt a2 * nprt b1))),
-        float_plus_up prec (pprt a2 * pprt b2)
-            (float_plus_up prec (pprt a1 * nprt b2)
-              (float_plus_up prec (nprt a2 * pprt b1) (nprt a1 * nprt b1))))"
-
-lemma bnds_mult:
-  fixes prec :: nat and a1 aa2 b1 b2 :: float
-  assumes "(l, u) = bnds_mult prec a1 a2 b1 b2"
-  assumes "a \<in> {real_of_float a1..real_of_float a2}"
-  assumes "b \<in> {real_of_float b1..real_of_float b2}"
-  shows   "a * b \<in> {real_of_float l..real_of_float u}"
-proof -
-  from assms have "real_of_float l \<le> a * b" 
-    by (intro order.trans[OF _ mult_ge_prts[of a1 a a2 b1 b b2]])
-       (auto simp: bnds_mult_def intro!: float_plus_down_le)
-  moreover from assms have "real_of_float u \<ge> a * b" 
-    by (intro order.trans[OF mult_le_prts[of a1 a a2 b1 b b2]])
-       (auto simp: bnds_mult_def intro!: float_plus_up_le)
-  ultimately show ?thesis by simp
-qed
-
-definition map_bnds :: "(nat \<Rightarrow> float \<Rightarrow> float) \<Rightarrow> (nat \<Rightarrow> float \<Rightarrow> float) \<Rightarrow>
-                           nat \<Rightarrow> (float \<times> float) \<Rightarrow> (float \<times> float)" where
-  "map_bnds lb ub prec = (\<lambda>(l,u). (lb prec l, ub prec u))"
-
-lemma map_bnds:
-  assumes "(lf, uf) = map_bnds lb ub prec (l, u)"
-  assumes "mono f"
-  assumes "x \<in> {real_of_float l..real_of_float u}"
-  assumes "real_of_float (lb prec l) \<le> f (real_of_float l)"
-  assumes "real_of_float (ub prec u) \<ge> f (real_of_float u)"
-  shows   "f x \<in> {real_of_float lf..real_of_float uf}"
-proof -
-  from assms have "real_of_float lf = real_of_float (lb prec l)"
-    by (simp add: map_bnds_def)
-  also have "real_of_float (lb prec l) \<le> f (real_of_float l)"  by fact
-  also from assms have "\<dots> \<le> f x"
-    by (intro monoD[OF \<open>mono f\<close>]) auto
-  finally have lf: "real_of_float lf \<le> f x" .
-
-  from assms have "f x \<le> f (real_of_float u)"
-    by (intro monoD[OF \<open>mono f\<close>]) auto
-  also have "\<dots> \<le> real_of_float (ub prec u)" by fact
-  also from assms have "\<dots> = real_of_float uf"
-    by (simp add: map_bnds_def)
-  finally have uf: "f x \<le> real_of_float uf" .
-
-  from lf uf show ?thesis by simp
-qed
-
-
-section "Square root"
-
-text \<open>
-The square root computation is implemented as newton iteration. As first first step we use the
-nearest power of two greater than the square root.
-\<close>
-
-fun sqrt_iteration :: "nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where
-"sqrt_iteration prec 0 x = Float 1 ((bitlen \<bar>mantissa x\<bar> + exponent x) div 2 + 1)" |
-"sqrt_iteration prec (Suc m) x = (let y = sqrt_iteration prec m x
-                                  in Float 1 (- 1) * float_plus_up prec y (float_divr prec x y))"
-
-lemma compute_sqrt_iteration_base[code]:
-  shows "sqrt_iteration prec n (Float m e) =
-    (if n = 0 then Float 1 ((if m = 0 then 0 else bitlen \<bar>m\<bar> + e) div 2 + 1)
-    else (let y = sqrt_iteration prec (n - 1) (Float m e) in
-      Float 1 (- 1) * float_plus_up prec y (float_divr prec (Float m e) y)))"
-  using bitlen_Float by (cases n) simp_all
-
-function ub_sqrt lb_sqrt :: "nat \<Rightarrow> float \<Rightarrow> float" where
-"ub_sqrt prec x = (if 0 < x then (sqrt_iteration prec prec x)
-              else if x < 0 then - lb_sqrt prec (- x)
-                            else 0)" |
-"lb_sqrt prec x = (if 0 < x then (float_divl prec x (sqrt_iteration prec prec x))
-              else if x < 0 then - ub_sqrt prec (- x)
-                            else 0)"
-by pat_completeness auto
-termination by (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if x < 0 then 1 else 0))", auto)
-
-declare lb_sqrt.simps[simp del]
-declare ub_sqrt.simps[simp del]
-
-lemma sqrt_ub_pos_pos_1:
-  assumes "sqrt x < b" and "0 < b" and "0 < x"
-  shows "sqrt x < (b + x / b)/2"
-proof -
-  from assms have "0 < (b - sqrt x)\<^sup>2 " by simp
-  also have "\<dots> = b\<^sup>2 - 2 * b * sqrt x + (sqrt x)\<^sup>2" by algebra
-  also have "\<dots> = b\<^sup>2 - 2 * b * sqrt x + x" using assms by simp
-  finally have "0 < b\<^sup>2 - 2 * b * sqrt x + x" .
-  hence "0 < b / 2 - sqrt x + x / (2 * b)" using assms
-    by (simp add: field_simps power2_eq_square)
-  thus ?thesis by (simp add: field_simps)
-qed
-
-lemma sqrt_iteration_bound:
-  assumes "0 < real_of_float x"
-  shows "sqrt x < sqrt_iteration prec n x"
-proof (induct n)
-  case 0
-  show ?case
-  proof (cases x)
-    case (Float m e)
-    hence "0 < m"
-      using assms
-      apply (auto simp: sign_simps)
-      by (meson not_less powr_ge_pzero)
-    hence "0 < sqrt m" by auto
-
-    have int_nat_bl: "(nat (bitlen m)) = bitlen m"
-      using bitlen_nonneg by auto
-
-    have "x = (m / 2^nat (bitlen m)) * 2 powr (e + (nat (bitlen m)))"
-      unfolding Float by (auto simp: powr_realpow[symmetric] field_simps powr_add)
-    also have "\<dots> < 1 * 2 powr (e + nat (bitlen m))"
-    proof (rule mult_strict_right_mono, auto)
-      show "m < 2^nat (bitlen m)"
-        using bitlen_bounds[OF \<open>0 < m\<close>, THEN conjunct2]
-        unfolding of_int_less_iff[of m, symmetric] by auto
-    qed
-    finally have "sqrt x < sqrt (2 powr (e + bitlen m))"
-      unfolding int_nat_bl by auto
-    also have "\<dots> \<le> 2 powr ((e + bitlen m) div 2 + 1)"
-    proof -
-      let ?E = "e + bitlen m"
-      have E_mod_pow: "2 powr (?E mod 2) < 4"
-      proof (cases "?E mod 2 = 1")
-        case True
-        thus ?thesis by auto
-      next
-        case False
-        have "0 \<le> ?E mod 2" by auto
-        have "?E mod 2 < 2" by auto
-        from this[THEN zless_imp_add1_zle]
-        have "?E mod 2 \<le> 0" using False by auto
-        from xt1(5)[OF \<open>0 \<le> ?E mod 2\<close> this]
-        show ?thesis by auto
-      qed
-      hence "sqrt (2 powr (?E mod 2)) < sqrt (2 * 2)"
-        by (auto simp del: real_sqrt_four)
-      hence E_mod_pow: "sqrt (2 powr (?E mod 2)) < 2" by auto
-
-      have E_eq: "2 powr ?E = 2 powr (?E div 2 + ?E div 2 + ?E mod 2)"
-        by auto
-      have "sqrt (2 powr ?E) = sqrt (2 powr (?E div 2) * 2 powr (?E div 2) * 2 powr (?E mod 2))"
-        unfolding E_eq unfolding powr_add[symmetric] by (metis of_int_add)
-      also have "\<dots> = 2 powr (?E div 2) * sqrt (2 powr (?E mod 2))"
-        unfolding real_sqrt_mult[of _ "2 powr (?E mod 2)"] real_sqrt_abs2 by auto
-      also have "\<dots> < 2 powr (?E div 2) * 2 powr 1"
-        by (rule mult_strict_left_mono) (auto intro: E_mod_pow)
-      also have "\<dots> = 2 powr (?E div 2 + 1)"
-        unfolding add.commute[of _ 1] powr_add[symmetric] by simp
-      finally show ?thesis by auto
-    qed
-    finally show ?thesis using \<open>0 < m\<close>
-      unfolding Float
-      by (subst compute_sqrt_iteration_base) (simp add: ac_simps)
-  qed
-next
-  case (Suc n)
-  let ?b = "sqrt_iteration prec n x"
-  have "0 < sqrt x"
-    using \<open>0 < real_of_float x\<close> by auto
-  also have "\<dots> < real_of_float ?b"
-    using Suc .
-  finally have "sqrt x < (?b + x / ?b)/2"
-    using sqrt_ub_pos_pos_1[OF Suc _ \<open>0 < real_of_float x\<close>] by auto
-  also have "\<dots> \<le> (?b + (float_divr prec x ?b))/2"
-    by (rule divide_right_mono, auto simp add: float_divr)
-  also have "\<dots> = (Float 1 (- 1)) * (?b + (float_divr prec x ?b))"
-    by simp
-  also have "\<dots> \<le> (Float 1 (- 1)) * (float_plus_up prec ?b (float_divr prec x ?b))"
-    by (auto simp add: algebra_simps float_plus_up_le)
-  finally show ?case
-    unfolding sqrt_iteration.simps Let_def distrib_left .
-qed
-
-lemma sqrt_iteration_lower_bound:
-  assumes "0 < real_of_float x"
-  shows "0 < real_of_float (sqrt_iteration prec n x)" (is "0 < ?sqrt")
-proof -
-  have "0 < sqrt x" using assms by auto
-  also have "\<dots> < ?sqrt" using sqrt_iteration_bound[OF assms] .
-  finally show ?thesis .
-qed
-
-lemma lb_sqrt_lower_bound:
-  assumes "0 \<le> real_of_float x"
-  shows "0 \<le> real_of_float (lb_sqrt prec x)"
-proof (cases "0 < x")
-  case True
-  hence "0 < real_of_float x" and "0 \<le> x"
-    using \<open>0 \<le> real_of_float x\<close> by auto
-  hence "0 < sqrt_iteration prec prec x"
-    using sqrt_iteration_lower_bound by auto
-  hence "0 \<le> real_of_float (float_divl prec x (sqrt_iteration prec prec x))"
-    using float_divl_lower_bound[OF \<open>0 \<le> x\<close>] unfolding less_eq_float_def by auto
-  thus ?thesis
-    unfolding lb_sqrt.simps using True by auto
-next
-  case False
-  with \<open>0 \<le> real_of_float x\<close> have "real_of_float x = 0" by auto
-  thus ?thesis
-    unfolding lb_sqrt.simps by auto
-qed
-
-lemma bnds_sqrt': "sqrt x \<in> {(lb_sqrt prec x) .. (ub_sqrt prec x)}"
-proof -
-  have lb: "lb_sqrt prec x \<le> sqrt x" if "0 < x" for x :: float
-  proof -
-    from that have "0 < real_of_float x" and "0 \<le> real_of_float x" by auto
-    hence sqrt_gt0: "0 < sqrt x" by auto
-    hence sqrt_ub: "sqrt x < sqrt_iteration prec prec x"
-      using sqrt_iteration_bound by auto
-    have "(float_divl prec x (sqrt_iteration prec prec x)) \<le>
-          x / (sqrt_iteration prec prec x)" by (rule float_divl)
-    also have "\<dots> < x / sqrt x"
-      by (rule divide_strict_left_mono[OF sqrt_ub \<open>0 < real_of_float x\<close>
-               mult_pos_pos[OF order_less_trans[OF sqrt_gt0 sqrt_ub] sqrt_gt0]])
-    also have "\<dots> = sqrt x"
-      unfolding inverse_eq_iff_eq[of _ "sqrt x", symmetric]
-                sqrt_divide_self_eq[OF \<open>0 \<le> real_of_float x\<close>, symmetric] by auto
-    finally show ?thesis
-      unfolding lb_sqrt.simps if_P[OF \<open>0 < x\<close>] by auto
-  qed
-  have ub: "sqrt x \<le> ub_sqrt prec x" if "0 < x" for x :: float
-  proof -
-    from that have "0 < real_of_float x" by auto
-    hence "0 < sqrt x" by auto
-    hence "sqrt x < sqrt_iteration prec prec x"
-      using sqrt_iteration_bound by auto
-    then show ?thesis
-      unfolding ub_sqrt.simps if_P[OF \<open>0 < x\<close>] by auto
-  qed
-  show ?thesis
-    using lb[of "-x"] ub[of "-x"] lb[of x] ub[of x]
-    by (auto simp add: lb_sqrt.simps ub_sqrt.simps real_sqrt_minus)
-qed
-
-lemma bnds_sqrt: "\<forall>(x::real) lx ux.
-  (l, u) = (lb_sqrt prec lx, ub_sqrt prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> sqrt x \<and> sqrt x \<le> u"
-proof ((rule allI) +, rule impI, erule conjE, rule conjI)
-  fix x :: real
-  fix lx ux
-  assume "(l, u) = (lb_sqrt prec lx, ub_sqrt prec ux)"
-    and x: "x \<in> {lx .. ux}"
-  hence l: "l = lb_sqrt prec lx " and u: "u = ub_sqrt prec ux" by auto
-
-  have "sqrt lx \<le> sqrt x" using x by auto
-  from order_trans[OF _ this]
-  show "l \<le> sqrt x" unfolding l using bnds_sqrt'[of lx prec] by auto
-
-  have "sqrt x \<le> sqrt ux" using x by auto
-  from order_trans[OF this]
-  show "sqrt x \<le> u" unfolding u using bnds_sqrt'[of ux prec] by auto
-qed
-
-
-section "Arcus tangens and \<pi>"
-
-subsection "Compute arcus tangens series"
-
-text \<open>
-As first step we implement the computation of the arcus tangens series. This is only valid in the range
-@{term "{-1 :: real .. 1}"}. This is used to compute \<pi> and then the entire arcus tangens.
-\<close>
-
-fun ub_arctan_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
-and lb_arctan_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where
-  "ub_arctan_horner prec 0 k x = 0"
-| "ub_arctan_horner prec (Suc n) k x = float_plus_up prec
-      (rapprox_rat prec 1 k) (- float_round_down prec (x * (lb_arctan_horner prec n (k + 2) x)))"
-| "lb_arctan_horner prec 0 k x = 0"
-| "lb_arctan_horner prec (Suc n) k x = float_plus_down prec
-      (lapprox_rat prec 1 k) (- float_round_up prec (x * (ub_arctan_horner prec n (k + 2) x)))"
-
-lemma arctan_0_1_bounds':
-  assumes "0 \<le> real_of_float y" "real_of_float y \<le> 1"
-    and "even n"
-  shows "arctan (sqrt y) \<in>
-      {(sqrt y * lb_arctan_horner prec n 1 y) .. (sqrt y * ub_arctan_horner prec (Suc n) 1 y)}"
-proof -
-  let ?c = "\<lambda>i. (- 1) ^ i * (1 / (i * 2 + (1::nat)) * sqrt y ^ (i * 2 + 1))"
-  let ?S = "\<lambda>n. \<Sum> i=0..<n. ?c i"
-
-  have "0 \<le> sqrt y" using assms by auto
-  have "sqrt y \<le> 1" using assms by auto
-  from \<open>even n\<close> obtain m where "2 * m = n" by (blast elim: evenE)
-
-  have "arctan (sqrt y) \<in> { ?S n .. ?S (Suc n) }"
-  proof (cases "sqrt y = 0")
-    case True
-    then show ?thesis by simp
-  next
-    case False
-    hence "0 < sqrt y" using \<open>0 \<le> sqrt y\<close> by auto
-    hence prem: "0 < 1 / (0 * 2 + (1::nat)) * sqrt y ^ (0 * 2 + 1)" by auto
-
-    have "\<bar> sqrt y \<bar> \<le> 1"  using \<open>0 \<le> sqrt y\<close> \<open>sqrt y \<le> 1\<close> by auto
-    from mp[OF summable_Leibniz(2)[OF zeroseq_arctan_series[OF this]
-      monoseq_arctan_series[OF this]] prem, THEN spec, of m, unfolded \<open>2 * m = n\<close>]
-    show ?thesis unfolding arctan_series[OF \<open>\<bar> sqrt y \<bar> \<le> 1\<close>] Suc_eq_plus1 atLeast0LessThan .
-  qed
-  note arctan_bounds = this[unfolded atLeastAtMost_iff]
-
-  have F: "\<And>n. 2 * Suc n + 1 = 2 * n + 1 + 2" by auto
-
-  note bounds = horner_bounds[where s=1 and f="\<lambda>i. 2 * i + 1" and j'=0
-    and lb="\<lambda>n i k x. lb_arctan_horner prec n k x"
-    and ub="\<lambda>n i k x. ub_arctan_horner prec n k x",
-    OF \<open>0 \<le> real_of_float y\<close> F lb_arctan_horner.simps ub_arctan_horner.simps]
-
-  have "(sqrt y * lb_arctan_horner prec n 1 y) \<le> arctan (sqrt y)"
-  proof -
-    have "(sqrt y * lb_arctan_horner prec n 1 y) \<le> ?S n"
-      using bounds(1) \<open>0 \<le> sqrt y\<close>
-      apply (simp only: power_add power_one_right mult.assoc[symmetric] sum_distrib_right[symmetric])
-      apply (simp only: mult.commute[where 'a=real] mult.commute[of _ "2::nat"] power_mult)
-      apply (auto intro!: mult_left_mono)
-      done
-    also have "\<dots> \<le> arctan (sqrt y)" using arctan_bounds ..
-    finally show ?thesis .
-  qed
-  moreover
-  have "arctan (sqrt y) \<le> (sqrt y * ub_arctan_horner prec (Suc n) 1 y)"
-  proof -
-    have "arctan (sqrt y) \<le> ?S (Suc n)" using arctan_bounds ..
-    also have "\<dots> \<le> (sqrt y * ub_arctan_horner prec (Suc n) 1 y)"
-      using bounds(2)[of "Suc n"] \<open>0 \<le> sqrt y\<close>
-      apply (simp only: power_add power_one_right mult.assoc[symmetric] sum_distrib_right[symmetric])
-      apply (simp only: mult.commute[where 'a=real] mult.commute[of _ "2::nat"] power_mult)
-      apply (auto intro!: mult_left_mono)
-      done
-    finally show ?thesis .
-  qed
-  ultimately show ?thesis by auto
-qed
-
-lemma arctan_0_1_bounds:
-  assumes "0 \<le> real_of_float y" "real_of_float y \<le> 1"
-  shows "arctan (sqrt y) \<in>
-    {(sqrt y * lb_arctan_horner prec (get_even n) 1 y) ..
-      (sqrt y * ub_arctan_horner prec (get_odd n) 1 y)}"
-  using
-    arctan_0_1_bounds'[OF assms, of n prec]
-    arctan_0_1_bounds'[OF assms, of "n + 1" prec]
-    arctan_0_1_bounds'[OF assms, of "n - 1" prec]
-  by (auto simp: get_even_def get_odd_def odd_pos
-    simp del: ub_arctan_horner.simps lb_arctan_horner.simps)
-
-lemma arctan_lower_bound:
-  assumes "0 \<le> x"
-  shows "x / (1 + x\<^sup>2) \<le> arctan x" (is "?l x \<le> _")
-proof -
-  have "?l x - arctan x \<le> ?l 0 - arctan 0"
-    using assms
-    by (intro DERIV_nonpos_imp_nonincreasing[where f="\<lambda>x. ?l x - arctan x"])
-      (auto intro!: derivative_eq_intros simp: add_nonneg_eq_0_iff field_simps)
-  thus ?thesis by simp
-qed
-
-lemma arctan_divide_mono: "0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> arctan y / y \<le> arctan x / x"
-  by (rule DERIV_nonpos_imp_nonincreasing[where f="\<lambda>x. arctan x / x"])
-    (auto intro!: derivative_eq_intros divide_nonpos_nonneg
-      simp: inverse_eq_divide arctan_lower_bound)
-
-lemma arctan_mult_mono: "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> x * arctan y \<le> y * arctan x"
-  using arctan_divide_mono[of x y] by (cases "x = 0") (simp_all add: field_simps)
-
-lemma arctan_mult_le:
-  assumes "0 \<le> x" "x \<le> y" "y * z \<le> arctan y"
-  shows "x * z \<le> arctan x"
-proof (cases "x = 0")
-  case True
-  then show ?thesis by simp
-next
-  case False
-  with assms have "z \<le> arctan y / y" by (simp add: field_simps)
-  also have "\<dots> \<le> arctan x / x" using assms \<open>x \<noteq> 0\<close> by (auto intro!: arctan_divide_mono)
-  finally show ?thesis using assms \<open>x \<noteq> 0\<close> by (simp add: field_simps)
-qed
-
-lemma arctan_le_mult:
-  assumes "0 < x" "x \<le> y" "arctan x \<le> x * z"
-  shows "arctan y \<le> y * z"
-proof -
-  from assms have "arctan y / y \<le> arctan x / x" by (auto intro!: arctan_divide_mono)
-  also have "\<dots> \<le> z" using assms by (auto simp: field_simps)
-  finally show ?thesis using assms by (simp add: field_simps)
-qed
-
-lemma arctan_0_1_bounds_le:
-  assumes "0 \<le> x" "x \<le> 1" "0 < real_of_float xl" "real_of_float xl \<le> x * x" "x * x \<le> real_of_float xu" "real_of_float xu \<le> 1"
-  shows "arctan x \<in>
-      {x * lb_arctan_horner p1 (get_even n) 1 xu .. x * ub_arctan_horner p2 (get_odd n) 1 xl}"
-proof -
-  from assms have "real_of_float xl \<le> 1" "sqrt (real_of_float xl) \<le> x" "x \<le> sqrt (real_of_float xu)" "0 \<le> real_of_float xu"
-    "0 \<le> real_of_float xl" "0 < sqrt (real_of_float xl)"
-    by (auto intro!: real_le_rsqrt real_le_lsqrt simp: power2_eq_square)
-  from arctan_0_1_bounds[OF \<open>0 \<le> real_of_float xu\<close>  \<open>real_of_float xu \<le> 1\<close>]
-  have "sqrt (real_of_float xu) * real_of_float (lb_arctan_horner p1 (get_even n) 1 xu) \<le> arctan (sqrt (real_of_float xu))"
-    by simp
-  from arctan_mult_le[OF \<open>0 \<le> x\<close> \<open>x \<le> sqrt _\<close>  this]
-  have "x * real_of_float (lb_arctan_horner p1 (get_even n) 1 xu) \<le> arctan x" .
-  moreover
-  from arctan_0_1_bounds[OF \<open>0 \<le> real_of_float xl\<close>  \<open>real_of_float xl \<le> 1\<close>]
-  have "arctan (sqrt (real_of_float xl)) \<le> sqrt (real_of_float xl) * real_of_float (ub_arctan_horner p2 (get_odd n) 1 xl)"
-    by simp
-  from arctan_le_mult[OF \<open>0 < sqrt xl\<close> \<open>sqrt xl \<le> x\<close> this]
-  have "arctan x \<le> x * real_of_float (ub_arctan_horner p2 (get_odd n) 1 xl)" .
-  ultimately show ?thesis by simp
-qed
-
-lemma arctan_0_1_bounds_round:
-  assumes "0 \<le> real_of_float x" "real_of_float x \<le> 1"
-  shows "arctan x \<in>
-      {real_of_float x * lb_arctan_horner p1 (get_even n) 1 (float_round_up (Suc p2) (x * x)) ..
-        real_of_float x * ub_arctan_horner p3 (get_odd n) 1 (float_round_down (Suc p4) (x * x))}"
-  using assms
-  apply (cases "x > 0")
-   apply (intro arctan_0_1_bounds_le)
-   apply (auto simp: float_round_down.rep_eq float_round_up.rep_eq
-    intro!: truncate_up_le1 mult_le_one truncate_down_le truncate_up_le truncate_down_pos
-      mult_pos_pos)
-  done
-
-
-subsection "Compute \<pi>"
-
-definition ub_pi :: "nat \<Rightarrow> float" where
-  "ub_pi prec =
-    (let
-      A = rapprox_rat prec 1 5 ;
-      B = lapprox_rat prec 1 239
-    in ((Float 1 2) * float_plus_up prec
-      ((Float 1 2) * float_round_up prec (A * (ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1
-        (float_round_down (Suc prec) (A * A)))))
-      (- float_round_down prec (B * (lb_arctan_horner prec (get_even (prec div 14 + 1)) 1
-        (float_round_up (Suc prec) (B * B)))))))"
-
-definition lb_pi :: "nat \<Rightarrow> float" where
-  "lb_pi prec =
-    (let
-      A = lapprox_rat prec 1 5 ;
-      B = rapprox_rat prec 1 239
-    in ((Float 1 2) * float_plus_down prec
-      ((Float 1 2) * float_round_down prec (A * (lb_arctan_horner prec (get_even (prec div 4 + 1)) 1
-        (float_round_up (Suc prec) (A * A)))))
-      (- float_round_up prec (B * (ub_arctan_horner prec (get_odd (prec div 14 + 1)) 1
-        (float_round_down (Suc prec) (B * B)))))))"
-
-lemma pi_boundaries: "pi \<in> {(lb_pi n) .. (ub_pi n)}"
-proof -
-  have machin_pi: "pi = 4 * (4 * arctan (1 / 5) - arctan (1 / 239))"
-    unfolding machin[symmetric] by auto
-
-  {
-    fix prec n :: nat
-    fix k :: int
-    assume "1 < k" hence "0 \<le> k" and "0 < k" and "1 \<le> k" by auto
-    let ?k = "rapprox_rat prec 1 k"
-    let ?kl = "float_round_down (Suc prec) (?k * ?k)"
-    have "1 div k = 0" using div_pos_pos_trivial[OF _ \<open>1 < k\<close>] by auto
-
-    have "0 \<le> real_of_float ?k" by (rule order_trans[OF _ rapprox_rat]) (auto simp add: \<open>0 \<le> k\<close>)
-    have "real_of_float ?k \<le> 1"
-      by (auto simp add: \<open>0 < k\<close> \<open>1 \<le> k\<close> less_imp_le
-        intro!: mult_le_one order_trans[OF _ rapprox_rat] rapprox_rat_le1)
-    have "1 / k \<le> ?k" using rapprox_rat[where x=1 and y=k] by auto
-    hence "arctan (1 / k) \<le> arctan ?k" by (rule arctan_monotone')
-    also have "\<dots> \<le> (?k * ub_arctan_horner prec (get_odd n) 1 ?kl)"
-      using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?k\<close> \<open>real_of_float ?k \<le> 1\<close>]
-      by auto
-    finally have "arctan (1 / k) \<le> ?k * ub_arctan_horner prec (get_odd n) 1 ?kl" .
-  } note ub_arctan = this
-
-  {
-    fix prec n :: nat
-    fix k :: int
-    assume "1 < k" hence "0 \<le> k" and "0 < k" by auto
-    let ?k = "lapprox_rat prec 1 k"
-    let ?ku = "float_round_up (Suc prec) (?k * ?k)"
-    have "1 div k = 0" using div_pos_pos_trivial[OF _ \<open>1 < k\<close>] by auto
-    have "1 / k \<le> 1" using \<open>1 < k\<close> by auto
-    have "0 \<le> real_of_float ?k" using lapprox_rat_nonneg[where x=1 and y=k, OF zero_le_one \<open>0 \<le> k\<close>]
-      by (auto simp add: \<open>1 div k = 0\<close>)
-    have "0 \<le> real_of_float (?k * ?k)" by simp
-    have "real_of_float ?k \<le> 1" using lapprox_rat by (rule order_trans, auto simp add: \<open>1 / k \<le> 1\<close>)
-    hence "real_of_float (?k * ?k) \<le> 1" using \<open>0 \<le> real_of_float ?k\<close> by (auto intro!: mult_le_one)
-
-    have "?k \<le> 1 / k" using lapprox_rat[where x=1 and y=k] by auto
-
-    have "?k * lb_arctan_horner prec (get_even n) 1 ?ku \<le> arctan ?k"
-      using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?k\<close> \<open>real_of_float ?k \<le> 1\<close>]
-      by auto
-    also have "\<dots> \<le> arctan (1 / k)" using \<open>?k \<le> 1 / k\<close> by (rule arctan_monotone')
-    finally have "?k * lb_arctan_horner prec (get_even n) 1 ?ku \<le> arctan (1 / k)" .
-  } note lb_arctan = this
-
-  have "pi \<le> ub_pi n "
-    unfolding ub_pi_def machin_pi Let_def times_float.rep_eq Float_num
-    using lb_arctan[of 239] ub_arctan[of 5] powr_realpow[of 2 2]
-    by (intro mult_left_mono float_plus_up_le float_plus_down_le)
-      (auto intro!: mult_left_mono float_round_down_le float_round_up_le diff_mono)
-  moreover have "lb_pi n \<le> pi"
-    unfolding lb_pi_def machin_pi Let_def times_float.rep_eq Float_num
-    using lb_arctan[of 5] ub_arctan[of 239]
-    by (intro mult_left_mono float_plus_up_le float_plus_down_le)
-      (auto intro!: mult_left_mono float_round_down_le float_round_up_le diff_mono)
-  ultimately show ?thesis by auto
-qed
-
-
-subsection "Compute arcus tangens in the entire domain"
-
-function lb_arctan :: "nat \<Rightarrow> float \<Rightarrow> float" and ub_arctan :: "nat \<Rightarrow> float \<Rightarrow> float" where
-  "lb_arctan prec x =
-    (let
-      ub_horner = \<lambda> x. float_round_up prec
-        (x *
-          ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x)));
-      lb_horner = \<lambda> x. float_round_down prec
-        (x *
-          lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x)))
-    in
-      if x < 0 then - ub_arctan prec (-x)
-      else if x \<le> Float 1 (- 1) then lb_horner x
-      else if x \<le> Float 1 1 then
-        Float 1 1 *
-        lb_horner
-          (float_divl prec x
-            (float_plus_up prec 1
-              (ub_sqrt prec (float_plus_up prec 1 (float_round_up prec (x * x))))))
-      else let inv = float_divr prec 1 x in
-        if inv > 1 then 0
-        else float_plus_down prec (lb_pi prec * Float 1 (- 1)) ( - ub_horner inv))"
-
-| "ub_arctan prec x =
-    (let
-      lb_horner = \<lambda> x. float_round_down prec
-        (x *
-          lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x))) ;
-      ub_horner = \<lambda> x. float_round_up prec
-        (x *
-          ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x)))
-    in if x < 0 then - lb_arctan prec (-x)
-    else if x \<le> Float 1 (- 1) then ub_horner x
-    else if x \<le> Float 1 1 then
-      let y = float_divr prec x
-        (float_plus_down
-          (Suc prec) 1 (lb_sqrt prec (float_plus_down prec 1 (float_round_down prec (x * x)))))
-      in if y > 1 then ub_pi prec * Float 1 (- 1) else Float 1 1 * ub_horner y
-    else float_plus_up prec (ub_pi prec * Float 1 (- 1)) ( - lb_horner (float_divl prec 1 x)))"
-by pat_completeness auto
-termination
-by (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if x < 0 then 1 else 0))", auto)
-
-declare ub_arctan_horner.simps[simp del]
-declare lb_arctan_horner.simps[simp del]
-
-lemma lb_arctan_bound':
-  assumes "0 \<le> real_of_float x"
-  shows "lb_arctan prec x \<le> arctan x"
-proof -
-  have "\<not> x < 0" and "0 \<le> x"
-    using \<open>0 \<le> real_of_float x\<close> by (auto intro!: truncate_up_le )
-
-  let "?ub_horner x" =
-      "x * ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x))"
-    and "?lb_horner x" =
-      "x * lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x))"
-
-  show ?thesis
-  proof (cases "x \<le> Float 1 (- 1)")
-    case True
-    hence "real_of_float x \<le> 1" by simp
-    from arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float x\<close> \<open>real_of_float x \<le> 1\<close>]
-    show ?thesis
-      unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>] if_P[OF True] using \<open>0 \<le> x\<close>
-      by (auto intro!: float_round_down_le)
-  next
-    case False
-    hence "0 < real_of_float x" by auto
-    let ?R = "1 + sqrt (1 + real_of_float x * real_of_float x)"
-    let ?sxx = "float_plus_up prec 1 (float_round_up prec (x * x))"
-    let ?fR = "float_plus_up prec 1 (ub_sqrt prec ?sxx)"
-    let ?DIV = "float_divl prec x ?fR"
-
-    have divisor_gt0: "0 < ?R" by (auto intro: add_pos_nonneg)
-
-    have "sqrt (1 + x*x) \<le> sqrt ?sxx"
-      by (auto simp: float_plus_up.rep_eq plus_up_def float_round_up.rep_eq intro!: truncate_up_le)
-    also have "\<dots> \<le> ub_sqrt prec ?sxx"
-      using bnds_sqrt'[of ?sxx prec] by auto
-    finally
-    have "sqrt (1 + x*x) \<le> ub_sqrt prec ?sxx" .
-    hence "?R \<le> ?fR" by (auto simp: float_plus_up.rep_eq plus_up_def intro!: truncate_up_le)
-    hence "0 < ?fR" and "0 < real_of_float ?fR" using \<open>0 < ?R\<close> by auto
-
-    have monotone: "?DIV \<le> x / ?R"
-    proof -
-      have "?DIV \<le> real_of_float x / ?fR" by (rule float_divl)
-      also have "\<dots> \<le> x / ?R" by (rule divide_left_mono[OF \<open>?R \<le> ?fR\<close> \<open>0 \<le> real_of_float x\<close> mult_pos_pos[OF order_less_le_trans[OF divisor_gt0 \<open>?R \<le> real_of_float ?fR\<close>] divisor_gt0]])
-      finally show ?thesis .
-    qed
-
-    show ?thesis
-    proof (cases "x \<le> Float 1 1")
-      case True
-      have "x \<le> sqrt (1 + x * x)"
-        using real_sqrt_sum_squares_ge2[where x=1, unfolded numeral_2_eq_2] by auto
-      also note \<open>\<dots> \<le> (ub_sqrt prec ?sxx)\<close>
-      finally have "real_of_float x \<le> ?fR"
-        by (auto simp: float_plus_up.rep_eq plus_up_def intro!: truncate_up_le)
-      moreover have "?DIV \<le> real_of_float x / ?fR"
-        by (rule float_divl)
-      ultimately have "real_of_float ?DIV \<le> 1"
-        unfolding divide_le_eq_1_pos[OF \<open>0 < real_of_float ?fR\<close>, symmetric] by auto
-
-      have "0 \<le> real_of_float ?DIV"
-        using float_divl_lower_bound[OF \<open>0 \<le> x\<close>] \<open>0 < ?fR\<close>
-        unfolding less_eq_float_def by auto
-
-      from arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float (?DIV)\<close> \<open>real_of_float (?DIV) \<le> 1\<close>]
-      have "Float 1 1 * ?lb_horner ?DIV \<le> 2 * arctan ?DIV"
-        by simp
-      also have "\<dots> \<le> 2 * arctan (x / ?R)"
-        using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono arctan_monotone')
-      also have "2 * arctan (x / ?R) = arctan x"
-        using arctan_half[symmetric] unfolding numeral_2_eq_2 power_Suc2 power_0 mult_1_left .
-      finally show ?thesis
-        unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
-          if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_P[OF True]
-        by (auto simp: float_round_down.rep_eq
-          intro!: order_trans[OF mult_left_mono[OF truncate_down]])
-    next
-      case False
-      hence "2 < real_of_float x" by auto
-      hence "1 \<le> real_of_float x" by auto
-
-      let "?invx" = "float_divr prec 1 x"
-      have "0 \<le> arctan x" using arctan_monotone'[OF \<open>0 \<le> real_of_float x\<close>]
-        using arctan_tan[of 0, unfolded tan_zero] by auto
-
-      show ?thesis
-      proof (cases "1 < ?invx")
-        case True
-        show ?thesis
-          unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
-            if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_not_P[OF False] if_P[OF True]
-          using \<open>0 \<le> arctan x\<close> by auto
-      next
-        case False
-        hence "real_of_float ?invx \<le> 1" by auto
-        have "0 \<le> real_of_float ?invx"
-          by (rule order_trans[OF _ float_divr]) (auto simp add: \<open>0 \<le> real_of_float x\<close>)
-
-        have "1 / x \<noteq> 0" and "0 < 1 / x"
-          using \<open>0 < real_of_float x\<close> by auto
-
-        have "arctan (1 / x) \<le> arctan ?invx"
-          unfolding one_float.rep_eq[symmetric] by (rule arctan_monotone', rule float_divr)
-        also have "\<dots> \<le> ?ub_horner ?invx"
-          using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?invx\<close> \<open>real_of_float ?invx \<le> 1\<close>]
-          by (auto intro!: float_round_up_le)
-        also note float_round_up
-        finally have "pi / 2 - float_round_up prec (?ub_horner ?invx) \<le> arctan x"
-          using \<open>0 \<le> arctan x\<close> arctan_inverse[OF \<open>1 / x \<noteq> 0\<close>]
-          unfolding sgn_pos[OF \<open>0 < 1 / real_of_float x\<close>] le_diff_eq by auto
-        moreover
-        have "lb_pi prec * Float 1 (- 1) \<le> pi / 2"
-          unfolding Float_num times_divide_eq_right mult_1_left using pi_boundaries by simp
-        ultimately
-        show ?thesis
-          unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
-            if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_not_P[OF \<open>\<not> x \<le> Float 1 1\<close>] if_not_P[OF False]
-          by (auto intro!: float_plus_down_le)
-      qed
-    qed
-  qed
-qed
-
-lemma ub_arctan_bound':
-  assumes "0 \<le> real_of_float x"
-  shows "arctan x \<le> ub_arctan prec x"
-proof -
-  have "\<not> x < 0" and "0 \<le> x"
-    using \<open>0 \<le> real_of_float x\<close> by auto
-
-  let "?ub_horner x" =
-    "float_round_up prec (x * ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x)))"
-  let "?lb_horner x" =
-    "float_round_down prec (x * lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x)))"
-
-  show ?thesis
-  proof (cases "x \<le> Float 1 (- 1)")
-    case True
-    hence "real_of_float x \<le> 1" by auto
-    show ?thesis
-      unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>] if_P[OF True]
-      using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float x\<close> \<open>real_of_float x \<le> 1\<close>]
-      by (auto intro!: float_round_up_le)
-  next
-    case False
-    hence "0 < real_of_float x" by auto
-    let ?R = "1 + sqrt (1 + real_of_float x * real_of_float x)"
-    let ?sxx = "float_plus_down prec 1 (float_round_down prec (x * x))"
-    let ?fR = "float_plus_down (Suc prec) 1 (lb_sqrt prec ?sxx)"
-    let ?DIV = "float_divr prec x ?fR"
-
-    have sqr_ge0: "0 \<le> 1 + real_of_float x * real_of_float x"
-      using sum_power2_ge_zero[of 1 "real_of_float x", unfolded numeral_2_eq_2] by auto
-    hence "0 \<le> real_of_float (1 + x*x)" by auto
-
-    hence divisor_gt0: "0 < ?R" by (auto intro: add_pos_nonneg)
-
-    have "lb_sqrt prec ?sxx \<le> sqrt ?sxx"
-      using bnds_sqrt'[of ?sxx] by auto
-    also have "\<dots> \<le> sqrt (1 + x*x)"
-      by (auto simp: float_plus_down.rep_eq plus_down_def float_round_down.rep_eq truncate_down_le)
-    finally have "lb_sqrt prec ?sxx \<le> sqrt (1 + x*x)" .
-    hence "?fR \<le> ?R"
-      by (auto simp: float_plus_down.rep_eq plus_down_def truncate_down_le)
-    have "0 < real_of_float ?fR"
-      by (auto simp: float_plus_down.rep_eq plus_down_def float_round_down.rep_eq
-        intro!: truncate_down_ge1 lb_sqrt_lower_bound order_less_le_trans[OF zero_less_one]
-        truncate_down_nonneg add_nonneg_nonneg)
-    have monotone: "x / ?R \<le> (float_divr prec x ?fR)"
-    proof -
-      from divide_left_mono[OF \<open>?fR \<le> ?R\<close> \<open>0 \<le> real_of_float x\<close> mult_pos_pos[OF divisor_gt0 \<open>0 < real_of_float ?fR\<close>]]
-      have "x / ?R \<le> x / ?fR" .
-      also have "\<dots> \<le> ?DIV" by (rule float_divr)
-      finally show ?thesis .
-    qed
-
-    show ?thesis
-    proof (cases "x \<le> Float 1 1")
-      case True
-      show ?thesis
-      proof (cases "?DIV > 1")
-        case True
-        have "pi / 2 \<le> ub_pi prec * Float 1 (- 1)"
-          unfolding Float_num times_divide_eq_right mult_1_left using pi_boundaries by auto
-        from order_less_le_trans[OF arctan_ubound this, THEN less_imp_le]
-        show ?thesis
-          unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
-            if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_P[OF \<open>x \<le> Float 1 1\<close>] if_P[OF True] .
-      next
-        case False
-        hence "real_of_float ?DIV \<le> 1" by auto
-
-        have "0 \<le> x / ?R"
-          using \<open>0 \<le> real_of_float x\<close> \<open>0 < ?R\<close> unfolding zero_le_divide_iff by auto
-        hence "0 \<le> real_of_float ?DIV"
-          using monotone by (rule order_trans)
-
-        have "arctan x = 2 * arctan (x / ?R)"
-          using arctan_half unfolding numeral_2_eq_2 power_Suc2 power_0 mult_1_left .
-        also have "\<dots> \<le> 2 * arctan (?DIV)"
-          using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono)
-        also have "\<dots> \<le> (Float 1 1 * ?ub_horner ?DIV)" unfolding Float_num
-          using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?DIV\<close> \<open>real_of_float ?DIV \<le> 1\<close>]
-          by (auto intro!: float_round_up_le)
-        finally show ?thesis
-          unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
-            if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_P[OF \<open>x \<le> Float 1 1\<close>] if_not_P[OF False] .
-      qed
-    next
-      case False
-      hence "2 < real_of_float x" by auto
-      hence "1 \<le> real_of_float x" by auto
-      hence "0 < real_of_float x" by auto
-      hence "0 < x" by auto
-
-      let "?invx" = "float_divl prec 1 x"
-      have "0 \<le> arctan x"
-        using arctan_monotone'[OF \<open>0 \<le> real_of_float x\<close>] and arctan_tan[of 0, unfolded tan_zero] by auto
-
-      have "real_of_float ?invx \<le> 1"
-        unfolding less_float_def
-        by (rule order_trans[OF float_divl])
-          (auto simp add: \<open>1 \<le> real_of_float x\<close> divide_le_eq_1_pos[OF \<open>0 < real_of_float x\<close>])
-      have "0 \<le> real_of_float ?invx"
-        using \<open>0 < x\<close> by (intro float_divl_lower_bound) auto
-
-      have "1 / x \<noteq> 0" and "0 < 1 / x"
-        using \<open>0 < real_of_float x\<close> by auto
-
-      have "(?lb_horner ?invx) \<le> arctan (?invx)"
-        using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?invx\<close> \<open>real_of_float ?invx \<le> 1\<close>]
-        by (auto intro!: float_round_down_le)
-      also have "\<dots> \<le> arctan (1 / x)"
-        unfolding one_float.rep_eq[symmetric] by (rule arctan_monotone') (rule float_divl)
-      finally have "arctan x \<le> pi / 2 - (?lb_horner ?invx)"
-        using \<open>0 \<le> arctan x\<close> arctan_inverse[OF \<open>1 / x \<noteq> 0\<close>]
-        unfolding sgn_pos[OF \<open>0 < 1 / x\<close>] le_diff_eq by auto
-      moreover
-      have "pi / 2 \<le> ub_pi prec * Float 1 (- 1)"
-        unfolding Float_num times_divide_eq_right mult_1_right
-        using pi_boundaries by auto
-      ultimately
-      show ?thesis
-        unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
-          if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_not_P[OF False]
-        by (auto intro!: float_round_up_le float_plus_up_le)
-    qed
-  qed
-qed
-
-lemma arctan_boundaries: "arctan x \<in> {(lb_arctan prec x) .. (ub_arctan prec x)}"
-proof (cases "0 \<le> x")
-  case True
-  hence "0 \<le> real_of_float x" by auto
-  show ?thesis
-    using ub_arctan_bound'[OF \<open>0 \<le> real_of_float x\<close>] lb_arctan_bound'[OF \<open>0 \<le> real_of_float x\<close>]
-    unfolding atLeastAtMost_iff by auto
-next
-  case False
-  let ?mx = "-x"
-  from False have "x < 0" and "0 \<le> real_of_float ?mx"
-    by auto
-  hence bounds: "lb_arctan prec ?mx \<le> arctan ?mx \<and> arctan ?mx \<le> ub_arctan prec ?mx"
-    using ub_arctan_bound'[OF \<open>0 \<le> real_of_float ?mx\<close>] lb_arctan_bound'[OF \<open>0 \<le> real_of_float ?mx\<close>] by auto
-  show ?thesis
-    unfolding minus_float.rep_eq arctan_minus lb_arctan.simps[where x=x]
-      ub_arctan.simps[where x=x] Let_def if_P[OF \<open>x < 0\<close>]
-    unfolding atLeastAtMost_iff using bounds[unfolded minus_float.rep_eq arctan_minus]
-    by (simp add: arctan_minus)
-qed
-
-lemma bnds_arctan: "\<forall> (x::real) lx ux. (l, u) = (lb_arctan prec lx, ub_arctan prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> arctan x \<and> arctan x \<le> u"
-proof (rule allI, rule allI, rule allI, rule impI)
-  fix x :: real
-  fix lx ux
-  assume "(l, u) = (lb_arctan prec lx, ub_arctan prec ux) \<and> x \<in> {lx .. ux}"
-  hence l: "lb_arctan prec lx = l "
-    and u: "ub_arctan prec ux = u"
-    and x: "x \<in> {lx .. ux}"
-    by auto
-  show "l \<le> arctan x \<and> arctan x \<le> u"
-  proof
-    show "l \<le> arctan x"
-    proof -
-      from arctan_boundaries[of lx prec, unfolded l]
-      have "l \<le> arctan lx" by (auto simp del: lb_arctan.simps)
-      also have "\<dots> \<le> arctan x" using x by (auto intro: arctan_monotone')
-      finally show ?thesis .
-    qed
-    show "arctan x \<le> u"
-    proof -
-      have "arctan x \<le> arctan ux" using x by (auto intro: arctan_monotone')
-      also have "\<dots> \<le> u" using arctan_boundaries[of ux prec, unfolded u] by (auto simp del: ub_arctan.simps)
-      finally show ?thesis .
-    qed
-  qed
-qed
-
-
-section "Sinus and Cosinus"
-
-subsection "Compute the cosinus and sinus series"
-
-fun ub_sin_cos_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
-and lb_sin_cos_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where
-  "ub_sin_cos_aux prec 0 i k x = 0"
-| "ub_sin_cos_aux prec (Suc n) i k x = float_plus_up prec
-    (rapprox_rat prec 1 k) (-
-      float_round_down prec (x * (lb_sin_cos_aux prec n (i + 2) (k * i * (i + 1)) x)))"
-| "lb_sin_cos_aux prec 0 i k x = 0"
-| "lb_sin_cos_aux prec (Suc n) i k x = float_plus_down prec
-    (lapprox_rat prec 1 k) (-
-      float_round_up prec (x * (ub_sin_cos_aux prec n (i + 2) (k * i * (i + 1)) x)))"
-
-lemma cos_aux:
-  shows "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> (\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i))) * x ^(2 * i))" (is "?lb")
-  and "(\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i))) * x^(2 * i)) \<le> (ub_sin_cos_aux prec n 1 1 (x * x))" (is "?ub")
-proof -
-  have "0 \<le> real_of_float (x * x)" by auto
-  let "?f n" = "fact (2 * n) :: nat"
-  have f_eq: "?f (Suc n) = ?f n * ((\<lambda>i. i + 2) ^^ n) 1 * (((\<lambda>i. i + 2) ^^ n) 1 + 1)" for n
-  proof -
-    have "\<And>m. ((\<lambda>i. i + 2) ^^ n) m = m + 2 * n" by (induct n) auto
-    then show ?thesis by auto
-  qed
-  from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0,
-    OF \<open>0 \<le> real_of_float (x * x)\<close> f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps]
-  show ?lb and ?ub
-    by (auto simp add: power_mult power2_eq_square[of "real_of_float x"])
-qed
-
-lemma lb_sin_cos_aux_zero_le_one: "lb_sin_cos_aux prec n i j 0 \<le> 1"
-  by (cases j n rule: nat.exhaust[case_product nat.exhaust])
-    (auto intro!: float_plus_down_le order_trans[OF lapprox_rat])
-
-lemma one_le_ub_sin_cos_aux: "odd n \<Longrightarrow> 1 \<le> ub_sin_cos_aux prec n i (Suc 0) 0"
-  by (cases n) (auto intro!: float_plus_up_le order_trans[OF _ rapprox_rat])
-
-lemma cos_boundaries:
-  assumes "0 \<le> real_of_float x" and "x \<le> pi / 2"
-  shows "cos x \<in> {(lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) .. (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))}"
-proof (cases "real_of_float x = 0")
-  case False
-  hence "real_of_float x \<noteq> 0" by auto
-  hence "0 < x" and "0 < real_of_float x"
-    using \<open>0 \<le> real_of_float x\<close> by auto
-  have "0 < x * x"
-    using \<open>0 < x\<close> by simp
-
-  have morph_to_if_power: "(\<Sum> i=0..<n. (-1::real) ^ i * (1/(fact (2 * i))) * x ^ (2 * i)) =
-    (\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/((fact i)) else 0) * x ^ i)"
-    (is "?sum = ?ifsum") for x n
-  proof -
-    have "?sum = ?sum + (\<Sum> j = 0 ..< n. 0)" by auto
-    also have "\<dots> =
-      (\<Sum> j = 0 ..< n. (- 1) ^ ((2 * j) div 2) / ((fact (2 * j))) * x ^(2 * j)) + (\<Sum> j = 0 ..< n. 0)" by auto
-    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. if even i then (- 1) ^ (i div 2) / ((fact i)) * x ^ i else 0)"
-      unfolding sum_split_even_odd atLeast0LessThan ..
-    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. (if even i then (- 1) ^ (i div 2) / ((fact i)) else 0) * x ^ i)"
-      by (rule sum.cong) auto
-    finally show ?thesis .
-  qed
-
-  { fix n :: nat assume "0 < n"
-    hence "0 < 2 * n" by auto
-    obtain t where "0 < t" and "t < real_of_float x" and
-      cos_eq: "cos x = (\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/((fact i)) else 0) * (real_of_float x) ^ i)
-      + (cos (t + 1/2 * (2 * n) * pi) / (fact (2*n))) * (real_of_float x)^(2*n)"
-      (is "_ = ?SUM + ?rest / ?fact * ?pow")
-      using Maclaurin_cos_expansion2[OF \<open>0 < real_of_float x\<close> \<open>0 < 2 * n\<close>]
-      unfolding cos_coeff_def atLeast0LessThan by auto
-
-    have "cos t * (- 1) ^ n = cos t * cos (n * pi) + sin t * sin (n * pi)" by auto
-    also have "\<dots> = cos (t + n * pi)" by (simp add: cos_add)
-    also have "\<dots> = ?rest" by auto
-    finally have "cos t * (- 1) ^ n = ?rest" .
-    moreover
-    have "t \<le> pi / 2" using \<open>t < real_of_float x\<close> and \<open>x \<le> pi / 2\<close> by auto
-    hence "0 \<le> cos t" using \<open>0 < t\<close> and cos_ge_zero by auto
-    ultimately have even: "even n \<Longrightarrow> 0 \<le> ?rest" and odd: "odd n \<Longrightarrow> 0 \<le> - ?rest " by auto
-
-    have "0 < ?fact" by auto
-    have "0 < ?pow" using \<open>0 < real_of_float x\<close> by auto
-
-    {
-      assume "even n"
-      have "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> ?SUM"
-        unfolding morph_to_if_power[symmetric] using cos_aux by auto
-      also have "\<dots> \<le> cos x"
-      proof -
-        from even[OF \<open>even n\<close>] \<open>0 < ?fact\<close> \<open>0 < ?pow\<close>
-        have "0 \<le> (?rest / ?fact) * ?pow" by simp
-        thus ?thesis unfolding cos_eq by auto
-      qed
-      finally have "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> cos x" .
-    } note lb = this
-
-    {
-      assume "odd n"
-      have "cos x \<le> ?SUM"
-      proof -
-        from \<open>0 < ?fact\<close> and \<open>0 < ?pow\<close> and odd[OF \<open>odd n\<close>]
-        have "0 \<le> (- ?rest) / ?fact * ?pow"
-          by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le)
-        thus ?thesis unfolding cos_eq by auto
-      qed
-      also have "\<dots> \<le> (ub_sin_cos_aux prec n 1 1 (x * x))"
-        unfolding morph_to_if_power[symmetric] using cos_aux by auto
-      finally have "cos x \<le> (ub_sin_cos_aux prec n 1 1 (x * x))" .
-    } note ub = this and lb
-  } note ub = this(1) and lb = this(2)
-
-  have "cos x \<le> (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))"
-    using ub[OF odd_pos[OF get_odd] get_odd] .
-  moreover have "(lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) \<le> cos x"
-  proof (cases "0 < get_even n")
-    case True
-    show ?thesis using lb[OF True get_even] .
-  next
-    case False
-    hence "get_even n = 0" by auto
-    have "- (pi / 2) \<le> x"
-      by (rule order_trans[OF _ \<open>0 < real_of_float x\<close>[THEN less_imp_le]]) auto
-    with \<open>x \<le> pi / 2\<close> show ?thesis
-      unfolding \<open>get_even n = 0\<close> lb_sin_cos_aux.simps minus_float.rep_eq zero_float.rep_eq
-      using cos_ge_zero by auto
-  qed
-  ultimately show ?thesis by auto
-next
-  case True
-  hence "x = 0"
-    by transfer
-  thus ?thesis
-    using lb_sin_cos_aux_zero_le_one one_le_ub_sin_cos_aux
-    by simp
-qed
-
-lemma sin_aux:
-  assumes "0 \<le> real_of_float x"
-  shows "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le>
-      (\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i + 1))) * x^(2 * i + 1))" (is "?lb")
-    and "(\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i + 1))) * x^(2 * i + 1)) \<le>
-      (x * ub_sin_cos_aux prec n 2 1 (x * x))" (is "?ub")
-proof -
-  have "0 \<le> real_of_float (x * x)" by auto
-  let "?f n" = "fact (2 * n + 1) :: nat"
-  have f_eq: "?f (Suc n) = ?f n * ((\<lambda>i. i + 2) ^^ n) 2 * (((\<lambda>i. i + 2) ^^ n) 2 + 1)" for n
-  proof -
-    have F: "\<And>m. ((\<lambda>i. i + 2) ^^ n) m = m + 2 * n" by (induct n) auto
-    show ?thesis
-      unfolding F by auto
-  qed
-  from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0,
-    OF \<open>0 \<le> real_of_float (x * x)\<close> f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps]
-  show "?lb" and "?ub" using \<open>0 \<le> real_of_float x\<close>
-    apply (simp_all only: power_add power_one_right mult.assoc[symmetric] sum_distrib_right[symmetric])
-    apply (simp_all only: mult.commute[where 'a=real] of_nat_fact)
-    apply (auto intro!: mult_left_mono simp add: power_mult power2_eq_square[of "real_of_float x"])
-    done
-qed
-
-lemma sin_boundaries:
-  assumes "0 \<le> real_of_float x"
-    and "x \<le> pi / 2"
-  shows "sin x \<in> {(x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) .. (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))}"
-proof (cases "real_of_float x = 0")
-  case False
-  hence "real_of_float x \<noteq> 0" by auto
-  hence "0 < x" and "0 < real_of_float x"
-    using \<open>0 \<le> real_of_float x\<close> by auto
-  have "0 < x * x"
-    using \<open>0 < x\<close> by simp
-
-  have sum_morph: "(\<Sum>j = 0 ..< n. (- 1) ^ (((2 * j + 1) - Suc 0) div 2) / ((fact (2 * j + 1))) * x ^(2 * j + 1)) =
-    (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * x ^ i)"
-    (is "?SUM = _") for x :: real and n
-  proof -
-    have pow: "!!i. x ^ (2 * i + 1) = x * x ^ (2 * i)"
-      by auto
-    have "?SUM = (\<Sum> j = 0 ..< n. 0) + ?SUM"
-      by auto
-    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / ((fact i)) * x ^ i)"
-      unfolding sum_split_even_odd atLeast0LessThan ..
-    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. (if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / ((fact i))) * x ^ i)"
-      by (rule sum.cong) auto
-    finally show ?thesis .
-  qed
-
-  { fix n :: nat assume "0 < n"
-    hence "0 < 2 * n + 1" by auto
-    obtain t where "0 < t" and "t < real_of_float x" and
-      sin_eq: "sin x = (\<Sum> i = 0 ..< 2 * n + 1. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real_of_float x) ^ i)
-      + (sin (t + 1/2 * (2 * n + 1) * pi) / (fact (2*n + 1))) * (real_of_float x)^(2*n + 1)"
-      (is "_ = ?SUM + ?rest / ?fact * ?pow")
-      using Maclaurin_sin_expansion3[OF \<open>0 < 2 * n + 1\<close> \<open>0 < real_of_float x\<close>]
-      unfolding sin_coeff_def atLeast0LessThan by auto
-
-    have "?rest = cos t * (- 1) ^ n"
-      unfolding sin_add cos_add of_nat_add distrib_right distrib_left by auto
-    moreover
-    have "t \<le> pi / 2"
-      using \<open>t < real_of_float x\<close> and \<open>x \<le> pi / 2\<close> by auto
-    hence "0 \<le> cos t"
-      using \<open>0 < t\<close> and cos_ge_zero by auto
-    ultimately have even: "even n \<Longrightarrow> 0 \<le> ?rest" and odd: "odd n \<Longrightarrow> 0 \<le> - ?rest"
-      by auto
-
-    have "0 < ?fact"
-      by (simp del: fact_Suc)
-    have "0 < ?pow"
-      using \<open>0 < real_of_float x\<close> by (rule zero_less_power)
-
-    {
-      assume "even n"
-      have "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le>
-            (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real_of_float x) ^ i)"
-        using sin_aux[OF \<open>0 \<le> real_of_float x\<close>] unfolding sum_morph[symmetric] by auto
-      also have "\<dots> \<le> ?SUM" by auto
-      also have "\<dots> \<le> sin x"
-      proof -
-        from even[OF \<open>even n\<close>] \<open>0 < ?fact\<close> \<open>0 < ?pow\<close>
-        have "0 \<le> (?rest / ?fact) * ?pow" by simp
-        thus ?thesis unfolding sin_eq by auto
-      qed
-      finally have "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le> sin x" .
-    } note lb = this
-
-    {
-      assume "odd n"
-      have "sin x \<le> ?SUM"
-      proof -
-        from \<open>0 < ?fact\<close> and \<open>0 < ?pow\<close> and odd[OF \<open>odd n\<close>]
-        have "0 \<le> (- ?rest) / ?fact * ?pow"
-          by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le)
-        thus ?thesis unfolding sin_eq by auto
-      qed
-      also have "\<dots> \<le> (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real_of_float x) ^ i)"
-         by auto
-      also have "\<dots> \<le> (x * ub_sin_cos_aux prec n 2 1 (x * x))"
-        using sin_aux[OF \<open>0 \<le> real_of_float x\<close>] unfolding sum_morph[symmetric] by auto
-      finally have "sin x \<le> (x * ub_sin_cos_aux prec n 2 1 (x * x))" .
-    } note ub = this and lb
-  } note ub = this(1) and lb = this(2)
-
-  have "sin x \<le> (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))"
-    using ub[OF odd_pos[OF get_odd] get_odd] .
-  moreover have "(x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) \<le> sin x"
-  proof (cases "0 < get_even n")
-    case True
-    show ?thesis
-      using lb[OF True get_even] .
-  next
-    case False
-    hence "get_even n = 0" by auto
-    with \<open>x \<le> pi / 2\<close> \<open>0 \<le> real_of_float x\<close>
-    show ?thesis
-      unfolding \<open>get_even n = 0\<close> ub_sin_cos_aux.simps minus_float.rep_eq
-      using sin_ge_zero by auto
-  qed
-  ultimately show ?thesis by auto
-next
-  case True
-  show ?thesis
-  proof (cases "n = 0")
-    case True
-    thus ?thesis
-      unfolding \<open>n = 0\<close> get_even_def get_odd_def
-      using \<open>real_of_float x = 0\<close> lapprox_rat[where x="-1" and y=1] by auto
-  next
-    case False
-    with not0_implies_Suc obtain m where "n = Suc m" by blast
-    thus ?thesis
-      unfolding \<open>n = Suc m\<close> get_even_def get_odd_def
-      using \<open>real_of_float x = 0\<close> rapprox_rat[where x=1 and y=1] lapprox_rat[where x=1 and y=1]
-      by (cases "even (Suc m)") auto
-  qed
-qed
-
-
-subsection "Compute the cosinus in the entire domain"
-
-definition lb_cos :: "nat \<Rightarrow> float \<Rightarrow> float" where
-"lb_cos prec x = (let
-    horner = \<lambda> x. lb_sin_cos_aux prec (get_even (prec div 4 + 1)) 1 1 (x * x) ;
-    half = \<lambda> x. if x < 0 then - 1 else float_plus_down prec (Float 1 1 * x * x) (- 1)
-  in if x < Float 1 (- 1) then horner x
-else if x < 1          then half (horner (x * Float 1 (- 1)))
-                       else half (half (horner (x * Float 1 (- 2)))))"
-
-definition ub_cos :: "nat \<Rightarrow> float \<Rightarrow> float" where
-"ub_cos prec x = (let
-    horner = \<lambda> x. ub_sin_cos_aux prec (get_odd (prec div 4 + 1)) 1 1 (x * x) ;
-    half = \<lambda> x. float_plus_up prec (Float 1 1 * x * x) (- 1)
-  in if x < Float 1 (- 1) then horner x
-else if x < 1          then half (horner (x * Float 1 (- 1)))
-                       else half (half (horner (x * Float 1 (- 2)))))"
-
-lemma lb_cos:
-  assumes "0 \<le> real_of_float x" and "x \<le> pi"
-  shows "cos x \<in> {(lb_cos prec x) .. (ub_cos prec x)}" (is "?cos x \<in> {(?lb x) .. (?ub x) }")
-proof -
-  have x_half[symmetric]: "cos x = 2 * cos (x / 2) * cos (x / 2) - 1" for x :: real
-  proof -
-    have "cos x = cos (x / 2 + x / 2)"
-      by auto
-    also have "\<dots> = cos (x / 2) * cos (x / 2) + sin (x / 2) * sin (x / 2) - sin (x / 2) * sin (x / 2) + cos (x / 2) * cos (x / 2) - 1"
-      unfolding cos_add by auto
-    also have "\<dots> = 2 * cos (x / 2) * cos (x / 2) - 1"
-      by algebra
-    finally show ?thesis .
-  qed
-
-  have "\<not> x < 0" using \<open>0 \<le> real_of_float x\<close> by auto
-  let "?ub_horner x" = "ub_sin_cos_aux prec (get_odd (prec div 4 + 1)) 1 1 (x * x)"
-  let "?lb_horner x" = "lb_sin_cos_aux prec (get_even (prec div 4 + 1)) 1 1 (x * x)"
-  let "?ub_half x" = "float_plus_up prec (Float 1 1 * x * x) (- 1)"
-  let "?lb_half x" = "if x < 0 then - 1 else float_plus_down prec (Float 1 1 * x * x) (- 1)"
-
-  show ?thesis
-  proof (cases "x < Float 1 (- 1)")
-    case True
-    hence "x \<le> pi / 2"
-      using pi_ge_two by auto
-    show ?thesis
-      unfolding lb_cos_def[where x=x] ub_cos_def[where x=x]
-        if_not_P[OF \<open>\<not> x < 0\<close>] if_P[OF \<open>x < Float 1 (- 1)\<close>] Let_def
-      using cos_boundaries[OF \<open>0 \<le> real_of_float x\<close> \<open>x \<le> pi / 2\<close>] .
-  next
-    case False
-    { fix y x :: float let ?x2 = "(x * Float 1 (- 1))"
-      assume "y \<le> cos ?x2" and "-pi \<le> x" and "x \<le> pi"
-      hence "- (pi / 2) \<le> ?x2" and "?x2 \<le> pi / 2"
-        using pi_ge_two unfolding Float_num by auto
-      hence "0 \<le> cos ?x2"
-        by (rule cos_ge_zero)
-
-      have "(?lb_half y) \<le> cos x"
-      proof (cases "y < 0")
-        case True
-        show ?thesis
-          using cos_ge_minus_one unfolding if_P[OF True] by auto
-      next
-        case False
-        hence "0 \<le> real_of_float y" by auto
-        from mult_mono[OF \<open>y \<le> cos ?x2\<close> \<open>y \<le> cos ?x2\<close> \<open>0 \<le> cos ?x2\<close> this]
-        have "real_of_float y * real_of_float y \<le> cos ?x2 * cos ?x2" .
-        hence "2 * real_of_float y * real_of_float y \<le> 2 * cos ?x2 * cos ?x2"
-          by auto
-        hence "2 * real_of_float y * real_of_float y - 1 \<le> 2 * cos (x / 2) * cos (x / 2) - 1"
-          unfolding Float_num by auto
-        thus ?thesis
-          unfolding if_not_P[OF False] x_half Float_num
-          by (auto intro!: float_plus_down_le)
-      qed
-    } note lb_half = this
-
-    { fix y x :: float let ?x2 = "(x * Float 1 (- 1))"
-      assume ub: "cos ?x2 \<le> y" and "- pi \<le> x" and "x \<le> pi"
-      hence "- (pi / 2) \<le> ?x2" and "?x2 \<le> pi / 2"
-        using pi_ge_two unfolding Float_num by auto
-      hence "0 \<le> cos ?x2" by (rule cos_ge_zero)
-
-      have "cos x \<le> (?ub_half y)"
-      proof -
-        have "0 \<le> real_of_float y"
-          using \<open>0 \<le> cos ?x2\<close> ub by (rule order_trans)
-        from mult_mono[OF ub ub this \<open>0 \<le> cos ?x2\<close>]
-        have "cos ?x2 * cos ?x2 \<le> real_of_float y * real_of_float y" .
-        hence "2 * cos ?x2 * cos ?x2 \<le> 2 * real_of_float y * real_of_float y"
-          by auto
-        hence "2 * cos (x / 2) * cos (x / 2) - 1 \<le> 2 * real_of_float y * real_of_float y - 1"
-          unfolding Float_num by auto
-        thus ?thesis
-          unfolding x_half Float_num
-          by (auto intro!: float_plus_up_le)
-      qed
-    } note ub_half = this
-
-    let ?x2 = "x * Float 1 (- 1)"
-    let ?x4 = "x * Float 1 (- 1) * Float 1 (- 1)"
-
-    have "-pi \<le> x"
-      using pi_ge_zero[THEN le_imp_neg_le, unfolded minus_zero] \<open>0 \<le> real_of_float x\<close>
-      by (rule order_trans)
-
-    show ?thesis
-    proof (cases "x < 1")
-      case True
-      hence "real_of_float x \<le> 1" by auto
-      have "0 \<le> real_of_float ?x2" and "?x2 \<le> pi / 2"
-        using pi_ge_two \<open>0 \<le> real_of_float x\<close> using assms by auto
-      from cos_boundaries[OF this]
-      have lb: "(?lb_horner ?x2) \<le> ?cos ?x2" and ub: "?cos ?x2 \<le> (?ub_horner ?x2)"
-        by auto
-
-      have "(?lb x) \<le> ?cos x"
-      proof -
-        from lb_half[OF lb \<open>-pi \<le> x\<close> \<open>x \<le> pi\<close>]
-        show ?thesis
-          unfolding lb_cos_def[where x=x] Let_def
-          using \<open>\<not> x < 0\<close> \<open>\<not> x < Float 1 (- 1)\<close> \<open>x < 1\<close> by auto
-      qed
-      moreover have "?cos x \<le> (?ub x)"
-      proof -
-        from ub_half[OF ub \<open>-pi \<le> x\<close> \<open>x \<le> pi\<close>]
-        show ?thesis
-          unfolding ub_cos_def[where x=x] Let_def
-          using \<open>\<not> x < 0\<close> \<open>\<not> x < Float 1 (- 1)\<close> \<open>x < 1\<close> by auto
-      qed
-      ultimately show ?thesis by auto
-    next
-      case False
-      have "0 \<le> real_of_float ?x4" and "?x4 \<le> pi / 2"
-        using pi_ge_two \<open>0 \<le> real_of_float x\<close> \<open>x \<le> pi\<close> unfolding Float_num by auto
-      from cos_boundaries[OF this]
-      have lb: "(?lb_horner ?x4) \<le> ?cos ?x4" and ub: "?cos ?x4 \<le> (?ub_horner ?x4)"
-        by auto
-
-      have eq_4: "?x2 * Float 1 (- 1) = x * Float 1 (- 2)"
-        by transfer simp
-
-      have "(?lb x) \<le> ?cos x"
-      proof -
-        have "-pi \<le> ?x2" and "?x2 \<le> pi"
-          using pi_ge_two \<open>0 \<le> real_of_float x\<close> \<open>x \<le> pi\<close> by auto
-        from lb_half[OF lb_half[OF lb this] \<open>-pi \<le> x\<close> \<open>x \<le> pi\<close>, unfolded eq_4]
-        show ?thesis
-          unfolding lb_cos_def[where x=x] if_not_P[OF \<open>\<not> x < 0\<close>]
-            if_not_P[OF \<open>\<not> x < Float 1 (- 1)\<close>] if_not_P[OF \<open>\<not> x < 1\<close>] Let_def .
-      qed
-      moreover have "?cos x \<le> (?ub x)"
-      proof -
-        have "-pi \<le> ?x2" and "?x2 \<le> pi"
-          using pi_ge_two \<open>0 \<le> real_of_float x\<close> \<open> x \<le> pi\<close> by auto
-        from ub_half[OF ub_half[OF ub this] \<open>-pi \<le> x\<close> \<open>x \<le> pi\<close>, unfolded eq_4]
-        show ?thesis
-          unfolding ub_cos_def[where x=x] if_not_P[OF \<open>\<not> x < 0\<close>]
-            if_not_P[OF \<open>\<not> x < Float 1 (- 1)\<close>] if_not_P[OF \<open>\<not> x < 1\<close>] Let_def .
-      qed
-      ultimately show ?thesis by auto
-    qed
-  qed
-qed
-
-lemma lb_cos_minus:
-  assumes "-pi \<le> x"
-    and "real_of_float x \<le> 0"
-  shows "cos (real_of_float(-x)) \<in> {(lb_cos prec (-x)) .. (ub_cos prec (-x))}"
-proof -
-  have "0 \<le> real_of_float (-x)" and "(-x) \<le> pi"
-    using \<open>-pi \<le> x\<close> \<open>real_of_float x \<le> 0\<close> by auto
-  from lb_cos[OF this] show ?thesis .
-qed
-
-definition bnds_cos :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float * float" where
-"bnds_cos prec lx ux = (let
-    lpi = float_round_down prec (lb_pi prec) ;
-    upi = float_round_up prec (ub_pi prec) ;
-    k = floor_fl (float_divr prec (lx + lpi) (2 * lpi)) ;
-    lx = float_plus_down prec lx (- k * 2 * (if k < 0 then lpi else upi)) ;
-    ux = float_plus_up prec ux (- k * 2 * (if k < 0 then upi else lpi))
-  in   if - lpi \<le> lx \<and> ux \<le> 0    then (lb_cos prec (-lx), ub_cos prec (-ux))
-  else if 0 \<le> lx \<and> ux \<le> lpi      then (lb_cos prec ux, ub_cos prec lx)
-  else if - lpi \<le> lx \<and> ux \<le> lpi  then (min (lb_cos prec (-lx)) (lb_cos prec ux), Float 1 0)
-  else if 0 \<le> lx \<and> ux \<le> 2 * lpi  then (Float (- 1) 0, max (ub_cos prec lx) (ub_cos prec (- (ux - 2 * lpi))))
-  else if -2 * lpi \<le> lx \<and> ux \<le> 0 then (Float (- 1) 0, max (ub_cos prec (lx + 2 * lpi)) (ub_cos prec (-ux)))
-                                 else (Float (- 1) 0, Float 1 0))"
-
-lemma floor_int: obtains k :: int where "real_of_int k = (floor_fl f)"
-  by (simp add: floor_fl_def)
-
-lemma cos_periodic_nat[simp]:
-  fixes n :: nat
-  shows "cos (x + n * (2 * pi)) = cos x"
-proof (induct n arbitrary: x)
-  case 0
-  then show ?case by simp
-next
-  case (Suc n)
-  have split_pi_off: "x + (Suc n) * (2 * pi) = (x + n * (2 * pi)) + 2 * pi"
-    unfolding Suc_eq_plus1 of_nat_add of_int_1 distrib_right by auto
-  show ?case
-    unfolding split_pi_off using Suc by auto
-qed
-
-lemma cos_periodic_int[simp]:
-  fixes i :: int
-  shows "cos (x + i * (2 * pi)) = cos x"
-proof (cases "0 \<le> i")
-  case True
-  hence i_nat: "real_of_int i = nat i" by auto
-  show ?thesis
-    unfolding i_nat by auto
-next
-  case False
-    hence i_nat: "i = - real (nat (-i))" by auto
-  have "cos x = cos (x + i * (2 * pi) - i * (2 * pi))"
-    by auto
-  also have "\<dots> = cos (x + i * (2 * pi))"
-    unfolding i_nat mult_minus_left diff_minus_eq_add by (rule cos_periodic_nat)
-  finally show ?thesis by auto
-qed
-
-lemma bnds_cos: "\<forall>(x::real) lx ux. (l, u) =
-  bnds_cos prec lx ux \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> cos x \<and> cos x \<le> u"
-proof (rule allI | rule impI | erule conjE)+
-  fix x :: real
-  fix lx ux
-  assume bnds: "(l, u) = bnds_cos prec lx ux" and x: "x \<in> {lx .. ux}"
-
-  let ?lpi = "float_round_down prec (lb_pi prec)"
-  let ?upi = "float_round_up prec (ub_pi prec)"
-  let ?k = "floor_fl (float_divr prec (lx + ?lpi) (2 * ?lpi))"
-  let ?lx2 = "(- ?k * 2 * (if ?k < 0 then ?lpi else ?upi))"
-  let ?ux2 = "(- ?k * 2 * (if ?k < 0 then ?upi else ?lpi))"
-  let ?lx = "float_plus_down prec lx ?lx2"
-  let ?ux = "float_plus_up prec ux ?ux2"
-
-  obtain k :: int where k: "k = real_of_float ?k"
-    by (rule floor_int)
-
-  have upi: "pi \<le> ?upi" and lpi: "?lpi \<le> pi"
-    using float_round_up[of "ub_pi prec" prec] pi_boundaries[of prec]
-      float_round_down[of prec "lb_pi prec"]
-    by auto
-  hence "lx + ?lx2 \<le> x - k * (2 * pi) \<and> x - k * (2 * pi) \<le> ux + ?ux2"
-    using x
-    by (cases "k = 0")
-      (auto intro!: add_mono
-        simp add: k [symmetric] uminus_add_conv_diff [symmetric]
-        simp del: float_of_numeral uminus_add_conv_diff)
-  hence "?lx \<le> x - k * (2 * pi) \<and> x - k * (2 * pi) \<le> ?ux"
-    by (auto intro!: float_plus_down_le float_plus_up_le)
-  note lx = this[THEN conjunct1] and ux = this[THEN conjunct2]
-  hence lx_less_ux: "?lx \<le> real_of_float ?ux" by (rule order_trans)
-
-  { assume "- ?lpi \<le> ?lx" and x_le_0: "x - k * (2 * pi) \<le> 0"
-    with lpi[THEN le_imp_neg_le] lx
-    have pi_lx: "- pi \<le> ?lx" and lx_0: "real_of_float ?lx \<le> 0"
-      by simp_all
-
-    have "(lb_cos prec (- ?lx)) \<le> cos (real_of_float (- ?lx))"
-      using lb_cos_minus[OF pi_lx lx_0] by simp
-    also have "\<dots> \<le> cos (x + (-k) * (2 * pi))"
-      using cos_monotone_minus_pi_0'[OF pi_lx lx x_le_0]
-      by (simp only: uminus_float.rep_eq of_int_minus
-        cos_minus mult_minus_left) simp
-    finally have "(lb_cos prec (- ?lx)) \<le> cos x"
-      unfolding cos_periodic_int . }
-  note negative_lx = this
-
-  { assume "0 \<le> ?lx" and pi_x: "x - k * (2 * pi) \<le> pi"
-    with lx
-    have pi_lx: "?lx \<le> pi" and lx_0: "0 \<le> real_of_float ?lx"
-      by auto
-
-    have "cos (x + (-k) * (2 * pi)) \<le> cos ?lx"
-      using cos_monotone_0_pi_le[OF lx_0 lx pi_x]
-      by (simp only: of_int_minus
-        cos_minus mult_minus_left) simp
-    also have "\<dots> \<le> (ub_cos prec ?lx)"
-      using lb_cos[OF lx_0 pi_lx] by simp
-    finally have "cos x \<le> (ub_cos prec ?lx)"
-      unfolding cos_periodic_int . }
-  note positive_lx = this
-
-  { assume pi_x: "- pi \<le> x - k * (2 * pi)" and "?ux \<le> 0"
-    with ux
-    have pi_ux: "- pi \<le> ?ux" and ux_0: "real_of_float ?ux \<le> 0"
-      by simp_all
-
-    have "cos (x + (-k) * (2 * pi)) \<le> cos (real_of_float (- ?ux))"
-      using cos_monotone_minus_pi_0'[OF pi_x ux ux_0]
-      by (simp only: uminus_float.rep_eq of_int_minus
-          cos_minus mult_minus_left) simp
-    also have "\<dots> \<le> (ub_cos prec (- ?ux))"
-      using lb_cos_minus[OF pi_ux ux_0, of prec] by simp
-    finally have "cos x \<le> (ub_cos prec (- ?ux))"
-      unfolding cos_periodic_int . }
-  note negative_ux = this
-
-  { assume "?ux \<le> ?lpi" and x_ge_0: "0 \<le> x - k * (2 * pi)"
-    with lpi ux
-    have pi_ux: "?ux \<le> pi" and ux_0: "0 \<le> real_of_float ?ux"
-      by simp_all
-
-    have "(lb_cos prec ?ux) \<le> cos ?ux"
-      using lb_cos[OF ux_0 pi_ux] by simp
-    also have "\<dots> \<le> cos (x + (-k) * (2 * pi))"
-      using cos_monotone_0_pi_le[OF x_ge_0 ux pi_ux]
-      by (simp only: of_int_minus
-        cos_minus mult_minus_left) simp
-    finally have "(lb_cos prec ?ux) \<le> cos x"
-      unfolding cos_periodic_int . }
-  note positive_ux = this
-
-  show "l \<le> cos x \<and> cos x \<le> u"
-  proof (cases "- ?lpi \<le> ?lx \<and> ?ux \<le> 0")
-    case True
-    with bnds have l: "l = lb_cos prec (-?lx)" and u: "u = ub_cos prec (-?ux)"
-      by (auto simp add: bnds_cos_def Let_def)
-    from True lpi[THEN le_imp_neg_le] lx ux
-    have "- pi \<le> x - k * (2 * pi)" and "x - k * (2 * pi) \<le> 0"
-      by auto
-    with True negative_ux negative_lx show ?thesis
-      unfolding l u by simp
-  next
-    case 1: False
-    show ?thesis
-    proof (cases "0 \<le> ?lx \<and> ?ux \<le> ?lpi")
-      case True with bnds 1
-      have l: "l = lb_cos prec ?ux"
-        and u: "u = ub_cos prec ?lx"
-        by (auto simp add: bnds_cos_def Let_def)
-      from True lpi lx ux
-      have "0 \<le> x - k * (2 * pi)" and "x - k * (2 * pi) \<le> pi"
-        by auto
-      with True positive_ux positive_lx show ?thesis
-        unfolding l u by simp
-    next
-      case 2: False
-      show ?thesis
-      proof (cases "- ?lpi \<le> ?lx \<and> ?ux \<le> ?lpi")
-        case Cond: True
-        with bnds 1 2 have l: "l = min (lb_cos prec (-?lx)) (lb_cos prec ?ux)"
-          and u: "u = Float 1 0"
-          by (auto simp add: bnds_cos_def Let_def)
-        show ?thesis
-          unfolding u l using negative_lx positive_ux Cond
-          by (cases "x - k * (2 * pi) < 0") (auto simp add: real_of_float_min)
-      next
-        case 3: False
-        show ?thesis
-        proof (cases "0 \<le> ?lx \<and> ?ux \<le> 2 * ?lpi")
-          case Cond: True
-          with bnds 1 2 3
-          have l: "l = Float (- 1) 0"
-            and u: "u = max (ub_cos prec ?lx) (ub_cos prec (- (?ux - 2 * ?lpi)))"
-            by (auto simp add: bnds_cos_def Let_def)
-
-          have "cos x \<le> real_of_float u"
-          proof (cases "x - k * (2 * pi) < pi")
-            case True
-            hence "x - k * (2 * pi) \<le> pi" by simp
-            from positive_lx[OF Cond[THEN conjunct1] this] show ?thesis
-              unfolding u by (simp add: real_of_float_max)
-          next
-            case False
-            hence "pi \<le> x - k * (2 * pi)" by simp
-            hence pi_x: "- pi \<le> x - k * (2 * pi) - 2 * pi" by simp
-
-            have "?ux \<le> 2 * pi"
-              using Cond lpi by auto
-            hence "x - k * (2 * pi) - 2 * pi \<le> 0"
-              using ux by simp
-
-            have ux_0: "real_of_float (?ux - 2 * ?lpi) \<le> 0"
-              using Cond by auto
-
-            from 2 and Cond have "\<not> ?ux \<le> ?lpi" by auto
-            hence "- ?lpi \<le> ?ux - 2 * ?lpi" by auto
-            hence pi_ux: "- pi \<le> (?ux - 2 * ?lpi)"
-              using lpi[THEN le_imp_neg_le] by auto
-
-            have x_le_ux: "x - k * (2 * pi) - 2 * pi \<le> (?ux - 2 * ?lpi)"
-              using ux lpi by auto
-            have "cos x = cos (x + (-k) * (2 * pi) + (-1::int) * (2 * pi))"
-              unfolding cos_periodic_int ..
-            also have "\<dots> \<le> cos ((?ux - 2 * ?lpi))"
-              using cos_monotone_minus_pi_0'[OF pi_x x_le_ux ux_0]
-              by (simp only: minus_float.rep_eq of_int_minus of_int_1
-                mult_minus_left mult_1_left) simp
-            also have "\<dots> = cos ((- (?ux - 2 * ?lpi)))"
-              unfolding uminus_float.rep_eq cos_minus ..
-            also have "\<dots> \<le> (ub_cos prec (- (?ux - 2 * ?lpi)))"
-              using lb_cos_minus[OF pi_ux ux_0] by simp
-            finally show ?thesis unfolding u by (simp add: real_of_float_max)
-          qed
-          thus ?thesis unfolding l by auto
-        next
-          case 4: False
-          show ?thesis
-          proof (cases "-2 * ?lpi \<le> ?lx \<and> ?ux \<le> 0")
-            case Cond: True
-            with bnds 1 2 3 4 have l: "l = Float (- 1) 0"
-              and u: "u = max (ub_cos prec (?lx + 2 * ?lpi)) (ub_cos prec (-?ux))"
-              by (auto simp add: bnds_cos_def Let_def)
-
-            have "cos x \<le> u"
-            proof (cases "-pi < x - k * (2 * pi)")
-              case True
-              hence "-pi \<le> x - k * (2 * pi)" by simp
-              from negative_ux[OF this Cond[THEN conjunct2]] show ?thesis
-                unfolding u by (simp add: real_of_float_max)
-            next
-              case False
-              hence "x - k * (2 * pi) \<le> -pi" by simp
-              hence pi_x: "x - k * (2 * pi) + 2 * pi \<le> pi" by simp
-
-              have "-2 * pi \<le> ?lx" using Cond lpi by auto
-
-              hence "0 \<le> x - k * (2 * pi) + 2 * pi" using lx by simp
-
-              have lx_0: "0 \<le> real_of_float (?lx + 2 * ?lpi)"
-                using Cond lpi by auto
-
-              from 1 and Cond have "\<not> -?lpi \<le> ?lx" by auto
-              hence "?lx + 2 * ?lpi \<le> ?lpi" by auto
-              hence pi_lx: "(?lx + 2 * ?lpi) \<le> pi"
-                using lpi[THEN le_imp_neg_le] by auto
-
-              have lx_le_x: "(?lx + 2 * ?lpi) \<le> x - k * (2 * pi) + 2 * pi"
-                using lx lpi by auto
-
-              have "cos x = cos (x + (-k) * (2 * pi) + (1 :: int) * (2 * pi))"
-                unfolding cos_periodic_int ..
-              also have "\<dots> \<le> cos ((?lx + 2 * ?lpi))"
-                using cos_monotone_0_pi_le[OF lx_0 lx_le_x pi_x]
-                by (simp only: minus_float.rep_eq of_int_minus of_int_1
-                  mult_minus_left mult_1_left) simp
-              also have "\<dots> \<le> (ub_cos prec (?lx + 2 * ?lpi))"
-                using lb_cos[OF lx_0 pi_lx] by simp
-              finally show ?thesis unfolding u by (simp add: real_of_float_max)
-            qed
-            thus ?thesis unfolding l by auto
-          next
-            case False
-            with bnds 1 2 3 4 show ?thesis
-              by (auto simp add: bnds_cos_def Let_def)
-          qed
-        qed
-      qed
-    qed
-  qed
-qed
-
-
-section "Exponential function"
-
-subsection "Compute the series of the exponential function"
-
-fun ub_exp_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
-  and lb_exp_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
-where
-"ub_exp_horner prec 0 i k x       = 0" |
-"ub_exp_horner prec (Suc n) i k x = float_plus_up prec
-    (rapprox_rat prec 1 (int k)) (float_round_up prec (x * lb_exp_horner prec n (i + 1) (k * i) x))" |
-"lb_exp_horner prec 0 i k x       = 0" |
-"lb_exp_horner prec (Suc n) i k x = float_plus_down prec
-    (lapprox_rat prec 1 (int k)) (float_round_down prec (x * ub_exp_horner prec n (i + 1) (k * i) x))"
-
-lemma bnds_exp_horner:
-  assumes "real_of_float x \<le> 0"
-  shows "exp x \<in> {lb_exp_horner prec (get_even n) 1 1 x .. ub_exp_horner prec (get_odd n) 1 1 x}"
-proof -
-  have f_eq: "fact (Suc n) = fact n * ((\<lambda>i::nat. i + 1) ^^ n) 1" for n
-  proof -
-    have F: "\<And> m. ((\<lambda>i. i + 1) ^^ n) m = n + m"
-      by (induct n) auto
-    show ?thesis
-      unfolding F by auto
-  qed
-
-  note bounds = horner_bounds_nonpos[where f="fact" and lb="lb_exp_horner prec" and ub="ub_exp_horner prec" and j'=0 and s=1,
-    OF assms f_eq lb_exp_horner.simps ub_exp_horner.simps]
-
-  have "lb_exp_horner prec (get_even n) 1 1 x \<le> exp x"
-  proof -
-    have "lb_exp_horner prec (get_even n) 1 1 x \<le> (\<Sum>j = 0..<get_even n. 1 / (fact j) * real_of_float x ^ j)"
-      using bounds(1) by auto
-    also have "\<dots> \<le> exp x"
-    proof -
-      obtain t where "\<bar>t\<bar> \<le> \<bar>real_of_float x\<bar>" and "exp x = (\<Sum>m = 0..<get_even n. real_of_float x ^ m / (fact m)) + exp t / (fact (get_even n)) * (real_of_float x) ^ (get_even n)"
-        using Maclaurin_exp_le unfolding atLeast0LessThan by blast
-      moreover have "0 \<le> exp t / (fact (get_even n)) * (real_of_float x) ^ (get_even n)"
-        by (auto simp: zero_le_even_power)
-      ultimately show ?thesis using get_odd exp_gt_zero by auto
-    qed
-    finally show ?thesis .
-  qed
-  moreover
-  have "exp x \<le> ub_exp_horner prec (get_odd n) 1 1 x"
-  proof -
-    have x_less_zero: "real_of_float x ^ get_odd n \<le> 0"
-    proof (cases "real_of_float x = 0")
-      case True
-      have "(get_odd n) \<noteq> 0" using get_odd[THEN odd_pos] by auto
-      thus ?thesis unfolding True power_0_left by auto
-    next
-      case False hence "real_of_float x < 0" using \<open>real_of_float x \<le> 0\<close> by auto
-      show ?thesis by (rule less_imp_le, auto simp add: \<open>real_of_float x < 0\<close>)
-    qed
-    obtain t where "\<bar>t\<bar> \<le> \<bar>real_of_float x\<bar>"
-      and "exp x = (\<Sum>m = 0..<get_odd n. (real_of_float x) ^ m / (fact m)) + exp t / (fact (get_odd n)) * (real_of_float x) ^ (get_odd n)"
-      using Maclaurin_exp_le unfolding atLeast0LessThan by blast
-    moreover have "exp t / (fact (get_odd n)) * (real_of_float x) ^ (get_odd n) \<le> 0"
-      by (auto intro!: mult_nonneg_nonpos divide_nonpos_pos simp add: x_less_zero)
-    ultimately have "exp x \<le> (\<Sum>j = 0..<get_odd n. 1 / (fact j) * real_of_float x ^ j)"
-      using get_odd exp_gt_zero by auto
-    also have "\<dots> \<le> ub_exp_horner prec (get_odd n) 1 1 x"
-      using bounds(2) by auto
-    finally show ?thesis .
-  qed
-  ultimately show ?thesis by auto
-qed
-
-lemma ub_exp_horner_nonneg: "real_of_float x \<le> 0 \<Longrightarrow>
-  0 \<le> real_of_float (ub_exp_horner prec (get_odd n) (Suc 0) (Suc 0) x)"
-  using bnds_exp_horner[of x prec n]
-  by (intro order_trans[OF exp_ge_zero]) auto
-
-
-subsection "Compute the exponential function on the entire domain"
-
-function ub_exp :: "nat \<Rightarrow> float \<Rightarrow> float" and lb_exp :: "nat \<Rightarrow> float \<Rightarrow> float" where
-"lb_exp prec x =
-  (if 0 < x then float_divl prec 1 (ub_exp prec (-x))
-  else
-    let
-      horner = (\<lambda> x. let  y = lb_exp_horner prec (get_even (prec + 2)) 1 1 x in
-        if y \<le> 0 then Float 1 (- 2) else y)
-    in
-      if x < - 1 then
-        power_down_fl prec (horner (float_divl prec x (- floor_fl x))) (nat (- int_floor_fl x))
-      else horner x)" |
-"ub_exp prec x =
-  (if 0 < x then float_divr prec 1 (lb_exp prec (-x))
-  else if x < - 1 then
-    power_up_fl prec
-      (ub_exp_horner prec (get_odd (prec + 2)) 1 1
-        (float_divr prec x (- floor_fl x))) (nat (- int_floor_fl x))
-  else ub_exp_horner prec (get_odd (prec + 2)) 1 1 x)"
-  by pat_completeness auto
-termination
-  by (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if 0 < x then 1 else 0))") auto
-
-lemma exp_m1_ge_quarter: "(1 / 4 :: real) \<le> exp (- 1)"
-proof -
-  have eq4: "4 = Suc (Suc (Suc (Suc 0)))" by auto
-  have "1 / 4 = (Float 1 (- 2))"
-    unfolding Float_num by auto
-  also have "\<dots> \<le> lb_exp_horner 3 (get_even 3) 1 1 (- 1)"
-    by (subst less_eq_float.rep_eq [symmetric]) code_simp
-  also have "\<dots> \<le> exp (- 1 :: float)"
-    using bnds_exp_horner[where x="- 1"] by auto
-  finally show ?thesis
-    by simp
-qed
-
-lemma lb_exp_pos:
-  assumes "\<not> 0 < x"
-  shows "0 < lb_exp prec x"
-proof -
-  let "?lb_horner x" = "lb_exp_horner prec (get_even (prec + 2)) 1 1 x"
-  let "?horner x" = "let y = ?lb_horner x in if y \<le> 0 then Float 1 (- 2) else y"
-  have pos_horner: "0 < ?horner x" for x
-    unfolding Let_def by (cases "?lb_horner x \<le> 0") auto
-  moreover have "0 < real_of_float ((?horner x) ^ num)" for x :: float and num :: nat
-  proof -
-    have "0 < real_of_float (?horner x) ^ num" using \<open>0 < ?horner x\<close> by simp
-    also have "\<dots> = (?horner x) ^ num" by auto
-    finally show ?thesis .
-  qed
-  ultimately show ?thesis
-    unfolding lb_exp.simps if_not_P[OF \<open>\<not> 0 < x\<close>] Let_def
-    by (cases "floor_fl x", cases "x < - 1")
-      (auto simp: real_power_up_fl real_power_down_fl intro!: power_up_less power_down_pos)
-qed
-
-lemma exp_boundaries':
-  assumes "x \<le> 0"
-  shows "exp x \<in> { (lb_exp prec x) .. (ub_exp prec x)}"
-proof -
-  let "?lb_exp_horner x" = "lb_exp_horner prec (get_even (prec + 2)) 1 1 x"
-  let "?ub_exp_horner x" = "ub_exp_horner prec (get_odd (prec + 2)) 1 1 x"
-
-  have "real_of_float x \<le> 0" and "\<not> x > 0"
-    using \<open>x \<le> 0\<close> by auto
-  show ?thesis
-  proof (cases "x < - 1")
-    case False
-    hence "- 1 \<le> real_of_float x" by auto
-    show ?thesis
-    proof (cases "?lb_exp_horner x \<le> 0")
-      case True
-      from \<open>\<not> x < - 1\<close>
-      have "- 1 \<le> real_of_float x" by auto
-      hence "exp (- 1) \<le> exp x"
-        unfolding exp_le_cancel_iff .
-      from order_trans[OF exp_m1_ge_quarter this] have "Float 1 (- 2) \<le> exp x"
-        unfolding Float_num .
-      with True show ?thesis
-        using bnds_exp_horner \<open>real_of_float x \<le> 0\<close> \<open>\<not> x > 0\<close> \<open>\<not> x < - 1\<close> by auto
-    next
-      case False
-      thus ?thesis
-        using bnds_exp_horner \<open>real_of_float x \<le> 0\<close> \<open>\<not> x > 0\<close> \<open>\<not> x < - 1\<close> by (auto simp add: Let_def)
-    qed
-  next
-    case True
-    let ?num = "nat (- int_floor_fl x)"
-
-    have "real_of_int (int_floor_fl x) < - 1"
-      using int_floor_fl[of x] \<open>x < - 1\<close> by simp
-    hence "real_of_int (int_floor_fl x) < 0" by simp
-    hence "int_floor_fl x < 0" by auto
-    hence "1 \<le> - int_floor_fl x" by auto
-    hence "0 < nat (- int_floor_fl x)" by auto
-    hence "0 < ?num"  by auto
-    hence "real ?num \<noteq> 0" by auto
-    have num_eq: "real ?num = - int_floor_fl x"
-      using \<open>0 < nat (- int_floor_fl x)\<close> by auto
-    have "0 < - int_floor_fl x"
-      using \<open>0 < ?num\<close>[unfolded of_nat_less_iff[symmetric]] by simp
-    hence "real_of_int (int_floor_fl x) < 0"
-      unfolding less_float_def by auto
-    have fl_eq: "real_of_int (- int_floor_fl x) = real_of_float (- floor_fl x)"
-      by (simp add: floor_fl_def int_floor_fl_def)
-    from \<open>0 < - int_floor_fl x\<close> have "0 \<le> real_of_float (- floor_fl x)"
-      by (simp add: floor_fl_def int_floor_fl_def)
-    from \<open>real_of_int (int_floor_fl x) < 0\<close> have "real_of_float (floor_fl x) < 0"
-      by (simp add: floor_fl_def int_floor_fl_def)
-    have "exp x \<le> ub_exp prec x"
-    proof -
-      have div_less_zero: "real_of_float (float_divr prec x (- floor_fl x)) \<le> 0"
-        using float_divr_nonpos_pos_upper_bound[OF \<open>real_of_float x \<le> 0\<close> \<open>0 \<le> real_of_float (- floor_fl x)\<close>]
-        unfolding less_eq_float_def zero_float.rep_eq .
-
-      have "exp x = exp (?num * (x / ?num))"
-        using \<open>real ?num \<noteq> 0\<close> by auto
-      also have "\<dots> = exp (x / ?num) ^ ?num"
-        unfolding exp_of_nat_mult ..
-      also have "\<dots> \<le> exp (float_divr prec x (- floor_fl x)) ^ ?num"
-        unfolding num_eq fl_eq
-        by (rule power_mono, rule exp_le_cancel_iff[THEN iffD2], rule float_divr) auto
-      also have "\<dots> \<le> (?ub_exp_horner (float_divr prec x (- floor_fl x))) ^ ?num"
-        unfolding real_of_float_power
-        by (rule power_mono, rule bnds_exp_horner[OF div_less_zero, unfolded atLeastAtMost_iff, THEN conjunct2], auto)
-      also have "\<dots> \<le> real_of_float (power_up_fl prec (?ub_exp_horner (float_divr prec x (- floor_fl x))) ?num)"
-        by (auto simp add: real_power_up_fl intro!: power_up ub_exp_horner_nonneg div_less_zero)
-      finally show ?thesis
-        unfolding ub_exp.simps if_not_P[OF \<open>\<not> 0 < x\<close>] if_P[OF \<open>x < - 1\<close>] floor_fl_def Let_def .
-    qed
-    moreover
-    have "lb_exp prec x \<le> exp x"
-    proof -
-      let ?divl = "float_divl prec x (- floor_fl x)"
-      let ?horner = "?lb_exp_horner ?divl"
-
-      show ?thesis
-      proof (cases "?horner \<le> 0")
-        case False
-        hence "0 \<le> real_of_float ?horner" by auto
-
-        have div_less_zero: "real_of_float (float_divl prec x (- floor_fl x)) \<le> 0"
-          using \<open>real_of_float (floor_fl x) < 0\<close> \<open>real_of_float x \<le> 0\<close>
-          by (auto intro!: order_trans[OF float_divl] divide_nonpos_neg)
-
-        have "(?lb_exp_horner (float_divl prec x (- floor_fl x))) ^ ?num \<le>
-          exp (float_divl prec x (- floor_fl x)) ^ ?num"
-          using \<open>0 \<le> real_of_float ?horner\<close>[unfolded floor_fl_def[symmetric]]
-            bnds_exp_horner[OF div_less_zero, unfolded atLeastAtMost_iff, THEN conjunct1]
-          by (auto intro!: power_mono)
-        also have "\<dots> \<le> exp (x / ?num) ^ ?num"
-          unfolding num_eq fl_eq
-          using float_divl by (auto intro!: power_mono simp del: uminus_float.rep_eq)
-        also have "\<dots> = exp (?num * (x / ?num))"
-          unfolding exp_of_nat_mult ..
-        also have "\<dots> = exp x"
-          using \<open>real ?num \<noteq> 0\<close> by auto
-        finally show ?thesis
-          using False
-          unfolding lb_exp.simps if_not_P[OF \<open>\<not> 0 < x\<close>] if_P[OF \<open>x < - 1\<close>]
-            int_floor_fl_def Let_def if_not_P[OF False]
-          by (auto simp: real_power_down_fl intro!: power_down_le)
-      next
-        case True
-        have "power_down_fl prec (Float 1 (- 2))  ?num \<le> (Float 1 (- 2)) ^ ?num"
-          by (metis Float_le_zero_iff less_imp_le linorder_not_less
-            not_numeral_le_zero numeral_One power_down_fl)
-        then have "power_down_fl prec (Float 1 (- 2))  ?num \<le> real_of_float (Float 1 (- 2)) ^ ?num"
-          by simp
-        also
-        have "real_of_float (floor_fl x) \<noteq> 0" and "real_of_float (floor_fl x) \<le> 0"
-          using \<open>real_of_float (floor_fl x) < 0\<close> by auto
-        from divide_right_mono_neg[OF floor_fl[of x] \<open>real_of_float (floor_fl x) \<le> 0\<close>, unfolded divide_self[OF \<open>real_of_float (floor_fl x) \<noteq> 0\<close>]]
-        have "- 1 \<le> x / (- floor_fl x)"
-          unfolding minus_float.rep_eq by auto
-        from order_trans[OF exp_m1_ge_quarter this[unfolded exp_le_cancel_iff[where x="- 1", symmetric]]]
-        have "Float 1 (- 2) \<le> exp (x / (- floor_fl x))"
-          unfolding Float_num .
-        hence "real_of_float (Float 1 (- 2)) ^ ?num \<le> exp (x / (- floor_fl x)) ^ ?num"
-          by (metis Float_num(5) power_mono zero_le_divide_1_iff zero_le_numeral)
-        also have "\<dots> = exp x"
-          unfolding num_eq fl_eq exp_of_nat_mult[symmetric]
-          using \<open>real_of_float (floor_fl x) \<noteq> 0\<close> by auto
-        finally show ?thesis
-          unfolding lb_exp.simps if_not_P[OF \<open>\<not> 0 < x\<close>] if_P[OF \<open>x < - 1\<close>]
-            int_floor_fl_def Let_def if_P[OF True] real_of_float_power .
-      qed
-    qed
-    ultimately show ?thesis by auto
-  qed
-qed
-
-lemma exp_boundaries: "exp x \<in> { lb_exp prec x .. ub_exp prec x }"
-proof -
-  show ?thesis
-  proof (cases "0 < x")
-    case False
-    hence "x \<le> 0" by auto
-    from exp_boundaries'[OF this] show ?thesis .
-  next
-    case True
-    hence "-x \<le> 0" by auto
-
-    have "lb_exp prec x \<le> exp x"
-    proof -
-      from exp_boundaries'[OF \<open>-x \<le> 0\<close>]
-      have ub_exp: "exp (- real_of_float x) \<le> ub_exp prec (-x)"
-        unfolding atLeastAtMost_iff minus_float.rep_eq by auto
-
-      have "float_divl prec 1 (ub_exp prec (-x)) \<le> 1 / ub_exp prec (-x)"
-        using float_divl[where x=1] by auto
-      also have "\<dots> \<le> exp x"
-        using ub_exp[unfolded inverse_le_iff_le[OF order_less_le_trans[OF exp_gt_zero ub_exp]
-          exp_gt_zero, symmetric]]
-        unfolding exp_minus nonzero_inverse_inverse_eq[OF exp_not_eq_zero] inverse_eq_divide
-        by auto
-      finally show ?thesis
-        unfolding lb_exp.simps if_P[OF True] .
-    qed
-    moreover
-    have "exp x \<le> ub_exp prec x"
-    proof -
-      have "\<not> 0 < -x" using \<open>0 < x\<close> by auto
-
-      from exp_boundaries'[OF \<open>-x \<le> 0\<close>]
-      have lb_exp: "lb_exp prec (-x) \<le> exp (- real_of_float x)"
-        unfolding atLeastAtMost_iff minus_float.rep_eq by auto
-
-      have "exp x \<le> (1 :: float) / lb_exp prec (-x)"
-        using lb_exp lb_exp_pos[OF \<open>\<not> 0 < -x\<close>, of prec]
-        by (simp del: lb_exp.simps add: exp_minus field_simps)
-      also have "\<dots> \<le> float_divr prec 1 (lb_exp prec (-x))"
-        using float_divr .
-      finally show ?thesis
-        unfolding ub_exp.simps if_P[OF True] .
-    qed
-    ultimately show ?thesis
-      by auto
-  qed
-qed
-
-lemma bnds_exp: "\<forall>(x::real) lx ux. (l, u) =
-  (lb_exp prec lx, ub_exp prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> exp x \<and> exp x \<le> u"
-proof (rule allI, rule allI, rule allI, rule impI)
-  fix x :: real and lx ux
-  assume "(l, u) = (lb_exp prec lx, ub_exp prec ux) \<and> x \<in> {lx .. ux}"
-  hence l: "lb_exp prec lx = l " and u: "ub_exp prec ux = u" and x: "x \<in> {lx .. ux}"
-    by auto
-  show "l \<le> exp x \<and> exp x \<le> u"
-  proof
-    show "l \<le> exp x"
-    proof -
-      from exp_boundaries[of lx prec, unfolded l]
-      have "l \<le> exp lx" by (auto simp del: lb_exp.simps)
-      also have "\<dots> \<le> exp x" using x by auto
-      finally show ?thesis .
-    qed
-    show "exp x \<le> u"
-    proof -
-      have "exp x \<le> exp ux" using x by auto
-      also have "\<dots> \<le> u" using exp_boundaries[of ux prec, unfolded u] by (auto simp del: ub_exp.simps)
-      finally show ?thesis .
-    qed
-  qed
-qed
-
-
-section "Logarithm"
-
-subsection "Compute the logarithm series"
-
-fun ub_ln_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
-and lb_ln_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where
-"ub_ln_horner prec 0 i x       = 0" |
-"ub_ln_horner prec (Suc n) i x = float_plus_up prec
-    (rapprox_rat prec 1 (int i)) (- float_round_down prec (x * lb_ln_horner prec n (Suc i) x))" |
-"lb_ln_horner prec 0 i x       = 0" |
-"lb_ln_horner prec (Suc n) i x = float_plus_down prec
-    (lapprox_rat prec 1 (int i)) (- float_round_up prec (x * ub_ln_horner prec n (Suc i) x))"
-
-lemma ln_bounds:
-  assumes "0 \<le> x"
-    and "x < 1"
-  shows "(\<Sum>i=0..<2*n. (- 1) ^ i * (1 / real (i + 1)) * x ^ (Suc i)) \<le> ln (x + 1)" (is "?lb")
-  and "ln (x + 1) \<le> (\<Sum>i=0..<2*n + 1. (- 1) ^ i * (1 / real (i + 1)) * x ^ (Suc i))" (is "?ub")
-proof -
-  let "?a n" = "(1/real (n +1)) * x ^ (Suc n)"
-
-  have ln_eq: "(\<Sum> i. (- 1) ^ i * ?a i) = ln (x + 1)"
-    using ln_series[of "x + 1"] \<open>0 \<le> x\<close> \<open>x < 1\<close> by auto
-
-  have "norm x < 1" using assms by auto
-  have "?a \<longlonglongrightarrow> 0" unfolding Suc_eq_plus1[symmetric] inverse_eq_divide[symmetric]
-    using tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_Suc[OF LIMSEQ_power_zero[OF \<open>norm x < 1\<close>]]] by auto
-  have "0 \<le> ?a n" for n
-    by (rule mult_nonneg_nonneg) (auto simp: \<open>0 \<le> x\<close>)
-  have "?a (Suc n) \<le> ?a n" for n
-    unfolding inverse_eq_divide[symmetric]
-  proof (rule mult_mono)
-    show "0 \<le> x ^ Suc (Suc n)"
-      by (auto simp add: \<open>0 \<le> x\<close>)
-    have "x ^ Suc (Suc n) \<le> x ^ Suc n * 1"
-      unfolding power_Suc2 mult.assoc[symmetric]
-      by (rule mult_left_mono, fact less_imp_le[OF \<open>x < 1\<close>]) (auto simp: \<open>0 \<le> x\<close>)
-    thus "x ^ Suc (Suc n) \<le> x ^ Suc n" by auto
-  qed auto
-  from summable_Leibniz'(2,4)[OF \<open>?a \<longlonglongrightarrow> 0\<close> \<open>\<And>n. 0 \<le> ?a n\<close>, OF \<open>\<And>n. ?a (Suc n) \<le> ?a n\<close>, unfolded ln_eq]
-  show ?lb and ?ub
-    unfolding atLeast0LessThan by auto
-qed
-
-lemma ln_float_bounds:
-  assumes "0 \<le> real_of_float x"
-    and "real_of_float x < 1"
-  shows "x * lb_ln_horner prec (get_even n) 1 x \<le> ln (x + 1)" (is "?lb \<le> ?ln")
-    and "ln (x + 1) \<le> x * ub_ln_horner prec (get_odd n) 1 x" (is "?ln \<le> ?ub")
-proof -
-  obtain ev where ev: "get_even n = 2 * ev" using get_even_double ..
-  obtain od where od: "get_odd n = 2 * od + 1" using get_odd_double ..
-
-  let "?s n" = "(- 1) ^ n * (1 / real (1 + n)) * (real_of_float x)^(Suc n)"
-
-  have "?lb \<le> sum ?s {0 ..< 2 * ev}"
-    unfolding power_Suc2 mult.assoc[symmetric] times_float.rep_eq sum_distrib_right[symmetric]
-    unfolding mult.commute[of "real_of_float x"] ev 
-    using horner_bounds(1)[where G="\<lambda> i k. Suc k" and F="\<lambda>x. x" and f="\<lambda>x. x" 
-                    and lb="\<lambda>n i k x. lb_ln_horner prec n k x" 
-                    and ub="\<lambda>n i k x. ub_ln_horner prec n k x" and j'=1 and n="2*ev",
-      OF \<open>0 \<le> real_of_float x\<close> refl lb_ln_horner.simps ub_ln_horner.simps] \<open>0 \<le> real_of_float x\<close>
-    unfolding real_of_float_power
-    by (rule mult_right_mono)
-  also have "\<dots> \<le> ?ln"
-    using ln_bounds(1)[OF \<open>0 \<le> real_of_float x\<close> \<open>real_of_float x < 1\<close>] by auto
-  finally show "?lb \<le> ?ln" .
-
-  have "?ln \<le> sum ?s {0 ..< 2 * od + 1}"
-    using ln_bounds(2)[OF \<open>0 \<le> real_of_float x\<close> \<open>real_of_float x < 1\<close>] by auto
-  also have "\<dots> \<le> ?ub"
-    unfolding power_Suc2 mult.assoc[symmetric] times_float.rep_eq sum_distrib_right[symmetric]
-    unfolding mult.commute[of "real_of_float x"] od
-    using horner_bounds(2)[where G="\<lambda> i k. Suc k" and F="\<lambda>x. x" and f="\<lambda>x. x" and lb="\<lambda>n i k x. lb_ln_horner prec n k x" and ub="\<lambda>n i k x. ub_ln_horner prec n k x" and j'=1 and n="2*od+1",
-      OF \<open>0 \<le> real_of_float x\<close> refl lb_ln_horner.simps ub_ln_horner.simps] \<open>0 \<le> real_of_float x\<close>
-    unfolding real_of_float_power
-    by (rule mult_right_mono)
-  finally show "?ln \<le> ?ub" .
-qed
-
-lemma ln_add:
-  fixes x :: real
-  assumes "0 < x" and "0 < y"
-  shows "ln (x + y) = ln x + ln (1 + y / x)"
-proof -
-  have "x \<noteq> 0" using assms by auto
-  have "x + y = x * (1 + y / x)"
-    unfolding distrib_left times_divide_eq_right nonzero_mult_div_cancel_left[OF \<open>x \<noteq> 0\<close>]
-    by auto
-  moreover
-  have "0 < y / x" using assms by auto
-  hence "0 < 1 + y / x" by auto
-  ultimately show ?thesis
-    using ln_mult assms by auto
-qed
-
-
-subsection "Compute the logarithm of 2"
-
-definition ub_ln2 where "ub_ln2 prec = (let third = rapprox_rat (max prec 1) 1 3
-                                        in float_plus_up prec
-                                          ((Float 1 (- 1) * ub_ln_horner prec (get_odd prec) 1 (Float 1 (- 1))))
-                                           (float_round_up prec (third * ub_ln_horner prec (get_odd prec) 1 third)))"
-definition lb_ln2 where "lb_ln2 prec = (let third = lapprox_rat prec 1 3
-                                        in float_plus_down prec
-                                          ((Float 1 (- 1) * lb_ln_horner prec (get_even prec) 1 (Float 1 (- 1))))
-                                           (float_round_down prec (third * lb_ln_horner prec (get_even prec) 1 third)))"
-
-lemma ub_ln2: "ln 2 \<le> ub_ln2 prec" (is "?ub_ln2")
-  and lb_ln2: "lb_ln2 prec \<le> ln 2" (is "?lb_ln2")
-proof -
-  let ?uthird = "rapprox_rat (max prec 1) 1 3"
-  let ?lthird = "lapprox_rat prec 1 3"
-
-  have ln2_sum: "ln 2 = ln (1/2 + 1) + ln (1 / 3 + 1::real)"
-    using ln_add[of "3 / 2" "1 / 2"] by auto
-  have lb3: "?lthird \<le> 1 / 3" using lapprox_rat[of prec 1 3] by auto
-  hence lb3_ub: "real_of_float ?lthird < 1" by auto
-  have lb3_lb: "0 \<le> real_of_float ?lthird" using lapprox_rat_nonneg[of 1 3] by auto
-  have ub3: "1 / 3 \<le> ?uthird" using rapprox_rat[of 1 3] by auto
-  hence ub3_lb: "0 \<le> real_of_float ?uthird" by auto
-
-  have lb2: "0 \<le> real_of_float (Float 1 (- 1))" and ub2: "real_of_float (Float 1 (- 1)) < 1"
-    unfolding Float_num by auto
-
-  have "0 \<le> (1::int)" and "0 < (3::int)" by auto
-  have ub3_ub: "real_of_float ?uthird < 1"
-    by (simp add: Float.compute_rapprox_rat Float.compute_lapprox_rat rapprox_posrat_less1)
-
-  have third_gt0: "(0 :: real) < 1 / 3 + 1" by auto
-  have uthird_gt0: "0 < real_of_float ?uthird + 1" using ub3_lb by auto
-  have lthird_gt0: "0 < real_of_float ?lthird + 1" using lb3_lb by auto
-
-  show ?ub_ln2
-    unfolding ub_ln2_def Let_def ln2_sum Float_num(4)[symmetric]
-  proof (rule float_plus_up_le, rule add_mono, fact ln_float_bounds(2)[OF lb2 ub2])
-    have "ln (1 / 3 + 1) \<le> ln (real_of_float ?uthird + 1)"
-      unfolding ln_le_cancel_iff[OF third_gt0 uthird_gt0] using ub3 by auto
-    also have "\<dots> \<le> ?uthird * ub_ln_horner prec (get_odd prec) 1 ?uthird"
-      using ln_float_bounds(2)[OF ub3_lb ub3_ub] .
-    also note float_round_up
-    finally show "ln (1 / 3 + 1) \<le> float_round_up prec (?uthird * ub_ln_horner prec (get_odd prec) 1 ?uthird)" .
-  qed
-  show ?lb_ln2
-    unfolding lb_ln2_def Let_def ln2_sum Float_num(4)[symmetric]
-  proof (rule float_plus_down_le, rule add_mono, fact ln_float_bounds(1)[OF lb2 ub2])
-    have "?lthird * lb_ln_horner prec (get_even prec) 1 ?lthird \<le> ln (real_of_float ?lthird + 1)"
-      using ln_float_bounds(1)[OF lb3_lb lb3_ub] .
-    note float_round_down_le[OF this]
-    also have "\<dots> \<le> ln (1 / 3 + 1)"
-      unfolding ln_le_cancel_iff[OF lthird_gt0 third_gt0]
-      using lb3 by auto
-    finally show "float_round_down prec (?lthird * lb_ln_horner prec (get_even prec) 1 ?lthird) \<le>
-      ln (1 / 3 + 1)" .
-  qed
-qed
-
-
-subsection "Compute the logarithm in the entire domain"
-
-function ub_ln :: "nat \<Rightarrow> float \<Rightarrow> float option" and lb_ln :: "nat \<Rightarrow> float \<Rightarrow> float option" where
-"ub_ln prec x = (if x \<le> 0          then None
-            else if x < 1          then Some (- the (lb_ln prec (float_divl (max prec 1) 1 x)))
-            else let horner = \<lambda>x. float_round_up prec (x * ub_ln_horner prec (get_odd prec) 1 x) in
-                 if x \<le> Float 3 (- 1) then Some (horner (x - 1))
-            else if x < Float 1 1  then Some (float_round_up prec (horner (Float 1 (- 1)) + horner (x * rapprox_rat prec 2 3 - 1)))
-                                   else let l = bitlen (mantissa x) - 1 in
-                                        Some (float_plus_up prec (float_round_up prec (ub_ln2 prec * (Float (exponent x + l) 0))) (horner (Float (mantissa x) (- l) - 1))))" |
-"lb_ln prec x = (if x \<le> 0          then None
-            else if x < 1          then Some (- the (ub_ln prec (float_divr prec 1 x)))
-            else let horner = \<lambda>x. float_round_down prec (x * lb_ln_horner prec (get_even prec) 1 x) in
-                 if x \<le> Float 3 (- 1) then Some (horner (x - 1))
-            else if x < Float 1 1  then Some (float_round_down prec (horner (Float 1 (- 1)) +
-                                              horner (max (x * lapprox_rat prec 2 3 - 1) 0)))
-                                   else let l = bitlen (mantissa x) - 1 in
-                                        Some (float_plus_down prec (float_round_down prec (lb_ln2 prec * (Float (exponent x + l) 0))) (horner (Float (mantissa x) (- l) - 1))))"
-  by pat_completeness auto
-
-termination
-proof (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if x < 1 then 1 else 0))", auto)
-  fix prec and x :: float
-  assume "\<not> real_of_float x \<le> 0" and "real_of_float x < 1" and "real_of_float (float_divl (max prec (Suc 0)) 1 x) < 1"
-  hence "0 < real_of_float x" "1 \<le> max prec (Suc 0)" "real_of_float x < 1"
-    by auto
-  from float_divl_pos_less1_bound[OF \<open>0 < real_of_float x\<close> \<open>real_of_float x < 1\<close>[THEN less_imp_le] \<open>1 \<le> max prec (Suc 0)\<close>]
-  show False
-    using \<open>real_of_float (float_divl (max prec (Suc 0)) 1 x) < 1\<close> by auto
-next
-  fix prec x
-  assume "\<not> real_of_float x \<le> 0" and "real_of_float x < 1" and "real_of_float (float_divr prec 1 x) < 1"
-  hence "0 < x" by auto
-  from float_divr_pos_less1_lower_bound[OF \<open>0 < x\<close>, of prec] \<open>real_of_float x < 1\<close> show False
-    using \<open>real_of_float (float_divr prec 1 x) < 1\<close> by auto
-qed
-
-lemma float_pos_eq_mantissa_pos: "x > 0 \<longleftrightarrow> mantissa x > 0"
-  apply (subst Float_mantissa_exponent[of x, symmetric])
-  apply (auto simp add: zero_less_mult_iff zero_float_def  dest: less_zeroE)
-  apply (metis not_le powr_ge_pzero)
-  done
-
-lemma Float_pos_eq_mantissa_pos: "Float m e > 0 \<longleftrightarrow> m > 0"
-  using powr_gt_zero[of 2 "e"]
-  by (auto simp add: zero_less_mult_iff zero_float_def simp del: powr_gt_zero dest: less_zeroE)
-
-lemma Float_representation_aux:
-  fixes m e
-  defines "x \<equiv> Float m e"
-  assumes "x > 0"
-  shows "Float (exponent x + (bitlen (mantissa x) - 1)) 0 = Float (e + (bitlen m - 1)) 0" (is ?th1)
-    and "Float (mantissa x) (- (bitlen (mantissa x) - 1)) = Float m ( - (bitlen m - 1))"  (is ?th2)
-proof -
-  from assms have mantissa_pos: "m > 0" "mantissa x > 0"
-    using Float_pos_eq_mantissa_pos[of m e] float_pos_eq_mantissa_pos[of x] by simp_all
-  thus ?th1
-    using bitlen_Float[of m e] assms
-    by (auto simp add: zero_less_mult_iff intro!: arg_cong2[where f=Float])
-  have "x \<noteq> float_of 0"
-    unfolding zero_float_def[symmetric] using \<open>0 < x\<close> by auto
-  from denormalize_shift[OF assms(1) this] guess i . note i = this
-
-  have "2 powr (1 - (real_of_int (bitlen (mantissa x)) + real_of_int i)) =
-    2 powr (1 - (real_of_int (bitlen (mantissa x)))) * inverse (2 powr (real i))"
-    by (simp add: powr_minus[symmetric] powr_add[symmetric] field_simps)
-  hence "real_of_int (mantissa x) * 2 powr (1 - real_of_int (bitlen (mantissa x))) =
-    (real_of_int (mantissa x) * 2 ^ i) * 2 powr (1 - real_of_int (bitlen (mantissa x * 2 ^ i)))"
-    using \<open>mantissa x > 0\<close> by (simp add: powr_realpow)
-  then show ?th2
-    unfolding i by transfer auto
-qed
-
-lemma compute_ln[code]:
-  fixes m e
-  defines "x \<equiv> Float m e"
-  shows "ub_ln prec x = (if x \<le> 0          then None
-              else if x < 1          then Some (- the (lb_ln prec (float_divl (max prec 1) 1 x)))
-            else let horner = \<lambda>x. float_round_up prec (x * ub_ln_horner prec (get_odd prec) 1 x) in
-                 if x \<le> Float 3 (- 1) then Some (horner (x - 1))
-            else if x < Float 1 1  then Some (float_round_up prec (horner (Float 1 (- 1)) + horner (x * rapprox_rat prec 2 3 - 1)))
-                                   else let l = bitlen m - 1 in
-                                        Some (float_plus_up prec (float_round_up prec (ub_ln2 prec * (Float (e + l) 0))) (horner (Float m (- l) - 1))))"
-    (is ?th1)
-  and "lb_ln prec x = (if x \<le> 0          then None
-            else if x < 1          then Some (- the (ub_ln prec (float_divr prec 1 x)))
-            else let horner = \<lambda>x. float_round_down prec (x * lb_ln_horner prec (get_even prec) 1 x) in
-                 if x \<le> Float 3 (- 1) then Some (horner (x - 1))
-            else if x < Float 1 1  then Some (float_round_down prec (horner (Float 1 (- 1)) +
-                                              horner (max (x * lapprox_rat prec 2 3 - 1) 0)))
-                                   else let l = bitlen m - 1 in
-                                        Some (float_plus_down prec (float_round_down prec (lb_ln2 prec * (Float (e + l) 0))) (horner (Float m (- l) - 1))))"
-    (is ?th2)
-proof -
-  from assms Float_pos_eq_mantissa_pos have "x > 0 \<Longrightarrow> m > 0"
-    by simp
-  thus ?th1 ?th2
-    using Float_representation_aux[of m e]
-    unfolding x_def[symmetric]
-    by (auto dest: not_le_imp_less)
-qed
-
-lemma ln_shifted_float:
-  assumes "0 < m"
-  shows "ln (Float m e) = ln 2 * (e + (bitlen m - 1)) + ln (Float m (- (bitlen m - 1)))"
-proof -
-  let ?B = "2^nat (bitlen m - 1)"
-  define bl where "bl = bitlen m - 1"
-  have "0 < real_of_int m" and "\<And>X. (0 :: real) < 2^X" and "0 < (2 :: real)" and "m \<noteq> 0"
-    using assms by auto
-  hence "0 \<le> bl" by (simp add: bitlen_alt_def bl_def)
-  show ?thesis
-  proof (cases "0 \<le> e")
-    case True
-    thus ?thesis
-      unfolding bl_def[symmetric] using \<open>0 < real_of_int m\<close> \<open>0 \<le> bl\<close>
-      apply (simp add: ln_mult)
-      apply (cases "e=0")
-        apply (cases "bl = 0", simp_all add: powr_minus ln_inverse ln_powr)
-        apply (cases "bl = 0", simp_all add: powr_minus ln_inverse ln_powr field_simps)
-      done
-  next
-    case False
-    hence "0 < -e" by auto
-    have lne: "ln (2 powr real_of_int e) = ln (inverse (2 powr - e))"
-      by (simp add: powr_minus)
-    hence pow_gt0: "(0::real) < 2^nat (-e)"
-      by auto
-    hence inv_gt0: "(0::real) < inverse (2^nat (-e))"
-      by auto
-    show ?thesis
-      using False unfolding bl_def[symmetric]
-      using \<open>0 < real_of_int m\<close> \<open>0 \<le> bl\<close>
-      by (auto simp add: lne ln_mult ln_powr ln_div field_simps)
-  qed
-qed
-
-lemma ub_ln_lb_ln_bounds':
-  assumes "1 \<le> x"
-  shows "the (lb_ln prec x) \<le> ln x \<and> ln x \<le> the (ub_ln prec x)"
-    (is "?lb \<le> ?ln \<and> ?ln \<le> ?ub")
-proof (cases "x < Float 1 1")
-  case True
-  hence "real_of_float (x - 1) < 1" and "real_of_float x < 2" by auto
-  have "\<not> x \<le> 0" and "\<not> x < 1" using \<open>1 \<le> x\<close> by auto
-  hence "0 \<le> real_of_float (x - 1)" using \<open>1 \<le> x\<close> by auto
-
-  have [simp]: "(Float 3 (- 1)) = 3 / 2" by simp
-
-  show ?thesis
-  proof (cases "x \<le> Float 3 (- 1)")
-    case True
-    show ?thesis
-      unfolding lb_ln.simps
-      unfolding ub_ln.simps Let_def
-      using ln_float_bounds[OF \<open>0 \<le> real_of_float (x - 1)\<close> \<open>real_of_float (x - 1) < 1\<close>, of prec]
-        \<open>\<not> x \<le> 0\<close> \<open>\<not> x < 1\<close> True
-      by (auto intro!: float_round_down_le float_round_up_le)
-  next
-    case False
-    hence *: "3 / 2 < x" by auto
-
-    with ln_add[of "3 / 2" "x - 3 / 2"]
-    have add: "ln x = ln (3 / 2) + ln (real_of_float x * 2 / 3)"
-      by (auto simp add: algebra_simps diff_divide_distrib)
-
-    let "?ub_horner x" = "float_round_up prec (x * ub_ln_horner prec (get_odd prec) 1 x)"
-    let "?lb_horner x" = "float_round_down prec (x * lb_ln_horner prec (get_even prec) 1 x)"
-
-    { have up: "real_of_float (rapprox_rat prec 2 3) \<le> 1"
-        by (rule rapprox_rat_le1) simp_all
-      have low: "2 / 3 \<le> rapprox_rat prec 2 3"
-        by (rule order_trans[OF _ rapprox_rat]) simp
-      from mult_less_le_imp_less[OF * low] *
-      have pos: "0 < real_of_float (x * rapprox_rat prec 2 3 - 1)" by auto
-
-      have "ln (real_of_float x * 2/3)
-        \<le> ln (real_of_float (x * rapprox_rat prec 2 3 - 1) + 1)"
-      proof (rule ln_le_cancel_iff[symmetric, THEN iffD1])
-        show "real_of_float x * 2 / 3 \<le> real_of_float (x * rapprox_rat prec 2 3 - 1) + 1"
-          using * low by auto
-        show "0 < real_of_float x * 2 / 3" using * by simp
-        show "0 < real_of_float (x * rapprox_rat prec 2 3 - 1) + 1" using pos by auto
-      qed
-      also have "\<dots> \<le> ?ub_horner (x * rapprox_rat prec 2 3 - 1)"
-      proof (rule float_round_up_le, rule ln_float_bounds(2))
-        from mult_less_le_imp_less[OF \<open>real_of_float x < 2\<close> up] low *
-        show "real_of_float (x * rapprox_rat prec 2 3 - 1) < 1" by auto
-        show "0 \<le> real_of_float (x * rapprox_rat prec 2 3 - 1)" using pos by auto
-      qed
-     finally have "ln x \<le> ?ub_horner (Float 1 (-1))
-          + ?ub_horner ((x * rapprox_rat prec 2 3 - 1))"
-        using ln_float_bounds(2)[of "Float 1 (- 1)" prec prec] add
-        by (auto intro!: add_mono float_round_up_le)
-      note float_round_up_le[OF this, of prec]
-    }
-    moreover
-    { let ?max = "max (x * lapprox_rat prec 2 3 - 1) 0"
-
-      have up: "lapprox_rat prec 2 3 \<le> 2/3"
-        by (rule order_trans[OF lapprox_rat], simp)
-
-      have low: "0 \<le> real_of_float (lapprox_rat prec 2 3)"
-        using lapprox_rat_nonneg[of 2 3 prec] by simp
-
-      have "?lb_horner ?max
-        \<le> ln (real_of_float ?max + 1)"
-      proof (rule float_round_down_le, rule ln_float_bounds(1))
-        from mult_less_le_imp_less[OF \<open>real_of_float x < 2\<close> up] * low
-        show "real_of_float ?max < 1" by (cases "real_of_float (lapprox_rat prec 2 3) = 0",
-          auto simp add: real_of_float_max)
-        show "0 \<le> real_of_float ?max" by (auto simp add: real_of_float_max)
-      qed
-      also have "\<dots> \<le> ln (real_of_float x * 2/3)"
-      proof (rule ln_le_cancel_iff[symmetric, THEN iffD1])
-        show "0 < real_of_float ?max + 1" by (auto simp add: real_of_float_max)
-        show "0 < real_of_float x * 2/3" using * by auto
-        show "real_of_float ?max + 1 \<le> real_of_float x * 2/3" using * up
-          by (cases "0 < real_of_float x * real_of_float (lapprox_posrat prec 2 3) - 1",
-              auto simp add: max_def)
-      qed
-      finally have "?lb_horner (Float 1 (- 1)) + ?lb_horner ?max \<le> ln x"
-        using ln_float_bounds(1)[of "Float 1 (- 1)" prec prec] add
-        by (auto intro!: add_mono float_round_down_le)
-      note float_round_down_le[OF this, of prec]
-    }
-    ultimately
-    show ?thesis unfolding lb_ln.simps unfolding ub_ln.simps Let_def
-      using \<open>\<not> x \<le> 0\<close> \<open>\<not> x < 1\<close> True False by auto
-  qed
-next
-  case False
-  hence "\<not> x \<le> 0" and "\<not> x < 1" "0 < x" "\<not> x \<le> Float 3 (- 1)"
-    using \<open>1 \<le> x\<close> by auto
-  show ?thesis
-  proof -
-    define m where "m = mantissa x"
-    define e where "e = exponent x"
-    from Float_mantissa_exponent[of x] have Float: "x = Float m e"
-      by (simp add: m_def e_def)
-    let ?s = "Float (e + (bitlen m - 1)) 0"
-    let ?x = "Float m (- (bitlen m - 1))"
-
-    have "0 < m" and "m \<noteq> 0" using \<open>0 < x\<close> Float powr_gt_zero[of 2 e]
-      apply (auto simp add: zero_less_mult_iff)
-      using not_le powr_ge_pzero apply blast
-      done
-    define bl where "bl = bitlen m - 1"
-    hence "bl \<ge> 0"
-      using \<open>m > 0\<close> by (simp add: bitlen_alt_def)
-    have "1 \<le> Float m e"
-      using \<open>1 \<le> x\<close> Float unfolding less_eq_float_def by auto
-    from bitlen_div[OF \<open>0 < m\<close>] float_gt1_scale[OF \<open>1 \<le> Float m e\<close>] \<open>bl \<ge> 0\<close>
-    have x_bnds: "0 \<le> real_of_float (?x - 1)" "real_of_float (?x - 1) < 1"
-      unfolding bl_def[symmetric]
-      by (auto simp: powr_realpow[symmetric] field_simps)
-         (auto simp : powr_minus field_simps)
-
-    {
-      have "float_round_down prec (lb_ln2 prec * ?s) \<le> ln 2 * (e + (bitlen m - 1))"
-          (is "real_of_float ?lb2 \<le> _")
-        apply (rule float_round_down_le)
-        unfolding nat_0 power_0 mult_1_right times_float.rep_eq
-        using lb_ln2[of prec]
-      proof (rule mult_mono)
-        from float_gt1_scale[OF \<open>1 \<le> Float m e\<close>]
-        show "0 \<le> real_of_float (Float (e + (bitlen m - 1)) 0)" by simp
-      qed auto
-      moreover
-      from ln_float_bounds(1)[OF x_bnds]
-      have "float_round_down prec ((?x - 1) * lb_ln_horner prec (get_even prec) 1 (?x - 1)) \<le> ln ?x" (is "real_of_float ?lb_horner \<le> _")
-        by (auto intro!: float_round_down_le)
-      ultimately have "float_plus_down prec ?lb2 ?lb_horner \<le> ln x"
-        unfolding Float ln_shifted_float[OF \<open>0 < m\<close>, of e] by (auto intro!: float_plus_down_le)
-    }
-    moreover
-    {
-      from ln_float_bounds(2)[OF x_bnds]
-      have "ln ?x \<le> float_round_up prec ((?x - 1) * ub_ln_horner prec (get_odd prec) 1 (?x - 1))"
-          (is "_ \<le> real_of_float ?ub_horner")
-        by (auto intro!: float_round_up_le)
-      moreover
-      have "ln 2 * (e + (bitlen m - 1)) \<le> float_round_up prec (ub_ln2 prec * ?s)"
-          (is "_ \<le> real_of_float ?ub2")
-        apply (rule float_round_up_le)
-        unfolding nat_0 power_0 mult_1_right times_float.rep_eq
-        using ub_ln2[of prec]
-      proof (rule mult_mono)
-        from float_gt1_scale[OF \<open>1 \<le> Float m e\<close>]
-        show "0 \<le> real_of_int (e + (bitlen m - 1))" by auto
-        have "0 \<le> ln (2 :: real)" by simp
-        thus "0 \<le> real_of_float (ub_ln2 prec)" using ub_ln2[of prec] by arith
-      qed auto
-      ultimately have "ln x \<le> float_plus_up prec ?ub2 ?ub_horner"
-        unfolding Float ln_shifted_float[OF \<open>0 < m\<close>, of e]
-        by (auto intro!: float_plus_up_le)
-    }
-    ultimately show ?thesis
-      unfolding lb_ln.simps
-      unfolding ub_ln.simps
-      unfolding if_not_P[OF \<open>\<not> x \<le> 0\<close>] if_not_P[OF \<open>\<not> x < 1\<close>]
-        if_not_P[OF False] if_not_P[OF \<open>\<not> x \<le> Float 3 (- 1)\<close>] Let_def
-      unfolding plus_float.rep_eq e_def[symmetric] m_def[symmetric]
-      by simp
-  qed
-qed
-
-lemma ub_ln_lb_ln_bounds:
-  assumes "0 < x"
-  shows "the (lb_ln prec x) \<le> ln x \<and> ln x \<le> the (ub_ln prec x)"
-    (is "?lb \<le> ?ln \<and> ?ln \<le> ?ub")
-proof (cases "x < 1")
-  case False
-  hence "1 \<le> x"
-    unfolding less_float_def less_eq_float_def by auto
-  show ?thesis
-    using ub_ln_lb_ln_bounds'[OF \<open>1 \<le> x\<close>] .
-next
-  case True
-  have "\<not> x \<le> 0" using \<open>0 < x\<close> by auto
-  from True have "real_of_float x \<le> 1" "x \<le> 1"
-    by simp_all
-  have "0 < real_of_float x" and "real_of_float x \<noteq> 0"
-    using \<open>0 < x\<close> by auto
-  hence A: "0 < 1 / real_of_float x" by auto
-
-  {
-    let ?divl = "float_divl (max prec 1) 1 x"
-    have A': "1 \<le> ?divl" using float_divl_pos_less1_bound[OF \<open>0 < real_of_float x\<close> \<open>real_of_float x \<le> 1\<close>] by auto
-    hence B: "0 < real_of_float ?divl" by auto
-
-    have "ln ?divl \<le> ln (1 / x)" unfolding ln_le_cancel_iff[OF B A] using float_divl[of _ 1 x] by auto
-    hence "ln x \<le> - ln ?divl" unfolding nonzero_inverse_eq_divide[OF \<open>real_of_float x \<noteq> 0\<close>, symmetric] ln_inverse[OF \<open>0 < real_of_float x\<close>] by auto
-    from this ub_ln_lb_ln_bounds'[OF A', THEN conjunct1, THEN le_imp_neg_le]
-    have "?ln \<le> - the (lb_ln prec ?divl)" unfolding uminus_float.rep_eq by (rule order_trans)
-  } moreover
-  {
-    let ?divr = "float_divr prec 1 x"
-    have A': "1 \<le> ?divr" using float_divr_pos_less1_lower_bound[OF \<open>0 < x\<close> \<open>x \<le> 1\<close>] unfolding less_eq_float_def less_float_def by auto
-    hence B: "0 < real_of_float ?divr" by auto
-
-    have "ln (1 / x) \<le> ln ?divr" unfolding ln_le_cancel_iff[OF A B] using float_divr[of 1 x] by auto
-    hence "- ln ?divr \<le> ln x" unfolding nonzero_inverse_eq_divide[OF \<open>real_of_float x \<noteq> 0\<close>, symmetric] ln_inverse[OF \<open>0 < real_of_float x\<close>] by auto
-    from ub_ln_lb_ln_bounds'[OF A', THEN conjunct2, THEN le_imp_neg_le] this
-    have "- the (ub_ln prec ?divr) \<le> ?ln" unfolding uminus_float.rep_eq by (rule order_trans)
-  }
-  ultimately show ?thesis unfolding lb_ln.simps[where x=x]  ub_ln.simps[where x=x]
-    unfolding if_not_P[OF \<open>\<not> x \<le> 0\<close>] if_P[OF True] by auto
-qed
-
-lemma lb_ln:
-  assumes "Some y = lb_ln prec x"
-  shows "y \<le> ln x" and "0 < real_of_float x"
-proof -
-  have "0 < x"
-  proof (rule ccontr)
-    assume "\<not> 0 < x"
-    hence "x \<le> 0"
-      unfolding less_eq_float_def less_float_def by auto
-    thus False
-      using assms by auto
-  qed
-  thus "0 < real_of_float x" by auto
-  have "the (lb_ln prec x) \<le> ln x"
-    using ub_ln_lb_ln_bounds[OF \<open>0 < x\<close>] ..
-  thus "y \<le> ln x"
-    unfolding assms[symmetric] by auto
-qed
-
-lemma ub_ln:
-  assumes "Some y = ub_ln prec x"
-  shows "ln x \<le> y" and "0 < real_of_float x"
-proof -
-  have "0 < x"
-  proof (rule ccontr)
-    assume "\<not> 0 < x"
-    hence "x \<le> 0" by auto
-    thus False
-      using assms by auto
-  qed
-  thus "0 < real_of_float x" by auto
-  have "ln x \<le> the (ub_ln prec x)"
-    using ub_ln_lb_ln_bounds[OF \<open>0 < x\<close>] ..
-  thus "ln x \<le> y"
-    unfolding assms[symmetric] by auto
-qed
-
-lemma bnds_ln: "\<forall>(x::real) lx ux. (Some l, Some u) =
-  (lb_ln prec lx, ub_ln prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> ln x \<and> ln x \<le> u"
-proof (rule allI, rule allI, rule allI, rule impI)
-  fix x :: real
-  fix lx ux
-  assume "(Some l, Some u) = (lb_ln prec lx, ub_ln prec ux) \<and> x \<in> {lx .. ux}"
-  hence l: "Some l = lb_ln prec lx " and u: "Some u = ub_ln prec ux" and x: "x \<in> {lx .. ux}"
-    by auto
-
-  have "ln ux \<le> u" and "0 < real_of_float ux"
-    using ub_ln u by auto
-  have "l \<le> ln lx" and "0 < real_of_float lx" and "0 < x"
-    using lb_ln[OF l] x by auto
-
-  from ln_le_cancel_iff[OF \<open>0 < real_of_float lx\<close> \<open>0 < x\<close>] \<open>l \<le> ln lx\<close>
-  have "l \<le> ln x"
-    using x unfolding atLeastAtMost_iff by auto
-  moreover
-  from ln_le_cancel_iff[OF \<open>0 < x\<close> \<open>0 < real_of_float ux\<close>] \<open>ln ux \<le> real_of_float u\<close>
-  have "ln x \<le> u"
-    using x unfolding atLeastAtMost_iff by auto
-  ultimately show "l \<le> ln x \<and> ln x \<le> u" ..
-qed
-
-
-section \<open>Real power function\<close>
-
-definition bnds_powr :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> (float \<times> float) option" where
-  "bnds_powr prec l1 u1 l2 u2 = (
-     if l1 = 0 \<and> u1 = 0 then
-       Some (0, 0)
-     else if l1 = 0 \<and> l2 \<ge> 1 then
-       let uln = the (ub_ln prec u1)
-       in  Some (0, ub_exp prec (float_round_up prec (uln * (if uln \<ge> 0 then u2 else l2))))
-     else if l1 \<le> 0 then
-       None
-     else
-       Some (map_bnds lb_exp ub_exp prec 
-               (bnds_mult prec (the (lb_ln prec l1)) (the (ub_ln prec u1)) l2 u2)))"
-
-lemmas [simp del] = lb_exp.simps ub_exp.simps
-
-lemma mono_exp_real: "mono (exp :: real \<Rightarrow> real)"
-  by (auto simp: mono_def)
-
-lemma ub_exp_nonneg: "real_of_float (ub_exp prec x) \<ge> 0"
-proof -
-  have "0 \<le> exp (real_of_float x)" by simp
-  also from exp_boundaries[of x prec] 
-    have "\<dots> \<le> real_of_float (ub_exp prec x)" by simp
-  finally show ?thesis .
-qed
-
-lemma bnds_powr:
-  assumes lu: "Some (l, u) = bnds_powr prec l1 u1 l2 u2"
-  assumes x: "x \<in> {real_of_float l1..real_of_float u1}"
-  assumes y: "y \<in> {real_of_float l2..real_of_float u2}"
-  shows   "x powr y \<in> {real_of_float l..real_of_float u}"
-proof -
-  consider "l1 = 0" "u1 = 0" | "l1 = 0" "u1 \<noteq> 0" "l2 \<ge> 1" | 
-           "l1 \<le> 0" "\<not>(l1 = 0 \<and> (u1 = 0 \<or> l2 \<ge> 1))" | "l1 > 0" by force
-  thus ?thesis
-  proof cases
-    assume "l1 = 0" "u1 = 0"
-    with x lu show ?thesis by (auto simp: bnds_powr_def)
-  next
-    assume A: "l1 = 0" "u1 \<noteq> 0" "l2 \<ge> 1"
-    define uln where "uln = the (ub_ln prec u1)"
-    show ?thesis
-    proof (cases "x = 0")
-      case False
-      with A x y have "x powr y = exp (ln x * y)" by (simp add: powr_def)
-      also {
-        from A x False have "ln x \<le> ln (real_of_float u1)" by simp
-        also from ub_ln_lb_ln_bounds[of u1 prec] A y x False
-          have "ln (real_of_float u1) \<le> real_of_float uln" by (simp add: uln_def del: lb_ln.simps)
-        also from A x y have "\<dots> * y \<le> real_of_float uln * (if uln \<ge> 0 then u2 else l2)"
-          by (auto intro: mult_left_mono mult_left_mono_neg)
-        also have "\<dots> \<le> real_of_float (float_round_up prec (uln * (if uln \<ge> 0 then u2 else l2)))"
-          by (simp add: float_round_up_le)
-        finally have "ln x * y \<le> \<dots>" using A y by - simp
-      }
-      also have "exp (real_of_float (float_round_up prec (uln * (if uln \<ge> 0 then u2 else l2)))) \<le>
-                   real_of_float (ub_exp prec (float_round_up prec
-                       (uln * (if uln \<ge> 0 then u2 else l2))))"
-        using exp_boundaries by simp
-      finally show ?thesis using A x y lu 
-        by (simp add: bnds_powr_def uln_def Let_def del: lb_ln.simps ub_ln.simps)
-    qed (insert x y lu A, simp_all add: bnds_powr_def Let_def ub_exp_nonneg
-                                   del: lb_ln.simps ub_ln.simps)
-  next
-    assume "l1 \<le> 0" "\<not>(l1 = 0 \<and> (u1 = 0 \<or> l2 \<ge> 1))"
-    with lu show ?thesis by (simp add: bnds_powr_def split: if_split_asm)
-  next
-    assume l1: "l1 > 0"
-    obtain lm um where lmum:
-      "(lm, um) = bnds_mult prec (the (lb_ln prec l1)) (the (ub_ln prec u1)) l2 u2"
-      by (cases "bnds_mult prec (the (lb_ln prec l1)) (the (ub_ln prec u1)) l2 u2") simp
-    with l1 have "(l, u) = map_bnds lb_exp ub_exp prec (lm, um)"
-      using lu by (simp add: bnds_powr_def del: lb_ln.simps ub_ln.simps split: if_split_asm)
-    hence "exp (ln x * y) \<in> {real_of_float l..real_of_float u}"
-    proof (rule map_bnds[OF _ mono_exp_real], goal_cases)
-      case 1
-      let ?lln = "the (lb_ln prec l1)" and ?uln = "the (ub_ln prec u1)"
-      from ub_ln_lb_ln_bounds[of l1 prec] ub_ln_lb_ln_bounds[of u1 prec] x l1
-        have "real_of_float ?lln \<le> ln (real_of_float l1) \<and> 
-              ln (real_of_float u1) \<le> real_of_float ?uln"
-        by (auto simp del: lb_ln.simps ub_ln.simps)
-      moreover from l1 x have "ln (real_of_float l1) \<le> ln x \<and> ln x \<le> ln (real_of_float u1)"
-        by auto
-      ultimately have ln: "real_of_float ?lln \<le> ln x \<and> ln x \<le> real_of_float ?uln" by simp
-      from lmum show ?case
-        by (rule bnds_mult) (insert y ln, simp_all)
-    qed (insert exp_boundaries[of lm prec] exp_boundaries[of um prec], simp_all)
-    with x l1 show ?thesis
-      by (simp add: powr_def mult_ac)
-  qed
-qed
-
-
 section "Implement floatarith"
 
 subsection "Define syntax and semantics"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Decision_Procs/Approximation_Bounds.thy	Wed Apr 26 17:01:10 2017 +0200
@@ -0,0 +1,2806 @@
+(* 
+  Author:     Johannes Hoelzl, TU Muenchen
+  Coercions removed by Dmitriy Traytel
+
+  This file contains only general material about computing lower/upper bounds
+  on real functions. Approximation.thy contains the actual approximation algorithm
+  and the approximation oracle. This is in order to make a clear separation between 
+  "morally immaculate" material about upper/lower bounds and the trusted oracle/reflection.
+*)
+
+theory Approximation_Bounds
+imports
+  Complex_Main
+  "~~/src/HOL/Library/Float"
+  Dense_Linear_Order
+begin
+
+declare powr_neg_one [simp]
+declare powr_neg_numeral [simp]
+
+section "Horner Scheme"
+
+subsection \<open>Define auxiliary helper \<open>horner\<close> function\<close>
+
+primrec horner :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> real \<Rightarrow> real" where
+"horner F G 0 i k x       = 0" |
+"horner F G (Suc n) i k x = 1 / k - x * horner F G n (F i) (G i k) x"
+
+lemma horner_schema':
+  fixes x :: real and a :: "nat \<Rightarrow> real"
+  shows "a 0 - x * (\<Sum> i=0..<n. (-1)^i * a (Suc i) * x^i) = (\<Sum> i=0..<Suc n. (-1)^i * a i * x^i)"
+proof -
+  have shift_pow: "\<And>i. - (x * ((-1)^i * a (Suc i) * x ^ i)) = (-1)^(Suc i) * a (Suc i) * x ^ (Suc i)"
+    by auto
+  show ?thesis
+    unfolding sum_distrib_left shift_pow uminus_add_conv_diff [symmetric] sum_negf[symmetric]
+    sum_head_upt_Suc[OF zero_less_Suc]
+    sum.reindex[OF inj_Suc, unfolded comp_def, symmetric, of "\<lambda> n. (-1)^n  *a n * x^n"] by auto
+qed
+
+lemma horner_schema:
+  fixes f :: "nat \<Rightarrow> nat" and G :: "nat \<Rightarrow> nat \<Rightarrow> nat" and F :: "nat \<Rightarrow> nat"
+  assumes f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)"
+  shows "horner F G n ((F ^^ j') s) (f j') x = (\<Sum> j = 0..< n. (- 1) ^ j * (1 / (f (j' + j))) * x ^ j)"
+proof (induct n arbitrary: j')
+  case 0
+  then show ?case by auto
+next
+  case (Suc n)
+  show ?case unfolding horner.simps Suc[where j'="Suc j'", unfolded funpow.simps comp_def f_Suc]
+    using horner_schema'[of "\<lambda> j. 1 / (f (j' + j))"] by auto
+qed
+
+lemma horner_bounds':
+  fixes lb :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" and ub :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
+  assumes "0 \<le> real_of_float x" and f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)"
+    and lb_0: "\<And> i k x. lb 0 i k x = 0"
+    and lb_Suc: "\<And> n i k x. lb (Suc n) i k x = float_plus_down prec
+        (lapprox_rat prec 1 k)
+        (- float_round_up prec (x * (ub n (F i) (G i k) x)))"
+    and ub_0: "\<And> i k x. ub 0 i k x = 0"
+    and ub_Suc: "\<And> n i k x. ub (Suc n) i k x = float_plus_up prec
+        (rapprox_rat prec 1 k)
+        (- float_round_down prec (x * (lb n (F i) (G i k) x)))"
+  shows "(lb n ((F ^^ j') s) (f j') x) \<le> horner F G n ((F ^^ j') s) (f j') x \<and>
+         horner F G n ((F ^^ j') s) (f j') x \<le> (ub n ((F ^^ j') s) (f j') x)"
+  (is "?lb n j' \<le> ?horner n j' \<and> ?horner n j' \<le> ?ub n j'")
+proof (induct n arbitrary: j')
+  case 0
+  thus ?case unfolding lb_0 ub_0 horner.simps by auto
+next
+  case (Suc n)
+  thus ?case using lapprox_rat[of prec 1 "f j'"] using rapprox_rat[of 1 "f j'" prec]
+    Suc[where j'="Suc j'"] \<open>0 \<le> real_of_float x\<close>
+    by (auto intro!: add_mono mult_left_mono float_round_down_le float_round_up_le
+      order_trans[OF add_mono[OF _ float_plus_down_le]]
+      order_trans[OF _ add_mono[OF _ float_plus_up_le]]
+      simp add: lb_Suc ub_Suc field_simps f_Suc)
+qed
+
+subsection "Theorems for floating point functions implementing the horner scheme"
+
+text \<open>
+
+Here @{term_type "f :: nat \<Rightarrow> nat"} is the sequence defining the Taylor series, the coefficients are
+all alternating and reciprocs. We use @{term G} and @{term F} to describe the computation of @{term f}.
+
+\<close>
+
+lemma horner_bounds:
+  fixes F :: "nat \<Rightarrow> nat" and G :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+  assumes "0 \<le> real_of_float x" and f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)"
+    and lb_0: "\<And> i k x. lb 0 i k x = 0"
+    and lb_Suc: "\<And> n i k x. lb (Suc n) i k x = float_plus_down prec
+        (lapprox_rat prec 1 k)
+        (- float_round_up prec (x * (ub n (F i) (G i k) x)))"
+    and ub_0: "\<And> i k x. ub 0 i k x = 0"
+    and ub_Suc: "\<And> n i k x. ub (Suc n) i k x = float_plus_up prec
+        (rapprox_rat prec 1 k)
+        (- float_round_down prec (x * (lb n (F i) (G i k) x)))"
+  shows "(lb n ((F ^^ j') s) (f j') x) \<le> (\<Sum>j=0..<n. (- 1) ^ j * (1 / (f (j' + j))) * (x ^ j))"
+      (is "?lb")
+    and "(\<Sum>j=0..<n. (- 1) ^ j * (1 / (f (j' + j))) * (x ^ j)) \<le> (ub n ((F ^^ j') s) (f j') x)"
+      (is "?ub")
+proof -
+  have "?lb  \<and> ?ub"
+    using horner_bounds'[where lb=lb, OF \<open>0 \<le> real_of_float x\<close> f_Suc lb_0 lb_Suc ub_0 ub_Suc]
+    unfolding horner_schema[where f=f, OF f_Suc] by simp
+  thus "?lb" and "?ub" by auto
+qed
+
+lemma horner_bounds_nonpos:
+  fixes F :: "nat \<Rightarrow> nat" and G :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+  assumes "real_of_float x \<le> 0" and f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)"
+    and lb_0: "\<And> i k x. lb 0 i k x = 0"
+    and lb_Suc: "\<And> n i k x. lb (Suc n) i k x = float_plus_down prec
+        (lapprox_rat prec 1 k)
+        (float_round_down prec (x * (ub n (F i) (G i k) x)))"
+    and ub_0: "\<And> i k x. ub 0 i k x = 0"
+    and ub_Suc: "\<And> n i k x. ub (Suc n) i k x = float_plus_up prec
+        (rapprox_rat prec 1 k)
+        (float_round_up prec (x * (lb n (F i) (G i k) x)))"
+  shows "(lb n ((F ^^ j') s) (f j') x) \<le> (\<Sum>j=0..<n. (1 / (f (j' + j))) * real_of_float x ^ j)" (is "?lb")
+    and "(\<Sum>j=0..<n. (1 / (f (j' + j))) * real_of_float x ^ j) \<le> (ub n ((F ^^ j') s) (f j') x)" (is "?ub")
+proof -
+  have diff_mult_minus: "x - y * z = x + - y * z" for x y z :: float by simp
+  have sum_eq: "(\<Sum>j=0..<n. (1 / (f (j' + j))) * real_of_float x ^ j) =
+    (\<Sum>j = 0..<n. (- 1) ^ j * (1 / (f (j' + j))) * real_of_float (- x) ^ j)"
+    by (auto simp add: field_simps power_mult_distrib[symmetric])
+  have "0 \<le> real_of_float (-x)" using assms by auto
+  from horner_bounds[where G=G and F=F and f=f and s=s and prec=prec
+    and lb="\<lambda> n i k x. lb n i k (-x)" and ub="\<lambda> n i k x. ub n i k (-x)",
+    unfolded lb_Suc ub_Suc diff_mult_minus,
+    OF this f_Suc lb_0 _ ub_0 _]
+  show "?lb" and "?ub" unfolding minus_minus sum_eq
+    by (auto simp: minus_float_round_up_eq minus_float_round_down_eq)
+qed
+
+
+subsection \<open>Selectors for next even or odd number\<close>
+
+text \<open>
+The horner scheme computes alternating series. To get the upper and lower bounds we need to
+guarantee to access a even or odd member. To do this we use @{term get_odd} and @{term get_even}.
+\<close>
+
+definition get_odd :: "nat \<Rightarrow> nat" where
+  "get_odd n = (if odd n then n else (Suc n))"
+
+definition get_even :: "nat \<Rightarrow> nat" where
+  "get_even n = (if even n then n else (Suc n))"
+
+lemma get_odd[simp]: "odd (get_odd n)"
+  unfolding get_odd_def by (cases "odd n") auto
+
+lemma get_even[simp]: "even (get_even n)"
+  unfolding get_even_def by (cases "even n") auto
+
+lemma get_odd_ex: "\<exists> k. Suc k = get_odd n \<and> odd (Suc k)"
+  by (auto simp: get_odd_def odd_pos intro!: exI[of _ "n - 1"])
+
+lemma get_even_double: "\<exists>i. get_even n = 2 * i"
+  using get_even by (blast elim: evenE)
+
+lemma get_odd_double: "\<exists>i. get_odd n = 2 * i + 1"
+  using get_odd by (blast elim: oddE)
+
+
+section "Power function"
+
+definition float_power_bnds :: "nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float * float" where
+"float_power_bnds prec n l u =
+  (if 0 < l then (power_down_fl prec l n, power_up_fl prec u n)
+  else if odd n then
+    (- power_up_fl prec \<bar>l\<bar> n,
+      if u < 0 then - power_down_fl prec \<bar>u\<bar> n else power_up_fl prec u n)
+  else if u < 0 then (power_down_fl prec \<bar>u\<bar> n, power_up_fl prec \<bar>l\<bar> n)
+  else (0, power_up_fl prec (max \<bar>l\<bar> \<bar>u\<bar>) n))"
+
+lemma le_minus_power_downI: "0 \<le> x \<Longrightarrow> x ^ n \<le> - a \<Longrightarrow> a \<le> - power_down prec x n"
+  by (subst le_minus_iff) (auto intro: power_down_le power_mono_odd)
+
+lemma float_power_bnds:
+  "(l1, u1) = float_power_bnds prec n l u \<Longrightarrow> x \<in> {l .. u} \<Longrightarrow> (x::real) ^ n \<in> {l1..u1}"
+  by (auto
+    simp: float_power_bnds_def max_def real_power_up_fl real_power_down_fl minus_le_iff
+    split: if_split_asm
+    intro!: power_up_le power_down_le le_minus_power_downI
+    intro: power_mono_odd power_mono power_mono_even zero_le_even_power)
+
+lemma bnds_power:
+  "\<forall>(x::real) l u. (l1, u1) = float_power_bnds prec n l u \<and> x \<in> {l .. u} \<longrightarrow>
+    l1 \<le> x ^ n \<and> x ^ n \<le> u1"
+  using float_power_bnds by auto
+
+section \<open>Approximation utility functions\<close>
+
+definition bnds_mult :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<times> float" where
+  "bnds_mult prec a1 a2 b1 b2 =
+      (float_plus_down prec (nprt a1 * pprt b2)
+          (float_plus_down prec (nprt a2 * nprt b2)
+            (float_plus_down prec (pprt a1 * pprt b1) (pprt a2 * nprt b1))),
+        float_plus_up prec (pprt a2 * pprt b2)
+            (float_plus_up prec (pprt a1 * nprt b2)
+              (float_plus_up prec (nprt a2 * pprt b1) (nprt a1 * nprt b1))))"
+
+lemma bnds_mult:
+  fixes prec :: nat and a1 aa2 b1 b2 :: float
+  assumes "(l, u) = bnds_mult prec a1 a2 b1 b2"
+  assumes "a \<in> {real_of_float a1..real_of_float a2}"
+  assumes "b \<in> {real_of_float b1..real_of_float b2}"
+  shows   "a * b \<in> {real_of_float l..real_of_float u}"
+proof -
+  from assms have "real_of_float l \<le> a * b" 
+    by (intro order.trans[OF _ mult_ge_prts[of a1 a a2 b1 b b2]])
+       (auto simp: bnds_mult_def intro!: float_plus_down_le)
+  moreover from assms have "real_of_float u \<ge> a * b" 
+    by (intro order.trans[OF mult_le_prts[of a1 a a2 b1 b b2]])
+       (auto simp: bnds_mult_def intro!: float_plus_up_le)
+  ultimately show ?thesis by simp
+qed
+
+definition map_bnds :: "(nat \<Rightarrow> float \<Rightarrow> float) \<Rightarrow> (nat \<Rightarrow> float \<Rightarrow> float) \<Rightarrow>
+                           nat \<Rightarrow> (float \<times> float) \<Rightarrow> (float \<times> float)" where
+  "map_bnds lb ub prec = (\<lambda>(l,u). (lb prec l, ub prec u))"
+
+lemma map_bnds:
+  assumes "(lf, uf) = map_bnds lb ub prec (l, u)"
+  assumes "mono f"
+  assumes "x \<in> {real_of_float l..real_of_float u}"
+  assumes "real_of_float (lb prec l) \<le> f (real_of_float l)"
+  assumes "real_of_float (ub prec u) \<ge> f (real_of_float u)"
+  shows   "f x \<in> {real_of_float lf..real_of_float uf}"
+proof -
+  from assms have "real_of_float lf = real_of_float (lb prec l)"
+    by (simp add: map_bnds_def)
+  also have "real_of_float (lb prec l) \<le> f (real_of_float l)"  by fact
+  also from assms have "\<dots> \<le> f x"
+    by (intro monoD[OF \<open>mono f\<close>]) auto
+  finally have lf: "real_of_float lf \<le> f x" .
+
+  from assms have "f x \<le> f (real_of_float u)"
+    by (intro monoD[OF \<open>mono f\<close>]) auto
+  also have "\<dots> \<le> real_of_float (ub prec u)" by fact
+  also from assms have "\<dots> = real_of_float uf"
+    by (simp add: map_bnds_def)
+  finally have uf: "f x \<le> real_of_float uf" .
+
+  from lf uf show ?thesis by simp
+qed
+
+
+section "Square root"
+
+text \<open>
+The square root computation is implemented as newton iteration. As first first step we use the
+nearest power of two greater than the square root.
+\<close>
+
+fun sqrt_iteration :: "nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where
+"sqrt_iteration prec 0 x = Float 1 ((bitlen \<bar>mantissa x\<bar> + exponent x) div 2 + 1)" |
+"sqrt_iteration prec (Suc m) x = (let y = sqrt_iteration prec m x
+                                  in Float 1 (- 1) * float_plus_up prec y (float_divr prec x y))"
+
+lemma compute_sqrt_iteration_base[code]:
+  shows "sqrt_iteration prec n (Float m e) =
+    (if n = 0 then Float 1 ((if m = 0 then 0 else bitlen \<bar>m\<bar> + e) div 2 + 1)
+    else (let y = sqrt_iteration prec (n - 1) (Float m e) in
+      Float 1 (- 1) * float_plus_up prec y (float_divr prec (Float m e) y)))"
+  using bitlen_Float by (cases n) simp_all
+
+function ub_sqrt lb_sqrt :: "nat \<Rightarrow> float \<Rightarrow> float" where
+"ub_sqrt prec x = (if 0 < x then (sqrt_iteration prec prec x)
+              else if x < 0 then - lb_sqrt prec (- x)
+                            else 0)" |
+"lb_sqrt prec x = (if 0 < x then (float_divl prec x (sqrt_iteration prec prec x))
+              else if x < 0 then - ub_sqrt prec (- x)
+                            else 0)"
+by pat_completeness auto
+termination by (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if x < 0 then 1 else 0))", auto)
+
+declare lb_sqrt.simps[simp del]
+declare ub_sqrt.simps[simp del]
+
+lemma sqrt_ub_pos_pos_1:
+  assumes "sqrt x < b" and "0 < b" and "0 < x"
+  shows "sqrt x < (b + x / b)/2"
+proof -
+  from assms have "0 < (b - sqrt x)\<^sup>2 " by simp
+  also have "\<dots> = b\<^sup>2 - 2 * b * sqrt x + (sqrt x)\<^sup>2" by algebra
+  also have "\<dots> = b\<^sup>2 - 2 * b * sqrt x + x" using assms by simp
+  finally have "0 < b\<^sup>2 - 2 * b * sqrt x + x" .
+  hence "0 < b / 2 - sqrt x + x / (2 * b)" using assms
+    by (simp add: field_simps power2_eq_square)
+  thus ?thesis by (simp add: field_simps)
+qed
+
+lemma sqrt_iteration_bound:
+  assumes "0 < real_of_float x"
+  shows "sqrt x < sqrt_iteration prec n x"
+proof (induct n)
+  case 0
+  show ?case
+  proof (cases x)
+    case (Float m e)
+    hence "0 < m"
+      using assms
+      apply (auto simp: sign_simps)
+      by (meson not_less powr_ge_pzero)
+    hence "0 < sqrt m" by auto
+
+    have int_nat_bl: "(nat (bitlen m)) = bitlen m"
+      using bitlen_nonneg by auto
+
+    have "x = (m / 2^nat (bitlen m)) * 2 powr (e + (nat (bitlen m)))"
+      unfolding Float by (auto simp: powr_realpow[symmetric] field_simps powr_add)
+    also have "\<dots> < 1 * 2 powr (e + nat (bitlen m))"
+    proof (rule mult_strict_right_mono, auto)
+      show "m < 2^nat (bitlen m)"
+        using bitlen_bounds[OF \<open>0 < m\<close>, THEN conjunct2]
+        unfolding of_int_less_iff[of m, symmetric] by auto
+    qed
+    finally have "sqrt x < sqrt (2 powr (e + bitlen m))"
+      unfolding int_nat_bl by auto
+    also have "\<dots> \<le> 2 powr ((e + bitlen m) div 2 + 1)"
+    proof -
+      let ?E = "e + bitlen m"
+      have E_mod_pow: "2 powr (?E mod 2) < 4"
+      proof (cases "?E mod 2 = 1")
+        case True
+        thus ?thesis by auto
+      next
+        case False
+        have "0 \<le> ?E mod 2" by auto
+        have "?E mod 2 < 2" by auto
+        from this[THEN zless_imp_add1_zle]
+        have "?E mod 2 \<le> 0" using False by auto
+        from xt1(5)[OF \<open>0 \<le> ?E mod 2\<close> this]
+        show ?thesis by auto
+      qed
+      hence "sqrt (2 powr (?E mod 2)) < sqrt (2 * 2)"
+        by (auto simp del: real_sqrt_four)
+      hence E_mod_pow: "sqrt (2 powr (?E mod 2)) < 2" by auto
+
+      have E_eq: "2 powr ?E = 2 powr (?E div 2 + ?E div 2 + ?E mod 2)"
+        by auto
+      have "sqrt (2 powr ?E) = sqrt (2 powr (?E div 2) * 2 powr (?E div 2) * 2 powr (?E mod 2))"
+        unfolding E_eq unfolding powr_add[symmetric] by (metis of_int_add)
+      also have "\<dots> = 2 powr (?E div 2) * sqrt (2 powr (?E mod 2))"
+        unfolding real_sqrt_mult[of _ "2 powr (?E mod 2)"] real_sqrt_abs2 by auto
+      also have "\<dots> < 2 powr (?E div 2) * 2 powr 1"
+        by (rule mult_strict_left_mono) (auto intro: E_mod_pow)
+      also have "\<dots> = 2 powr (?E div 2 + 1)"
+        unfolding add.commute[of _ 1] powr_add[symmetric] by simp
+      finally show ?thesis by auto
+    qed
+    finally show ?thesis using \<open>0 < m\<close>
+      unfolding Float
+      by (subst compute_sqrt_iteration_base) (simp add: ac_simps)
+  qed
+next
+  case (Suc n)
+  let ?b = "sqrt_iteration prec n x"
+  have "0 < sqrt x"
+    using \<open>0 < real_of_float x\<close> by auto
+  also have "\<dots> < real_of_float ?b"
+    using Suc .
+  finally have "sqrt x < (?b + x / ?b)/2"
+    using sqrt_ub_pos_pos_1[OF Suc _ \<open>0 < real_of_float x\<close>] by auto
+  also have "\<dots> \<le> (?b + (float_divr prec x ?b))/2"
+    by (rule divide_right_mono, auto simp add: float_divr)
+  also have "\<dots> = (Float 1 (- 1)) * (?b + (float_divr prec x ?b))"
+    by simp
+  also have "\<dots> \<le> (Float 1 (- 1)) * (float_plus_up prec ?b (float_divr prec x ?b))"
+    by (auto simp add: algebra_simps float_plus_up_le)
+  finally show ?case
+    unfolding sqrt_iteration.simps Let_def distrib_left .
+qed
+
+lemma sqrt_iteration_lower_bound:
+  assumes "0 < real_of_float x"
+  shows "0 < real_of_float (sqrt_iteration prec n x)" (is "0 < ?sqrt")
+proof -
+  have "0 < sqrt x" using assms by auto
+  also have "\<dots> < ?sqrt" using sqrt_iteration_bound[OF assms] .
+  finally show ?thesis .
+qed
+
+lemma lb_sqrt_lower_bound:
+  assumes "0 \<le> real_of_float x"
+  shows "0 \<le> real_of_float (lb_sqrt prec x)"
+proof (cases "0 < x")
+  case True
+  hence "0 < real_of_float x" and "0 \<le> x"
+    using \<open>0 \<le> real_of_float x\<close> by auto
+  hence "0 < sqrt_iteration prec prec x"
+    using sqrt_iteration_lower_bound by auto
+  hence "0 \<le> real_of_float (float_divl prec x (sqrt_iteration prec prec x))"
+    using float_divl_lower_bound[OF \<open>0 \<le> x\<close>] unfolding less_eq_float_def by auto
+  thus ?thesis
+    unfolding lb_sqrt.simps using True by auto
+next
+  case False
+  with \<open>0 \<le> real_of_float x\<close> have "real_of_float x = 0" by auto
+  thus ?thesis
+    unfolding lb_sqrt.simps by auto
+qed
+
+lemma bnds_sqrt': "sqrt x \<in> {(lb_sqrt prec x) .. (ub_sqrt prec x)}"
+proof -
+  have lb: "lb_sqrt prec x \<le> sqrt x" if "0 < x" for x :: float
+  proof -
+    from that have "0 < real_of_float x" and "0 \<le> real_of_float x" by auto
+    hence sqrt_gt0: "0 < sqrt x" by auto
+    hence sqrt_ub: "sqrt x < sqrt_iteration prec prec x"
+      using sqrt_iteration_bound by auto
+    have "(float_divl prec x (sqrt_iteration prec prec x)) \<le>
+          x / (sqrt_iteration prec prec x)" by (rule float_divl)
+    also have "\<dots> < x / sqrt x"
+      by (rule divide_strict_left_mono[OF sqrt_ub \<open>0 < real_of_float x\<close>
+               mult_pos_pos[OF order_less_trans[OF sqrt_gt0 sqrt_ub] sqrt_gt0]])
+    also have "\<dots> = sqrt x"
+      unfolding inverse_eq_iff_eq[of _ "sqrt x", symmetric]
+                sqrt_divide_self_eq[OF \<open>0 \<le> real_of_float x\<close>, symmetric] by auto
+    finally show ?thesis
+      unfolding lb_sqrt.simps if_P[OF \<open>0 < x\<close>] by auto
+  qed
+  have ub: "sqrt x \<le> ub_sqrt prec x" if "0 < x" for x :: float
+  proof -
+    from that have "0 < real_of_float x" by auto
+    hence "0 < sqrt x" by auto
+    hence "sqrt x < sqrt_iteration prec prec x"
+      using sqrt_iteration_bound by auto
+    then show ?thesis
+      unfolding ub_sqrt.simps if_P[OF \<open>0 < x\<close>] by auto
+  qed
+  show ?thesis
+    using lb[of "-x"] ub[of "-x"] lb[of x] ub[of x]
+    by (auto simp add: lb_sqrt.simps ub_sqrt.simps real_sqrt_minus)
+qed
+
+lemma bnds_sqrt: "\<forall>(x::real) lx ux.
+  (l, u) = (lb_sqrt prec lx, ub_sqrt prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> sqrt x \<and> sqrt x \<le> u"
+proof ((rule allI) +, rule impI, erule conjE, rule conjI)
+  fix x :: real
+  fix lx ux
+  assume "(l, u) = (lb_sqrt prec lx, ub_sqrt prec ux)"
+    and x: "x \<in> {lx .. ux}"
+  hence l: "l = lb_sqrt prec lx " and u: "u = ub_sqrt prec ux" by auto
+
+  have "sqrt lx \<le> sqrt x" using x by auto
+  from order_trans[OF _ this]
+  show "l \<le> sqrt x" unfolding l using bnds_sqrt'[of lx prec] by auto
+
+  have "sqrt x \<le> sqrt ux" using x by auto
+  from order_trans[OF this]
+  show "sqrt x \<le> u" unfolding u using bnds_sqrt'[of ux prec] by auto
+qed
+
+
+section "Arcus tangens and \<pi>"
+
+subsection "Compute arcus tangens series"
+
+text \<open>
+As first step we implement the computation of the arcus tangens series. This is only valid in the range
+@{term "{-1 :: real .. 1}"}. This is used to compute \<pi> and then the entire arcus tangens.
+\<close>
+
+fun ub_arctan_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
+and lb_arctan_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where
+  "ub_arctan_horner prec 0 k x = 0"
+| "ub_arctan_horner prec (Suc n) k x = float_plus_up prec
+      (rapprox_rat prec 1 k) (- float_round_down prec (x * (lb_arctan_horner prec n (k + 2) x)))"
+| "lb_arctan_horner prec 0 k x = 0"
+| "lb_arctan_horner prec (Suc n) k x = float_plus_down prec
+      (lapprox_rat prec 1 k) (- float_round_up prec (x * (ub_arctan_horner prec n (k + 2) x)))"
+
+lemma arctan_0_1_bounds':
+  assumes "0 \<le> real_of_float y" "real_of_float y \<le> 1"
+    and "even n"
+  shows "arctan (sqrt y) \<in>
+      {(sqrt y * lb_arctan_horner prec n 1 y) .. (sqrt y * ub_arctan_horner prec (Suc n) 1 y)}"
+proof -
+  let ?c = "\<lambda>i. (- 1) ^ i * (1 / (i * 2 + (1::nat)) * sqrt y ^ (i * 2 + 1))"
+  let ?S = "\<lambda>n. \<Sum> i=0..<n. ?c i"
+
+  have "0 \<le> sqrt y" using assms by auto
+  have "sqrt y \<le> 1" using assms by auto
+  from \<open>even n\<close> obtain m where "2 * m = n" by (blast elim: evenE)
+
+  have "arctan (sqrt y) \<in> { ?S n .. ?S (Suc n) }"
+  proof (cases "sqrt y = 0")
+    case True
+    then show ?thesis by simp
+  next
+    case False
+    hence "0 < sqrt y" using \<open>0 \<le> sqrt y\<close> by auto
+    hence prem: "0 < 1 / (0 * 2 + (1::nat)) * sqrt y ^ (0 * 2 + 1)" by auto
+
+    have "\<bar> sqrt y \<bar> \<le> 1"  using \<open>0 \<le> sqrt y\<close> \<open>sqrt y \<le> 1\<close> by auto
+    from mp[OF summable_Leibniz(2)[OF zeroseq_arctan_series[OF this]
+      monoseq_arctan_series[OF this]] prem, THEN spec, of m, unfolded \<open>2 * m = n\<close>]
+    show ?thesis unfolding arctan_series[OF \<open>\<bar> sqrt y \<bar> \<le> 1\<close>] Suc_eq_plus1 atLeast0LessThan .
+  qed
+  note arctan_bounds = this[unfolded atLeastAtMost_iff]
+
+  have F: "\<And>n. 2 * Suc n + 1 = 2 * n + 1 + 2" by auto
+
+  note bounds = horner_bounds[where s=1 and f="\<lambda>i. 2 * i + 1" and j'=0
+    and lb="\<lambda>n i k x. lb_arctan_horner prec n k x"
+    and ub="\<lambda>n i k x. ub_arctan_horner prec n k x",
+    OF \<open>0 \<le> real_of_float y\<close> F lb_arctan_horner.simps ub_arctan_horner.simps]
+
+  have "(sqrt y * lb_arctan_horner prec n 1 y) \<le> arctan (sqrt y)"
+  proof -
+    have "(sqrt y * lb_arctan_horner prec n 1 y) \<le> ?S n"
+      using bounds(1) \<open>0 \<le> sqrt y\<close>
+      apply (simp only: power_add power_one_right mult.assoc[symmetric] sum_distrib_right[symmetric])
+      apply (simp only: mult.commute[where 'a=real] mult.commute[of _ "2::nat"] power_mult)
+      apply (auto intro!: mult_left_mono)
+      done
+    also have "\<dots> \<le> arctan (sqrt y)" using arctan_bounds ..
+    finally show ?thesis .
+  qed
+  moreover
+  have "arctan (sqrt y) \<le> (sqrt y * ub_arctan_horner prec (Suc n) 1 y)"
+  proof -
+    have "arctan (sqrt y) \<le> ?S (Suc n)" using arctan_bounds ..
+    also have "\<dots> \<le> (sqrt y * ub_arctan_horner prec (Suc n) 1 y)"
+      using bounds(2)[of "Suc n"] \<open>0 \<le> sqrt y\<close>
+      apply (simp only: power_add power_one_right mult.assoc[symmetric] sum_distrib_right[symmetric])
+      apply (simp only: mult.commute[where 'a=real] mult.commute[of _ "2::nat"] power_mult)
+      apply (auto intro!: mult_left_mono)
+      done
+    finally show ?thesis .
+  qed
+  ultimately show ?thesis by auto
+qed
+
+lemma arctan_0_1_bounds:
+  assumes "0 \<le> real_of_float y" "real_of_float y \<le> 1"
+  shows "arctan (sqrt y) \<in>
+    {(sqrt y * lb_arctan_horner prec (get_even n) 1 y) ..
+      (sqrt y * ub_arctan_horner prec (get_odd n) 1 y)}"
+  using
+    arctan_0_1_bounds'[OF assms, of n prec]
+    arctan_0_1_bounds'[OF assms, of "n + 1" prec]
+    arctan_0_1_bounds'[OF assms, of "n - 1" prec]
+  by (auto simp: get_even_def get_odd_def odd_pos
+    simp del: ub_arctan_horner.simps lb_arctan_horner.simps)
+
+lemma arctan_lower_bound:
+  assumes "0 \<le> x"
+  shows "x / (1 + x\<^sup>2) \<le> arctan x" (is "?l x \<le> _")
+proof -
+  have "?l x - arctan x \<le> ?l 0 - arctan 0"
+    using assms
+    by (intro DERIV_nonpos_imp_nonincreasing[where f="\<lambda>x. ?l x - arctan x"])
+      (auto intro!: derivative_eq_intros simp: add_nonneg_eq_0_iff field_simps)
+  thus ?thesis by simp
+qed
+
+lemma arctan_divide_mono: "0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> arctan y / y \<le> arctan x / x"
+  by (rule DERIV_nonpos_imp_nonincreasing[where f="\<lambda>x. arctan x / x"])
+    (auto intro!: derivative_eq_intros divide_nonpos_nonneg
+      simp: inverse_eq_divide arctan_lower_bound)
+
+lemma arctan_mult_mono: "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> x * arctan y \<le> y * arctan x"
+  using arctan_divide_mono[of x y] by (cases "x = 0") (simp_all add: field_simps)
+
+lemma arctan_mult_le:
+  assumes "0 \<le> x" "x \<le> y" "y * z \<le> arctan y"
+  shows "x * z \<le> arctan x"
+proof (cases "x = 0")
+  case True
+  then show ?thesis by simp
+next
+  case False
+  with assms have "z \<le> arctan y / y" by (simp add: field_simps)
+  also have "\<dots> \<le> arctan x / x" using assms \<open>x \<noteq> 0\<close> by (auto intro!: arctan_divide_mono)
+  finally show ?thesis using assms \<open>x \<noteq> 0\<close> by (simp add: field_simps)
+qed
+
+lemma arctan_le_mult:
+  assumes "0 < x" "x \<le> y" "arctan x \<le> x * z"
+  shows "arctan y \<le> y * z"
+proof -
+  from assms have "arctan y / y \<le> arctan x / x" by (auto intro!: arctan_divide_mono)
+  also have "\<dots> \<le> z" using assms by (auto simp: field_simps)
+  finally show ?thesis using assms by (simp add: field_simps)
+qed
+
+lemma arctan_0_1_bounds_le:
+  assumes "0 \<le> x" "x \<le> 1" "0 < real_of_float xl" "real_of_float xl \<le> x * x" "x * x \<le> real_of_float xu" "real_of_float xu \<le> 1"
+  shows "arctan x \<in>
+      {x * lb_arctan_horner p1 (get_even n) 1 xu .. x * ub_arctan_horner p2 (get_odd n) 1 xl}"
+proof -
+  from assms have "real_of_float xl \<le> 1" "sqrt (real_of_float xl) \<le> x" "x \<le> sqrt (real_of_float xu)" "0 \<le> real_of_float xu"
+    "0 \<le> real_of_float xl" "0 < sqrt (real_of_float xl)"
+    by (auto intro!: real_le_rsqrt real_le_lsqrt simp: power2_eq_square)
+  from arctan_0_1_bounds[OF \<open>0 \<le> real_of_float xu\<close>  \<open>real_of_float xu \<le> 1\<close>]
+  have "sqrt (real_of_float xu) * real_of_float (lb_arctan_horner p1 (get_even n) 1 xu) \<le> arctan (sqrt (real_of_float xu))"
+    by simp
+  from arctan_mult_le[OF \<open>0 \<le> x\<close> \<open>x \<le> sqrt _\<close>  this]
+  have "x * real_of_float (lb_arctan_horner p1 (get_even n) 1 xu) \<le> arctan x" .
+  moreover
+  from arctan_0_1_bounds[OF \<open>0 \<le> real_of_float xl\<close>  \<open>real_of_float xl \<le> 1\<close>]
+  have "arctan (sqrt (real_of_float xl)) \<le> sqrt (real_of_float xl) * real_of_float (ub_arctan_horner p2 (get_odd n) 1 xl)"
+    by simp
+  from arctan_le_mult[OF \<open>0 < sqrt xl\<close> \<open>sqrt xl \<le> x\<close> this]
+  have "arctan x \<le> x * real_of_float (ub_arctan_horner p2 (get_odd n) 1 xl)" .
+  ultimately show ?thesis by simp
+qed
+
+lemma arctan_0_1_bounds_round:
+  assumes "0 \<le> real_of_float x" "real_of_float x \<le> 1"
+  shows "arctan x \<in>
+      {real_of_float x * lb_arctan_horner p1 (get_even n) 1 (float_round_up (Suc p2) (x * x)) ..
+        real_of_float x * ub_arctan_horner p3 (get_odd n) 1 (float_round_down (Suc p4) (x * x))}"
+  using assms
+  apply (cases "x > 0")
+   apply (intro arctan_0_1_bounds_le)
+   apply (auto simp: float_round_down.rep_eq float_round_up.rep_eq
+    intro!: truncate_up_le1 mult_le_one truncate_down_le truncate_up_le truncate_down_pos
+      mult_pos_pos)
+  done
+
+
+subsection "Compute \<pi>"
+
+definition ub_pi :: "nat \<Rightarrow> float" where
+  "ub_pi prec =
+    (let
+      A = rapprox_rat prec 1 5 ;
+      B = lapprox_rat prec 1 239
+    in ((Float 1 2) * float_plus_up prec
+      ((Float 1 2) * float_round_up prec (A * (ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1
+        (float_round_down (Suc prec) (A * A)))))
+      (- float_round_down prec (B * (lb_arctan_horner prec (get_even (prec div 14 + 1)) 1
+        (float_round_up (Suc prec) (B * B)))))))"
+
+definition lb_pi :: "nat \<Rightarrow> float" where
+  "lb_pi prec =
+    (let
+      A = lapprox_rat prec 1 5 ;
+      B = rapprox_rat prec 1 239
+    in ((Float 1 2) * float_plus_down prec
+      ((Float 1 2) * float_round_down prec (A * (lb_arctan_horner prec (get_even (prec div 4 + 1)) 1
+        (float_round_up (Suc prec) (A * A)))))
+      (- float_round_up prec (B * (ub_arctan_horner prec (get_odd (prec div 14 + 1)) 1
+        (float_round_down (Suc prec) (B * B)))))))"
+
+lemma pi_boundaries: "pi \<in> {(lb_pi n) .. (ub_pi n)}"
+proof -
+  have machin_pi: "pi = 4 * (4 * arctan (1 / 5) - arctan (1 / 239))"
+    unfolding machin[symmetric] by auto
+
+  {
+    fix prec n :: nat
+    fix k :: int
+    assume "1 < k" hence "0 \<le> k" and "0 < k" and "1 \<le> k" by auto
+    let ?k = "rapprox_rat prec 1 k"
+    let ?kl = "float_round_down (Suc prec) (?k * ?k)"
+    have "1 div k = 0" using div_pos_pos_trivial[OF _ \<open>1 < k\<close>] by auto
+
+    have "0 \<le> real_of_float ?k" by (rule order_trans[OF _ rapprox_rat]) (auto simp add: \<open>0 \<le> k\<close>)
+    have "real_of_float ?k \<le> 1"
+      by (auto simp add: \<open>0 < k\<close> \<open>1 \<le> k\<close> less_imp_le
+        intro!: mult_le_one order_trans[OF _ rapprox_rat] rapprox_rat_le1)
+    have "1 / k \<le> ?k" using rapprox_rat[where x=1 and y=k] by auto
+    hence "arctan (1 / k) \<le> arctan ?k" by (rule arctan_monotone')
+    also have "\<dots> \<le> (?k * ub_arctan_horner prec (get_odd n) 1 ?kl)"
+      using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?k\<close> \<open>real_of_float ?k \<le> 1\<close>]
+      by auto
+    finally have "arctan (1 / k) \<le> ?k * ub_arctan_horner prec (get_odd n) 1 ?kl" .
+  } note ub_arctan = this
+
+  {
+    fix prec n :: nat
+    fix k :: int
+    assume "1 < k" hence "0 \<le> k" and "0 < k" by auto
+    let ?k = "lapprox_rat prec 1 k"
+    let ?ku = "float_round_up (Suc prec) (?k * ?k)"
+    have "1 div k = 0" using div_pos_pos_trivial[OF _ \<open>1 < k\<close>] by auto
+    have "1 / k \<le> 1" using \<open>1 < k\<close> by auto
+    have "0 \<le> real_of_float ?k" using lapprox_rat_nonneg[where x=1 and y=k, OF zero_le_one \<open>0 \<le> k\<close>]
+      by (auto simp add: \<open>1 div k = 0\<close>)
+    have "0 \<le> real_of_float (?k * ?k)" by simp
+    have "real_of_float ?k \<le> 1" using lapprox_rat by (rule order_trans, auto simp add: \<open>1 / k \<le> 1\<close>)
+    hence "real_of_float (?k * ?k) \<le> 1" using \<open>0 \<le> real_of_float ?k\<close> by (auto intro!: mult_le_one)
+
+    have "?k \<le> 1 / k" using lapprox_rat[where x=1 and y=k] by auto
+
+    have "?k * lb_arctan_horner prec (get_even n) 1 ?ku \<le> arctan ?k"
+      using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?k\<close> \<open>real_of_float ?k \<le> 1\<close>]
+      by auto
+    also have "\<dots> \<le> arctan (1 / k)" using \<open>?k \<le> 1 / k\<close> by (rule arctan_monotone')
+    finally have "?k * lb_arctan_horner prec (get_even n) 1 ?ku \<le> arctan (1 / k)" .
+  } note lb_arctan = this
+
+  have "pi \<le> ub_pi n "
+    unfolding ub_pi_def machin_pi Let_def times_float.rep_eq Float_num
+    using lb_arctan[of 239] ub_arctan[of 5] powr_realpow[of 2 2]
+    by (intro mult_left_mono float_plus_up_le float_plus_down_le)
+      (auto intro!: mult_left_mono float_round_down_le float_round_up_le diff_mono)
+  moreover have "lb_pi n \<le> pi"
+    unfolding lb_pi_def machin_pi Let_def times_float.rep_eq Float_num
+    using lb_arctan[of 5] ub_arctan[of 239]
+    by (intro mult_left_mono float_plus_up_le float_plus_down_le)
+      (auto intro!: mult_left_mono float_round_down_le float_round_up_le diff_mono)
+  ultimately show ?thesis by auto
+qed
+
+
+subsection "Compute arcus tangens in the entire domain"
+
+function lb_arctan :: "nat \<Rightarrow> float \<Rightarrow> float" and ub_arctan :: "nat \<Rightarrow> float \<Rightarrow> float" where
+  "lb_arctan prec x =
+    (let
+      ub_horner = \<lambda> x. float_round_up prec
+        (x *
+          ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x)));
+      lb_horner = \<lambda> x. float_round_down prec
+        (x *
+          lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x)))
+    in
+      if x < 0 then - ub_arctan prec (-x)
+      else if x \<le> Float 1 (- 1) then lb_horner x
+      else if x \<le> Float 1 1 then
+        Float 1 1 *
+        lb_horner
+          (float_divl prec x
+            (float_plus_up prec 1
+              (ub_sqrt prec (float_plus_up prec 1 (float_round_up prec (x * x))))))
+      else let inv = float_divr prec 1 x in
+        if inv > 1 then 0
+        else float_plus_down prec (lb_pi prec * Float 1 (- 1)) ( - ub_horner inv))"
+
+| "ub_arctan prec x =
+    (let
+      lb_horner = \<lambda> x. float_round_down prec
+        (x *
+          lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x))) ;
+      ub_horner = \<lambda> x. float_round_up prec
+        (x *
+          ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x)))
+    in if x < 0 then - lb_arctan prec (-x)
+    else if x \<le> Float 1 (- 1) then ub_horner x
+    else if x \<le> Float 1 1 then
+      let y = float_divr prec x
+        (float_plus_down
+          (Suc prec) 1 (lb_sqrt prec (float_plus_down prec 1 (float_round_down prec (x * x)))))
+      in if y > 1 then ub_pi prec * Float 1 (- 1) else Float 1 1 * ub_horner y
+    else float_plus_up prec (ub_pi prec * Float 1 (- 1)) ( - lb_horner (float_divl prec 1 x)))"
+by pat_completeness auto
+termination
+by (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if x < 0 then 1 else 0))", auto)
+
+declare ub_arctan_horner.simps[simp del]
+declare lb_arctan_horner.simps[simp del]
+
+lemma lb_arctan_bound':
+  assumes "0 \<le> real_of_float x"
+  shows "lb_arctan prec x \<le> arctan x"
+proof -
+  have "\<not> x < 0" and "0 \<le> x"
+    using \<open>0 \<le> real_of_float x\<close> by (auto intro!: truncate_up_le )
+
+  let "?ub_horner x" =
+      "x * ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x))"
+    and "?lb_horner x" =
+      "x * lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x))"
+
+  show ?thesis
+  proof (cases "x \<le> Float 1 (- 1)")
+    case True
+    hence "real_of_float x \<le> 1" by simp
+    from arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float x\<close> \<open>real_of_float x \<le> 1\<close>]
+    show ?thesis
+      unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>] if_P[OF True] using \<open>0 \<le> x\<close>
+      by (auto intro!: float_round_down_le)
+  next
+    case False
+    hence "0 < real_of_float x" by auto
+    let ?R = "1 + sqrt (1 + real_of_float x * real_of_float x)"
+    let ?sxx = "float_plus_up prec 1 (float_round_up prec (x * x))"
+    let ?fR = "float_plus_up prec 1 (ub_sqrt prec ?sxx)"
+    let ?DIV = "float_divl prec x ?fR"
+
+    have divisor_gt0: "0 < ?R" by (auto intro: add_pos_nonneg)
+
+    have "sqrt (1 + x*x) \<le> sqrt ?sxx"
+      by (auto simp: float_plus_up.rep_eq plus_up_def float_round_up.rep_eq intro!: truncate_up_le)
+    also have "\<dots> \<le> ub_sqrt prec ?sxx"
+      using bnds_sqrt'[of ?sxx prec] by auto
+    finally
+    have "sqrt (1 + x*x) \<le> ub_sqrt prec ?sxx" .
+    hence "?R \<le> ?fR" by (auto simp: float_plus_up.rep_eq plus_up_def intro!: truncate_up_le)
+    hence "0 < ?fR" and "0 < real_of_float ?fR" using \<open>0 < ?R\<close> by auto
+
+    have monotone: "?DIV \<le> x / ?R"
+    proof -
+      have "?DIV \<le> real_of_float x / ?fR" by (rule float_divl)
+      also have "\<dots> \<le> x / ?R" by (rule divide_left_mono[OF \<open>?R \<le> ?fR\<close> \<open>0 \<le> real_of_float x\<close> mult_pos_pos[OF order_less_le_trans[OF divisor_gt0 \<open>?R \<le> real_of_float ?fR\<close>] divisor_gt0]])
+      finally show ?thesis .
+    qed
+
+    show ?thesis
+    proof (cases "x \<le> Float 1 1")
+      case True
+      have "x \<le> sqrt (1 + x * x)"
+        using real_sqrt_sum_squares_ge2[where x=1, unfolded numeral_2_eq_2] by auto
+      also note \<open>\<dots> \<le> (ub_sqrt prec ?sxx)\<close>
+      finally have "real_of_float x \<le> ?fR"
+        by (auto simp: float_plus_up.rep_eq plus_up_def intro!: truncate_up_le)
+      moreover have "?DIV \<le> real_of_float x / ?fR"
+        by (rule float_divl)
+      ultimately have "real_of_float ?DIV \<le> 1"
+        unfolding divide_le_eq_1_pos[OF \<open>0 < real_of_float ?fR\<close>, symmetric] by auto
+
+      have "0 \<le> real_of_float ?DIV"
+        using float_divl_lower_bound[OF \<open>0 \<le> x\<close>] \<open>0 < ?fR\<close>
+        unfolding less_eq_float_def by auto
+
+      from arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float (?DIV)\<close> \<open>real_of_float (?DIV) \<le> 1\<close>]
+      have "Float 1 1 * ?lb_horner ?DIV \<le> 2 * arctan ?DIV"
+        by simp
+      also have "\<dots> \<le> 2 * arctan (x / ?R)"
+        using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono arctan_monotone')
+      also have "2 * arctan (x / ?R) = arctan x"
+        using arctan_half[symmetric] unfolding numeral_2_eq_2 power_Suc2 power_0 mult_1_left .
+      finally show ?thesis
+        unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
+          if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_P[OF True]
+        by (auto simp: float_round_down.rep_eq
+          intro!: order_trans[OF mult_left_mono[OF truncate_down]])
+    next
+      case False
+      hence "2 < real_of_float x" by auto
+      hence "1 \<le> real_of_float x" by auto
+
+      let "?invx" = "float_divr prec 1 x"
+      have "0 \<le> arctan x" using arctan_monotone'[OF \<open>0 \<le> real_of_float x\<close>]
+        using arctan_tan[of 0, unfolded tan_zero] by auto
+
+      show ?thesis
+      proof (cases "1 < ?invx")
+        case True
+        show ?thesis
+          unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
+            if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_not_P[OF False] if_P[OF True]
+          using \<open>0 \<le> arctan x\<close> by auto
+      next
+        case False
+        hence "real_of_float ?invx \<le> 1" by auto
+        have "0 \<le> real_of_float ?invx"
+          by (rule order_trans[OF _ float_divr]) (auto simp add: \<open>0 \<le> real_of_float x\<close>)
+
+        have "1 / x \<noteq> 0" and "0 < 1 / x"
+          using \<open>0 < real_of_float x\<close> by auto
+
+        have "arctan (1 / x) \<le> arctan ?invx"
+          unfolding one_float.rep_eq[symmetric] by (rule arctan_monotone', rule float_divr)
+        also have "\<dots> \<le> ?ub_horner ?invx"
+          using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?invx\<close> \<open>real_of_float ?invx \<le> 1\<close>]
+          by (auto intro!: float_round_up_le)
+        also note float_round_up
+        finally have "pi / 2 - float_round_up prec (?ub_horner ?invx) \<le> arctan x"
+          using \<open>0 \<le> arctan x\<close> arctan_inverse[OF \<open>1 / x \<noteq> 0\<close>]
+          unfolding sgn_pos[OF \<open>0 < 1 / real_of_float x\<close>] le_diff_eq by auto
+        moreover
+        have "lb_pi prec * Float 1 (- 1) \<le> pi / 2"
+          unfolding Float_num times_divide_eq_right mult_1_left using pi_boundaries by simp
+        ultimately
+        show ?thesis
+          unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
+            if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_not_P[OF \<open>\<not> x \<le> Float 1 1\<close>] if_not_P[OF False]
+          by (auto intro!: float_plus_down_le)
+      qed
+    qed
+  qed
+qed
+
+lemma ub_arctan_bound':
+  assumes "0 \<le> real_of_float x"
+  shows "arctan x \<le> ub_arctan prec x"
+proof -
+  have "\<not> x < 0" and "0 \<le> x"
+    using \<open>0 \<le> real_of_float x\<close> by auto
+
+  let "?ub_horner x" =
+    "float_round_up prec (x * ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x)))"
+  let "?lb_horner x" =
+    "float_round_down prec (x * lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x)))"
+
+  show ?thesis
+  proof (cases "x \<le> Float 1 (- 1)")
+    case True
+    hence "real_of_float x \<le> 1" by auto
+    show ?thesis
+      unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>] if_P[OF True]
+      using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float x\<close> \<open>real_of_float x \<le> 1\<close>]
+      by (auto intro!: float_round_up_le)
+  next
+    case False
+    hence "0 < real_of_float x" by auto
+    let ?R = "1 + sqrt (1 + real_of_float x * real_of_float x)"
+    let ?sxx = "float_plus_down prec 1 (float_round_down prec (x * x))"
+    let ?fR = "float_plus_down (Suc prec) 1 (lb_sqrt prec ?sxx)"
+    let ?DIV = "float_divr prec x ?fR"
+
+    have sqr_ge0: "0 \<le> 1 + real_of_float x * real_of_float x"
+      using sum_power2_ge_zero[of 1 "real_of_float x", unfolded numeral_2_eq_2] by auto
+    hence "0 \<le> real_of_float (1 + x*x)" by auto
+
+    hence divisor_gt0: "0 < ?R" by (auto intro: add_pos_nonneg)
+
+    have "lb_sqrt prec ?sxx \<le> sqrt ?sxx"
+      using bnds_sqrt'[of ?sxx] by auto
+    also have "\<dots> \<le> sqrt (1 + x*x)"
+      by (auto simp: float_plus_down.rep_eq plus_down_def float_round_down.rep_eq truncate_down_le)
+    finally have "lb_sqrt prec ?sxx \<le> sqrt (1 + x*x)" .
+    hence "?fR \<le> ?R"
+      by (auto simp: float_plus_down.rep_eq plus_down_def truncate_down_le)
+    have "0 < real_of_float ?fR"
+      by (auto simp: float_plus_down.rep_eq plus_down_def float_round_down.rep_eq
+        intro!: truncate_down_ge1 lb_sqrt_lower_bound order_less_le_trans[OF zero_less_one]
+        truncate_down_nonneg add_nonneg_nonneg)
+    have monotone: "x / ?R \<le> (float_divr prec x ?fR)"
+    proof -
+      from divide_left_mono[OF \<open>?fR \<le> ?R\<close> \<open>0 \<le> real_of_float x\<close> mult_pos_pos[OF divisor_gt0 \<open>0 < real_of_float ?fR\<close>]]
+      have "x / ?R \<le> x / ?fR" .
+      also have "\<dots> \<le> ?DIV" by (rule float_divr)
+      finally show ?thesis .
+    qed
+
+    show ?thesis
+    proof (cases "x \<le> Float 1 1")
+      case True
+      show ?thesis
+      proof (cases "?DIV > 1")
+        case True
+        have "pi / 2 \<le> ub_pi prec * Float 1 (- 1)"
+          unfolding Float_num times_divide_eq_right mult_1_left using pi_boundaries by auto
+        from order_less_le_trans[OF arctan_ubound this, THEN less_imp_le]
+        show ?thesis
+          unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
+            if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_P[OF \<open>x \<le> Float 1 1\<close>] if_P[OF True] .
+      next
+        case False
+        hence "real_of_float ?DIV \<le> 1" by auto
+
+        have "0 \<le> x / ?R"
+          using \<open>0 \<le> real_of_float x\<close> \<open>0 < ?R\<close> unfolding zero_le_divide_iff by auto
+        hence "0 \<le> real_of_float ?DIV"
+          using monotone by (rule order_trans)
+
+        have "arctan x = 2 * arctan (x / ?R)"
+          using arctan_half unfolding numeral_2_eq_2 power_Suc2 power_0 mult_1_left .
+        also have "\<dots> \<le> 2 * arctan (?DIV)"
+          using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono)
+        also have "\<dots> \<le> (Float 1 1 * ?ub_horner ?DIV)" unfolding Float_num
+          using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?DIV\<close> \<open>real_of_float ?DIV \<le> 1\<close>]
+          by (auto intro!: float_round_up_le)
+        finally show ?thesis
+          unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
+            if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_P[OF \<open>x \<le> Float 1 1\<close>] if_not_P[OF False] .
+      qed
+    next
+      case False
+      hence "2 < real_of_float x" by auto
+      hence "1 \<le> real_of_float x" by auto
+      hence "0 < real_of_float x" by auto
+      hence "0 < x" by auto
+
+      let "?invx" = "float_divl prec 1 x"
+      have "0 \<le> arctan x"
+        using arctan_monotone'[OF \<open>0 \<le> real_of_float x\<close>] and arctan_tan[of 0, unfolded tan_zero] by auto
+
+      have "real_of_float ?invx \<le> 1"
+        unfolding less_float_def
+        by (rule order_trans[OF float_divl])
+          (auto simp add: \<open>1 \<le> real_of_float x\<close> divide_le_eq_1_pos[OF \<open>0 < real_of_float x\<close>])
+      have "0 \<le> real_of_float ?invx"
+        using \<open>0 < x\<close> by (intro float_divl_lower_bound) auto
+
+      have "1 / x \<noteq> 0" and "0 < 1 / x"
+        using \<open>0 < real_of_float x\<close> by auto
+
+      have "(?lb_horner ?invx) \<le> arctan (?invx)"
+        using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?invx\<close> \<open>real_of_float ?invx \<le> 1\<close>]
+        by (auto intro!: float_round_down_le)
+      also have "\<dots> \<le> arctan (1 / x)"
+        unfolding one_float.rep_eq[symmetric] by (rule arctan_monotone') (rule float_divl)
+      finally have "arctan x \<le> pi / 2 - (?lb_horner ?invx)"
+        using \<open>0 \<le> arctan x\<close> arctan_inverse[OF \<open>1 / x \<noteq> 0\<close>]
+        unfolding sgn_pos[OF \<open>0 < 1 / x\<close>] le_diff_eq by auto
+      moreover
+      have "pi / 2 \<le> ub_pi prec * Float 1 (- 1)"
+        unfolding Float_num times_divide_eq_right mult_1_right
+        using pi_boundaries by auto
+      ultimately
+      show ?thesis
+        unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
+          if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_not_P[OF False]
+        by (auto intro!: float_round_up_le float_plus_up_le)
+    qed
+  qed
+qed
+
+lemma arctan_boundaries: "arctan x \<in> {(lb_arctan prec x) .. (ub_arctan prec x)}"
+proof (cases "0 \<le> x")
+  case True
+  hence "0 \<le> real_of_float x" by auto
+  show ?thesis
+    using ub_arctan_bound'[OF \<open>0 \<le> real_of_float x\<close>] lb_arctan_bound'[OF \<open>0 \<le> real_of_float x\<close>]
+    unfolding atLeastAtMost_iff by auto
+next
+  case False
+  let ?mx = "-x"
+  from False have "x < 0" and "0 \<le> real_of_float ?mx"
+    by auto
+  hence bounds: "lb_arctan prec ?mx \<le> arctan ?mx \<and> arctan ?mx \<le> ub_arctan prec ?mx"
+    using ub_arctan_bound'[OF \<open>0 \<le> real_of_float ?mx\<close>] lb_arctan_bound'[OF \<open>0 \<le> real_of_float ?mx\<close>] by auto
+  show ?thesis
+    unfolding minus_float.rep_eq arctan_minus lb_arctan.simps[where x=x]
+      ub_arctan.simps[where x=x] Let_def if_P[OF \<open>x < 0\<close>]
+    unfolding atLeastAtMost_iff using bounds[unfolded minus_float.rep_eq arctan_minus]
+    by (simp add: arctan_minus)
+qed
+
+lemma bnds_arctan: "\<forall> (x::real) lx ux. (l, u) = (lb_arctan prec lx, ub_arctan prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> arctan x \<and> arctan x \<le> u"
+proof (rule allI, rule allI, rule allI, rule impI)
+  fix x :: real
+  fix lx ux
+  assume "(l, u) = (lb_arctan prec lx, ub_arctan prec ux) \<and> x \<in> {lx .. ux}"
+  hence l: "lb_arctan prec lx = l "
+    and u: "ub_arctan prec ux = u"
+    and x: "x \<in> {lx .. ux}"
+    by auto
+  show "l \<le> arctan x \<and> arctan x \<le> u"
+  proof
+    show "l \<le> arctan x"
+    proof -
+      from arctan_boundaries[of lx prec, unfolded l]
+      have "l \<le> arctan lx" by (auto simp del: lb_arctan.simps)
+      also have "\<dots> \<le> arctan x" using x by (auto intro: arctan_monotone')
+      finally show ?thesis .
+    qed
+    show "arctan x \<le> u"
+    proof -
+      have "arctan x \<le> arctan ux" using x by (auto intro: arctan_monotone')
+      also have "\<dots> \<le> u" using arctan_boundaries[of ux prec, unfolded u] by (auto simp del: ub_arctan.simps)
+      finally show ?thesis .
+    qed
+  qed
+qed
+
+
+section "Sinus and Cosinus"
+
+subsection "Compute the cosinus and sinus series"
+
+fun ub_sin_cos_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
+and lb_sin_cos_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where
+  "ub_sin_cos_aux prec 0 i k x = 0"
+| "ub_sin_cos_aux prec (Suc n) i k x = float_plus_up prec
+    (rapprox_rat prec 1 k) (-
+      float_round_down prec (x * (lb_sin_cos_aux prec n (i + 2) (k * i * (i + 1)) x)))"
+| "lb_sin_cos_aux prec 0 i k x = 0"
+| "lb_sin_cos_aux prec (Suc n) i k x = float_plus_down prec
+    (lapprox_rat prec 1 k) (-
+      float_round_up prec (x * (ub_sin_cos_aux prec n (i + 2) (k * i * (i + 1)) x)))"
+
+lemma cos_aux:
+  shows "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> (\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i))) * x ^(2 * i))" (is "?lb")
+  and "(\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i))) * x^(2 * i)) \<le> (ub_sin_cos_aux prec n 1 1 (x * x))" (is "?ub")
+proof -
+  have "0 \<le> real_of_float (x * x)" by auto
+  let "?f n" = "fact (2 * n) :: nat"
+  have f_eq: "?f (Suc n) = ?f n * ((\<lambda>i. i + 2) ^^ n) 1 * (((\<lambda>i. i + 2) ^^ n) 1 + 1)" for n
+  proof -
+    have "\<And>m. ((\<lambda>i. i + 2) ^^ n) m = m + 2 * n" by (induct n) auto
+    then show ?thesis by auto
+  qed
+  from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0,
+    OF \<open>0 \<le> real_of_float (x * x)\<close> f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps]
+  show ?lb and ?ub
+    by (auto simp add: power_mult power2_eq_square[of "real_of_float x"])
+qed
+
+lemma lb_sin_cos_aux_zero_le_one: "lb_sin_cos_aux prec n i j 0 \<le> 1"
+  by (cases j n rule: nat.exhaust[case_product nat.exhaust])
+    (auto intro!: float_plus_down_le order_trans[OF lapprox_rat])
+
+lemma one_le_ub_sin_cos_aux: "odd n \<Longrightarrow> 1 \<le> ub_sin_cos_aux prec n i (Suc 0) 0"
+  by (cases n) (auto intro!: float_plus_up_le order_trans[OF _ rapprox_rat])
+
+lemma cos_boundaries:
+  assumes "0 \<le> real_of_float x" and "x \<le> pi / 2"
+  shows "cos x \<in> {(lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) .. (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))}"
+proof (cases "real_of_float x = 0")
+  case False
+  hence "real_of_float x \<noteq> 0" by auto
+  hence "0 < x" and "0 < real_of_float x"
+    using \<open>0 \<le> real_of_float x\<close> by auto
+  have "0 < x * x"
+    using \<open>0 < x\<close> by simp
+
+  have morph_to_if_power: "(\<Sum> i=0..<n. (-1::real) ^ i * (1/(fact (2 * i))) * x ^ (2 * i)) =
+    (\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/((fact i)) else 0) * x ^ i)"
+    (is "?sum = ?ifsum") for x n
+  proof -
+    have "?sum = ?sum + (\<Sum> j = 0 ..< n. 0)" by auto
+    also have "\<dots> =
+      (\<Sum> j = 0 ..< n. (- 1) ^ ((2 * j) div 2) / ((fact (2 * j))) * x ^(2 * j)) + (\<Sum> j = 0 ..< n. 0)" by auto
+    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. if even i then (- 1) ^ (i div 2) / ((fact i)) * x ^ i else 0)"
+      unfolding sum_split_even_odd atLeast0LessThan ..
+    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. (if even i then (- 1) ^ (i div 2) / ((fact i)) else 0) * x ^ i)"
+      by (rule sum.cong) auto
+    finally show ?thesis .
+  qed
+
+  { fix n :: nat assume "0 < n"
+    hence "0 < 2 * n" by auto
+    obtain t where "0 < t" and "t < real_of_float x" and
+      cos_eq: "cos x = (\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/((fact i)) else 0) * (real_of_float x) ^ i)
+      + (cos (t + 1/2 * (2 * n) * pi) / (fact (2*n))) * (real_of_float x)^(2*n)"
+      (is "_ = ?SUM + ?rest / ?fact * ?pow")
+      using Maclaurin_cos_expansion2[OF \<open>0 < real_of_float x\<close> \<open>0 < 2 * n\<close>]
+      unfolding cos_coeff_def atLeast0LessThan by auto
+
+    have "cos t * (- 1) ^ n = cos t * cos (n * pi) + sin t * sin (n * pi)" by auto
+    also have "\<dots> = cos (t + n * pi)" by (simp add: cos_add)
+    also have "\<dots> = ?rest" by auto
+    finally have "cos t * (- 1) ^ n = ?rest" .
+    moreover
+    have "t \<le> pi / 2" using \<open>t < real_of_float x\<close> and \<open>x \<le> pi / 2\<close> by auto
+    hence "0 \<le> cos t" using \<open>0 < t\<close> and cos_ge_zero by auto
+    ultimately have even: "even n \<Longrightarrow> 0 \<le> ?rest" and odd: "odd n \<Longrightarrow> 0 \<le> - ?rest " by auto
+
+    have "0 < ?fact" by auto
+    have "0 < ?pow" using \<open>0 < real_of_float x\<close> by auto
+
+    {
+      assume "even n"
+      have "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> ?SUM"
+        unfolding morph_to_if_power[symmetric] using cos_aux by auto
+      also have "\<dots> \<le> cos x"
+      proof -
+        from even[OF \<open>even n\<close>] \<open>0 < ?fact\<close> \<open>0 < ?pow\<close>
+        have "0 \<le> (?rest / ?fact) * ?pow" by simp
+        thus ?thesis unfolding cos_eq by auto
+      qed
+      finally have "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> cos x" .
+    } note lb = this
+
+    {
+      assume "odd n"
+      have "cos x \<le> ?SUM"
+      proof -
+        from \<open>0 < ?fact\<close> and \<open>0 < ?pow\<close> and odd[OF \<open>odd n\<close>]
+        have "0 \<le> (- ?rest) / ?fact * ?pow"
+          by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le)
+        thus ?thesis unfolding cos_eq by auto
+      qed
+      also have "\<dots> \<le> (ub_sin_cos_aux prec n 1 1 (x * x))"
+        unfolding morph_to_if_power[symmetric] using cos_aux by auto
+      finally have "cos x \<le> (ub_sin_cos_aux prec n 1 1 (x * x))" .
+    } note ub = this and lb
+  } note ub = this(1) and lb = this(2)
+
+  have "cos x \<le> (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))"
+    using ub[OF odd_pos[OF get_odd] get_odd] .
+  moreover have "(lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) \<le> cos x"
+  proof (cases "0 < get_even n")
+    case True
+    show ?thesis using lb[OF True get_even] .
+  next
+    case False
+    hence "get_even n = 0" by auto
+    have "- (pi / 2) \<le> x"
+      by (rule order_trans[OF _ \<open>0 < real_of_float x\<close>[THEN less_imp_le]]) auto
+    with \<open>x \<le> pi / 2\<close> show ?thesis
+      unfolding \<open>get_even n = 0\<close> lb_sin_cos_aux.simps minus_float.rep_eq zero_float.rep_eq
+      using cos_ge_zero by auto
+  qed
+  ultimately show ?thesis by auto
+next
+  case True
+  hence "x = 0"
+    by transfer
+  thus ?thesis
+    using lb_sin_cos_aux_zero_le_one one_le_ub_sin_cos_aux
+    by simp
+qed
+
+lemma sin_aux:
+  assumes "0 \<le> real_of_float x"
+  shows "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le>
+      (\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i + 1))) * x^(2 * i + 1))" (is "?lb")
+    and "(\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i + 1))) * x^(2 * i + 1)) \<le>
+      (x * ub_sin_cos_aux prec n 2 1 (x * x))" (is "?ub")
+proof -
+  have "0 \<le> real_of_float (x * x)" by auto
+  let "?f n" = "fact (2 * n + 1) :: nat"
+  have f_eq: "?f (Suc n) = ?f n * ((\<lambda>i. i + 2) ^^ n) 2 * (((\<lambda>i. i + 2) ^^ n) 2 + 1)" for n
+  proof -
+    have F: "\<And>m. ((\<lambda>i. i + 2) ^^ n) m = m + 2 * n" by (induct n) auto
+    show ?thesis
+      unfolding F by auto
+  qed
+  from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0,
+    OF \<open>0 \<le> real_of_float (x * x)\<close> f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps]
+  show "?lb" and "?ub" using \<open>0 \<le> real_of_float x\<close>
+    apply (simp_all only: power_add power_one_right mult.assoc[symmetric] sum_distrib_right[symmetric])
+    apply (simp_all only: mult.commute[where 'a=real] of_nat_fact)
+    apply (auto intro!: mult_left_mono simp add: power_mult power2_eq_square[of "real_of_float x"])
+    done
+qed
+
+lemma sin_boundaries:
+  assumes "0 \<le> real_of_float x"
+    and "x \<le> pi / 2"
+  shows "sin x \<in> {(x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) .. (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))}"
+proof (cases "real_of_float x = 0")
+  case False
+  hence "real_of_float x \<noteq> 0" by auto
+  hence "0 < x" and "0 < real_of_float x"
+    using \<open>0 \<le> real_of_float x\<close> by auto
+  have "0 < x * x"
+    using \<open>0 < x\<close> by simp
+
+  have sum_morph: "(\<Sum>j = 0 ..< n. (- 1) ^ (((2 * j + 1) - Suc 0) div 2) / ((fact (2 * j + 1))) * x ^(2 * j + 1)) =
+    (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * x ^ i)"
+    (is "?SUM = _") for x :: real and n
+  proof -
+    have pow: "!!i. x ^ (2 * i + 1) = x * x ^ (2 * i)"
+      by auto
+    have "?SUM = (\<Sum> j = 0 ..< n. 0) + ?SUM"
+      by auto
+    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / ((fact i)) * x ^ i)"
+      unfolding sum_split_even_odd atLeast0LessThan ..
+    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. (if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / ((fact i))) * x ^ i)"
+      by (rule sum.cong) auto
+    finally show ?thesis .
+  qed
+
+  { fix n :: nat assume "0 < n"
+    hence "0 < 2 * n + 1" by auto
+    obtain t where "0 < t" and "t < real_of_float x" and
+      sin_eq: "sin x = (\<Sum> i = 0 ..< 2 * n + 1. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real_of_float x) ^ i)
+      + (sin (t + 1/2 * (2 * n + 1) * pi) / (fact (2*n + 1))) * (real_of_float x)^(2*n + 1)"
+      (is "_ = ?SUM + ?rest / ?fact * ?pow")
+      using Maclaurin_sin_expansion3[OF \<open>0 < 2 * n + 1\<close> \<open>0 < real_of_float x\<close>]
+      unfolding sin_coeff_def atLeast0LessThan by auto
+
+    have "?rest = cos t * (- 1) ^ n"
+      unfolding sin_add cos_add of_nat_add distrib_right distrib_left by auto
+    moreover
+    have "t \<le> pi / 2"
+      using \<open>t < real_of_float x\<close> and \<open>x \<le> pi / 2\<close> by auto
+    hence "0 \<le> cos t"
+      using \<open>0 < t\<close> and cos_ge_zero by auto
+    ultimately have even: "even n \<Longrightarrow> 0 \<le> ?rest" and odd: "odd n \<Longrightarrow> 0 \<le> - ?rest"
+      by auto
+
+    have "0 < ?fact"
+      by (simp del: fact_Suc)
+    have "0 < ?pow"
+      using \<open>0 < real_of_float x\<close> by (rule zero_less_power)
+
+    {
+      assume "even n"
+      have "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le>
+            (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real_of_float x) ^ i)"
+        using sin_aux[OF \<open>0 \<le> real_of_float x\<close>] unfolding sum_morph[symmetric] by auto
+      also have "\<dots> \<le> ?SUM" by auto
+      also have "\<dots> \<le> sin x"
+      proof -
+        from even[OF \<open>even n\<close>] \<open>0 < ?fact\<close> \<open>0 < ?pow\<close>
+        have "0 \<le> (?rest / ?fact) * ?pow" by simp
+        thus ?thesis unfolding sin_eq by auto
+      qed
+      finally have "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le> sin x" .
+    } note lb = this
+
+    {
+      assume "odd n"
+      have "sin x \<le> ?SUM"
+      proof -
+        from \<open>0 < ?fact\<close> and \<open>0 < ?pow\<close> and odd[OF \<open>odd n\<close>]
+        have "0 \<le> (- ?rest) / ?fact * ?pow"
+          by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le)
+        thus ?thesis unfolding sin_eq by auto
+      qed
+      also have "\<dots> \<le> (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real_of_float x) ^ i)"
+         by auto
+      also have "\<dots> \<le> (x * ub_sin_cos_aux prec n 2 1 (x * x))"
+        using sin_aux[OF \<open>0 \<le> real_of_float x\<close>] unfolding sum_morph[symmetric] by auto
+      finally have "sin x \<le> (x * ub_sin_cos_aux prec n 2 1 (x * x))" .
+    } note ub = this and lb
+  } note ub = this(1) and lb = this(2)
+
+  have "sin x \<le> (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))"
+    using ub[OF odd_pos[OF get_odd] get_odd] .
+  moreover have "(x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) \<le> sin x"
+  proof (cases "0 < get_even n")
+    case True
+    show ?thesis
+      using lb[OF True get_even] .
+  next
+    case False
+    hence "get_even n = 0" by auto
+    with \<open>x \<le> pi / 2\<close> \<open>0 \<le> real_of_float x\<close>
+    show ?thesis
+      unfolding \<open>get_even n = 0\<close> ub_sin_cos_aux.simps minus_float.rep_eq
+      using sin_ge_zero by auto
+  qed
+  ultimately show ?thesis by auto
+next
+  case True
+  show ?thesis
+  proof (cases "n = 0")
+    case True
+    thus ?thesis
+      unfolding \<open>n = 0\<close> get_even_def get_odd_def
+      using \<open>real_of_float x = 0\<close> lapprox_rat[where x="-1" and y=1] by auto
+  next
+    case False
+    with not0_implies_Suc obtain m where "n = Suc m" by blast
+    thus ?thesis
+      unfolding \<open>n = Suc m\<close> get_even_def get_odd_def
+      using \<open>real_of_float x = 0\<close> rapprox_rat[where x=1 and y=1] lapprox_rat[where x=1 and y=1]
+      by (cases "even (Suc m)") auto
+  qed
+qed
+
+
+subsection "Compute the cosinus in the entire domain"
+
+definition lb_cos :: "nat \<Rightarrow> float \<Rightarrow> float" where
+"lb_cos prec x = (let
+    horner = \<lambda> x. lb_sin_cos_aux prec (get_even (prec div 4 + 1)) 1 1 (x * x) ;
+    half = \<lambda> x. if x < 0 then - 1 else float_plus_down prec (Float 1 1 * x * x) (- 1)
+  in if x < Float 1 (- 1) then horner x
+else if x < 1          then half (horner (x * Float 1 (- 1)))
+                       else half (half (horner (x * Float 1 (- 2)))))"
+
+definition ub_cos :: "nat \<Rightarrow> float \<Rightarrow> float" where
+"ub_cos prec x = (let
+    horner = \<lambda> x. ub_sin_cos_aux prec (get_odd (prec div 4 + 1)) 1 1 (x * x) ;
+    half = \<lambda> x. float_plus_up prec (Float 1 1 * x * x) (- 1)
+  in if x < Float 1 (- 1) then horner x
+else if x < 1          then half (horner (x * Float 1 (- 1)))
+                       else half (half (horner (x * Float 1 (- 2)))))"
+
+lemma lb_cos:
+  assumes "0 \<le> real_of_float x" and "x \<le> pi"
+  shows "cos x \<in> {(lb_cos prec x) .. (ub_cos prec x)}" (is "?cos x \<in> {(?lb x) .. (?ub x) }")
+proof -
+  have x_half[symmetric]: "cos x = 2 * cos (x / 2) * cos (x / 2) - 1" for x :: real
+  proof -
+    have "cos x = cos (x / 2 + x / 2)"
+      by auto
+    also have "\<dots> = cos (x / 2) * cos (x / 2) + sin (x / 2) * sin (x / 2) - sin (x / 2) * sin (x / 2) + cos (x / 2) * cos (x / 2) - 1"
+      unfolding cos_add by auto
+    also have "\<dots> = 2 * cos (x / 2) * cos (x / 2) - 1"
+      by algebra
+    finally show ?thesis .
+  qed
+
+  have "\<not> x < 0" using \<open>0 \<le> real_of_float x\<close> by auto
+  let "?ub_horner x" = "ub_sin_cos_aux prec (get_odd (prec div 4 + 1)) 1 1 (x * x)"
+  let "?lb_horner x" = "lb_sin_cos_aux prec (get_even (prec div 4 + 1)) 1 1 (x * x)"
+  let "?ub_half x" = "float_plus_up prec (Float 1 1 * x * x) (- 1)"
+  let "?lb_half x" = "if x < 0 then - 1 else float_plus_down prec (Float 1 1 * x * x) (- 1)"
+
+  show ?thesis
+  proof (cases "x < Float 1 (- 1)")
+    case True
+    hence "x \<le> pi / 2"
+      using pi_ge_two by auto
+    show ?thesis
+      unfolding lb_cos_def[where x=x] ub_cos_def[where x=x]
+        if_not_P[OF \<open>\<not> x < 0\<close>] if_P[OF \<open>x < Float 1 (- 1)\<close>] Let_def
+      using cos_boundaries[OF \<open>0 \<le> real_of_float x\<close> \<open>x \<le> pi / 2\<close>] .
+  next
+    case False
+    { fix y x :: float let ?x2 = "(x * Float 1 (- 1))"
+      assume "y \<le> cos ?x2" and "-pi \<le> x" and "x \<le> pi"
+      hence "- (pi / 2) \<le> ?x2" and "?x2 \<le> pi / 2"
+        using pi_ge_two unfolding Float_num by auto
+      hence "0 \<le> cos ?x2"
+        by (rule cos_ge_zero)
+
+      have "(?lb_half y) \<le> cos x"
+      proof (cases "y < 0")
+        case True
+        show ?thesis
+          using cos_ge_minus_one unfolding if_P[OF True] by auto
+      next
+        case False
+        hence "0 \<le> real_of_float y" by auto
+        from mult_mono[OF \<open>y \<le> cos ?x2\<close> \<open>y \<le> cos ?x2\<close> \<open>0 \<le> cos ?x2\<close> this]
+        have "real_of_float y * real_of_float y \<le> cos ?x2 * cos ?x2" .
+        hence "2 * real_of_float y * real_of_float y \<le> 2 * cos ?x2 * cos ?x2"
+          by auto
+        hence "2 * real_of_float y * real_of_float y - 1 \<le> 2 * cos (x / 2) * cos (x / 2) - 1"
+          unfolding Float_num by auto
+        thus ?thesis
+          unfolding if_not_P[OF False] x_half Float_num
+          by (auto intro!: float_plus_down_le)
+      qed
+    } note lb_half = this
+
+    { fix y x :: float let ?x2 = "(x * Float 1 (- 1))"
+      assume ub: "cos ?x2 \<le> y" and "- pi \<le> x" and "x \<le> pi"
+      hence "- (pi / 2) \<le> ?x2" and "?x2 \<le> pi / 2"
+        using pi_ge_two unfolding Float_num by auto
+      hence "0 \<le> cos ?x2" by (rule cos_ge_zero)
+
+      have "cos x \<le> (?ub_half y)"
+      proof -
+        have "0 \<le> real_of_float y"
+          using \<open>0 \<le> cos ?x2\<close> ub by (rule order_trans)
+        from mult_mono[OF ub ub this \<open>0 \<le> cos ?x2\<close>]
+        have "cos ?x2 * cos ?x2 \<le> real_of_float y * real_of_float y" .
+        hence "2 * cos ?x2 * cos ?x2 \<le> 2 * real_of_float y * real_of_float y"
+          by auto
+        hence "2 * cos (x / 2) * cos (x / 2) - 1 \<le> 2 * real_of_float y * real_of_float y - 1"
+          unfolding Float_num by auto
+        thus ?thesis
+          unfolding x_half Float_num
+          by (auto intro!: float_plus_up_le)
+      qed
+    } note ub_half = this
+
+    let ?x2 = "x * Float 1 (- 1)"
+    let ?x4 = "x * Float 1 (- 1) * Float 1 (- 1)"
+
+    have "-pi \<le> x"
+      using pi_ge_zero[THEN le_imp_neg_le, unfolded minus_zero] \<open>0 \<le> real_of_float x\<close>
+      by (rule order_trans)
+
+    show ?thesis
+    proof (cases "x < 1")
+      case True
+      hence "real_of_float x \<le> 1" by auto
+      have "0 \<le> real_of_float ?x2" and "?x2 \<le> pi / 2"
+        using pi_ge_two \<open>0 \<le> real_of_float x\<close> using assms by auto
+      from cos_boundaries[OF this]
+      have lb: "(?lb_horner ?x2) \<le> ?cos ?x2" and ub: "?cos ?x2 \<le> (?ub_horner ?x2)"
+        by auto
+
+      have "(?lb x) \<le> ?cos x"
+      proof -
+        from lb_half[OF lb \<open>-pi \<le> x\<close> \<open>x \<le> pi\<close>]
+        show ?thesis
+          unfolding lb_cos_def[where x=x] Let_def
+          using \<open>\<not> x < 0\<close> \<open>\<not> x < Float 1 (- 1)\<close> \<open>x < 1\<close> by auto
+      qed
+      moreover have "?cos x \<le> (?ub x)"
+      proof -
+        from ub_half[OF ub \<open>-pi \<le> x\<close> \<open>x \<le> pi\<close>]
+        show ?thesis
+          unfolding ub_cos_def[where x=x] Let_def
+          using \<open>\<not> x < 0\<close> \<open>\<not> x < Float 1 (- 1)\<close> \<open>x < 1\<close> by auto
+      qed
+      ultimately show ?thesis by auto
+    next
+      case False
+      have "0 \<le> real_of_float ?x4" and "?x4 \<le> pi / 2"
+        using pi_ge_two \<open>0 \<le> real_of_float x\<close> \<open>x \<le> pi\<close> unfolding Float_num by auto
+      from cos_boundaries[OF this]
+      have lb: "(?lb_horner ?x4) \<le> ?cos ?x4" and ub: "?cos ?x4 \<le> (?ub_horner ?x4)"
+        by auto
+
+      have eq_4: "?x2 * Float 1 (- 1) = x * Float 1 (- 2)"
+        by transfer simp
+
+      have "(?lb x) \<le> ?cos x"
+      proof -
+        have "-pi \<le> ?x2" and "?x2 \<le> pi"
+          using pi_ge_two \<open>0 \<le> real_of_float x\<close> \<open>x \<le> pi\<close> by auto
+        from lb_half[OF lb_half[OF lb this] \<open>-pi \<le> x\<close> \<open>x \<le> pi\<close>, unfolded eq_4]
+        show ?thesis
+          unfolding lb_cos_def[where x=x] if_not_P[OF \<open>\<not> x < 0\<close>]
+            if_not_P[OF \<open>\<not> x < Float 1 (- 1)\<close>] if_not_P[OF \<open>\<not> x < 1\<close>] Let_def .
+      qed
+      moreover have "?cos x \<le> (?ub x)"
+      proof -
+        have "-pi \<le> ?x2" and "?x2 \<le> pi"
+          using pi_ge_two \<open>0 \<le> real_of_float x\<close> \<open> x \<le> pi\<close> by auto
+        from ub_half[OF ub_half[OF ub this] \<open>-pi \<le> x\<close> \<open>x \<le> pi\<close>, unfolded eq_4]
+        show ?thesis
+          unfolding ub_cos_def[where x=x] if_not_P[OF \<open>\<not> x < 0\<close>]
+            if_not_P[OF \<open>\<not> x < Float 1 (- 1)\<close>] if_not_P[OF \<open>\<not> x < 1\<close>] Let_def .
+      qed
+      ultimately show ?thesis by auto
+    qed
+  qed
+qed
+
+lemma lb_cos_minus:
+  assumes "-pi \<le> x"
+    and "real_of_float x \<le> 0"
+  shows "cos (real_of_float(-x)) \<in> {(lb_cos prec (-x)) .. (ub_cos prec (-x))}"
+proof -
+  have "0 \<le> real_of_float (-x)" and "(-x) \<le> pi"
+    using \<open>-pi \<le> x\<close> \<open>real_of_float x \<le> 0\<close> by auto
+  from lb_cos[OF this] show ?thesis .
+qed
+
+definition bnds_cos :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float * float" where
+"bnds_cos prec lx ux = (let
+    lpi = float_round_down prec (lb_pi prec) ;
+    upi = float_round_up prec (ub_pi prec) ;
+    k = floor_fl (float_divr prec (lx + lpi) (2 * lpi)) ;
+    lx = float_plus_down prec lx (- k * 2 * (if k < 0 then lpi else upi)) ;
+    ux = float_plus_up prec ux (- k * 2 * (if k < 0 then upi else lpi))
+  in   if - lpi \<le> lx \<and> ux \<le> 0    then (lb_cos prec (-lx), ub_cos prec (-ux))
+  else if 0 \<le> lx \<and> ux \<le> lpi      then (lb_cos prec ux, ub_cos prec lx)
+  else if - lpi \<le> lx \<and> ux \<le> lpi  then (min (lb_cos prec (-lx)) (lb_cos prec ux), Float 1 0)
+  else if 0 \<le> lx \<and> ux \<le> 2 * lpi  then (Float (- 1) 0, max (ub_cos prec lx) (ub_cos prec (- (ux - 2 * lpi))))
+  else if -2 * lpi \<le> lx \<and> ux \<le> 0 then (Float (- 1) 0, max (ub_cos prec (lx + 2 * lpi)) (ub_cos prec (-ux)))
+                                 else (Float (- 1) 0, Float 1 0))"
+
+lemma floor_int: obtains k :: int where "real_of_int k = (floor_fl f)"
+  by (simp add: floor_fl_def)
+
+lemma cos_periodic_nat[simp]:
+  fixes n :: nat
+  shows "cos (x + n * (2 * pi)) = cos x"
+proof (induct n arbitrary: x)
+  case 0
+  then show ?case by simp
+next
+  case (Suc n)
+  have split_pi_off: "x + (Suc n) * (2 * pi) = (x + n * (2 * pi)) + 2 * pi"
+    unfolding Suc_eq_plus1 of_nat_add of_int_1 distrib_right by auto
+  show ?case
+    unfolding split_pi_off using Suc by auto
+qed
+
+lemma cos_periodic_int[simp]:
+  fixes i :: int
+  shows "cos (x + i * (2 * pi)) = cos x"
+proof (cases "0 \<le> i")
+  case True
+  hence i_nat: "real_of_int i = nat i" by auto
+  show ?thesis
+    unfolding i_nat by auto
+next
+  case False
+    hence i_nat: "i = - real (nat (-i))" by auto
+  have "cos x = cos (x + i * (2 * pi) - i * (2 * pi))"
+    by auto
+  also have "\<dots> = cos (x + i * (2 * pi))"
+    unfolding i_nat mult_minus_left diff_minus_eq_add by (rule cos_periodic_nat)
+  finally show ?thesis by auto
+qed
+
+lemma bnds_cos: "\<forall>(x::real) lx ux. (l, u) =
+  bnds_cos prec lx ux \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> cos x \<and> cos x \<le> u"
+proof (rule allI | rule impI | erule conjE)+
+  fix x :: real
+  fix lx ux
+  assume bnds: "(l, u) = bnds_cos prec lx ux" and x: "x \<in> {lx .. ux}"
+
+  let ?lpi = "float_round_down prec (lb_pi prec)"
+  let ?upi = "float_round_up prec (ub_pi prec)"
+  let ?k = "floor_fl (float_divr prec (lx + ?lpi) (2 * ?lpi))"
+  let ?lx2 = "(- ?k * 2 * (if ?k < 0 then ?lpi else ?upi))"
+  let ?ux2 = "(- ?k * 2 * (if ?k < 0 then ?upi else ?lpi))"
+  let ?lx = "float_plus_down prec lx ?lx2"
+  let ?ux = "float_plus_up prec ux ?ux2"
+
+  obtain k :: int where k: "k = real_of_float ?k"
+    by (rule floor_int)
+
+  have upi: "pi \<le> ?upi" and lpi: "?lpi \<le> pi"
+    using float_round_up[of "ub_pi prec" prec] pi_boundaries[of prec]
+      float_round_down[of prec "lb_pi prec"]
+    by auto
+  hence "lx + ?lx2 \<le> x - k * (2 * pi) \<and> x - k * (2 * pi) \<le> ux + ?ux2"
+    using x
+    by (cases "k = 0")
+      (auto intro!: add_mono
+        simp add: k [symmetric] uminus_add_conv_diff [symmetric]
+        simp del: float_of_numeral uminus_add_conv_diff)
+  hence "?lx \<le> x - k * (2 * pi) \<and> x - k * (2 * pi) \<le> ?ux"
+    by (auto intro!: float_plus_down_le float_plus_up_le)
+  note lx = this[THEN conjunct1] and ux = this[THEN conjunct2]
+  hence lx_less_ux: "?lx \<le> real_of_float ?ux" by (rule order_trans)
+
+  { assume "- ?lpi \<le> ?lx" and x_le_0: "x - k * (2 * pi) \<le> 0"
+    with lpi[THEN le_imp_neg_le] lx
+    have pi_lx: "- pi \<le> ?lx" and lx_0: "real_of_float ?lx \<le> 0"
+      by simp_all
+
+    have "(lb_cos prec (- ?lx)) \<le> cos (real_of_float (- ?lx))"
+      using lb_cos_minus[OF pi_lx lx_0] by simp
+    also have "\<dots> \<le> cos (x + (-k) * (2 * pi))"
+      using cos_monotone_minus_pi_0'[OF pi_lx lx x_le_0]
+      by (simp only: uminus_float.rep_eq of_int_minus
+        cos_minus mult_minus_left) simp
+    finally have "(lb_cos prec (- ?lx)) \<le> cos x"
+      unfolding cos_periodic_int . }
+  note negative_lx = this
+
+  { assume "0 \<le> ?lx" and pi_x: "x - k * (2 * pi) \<le> pi"
+    with lx
+    have pi_lx: "?lx \<le> pi" and lx_0: "0 \<le> real_of_float ?lx"
+      by auto
+
+    have "cos (x + (-k) * (2 * pi)) \<le> cos ?lx"
+      using cos_monotone_0_pi_le[OF lx_0 lx pi_x]
+      by (simp only: of_int_minus
+        cos_minus mult_minus_left) simp
+    also have "\<dots> \<le> (ub_cos prec ?lx)"
+      using lb_cos[OF lx_0 pi_lx] by simp
+    finally have "cos x \<le> (ub_cos prec ?lx)"
+      unfolding cos_periodic_int . }
+  note positive_lx = this
+
+  { assume pi_x: "- pi \<le> x - k * (2 * pi)" and "?ux \<le> 0"
+    with ux
+    have pi_ux: "- pi \<le> ?ux" and ux_0: "real_of_float ?ux \<le> 0"
+      by simp_all
+
+    have "cos (x + (-k) * (2 * pi)) \<le> cos (real_of_float (- ?ux))"
+      using cos_monotone_minus_pi_0'[OF pi_x ux ux_0]
+      by (simp only: uminus_float.rep_eq of_int_minus
+          cos_minus mult_minus_left) simp
+    also have "\<dots> \<le> (ub_cos prec (- ?ux))"
+      using lb_cos_minus[OF pi_ux ux_0, of prec] by simp
+    finally have "cos x \<le> (ub_cos prec (- ?ux))"
+      unfolding cos_periodic_int . }
+  note negative_ux = this
+
+  { assume "?ux \<le> ?lpi" and x_ge_0: "0 \<le> x - k * (2 * pi)"
+    with lpi ux
+    have pi_ux: "?ux \<le> pi" and ux_0: "0 \<le> real_of_float ?ux"
+      by simp_all
+
+    have "(lb_cos prec ?ux) \<le> cos ?ux"
+      using lb_cos[OF ux_0 pi_ux] by simp
+    also have "\<dots> \<le> cos (x + (-k) * (2 * pi))"
+      using cos_monotone_0_pi_le[OF x_ge_0 ux pi_ux]
+      by (simp only: of_int_minus
+        cos_minus mult_minus_left) simp
+    finally have "(lb_cos prec ?ux) \<le> cos x"
+      unfolding cos_periodic_int . }
+  note positive_ux = this
+
+  show "l \<le> cos x \<and> cos x \<le> u"
+  proof (cases "- ?lpi \<le> ?lx \<and> ?ux \<le> 0")
+    case True
+    with bnds have l: "l = lb_cos prec (-?lx)" and u: "u = ub_cos prec (-?ux)"
+      by (auto simp add: bnds_cos_def Let_def)
+    from True lpi[THEN le_imp_neg_le] lx ux
+    have "- pi \<le> x - k * (2 * pi)" and "x - k * (2 * pi) \<le> 0"
+      by auto
+    with True negative_ux negative_lx show ?thesis
+      unfolding l u by simp
+  next
+    case 1: False
+    show ?thesis
+    proof (cases "0 \<le> ?lx \<and> ?ux \<le> ?lpi")
+      case True with bnds 1
+      have l: "l = lb_cos prec ?ux"
+        and u: "u = ub_cos prec ?lx"
+        by (auto simp add: bnds_cos_def Let_def)
+      from True lpi lx ux
+      have "0 \<le> x - k * (2 * pi)" and "x - k * (2 * pi) \<le> pi"
+        by auto
+      with True positive_ux positive_lx show ?thesis
+        unfolding l u by simp
+    next
+      case 2: False
+      show ?thesis
+      proof (cases "- ?lpi \<le> ?lx \<and> ?ux \<le> ?lpi")
+        case Cond: True
+        with bnds 1 2 have l: "l = min (lb_cos prec (-?lx)) (lb_cos prec ?ux)"
+          and u: "u = Float 1 0"
+          by (auto simp add: bnds_cos_def Let_def)
+        show ?thesis
+          unfolding u l using negative_lx positive_ux Cond
+          by (cases "x - k * (2 * pi) < 0") (auto simp add: real_of_float_min)
+      next
+        case 3: False
+        show ?thesis
+        proof (cases "0 \<le> ?lx \<and> ?ux \<le> 2 * ?lpi")
+          case Cond: True
+          with bnds 1 2 3
+          have l: "l = Float (- 1) 0"
+            and u: "u = max (ub_cos prec ?lx) (ub_cos prec (- (?ux - 2 * ?lpi)))"
+            by (auto simp add: bnds_cos_def Let_def)
+
+          have "cos x \<le> real_of_float u"
+          proof (cases "x - k * (2 * pi) < pi")
+            case True
+            hence "x - k * (2 * pi) \<le> pi" by simp
+            from positive_lx[OF Cond[THEN conjunct1] this] show ?thesis
+              unfolding u by (simp add: real_of_float_max)
+          next
+            case False
+            hence "pi \<le> x - k * (2 * pi)" by simp
+            hence pi_x: "- pi \<le> x - k * (2 * pi) - 2 * pi" by simp
+
+            have "?ux \<le> 2 * pi"
+              using Cond lpi by auto
+            hence "x - k * (2 * pi) - 2 * pi \<le> 0"
+              using ux by simp
+
+            have ux_0: "real_of_float (?ux - 2 * ?lpi) \<le> 0"
+              using Cond by auto
+
+            from 2 and Cond have "\<not> ?ux \<le> ?lpi" by auto
+            hence "- ?lpi \<le> ?ux - 2 * ?lpi" by auto
+            hence pi_ux: "- pi \<le> (?ux - 2 * ?lpi)"
+              using lpi[THEN le_imp_neg_le] by auto
+
+            have x_le_ux: "x - k * (2 * pi) - 2 * pi \<le> (?ux - 2 * ?lpi)"
+              using ux lpi by auto
+            have "cos x = cos (x + (-k) * (2 * pi) + (-1::int) * (2 * pi))"
+              unfolding cos_periodic_int ..
+            also have "\<dots> \<le> cos ((?ux - 2 * ?lpi))"
+              using cos_monotone_minus_pi_0'[OF pi_x x_le_ux ux_0]
+              by (simp only: minus_float.rep_eq of_int_minus of_int_1
+                mult_minus_left mult_1_left) simp
+            also have "\<dots> = cos ((- (?ux - 2 * ?lpi)))"
+              unfolding uminus_float.rep_eq cos_minus ..
+            also have "\<dots> \<le> (ub_cos prec (- (?ux - 2 * ?lpi)))"
+              using lb_cos_minus[OF pi_ux ux_0] by simp
+            finally show ?thesis unfolding u by (simp add: real_of_float_max)
+          qed
+          thus ?thesis unfolding l by auto
+        next
+          case 4: False
+          show ?thesis
+          proof (cases "-2 * ?lpi \<le> ?lx \<and> ?ux \<le> 0")
+            case Cond: True
+            with bnds 1 2 3 4 have l: "l = Float (- 1) 0"
+              and u: "u = max (ub_cos prec (?lx + 2 * ?lpi)) (ub_cos prec (-?ux))"
+              by (auto simp add: bnds_cos_def Let_def)
+
+            have "cos x \<le> u"
+            proof (cases "-pi < x - k * (2 * pi)")
+              case True
+              hence "-pi \<le> x - k * (2 * pi)" by simp
+              from negative_ux[OF this Cond[THEN conjunct2]] show ?thesis
+                unfolding u by (simp add: real_of_float_max)
+            next
+              case False
+              hence "x - k * (2 * pi) \<le> -pi" by simp
+              hence pi_x: "x - k * (2 * pi) + 2 * pi \<le> pi" by simp
+
+              have "-2 * pi \<le> ?lx" using Cond lpi by auto
+
+              hence "0 \<le> x - k * (2 * pi) + 2 * pi" using lx by simp
+
+              have lx_0: "0 \<le> real_of_float (?lx + 2 * ?lpi)"
+                using Cond lpi by auto
+
+              from 1 and Cond have "\<not> -?lpi \<le> ?lx" by auto
+              hence "?lx + 2 * ?lpi \<le> ?lpi" by auto
+              hence pi_lx: "(?lx + 2 * ?lpi) \<le> pi"
+                using lpi[THEN le_imp_neg_le] by auto
+
+              have lx_le_x: "(?lx + 2 * ?lpi) \<le> x - k * (2 * pi) + 2 * pi"
+                using lx lpi by auto
+
+              have "cos x = cos (x + (-k) * (2 * pi) + (1 :: int) * (2 * pi))"
+                unfolding cos_periodic_int ..
+              also have "\<dots> \<le> cos ((?lx + 2 * ?lpi))"
+                using cos_monotone_0_pi_le[OF lx_0 lx_le_x pi_x]
+                by (simp only: minus_float.rep_eq of_int_minus of_int_1
+                  mult_minus_left mult_1_left) simp
+              also have "\<dots> \<le> (ub_cos prec (?lx + 2 * ?lpi))"
+                using lb_cos[OF lx_0 pi_lx] by simp
+              finally show ?thesis unfolding u by (simp add: real_of_float_max)
+            qed
+            thus ?thesis unfolding l by auto
+          next
+            case False
+            with bnds 1 2 3 4 show ?thesis
+              by (auto simp add: bnds_cos_def Let_def)
+          qed
+        qed
+      qed
+    qed
+  qed
+qed
+
+
+section "Exponential function"
+
+subsection "Compute the series of the exponential function"
+
+fun ub_exp_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
+  and lb_exp_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
+where
+"ub_exp_horner prec 0 i k x       = 0" |
+"ub_exp_horner prec (Suc n) i k x = float_plus_up prec
+    (rapprox_rat prec 1 (int k)) (float_round_up prec (x * lb_exp_horner prec n (i + 1) (k * i) x))" |
+"lb_exp_horner prec 0 i k x       = 0" |
+"lb_exp_horner prec (Suc n) i k x = float_plus_down prec
+    (lapprox_rat prec 1 (int k)) (float_round_down prec (x * ub_exp_horner prec n (i + 1) (k * i) x))"
+
+lemma bnds_exp_horner:
+  assumes "real_of_float x \<le> 0"
+  shows "exp x \<in> {lb_exp_horner prec (get_even n) 1 1 x .. ub_exp_horner prec (get_odd n) 1 1 x}"
+proof -
+  have f_eq: "fact (Suc n) = fact n * ((\<lambda>i::nat. i + 1) ^^ n) 1" for n
+  proof -
+    have F: "\<And> m. ((\<lambda>i. i + 1) ^^ n) m = n + m"
+      by (induct n) auto
+    show ?thesis
+      unfolding F by auto
+  qed
+
+  note bounds = horner_bounds_nonpos[where f="fact" and lb="lb_exp_horner prec" and ub="ub_exp_horner prec" and j'=0 and s=1,
+    OF assms f_eq lb_exp_horner.simps ub_exp_horner.simps]
+
+  have "lb_exp_horner prec (get_even n) 1 1 x \<le> exp x"
+  proof -
+    have "lb_exp_horner prec (get_even n) 1 1 x \<le> (\<Sum>j = 0..<get_even n. 1 / (fact j) * real_of_float x ^ j)"
+      using bounds(1) by auto
+    also have "\<dots> \<le> exp x"
+    proof -
+      obtain t where "\<bar>t\<bar> \<le> \<bar>real_of_float x\<bar>" and "exp x = (\<Sum>m = 0..<get_even n. real_of_float x ^ m / (fact m)) + exp t / (fact (get_even n)) * (real_of_float x) ^ (get_even n)"
+        using Maclaurin_exp_le unfolding atLeast0LessThan by blast
+      moreover have "0 \<le> exp t / (fact (get_even n)) * (real_of_float x) ^ (get_even n)"
+        by (auto simp: zero_le_even_power)
+      ultimately show ?thesis using get_odd exp_gt_zero by auto
+    qed
+    finally show ?thesis .
+  qed
+  moreover
+  have "exp x \<le> ub_exp_horner prec (get_odd n) 1 1 x"
+  proof -
+    have x_less_zero: "real_of_float x ^ get_odd n \<le> 0"
+    proof (cases "real_of_float x = 0")
+      case True
+      have "(get_odd n) \<noteq> 0" using get_odd[THEN odd_pos] by auto
+      thus ?thesis unfolding True power_0_left by auto
+    next
+      case False hence "real_of_float x < 0" using \<open>real_of_float x \<le> 0\<close> by auto
+      show ?thesis by (rule less_imp_le, auto simp add: \<open>real_of_float x < 0\<close>)
+    qed
+    obtain t where "\<bar>t\<bar> \<le> \<bar>real_of_float x\<bar>"
+      and "exp x = (\<Sum>m = 0..<get_odd n. (real_of_float x) ^ m / (fact m)) + exp t / (fact (get_odd n)) * (real_of_float x) ^ (get_odd n)"
+      using Maclaurin_exp_le unfolding atLeast0LessThan by blast
+    moreover have "exp t / (fact (get_odd n)) * (real_of_float x) ^ (get_odd n) \<le> 0"
+      by (auto intro!: mult_nonneg_nonpos divide_nonpos_pos simp add: x_less_zero)
+    ultimately have "exp x \<le> (\<Sum>j = 0..<get_odd n. 1 / (fact j) * real_of_float x ^ j)"
+      using get_odd exp_gt_zero by auto
+    also have "\<dots> \<le> ub_exp_horner prec (get_odd n) 1 1 x"
+      using bounds(2) by auto
+    finally show ?thesis .
+  qed
+  ultimately show ?thesis by auto
+qed
+
+lemma ub_exp_horner_nonneg: "real_of_float x \<le> 0 \<Longrightarrow>
+  0 \<le> real_of_float (ub_exp_horner prec (get_odd n) (Suc 0) (Suc 0) x)"
+  using bnds_exp_horner[of x prec n]
+  by (intro order_trans[OF exp_ge_zero]) auto
+
+
+subsection "Compute the exponential function on the entire domain"
+
+function ub_exp :: "nat \<Rightarrow> float \<Rightarrow> float" and lb_exp :: "nat \<Rightarrow> float \<Rightarrow> float" where
+"lb_exp prec x =
+  (if 0 < x then float_divl prec 1 (ub_exp prec (-x))
+  else
+    let
+      horner = (\<lambda> x. let  y = lb_exp_horner prec (get_even (prec + 2)) 1 1 x in
+        if y \<le> 0 then Float 1 (- 2) else y)
+    in
+      if x < - 1 then
+        power_down_fl prec (horner (float_divl prec x (- floor_fl x))) (nat (- int_floor_fl x))
+      else horner x)" |
+"ub_exp prec x =
+  (if 0 < x then float_divr prec 1 (lb_exp prec (-x))
+  else if x < - 1 then
+    power_up_fl prec
+      (ub_exp_horner prec (get_odd (prec + 2)) 1 1
+        (float_divr prec x (- floor_fl x))) (nat (- int_floor_fl x))
+  else ub_exp_horner prec (get_odd (prec + 2)) 1 1 x)"
+  by pat_completeness auto
+termination
+  by (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if 0 < x then 1 else 0))") auto
+
+lemma exp_m1_ge_quarter: "(1 / 4 :: real) \<le> exp (- 1)"
+proof -
+  have eq4: "4 = Suc (Suc (Suc (Suc 0)))" by auto
+  have "1 / 4 = (Float 1 (- 2))"
+    unfolding Float_num by auto
+  also have "\<dots> \<le> lb_exp_horner 3 (get_even 3) 1 1 (- 1)"
+    by (subst less_eq_float.rep_eq [symmetric]) code_simp
+  also have "\<dots> \<le> exp (- 1 :: float)"
+    using bnds_exp_horner[where x="- 1"] by auto
+  finally show ?thesis
+    by simp
+qed
+
+lemma lb_exp_pos:
+  assumes "\<not> 0 < x"
+  shows "0 < lb_exp prec x"
+proof -
+  let "?lb_horner x" = "lb_exp_horner prec (get_even (prec + 2)) 1 1 x"
+  let "?horner x" = "let y = ?lb_horner x in if y \<le> 0 then Float 1 (- 2) else y"
+  have pos_horner: "0 < ?horner x" for x
+    unfolding Let_def by (cases "?lb_horner x \<le> 0") auto
+  moreover have "0 < real_of_float ((?horner x) ^ num)" for x :: float and num :: nat
+  proof -
+    have "0 < real_of_float (?horner x) ^ num" using \<open>0 < ?horner x\<close> by simp
+    also have "\<dots> = (?horner x) ^ num" by auto
+    finally show ?thesis .
+  qed
+  ultimately show ?thesis
+    unfolding lb_exp.simps if_not_P[OF \<open>\<not> 0 < x\<close>] Let_def
+    by (cases "floor_fl x", cases "x < - 1")
+      (auto simp: real_power_up_fl real_power_down_fl intro!: power_up_less power_down_pos)
+qed
+
+lemma exp_boundaries':
+  assumes "x \<le> 0"
+  shows "exp x \<in> { (lb_exp prec x) .. (ub_exp prec x)}"
+proof -
+  let "?lb_exp_horner x" = "lb_exp_horner prec (get_even (prec + 2)) 1 1 x"
+  let "?ub_exp_horner x" = "ub_exp_horner prec (get_odd (prec + 2)) 1 1 x"
+
+  have "real_of_float x \<le> 0" and "\<not> x > 0"
+    using \<open>x \<le> 0\<close> by auto
+  show ?thesis
+  proof (cases "x < - 1")
+    case False
+    hence "- 1 \<le> real_of_float x" by auto
+    show ?thesis
+    proof (cases "?lb_exp_horner x \<le> 0")
+      case True
+      from \<open>\<not> x < - 1\<close>
+      have "- 1 \<le> real_of_float x" by auto
+      hence "exp (- 1) \<le> exp x"
+        unfolding exp_le_cancel_iff .
+      from order_trans[OF exp_m1_ge_quarter this] have "Float 1 (- 2) \<le> exp x"
+        unfolding Float_num .
+      with True show ?thesis
+        using bnds_exp_horner \<open>real_of_float x \<le> 0\<close> \<open>\<not> x > 0\<close> \<open>\<not> x < - 1\<close> by auto
+    next
+      case False
+      thus ?thesis
+        using bnds_exp_horner \<open>real_of_float x \<le> 0\<close> \<open>\<not> x > 0\<close> \<open>\<not> x < - 1\<close> by (auto simp add: Let_def)
+    qed
+  next
+    case True
+    let ?num = "nat (- int_floor_fl x)"
+
+    have "real_of_int (int_floor_fl x) < - 1"
+      using int_floor_fl[of x] \<open>x < - 1\<close> by simp
+    hence "real_of_int (int_floor_fl x) < 0" by simp
+    hence "int_floor_fl x < 0" by auto
+    hence "1 \<le> - int_floor_fl x" by auto
+    hence "0 < nat (- int_floor_fl x)" by auto
+    hence "0 < ?num"  by auto
+    hence "real ?num \<noteq> 0" by auto
+    have num_eq: "real ?num = - int_floor_fl x"
+      using \<open>0 < nat (- int_floor_fl x)\<close> by auto
+    have "0 < - int_floor_fl x"
+      using \<open>0 < ?num\<close>[unfolded of_nat_less_iff[symmetric]] by simp
+    hence "real_of_int (int_floor_fl x) < 0"
+      unfolding less_float_def by auto
+    have fl_eq: "real_of_int (- int_floor_fl x) = real_of_float (- floor_fl x)"
+      by (simp add: floor_fl_def int_floor_fl_def)
+    from \<open>0 < - int_floor_fl x\<close> have "0 \<le> real_of_float (- floor_fl x)"
+      by (simp add: floor_fl_def int_floor_fl_def)
+    from \<open>real_of_int (int_floor_fl x) < 0\<close> have "real_of_float (floor_fl x) < 0"
+      by (simp add: floor_fl_def int_floor_fl_def)
+    have "exp x \<le> ub_exp prec x"
+    proof -
+      have div_less_zero: "real_of_float (float_divr prec x (- floor_fl x)) \<le> 0"
+        using float_divr_nonpos_pos_upper_bound[OF \<open>real_of_float x \<le> 0\<close> \<open>0 \<le> real_of_float (- floor_fl x)\<close>]
+        unfolding less_eq_float_def zero_float.rep_eq .
+
+      have "exp x = exp (?num * (x / ?num))"
+        using \<open>real ?num \<noteq> 0\<close> by auto
+      also have "\<dots> = exp (x / ?num) ^ ?num"
+        unfolding exp_of_nat_mult ..
+      also have "\<dots> \<le> exp (float_divr prec x (- floor_fl x)) ^ ?num"
+        unfolding num_eq fl_eq
+        by (rule power_mono, rule exp_le_cancel_iff[THEN iffD2], rule float_divr) auto
+      also have "\<dots> \<le> (?ub_exp_horner (float_divr prec x (- floor_fl x))) ^ ?num"
+        unfolding real_of_float_power
+        by (rule power_mono, rule bnds_exp_horner[OF div_less_zero, unfolded atLeastAtMost_iff, THEN conjunct2], auto)
+      also have "\<dots> \<le> real_of_float (power_up_fl prec (?ub_exp_horner (float_divr prec x (- floor_fl x))) ?num)"
+        by (auto simp add: real_power_up_fl intro!: power_up ub_exp_horner_nonneg div_less_zero)
+      finally show ?thesis
+        unfolding ub_exp.simps if_not_P[OF \<open>\<not> 0 < x\<close>] if_P[OF \<open>x < - 1\<close>] floor_fl_def Let_def .
+    qed
+    moreover
+    have "lb_exp prec x \<le> exp x"
+    proof -
+      let ?divl = "float_divl prec x (- floor_fl x)"
+      let ?horner = "?lb_exp_horner ?divl"
+
+      show ?thesis
+      proof (cases "?horner \<le> 0")
+        case False
+        hence "0 \<le> real_of_float ?horner" by auto
+
+        have div_less_zero: "real_of_float (float_divl prec x (- floor_fl x)) \<le> 0"
+          using \<open>real_of_float (floor_fl x) < 0\<close> \<open>real_of_float x \<le> 0\<close>
+          by (auto intro!: order_trans[OF float_divl] divide_nonpos_neg)
+
+        have "(?lb_exp_horner (float_divl prec x (- floor_fl x))) ^ ?num \<le>
+          exp (float_divl prec x (- floor_fl x)) ^ ?num"
+          using \<open>0 \<le> real_of_float ?horner\<close>[unfolded floor_fl_def[symmetric]]
+            bnds_exp_horner[OF div_less_zero, unfolded atLeastAtMost_iff, THEN conjunct1]
+          by (auto intro!: power_mono)
+        also have "\<dots> \<le> exp (x / ?num) ^ ?num"
+          unfolding num_eq fl_eq
+          using float_divl by (auto intro!: power_mono simp del: uminus_float.rep_eq)
+        also have "\<dots> = exp (?num * (x / ?num))"
+          unfolding exp_of_nat_mult ..
+        also have "\<dots> = exp x"
+          using \<open>real ?num \<noteq> 0\<close> by auto
+        finally show ?thesis
+          using False
+          unfolding lb_exp.simps if_not_P[OF \<open>\<not> 0 < x\<close>] if_P[OF \<open>x < - 1\<close>]
+            int_floor_fl_def Let_def if_not_P[OF False]
+          by (auto simp: real_power_down_fl intro!: power_down_le)
+      next
+        case True
+        have "power_down_fl prec (Float 1 (- 2))  ?num \<le> (Float 1 (- 2)) ^ ?num"
+          by (metis Float_le_zero_iff less_imp_le linorder_not_less
+            not_numeral_le_zero numeral_One power_down_fl)
+        then have "power_down_fl prec (Float 1 (- 2))  ?num \<le> real_of_float (Float 1 (- 2)) ^ ?num"
+          by simp
+        also
+        have "real_of_float (floor_fl x) \<noteq> 0" and "real_of_float (floor_fl x) \<le> 0"
+          using \<open>real_of_float (floor_fl x) < 0\<close> by auto
+        from divide_right_mono_neg[OF floor_fl[of x] \<open>real_of_float (floor_fl x) \<le> 0\<close>, unfolded divide_self[OF \<open>real_of_float (floor_fl x) \<noteq> 0\<close>]]
+        have "- 1 \<le> x / (- floor_fl x)"
+          unfolding minus_float.rep_eq by auto
+        from order_trans[OF exp_m1_ge_quarter this[unfolded exp_le_cancel_iff[where x="- 1", symmetric]]]
+        have "Float 1 (- 2) \<le> exp (x / (- floor_fl x))"
+          unfolding Float_num .
+        hence "real_of_float (Float 1 (- 2)) ^ ?num \<le> exp (x / (- floor_fl x)) ^ ?num"
+          by (metis Float_num(5) power_mono zero_le_divide_1_iff zero_le_numeral)
+        also have "\<dots> = exp x"
+          unfolding num_eq fl_eq exp_of_nat_mult[symmetric]
+          using \<open>real_of_float (floor_fl x) \<noteq> 0\<close> by auto
+        finally show ?thesis
+          unfolding lb_exp.simps if_not_P[OF \<open>\<not> 0 < x\<close>] if_P[OF \<open>x < - 1\<close>]
+            int_floor_fl_def Let_def if_P[OF True] real_of_float_power .
+      qed
+    qed
+    ultimately show ?thesis by auto
+  qed
+qed
+
+lemma exp_boundaries: "exp x \<in> { lb_exp prec x .. ub_exp prec x }"
+proof -
+  show ?thesis
+  proof (cases "0 < x")
+    case False
+    hence "x \<le> 0" by auto
+    from exp_boundaries'[OF this] show ?thesis .
+  next
+    case True
+    hence "-x \<le> 0" by auto
+
+    have "lb_exp prec x \<le> exp x"
+    proof -
+      from exp_boundaries'[OF \<open>-x \<le> 0\<close>]
+      have ub_exp: "exp (- real_of_float x) \<le> ub_exp prec (-x)"
+        unfolding atLeastAtMost_iff minus_float.rep_eq by auto
+
+      have "float_divl prec 1 (ub_exp prec (-x)) \<le> 1 / ub_exp prec (-x)"
+        using float_divl[where x=1] by auto
+      also have "\<dots> \<le> exp x"
+        using ub_exp[unfolded inverse_le_iff_le[OF order_less_le_trans[OF exp_gt_zero ub_exp]
+          exp_gt_zero, symmetric]]
+        unfolding exp_minus nonzero_inverse_inverse_eq[OF exp_not_eq_zero] inverse_eq_divide
+        by auto
+      finally show ?thesis
+        unfolding lb_exp.simps if_P[OF True] .
+    qed
+    moreover
+    have "exp x \<le> ub_exp prec x"
+    proof -
+      have "\<not> 0 < -x" using \<open>0 < x\<close> by auto
+
+      from exp_boundaries'[OF \<open>-x \<le> 0\<close>]
+      have lb_exp: "lb_exp prec (-x) \<le> exp (- real_of_float x)"
+        unfolding atLeastAtMost_iff minus_float.rep_eq by auto
+
+      have "exp x \<le> (1 :: float) / lb_exp prec (-x)"
+        using lb_exp lb_exp_pos[OF \<open>\<not> 0 < -x\<close>, of prec]
+        by (simp del: lb_exp.simps add: exp_minus field_simps)
+      also have "\<dots> \<le> float_divr prec 1 (lb_exp prec (-x))"
+        using float_divr .
+      finally show ?thesis
+        unfolding ub_exp.simps if_P[OF True] .
+    qed
+    ultimately show ?thesis
+      by auto
+  qed
+qed
+
+lemma bnds_exp: "\<forall>(x::real) lx ux. (l, u) =
+  (lb_exp prec lx, ub_exp prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> exp x \<and> exp x \<le> u"
+proof (rule allI, rule allI, rule allI, rule impI)
+  fix x :: real and lx ux
+  assume "(l, u) = (lb_exp prec lx, ub_exp prec ux) \<and> x \<in> {lx .. ux}"
+  hence l: "lb_exp prec lx = l " and u: "ub_exp prec ux = u" and x: "x \<in> {lx .. ux}"
+    by auto
+  show "l \<le> exp x \<and> exp x \<le> u"
+  proof
+    show "l \<le> exp x"
+    proof -
+      from exp_boundaries[of lx prec, unfolded l]
+      have "l \<le> exp lx" by (auto simp del: lb_exp.simps)
+      also have "\<dots> \<le> exp x" using x by auto
+      finally show ?thesis .
+    qed
+    show "exp x \<le> u"
+    proof -
+      have "exp x \<le> exp ux" using x by auto
+      also have "\<dots> \<le> u" using exp_boundaries[of ux prec, unfolded u] by (auto simp del: ub_exp.simps)
+      finally show ?thesis .
+    qed
+  qed
+qed
+
+
+section "Logarithm"
+
+subsection "Compute the logarithm series"
+
+fun ub_ln_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float"
+and lb_ln_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where
+"ub_ln_horner prec 0 i x       = 0" |
+"ub_ln_horner prec (Suc n) i x = float_plus_up prec
+    (rapprox_rat prec 1 (int i)) (- float_round_down prec (x * lb_ln_horner prec n (Suc i) x))" |
+"lb_ln_horner prec 0 i x       = 0" |
+"lb_ln_horner prec (Suc n) i x = float_plus_down prec
+    (lapprox_rat prec 1 (int i)) (- float_round_up prec (x * ub_ln_horner prec n (Suc i) x))"
+
+lemma ln_bounds:
+  assumes "0 \<le> x"
+    and "x < 1"
+  shows "(\<Sum>i=0..<2*n. (- 1) ^ i * (1 / real (i + 1)) * x ^ (Suc i)) \<le> ln (x + 1)" (is "?lb")
+  and "ln (x + 1) \<le> (\<Sum>i=0..<2*n + 1. (- 1) ^ i * (1 / real (i + 1)) * x ^ (Suc i))" (is "?ub")
+proof -
+  let "?a n" = "(1/real (n +1)) * x ^ (Suc n)"
+
+  have ln_eq: "(\<Sum> i. (- 1) ^ i * ?a i) = ln (x + 1)"
+    using ln_series[of "x + 1"] \<open>0 \<le> x\<close> \<open>x < 1\<close> by auto
+
+  have "norm x < 1" using assms by auto
+  have "?a \<longlonglongrightarrow> 0" unfolding Suc_eq_plus1[symmetric] inverse_eq_divide[symmetric]
+    using tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_Suc[OF LIMSEQ_power_zero[OF \<open>norm x < 1\<close>]]] by auto
+  have "0 \<le> ?a n" for n
+    by (rule mult_nonneg_nonneg) (auto simp: \<open>0 \<le> x\<close>)
+  have "?a (Suc n) \<le> ?a n" for n
+    unfolding inverse_eq_divide[symmetric]
+  proof (rule mult_mono)
+    show "0 \<le> x ^ Suc (Suc n)"
+      by (auto simp add: \<open>0 \<le> x\<close>)
+    have "x ^ Suc (Suc n) \<le> x ^ Suc n * 1"
+      unfolding power_Suc2 mult.assoc[symmetric]
+      by (rule mult_left_mono, fact less_imp_le[OF \<open>x < 1\<close>]) (auto simp: \<open>0 \<le> x\<close>)
+    thus "x ^ Suc (Suc n) \<le> x ^ Suc n" by auto
+  qed auto
+  from summable_Leibniz'(2,4)[OF \<open>?a \<longlonglongrightarrow> 0\<close> \<open>\<And>n. 0 \<le> ?a n\<close>, OF \<open>\<And>n. ?a (Suc n) \<le> ?a n\<close>, unfolded ln_eq]
+  show ?lb and ?ub
+    unfolding atLeast0LessThan by auto
+qed
+
+lemma ln_float_bounds:
+  assumes "0 \<le> real_of_float x"
+    and "real_of_float x < 1"
+  shows "x * lb_ln_horner prec (get_even n) 1 x \<le> ln (x + 1)" (is "?lb \<le> ?ln")
+    and "ln (x + 1) \<le> x * ub_ln_horner prec (get_odd n) 1 x" (is "?ln \<le> ?ub")
+proof -
+  obtain ev where ev: "get_even n = 2 * ev" using get_even_double ..
+  obtain od where od: "get_odd n = 2 * od + 1" using get_odd_double ..
+
+  let "?s n" = "(- 1) ^ n * (1 / real (1 + n)) * (real_of_float x)^(Suc n)"
+
+  have "?lb \<le> sum ?s {0 ..< 2 * ev}"
+    unfolding power_Suc2 mult.assoc[symmetric] times_float.rep_eq sum_distrib_right[symmetric]
+    unfolding mult.commute[of "real_of_float x"] ev 
+    using horner_bounds(1)[where G="\<lambda> i k. Suc k" and F="\<lambda>x. x" and f="\<lambda>x. x" 
+                    and lb="\<lambda>n i k x. lb_ln_horner prec n k x" 
+                    and ub="\<lambda>n i k x. ub_ln_horner prec n k x" and j'=1 and n="2*ev",
+      OF \<open>0 \<le> real_of_float x\<close> refl lb_ln_horner.simps ub_ln_horner.simps] \<open>0 \<le> real_of_float x\<close>
+    unfolding real_of_float_power
+    by (rule mult_right_mono)
+  also have "\<dots> \<le> ?ln"
+    using ln_bounds(1)[OF \<open>0 \<le> real_of_float x\<close> \<open>real_of_float x < 1\<close>] by auto
+  finally show "?lb \<le> ?ln" .
+
+  have "?ln \<le> sum ?s {0 ..< 2 * od + 1}"
+    using ln_bounds(2)[OF \<open>0 \<le> real_of_float x\<close> \<open>real_of_float x < 1\<close>] by auto
+  also have "\<dots> \<le> ?ub"
+    unfolding power_Suc2 mult.assoc[symmetric] times_float.rep_eq sum_distrib_right[symmetric]
+    unfolding mult.commute[of "real_of_float x"] od
+    using horner_bounds(2)[where G="\<lambda> i k. Suc k" and F="\<lambda>x. x" and f="\<lambda>x. x" and lb="\<lambda>n i k x. lb_ln_horner prec n k x" and ub="\<lambda>n i k x. ub_ln_horner prec n k x" and j'=1 and n="2*od+1",
+      OF \<open>0 \<le> real_of_float x\<close> refl lb_ln_horner.simps ub_ln_horner.simps] \<open>0 \<le> real_of_float x\<close>
+    unfolding real_of_float_power
+    by (rule mult_right_mono)
+  finally show "?ln \<le> ?ub" .
+qed
+
+lemma ln_add:
+  fixes x :: real
+  assumes "0 < x" and "0 < y"
+  shows "ln (x + y) = ln x + ln (1 + y / x)"
+proof -
+  have "x \<noteq> 0" using assms by auto
+  have "x + y = x * (1 + y / x)"
+    unfolding distrib_left times_divide_eq_right nonzero_mult_div_cancel_left[OF \<open>x \<noteq> 0\<close>]
+    by auto
+  moreover
+  have "0 < y / x" using assms by auto
+  hence "0 < 1 + y / x" by auto
+  ultimately show ?thesis
+    using ln_mult assms by auto
+qed
+
+
+subsection "Compute the logarithm of 2"
+
+definition ub_ln2 where "ub_ln2 prec = (let third = rapprox_rat (max prec 1) 1 3
+                                        in float_plus_up prec
+                                          ((Float 1 (- 1) * ub_ln_horner prec (get_odd prec) 1 (Float 1 (- 1))))
+                                           (float_round_up prec (third * ub_ln_horner prec (get_odd prec) 1 third)))"
+definition lb_ln2 where "lb_ln2 prec = (let third = lapprox_rat prec 1 3
+                                        in float_plus_down prec
+                                          ((Float 1 (- 1) * lb_ln_horner prec (get_even prec) 1 (Float 1 (- 1))))
+                                           (float_round_down prec (third * lb_ln_horner prec (get_even prec) 1 third)))"
+
+lemma ub_ln2: "ln 2 \<le> ub_ln2 prec" (is "?ub_ln2")
+  and lb_ln2: "lb_ln2 prec \<le> ln 2" (is "?lb_ln2")
+proof -
+  let ?uthird = "rapprox_rat (max prec 1) 1 3"
+  let ?lthird = "lapprox_rat prec 1 3"
+
+  have ln2_sum: "ln 2 = ln (1/2 + 1) + ln (1 / 3 + 1::real)"
+    using ln_add[of "3 / 2" "1 / 2"] by auto
+  have lb3: "?lthird \<le> 1 / 3" using lapprox_rat[of prec 1 3] by auto
+  hence lb3_ub: "real_of_float ?lthird < 1" by auto
+  have lb3_lb: "0 \<le> real_of_float ?lthird" using lapprox_rat_nonneg[of 1 3] by auto
+  have ub3: "1 / 3 \<le> ?uthird" using rapprox_rat[of 1 3] by auto
+  hence ub3_lb: "0 \<le> real_of_float ?uthird" by auto
+
+  have lb2: "0 \<le> real_of_float (Float 1 (- 1))" and ub2: "real_of_float (Float 1 (- 1)) < 1"
+    unfolding Float_num by auto
+
+  have "0 \<le> (1::int)" and "0 < (3::int)" by auto
+  have ub3_ub: "real_of_float ?uthird < 1"
+    by (simp add: Float.compute_rapprox_rat Float.compute_lapprox_rat rapprox_posrat_less1)
+
+  have third_gt0: "(0 :: real) < 1 / 3 + 1" by auto
+  have uthird_gt0: "0 < real_of_float ?uthird + 1" using ub3_lb by auto
+  have lthird_gt0: "0 < real_of_float ?lthird + 1" using lb3_lb by auto
+
+  show ?ub_ln2
+    unfolding ub_ln2_def Let_def ln2_sum Float_num(4)[symmetric]
+  proof (rule float_plus_up_le, rule add_mono, fact ln_float_bounds(2)[OF lb2 ub2])
+    have "ln (1 / 3 + 1) \<le> ln (real_of_float ?uthird + 1)"
+      unfolding ln_le_cancel_iff[OF third_gt0 uthird_gt0] using ub3 by auto
+    also have "\<dots> \<le> ?uthird * ub_ln_horner prec (get_odd prec) 1 ?uthird"
+      using ln_float_bounds(2)[OF ub3_lb ub3_ub] .
+    also note float_round_up
+    finally show "ln (1 / 3 + 1) \<le> float_round_up prec (?uthird * ub_ln_horner prec (get_odd prec) 1 ?uthird)" .
+  qed
+  show ?lb_ln2
+    unfolding lb_ln2_def Let_def ln2_sum Float_num(4)[symmetric]
+  proof (rule float_plus_down_le, rule add_mono, fact ln_float_bounds(1)[OF lb2 ub2])
+    have "?lthird * lb_ln_horner prec (get_even prec) 1 ?lthird \<le> ln (real_of_float ?lthird + 1)"
+      using ln_float_bounds(1)[OF lb3_lb lb3_ub] .
+    note float_round_down_le[OF this]
+    also have "\<dots> \<le> ln (1 / 3 + 1)"
+      unfolding ln_le_cancel_iff[OF lthird_gt0 third_gt0]
+      using lb3 by auto
+    finally show "float_round_down prec (?lthird * lb_ln_horner prec (get_even prec) 1 ?lthird) \<le>
+      ln (1 / 3 + 1)" .
+  qed
+qed
+
+
+subsection "Compute the logarithm in the entire domain"
+
+function ub_ln :: "nat \<Rightarrow> float \<Rightarrow> float option" and lb_ln :: "nat \<Rightarrow> float \<Rightarrow> float option" where
+"ub_ln prec x = (if x \<le> 0          then None
+            else if x < 1          then Some (- the (lb_ln prec (float_divl (max prec 1) 1 x)))
+            else let horner = \<lambda>x. float_round_up prec (x * ub_ln_horner prec (get_odd prec) 1 x) in
+                 if x \<le> Float 3 (- 1) then Some (horner (x - 1))
+            else if x < Float 1 1  then Some (float_round_up prec (horner (Float 1 (- 1)) + horner (x * rapprox_rat prec 2 3 - 1)))
+                                   else let l = bitlen (mantissa x) - 1 in
+                                        Some (float_plus_up prec (float_round_up prec (ub_ln2 prec * (Float (exponent x + l) 0))) (horner (Float (mantissa x) (- l) - 1))))" |
+"lb_ln prec x = (if x \<le> 0          then None
+            else if x < 1          then Some (- the (ub_ln prec (float_divr prec 1 x)))
+            else let horner = \<lambda>x. float_round_down prec (x * lb_ln_horner prec (get_even prec) 1 x) in
+                 if x \<le> Float 3 (- 1) then Some (horner (x - 1))
+            else if x < Float 1 1  then Some (float_round_down prec (horner (Float 1 (- 1)) +
+                                              horner (max (x * lapprox_rat prec 2 3 - 1) 0)))
+                                   else let l = bitlen (mantissa x) - 1 in
+                                        Some (float_plus_down prec (float_round_down prec (lb_ln2 prec * (Float (exponent x + l) 0))) (horner (Float (mantissa x) (- l) - 1))))"
+  by pat_completeness auto
+
+termination
+proof (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if x < 1 then 1 else 0))", auto)
+  fix prec and x :: float
+  assume "\<not> real_of_float x \<le> 0" and "real_of_float x < 1" and "real_of_float (float_divl (max prec (Suc 0)) 1 x) < 1"
+  hence "0 < real_of_float x" "1 \<le> max prec (Suc 0)" "real_of_float x < 1"
+    by auto
+  from float_divl_pos_less1_bound[OF \<open>0 < real_of_float x\<close> \<open>real_of_float x < 1\<close>[THEN less_imp_le] \<open>1 \<le> max prec (Suc 0)\<close>]
+  show False
+    using \<open>real_of_float (float_divl (max prec (Suc 0)) 1 x) < 1\<close> by auto
+next
+  fix prec x
+  assume "\<not> real_of_float x \<le> 0" and "real_of_float x < 1" and "real_of_float (float_divr prec 1 x) < 1"
+  hence "0 < x" by auto
+  from float_divr_pos_less1_lower_bound[OF \<open>0 < x\<close>, of prec] \<open>real_of_float x < 1\<close> show False
+    using \<open>real_of_float (float_divr prec 1 x) < 1\<close> by auto
+qed
+
+lemma float_pos_eq_mantissa_pos: "x > 0 \<longleftrightarrow> mantissa x > 0"
+  apply (subst Float_mantissa_exponent[of x, symmetric])
+  apply (auto simp add: zero_less_mult_iff zero_float_def  dest: less_zeroE)
+  apply (metis not_le powr_ge_pzero)
+  done
+
+lemma Float_pos_eq_mantissa_pos: "Float m e > 0 \<longleftrightarrow> m > 0"
+  using powr_gt_zero[of 2 "e"]
+  by (auto simp add: zero_less_mult_iff zero_float_def simp del: powr_gt_zero dest: less_zeroE)
+
+lemma Float_representation_aux:
+  fixes m e
+  defines "x \<equiv> Float m e"
+  assumes "x > 0"
+  shows "Float (exponent x + (bitlen (mantissa x) - 1)) 0 = Float (e + (bitlen m - 1)) 0" (is ?th1)
+    and "Float (mantissa x) (- (bitlen (mantissa x) - 1)) = Float m ( - (bitlen m - 1))"  (is ?th2)
+proof -
+  from assms have mantissa_pos: "m > 0" "mantissa x > 0"
+    using Float_pos_eq_mantissa_pos[of m e] float_pos_eq_mantissa_pos[of x] by simp_all
+  thus ?th1
+    using bitlen_Float[of m e] assms
+    by (auto simp add: zero_less_mult_iff intro!: arg_cong2[where f=Float])
+  have "x \<noteq> float_of 0"
+    unfolding zero_float_def[symmetric] using \<open>0 < x\<close> by auto
+  from denormalize_shift[OF assms(1) this] guess i . note i = this
+
+  have "2 powr (1 - (real_of_int (bitlen (mantissa x)) + real_of_int i)) =
+    2 powr (1 - (real_of_int (bitlen (mantissa x)))) * inverse (2 powr (real i))"
+    by (simp add: powr_minus[symmetric] powr_add[symmetric] field_simps)
+  hence "real_of_int (mantissa x) * 2 powr (1 - real_of_int (bitlen (mantissa x))) =
+    (real_of_int (mantissa x) * 2 ^ i) * 2 powr (1 - real_of_int (bitlen (mantissa x * 2 ^ i)))"
+    using \<open>mantissa x > 0\<close> by (simp add: powr_realpow)
+  then show ?th2
+    unfolding i by transfer auto
+qed
+
+lemma compute_ln[code]:
+  fixes m e
+  defines "x \<equiv> Float m e"
+  shows "ub_ln prec x = (if x \<le> 0          then None
+              else if x < 1          then Some (- the (lb_ln prec (float_divl (max prec 1) 1 x)))
+            else let horner = \<lambda>x. float_round_up prec (x * ub_ln_horner prec (get_odd prec) 1 x) in
+                 if x \<le> Float 3 (- 1) then Some (horner (x - 1))
+            else if x < Float 1 1  then Some (float_round_up prec (horner (Float 1 (- 1)) + horner (x * rapprox_rat prec 2 3 - 1)))
+                                   else let l = bitlen m - 1 in
+                                        Some (float_plus_up prec (float_round_up prec (ub_ln2 prec * (Float (e + l) 0))) (horner (Float m (- l) - 1))))"
+    (is ?th1)
+  and "lb_ln prec x = (if x \<le> 0          then None
+            else if x < 1          then Some (- the (ub_ln prec (float_divr prec 1 x)))
+            else let horner = \<lambda>x. float_round_down prec (x * lb_ln_horner prec (get_even prec) 1 x) in
+                 if x \<le> Float 3 (- 1) then Some (horner (x - 1))
+            else if x < Float 1 1  then Some (float_round_down prec (horner (Float 1 (- 1)) +
+                                              horner (max (x * lapprox_rat prec 2 3 - 1) 0)))
+                                   else let l = bitlen m - 1 in
+                                        Some (float_plus_down prec (float_round_down prec (lb_ln2 prec * (Float (e + l) 0))) (horner (Float m (- l) - 1))))"
+    (is ?th2)
+proof -
+  from assms Float_pos_eq_mantissa_pos have "x > 0 \<Longrightarrow> m > 0"
+    by simp
+  thus ?th1 ?th2
+    using Float_representation_aux[of m e]
+    unfolding x_def[symmetric]
+    by (auto dest: not_le_imp_less)
+qed
+
+lemma ln_shifted_float:
+  assumes "0 < m"
+  shows "ln (Float m e) = ln 2 * (e + (bitlen m - 1)) + ln (Float m (- (bitlen m - 1)))"
+proof -
+  let ?B = "2^nat (bitlen m - 1)"
+  define bl where "bl = bitlen m - 1"
+  have "0 < real_of_int m" and "\<And>X. (0 :: real) < 2^X" and "0 < (2 :: real)" and "m \<noteq> 0"
+    using assms by auto
+  hence "0 \<le> bl" by (simp add: bitlen_alt_def bl_def)
+  show ?thesis
+  proof (cases "0 \<le> e")
+    case True
+    thus ?thesis
+      unfolding bl_def[symmetric] using \<open>0 < real_of_int m\<close> \<open>0 \<le> bl\<close>
+      apply (simp add: ln_mult)
+      apply (cases "e=0")
+        apply (cases "bl = 0", simp_all add: powr_minus ln_inverse ln_powr)
+        apply (cases "bl = 0", simp_all add: powr_minus ln_inverse ln_powr field_simps)
+      done
+  next
+    case False
+    hence "0 < -e" by auto
+    have lne: "ln (2 powr real_of_int e) = ln (inverse (2 powr - e))"
+      by (simp add: powr_minus)
+    hence pow_gt0: "(0::real) < 2^nat (-e)"
+      by auto
+    hence inv_gt0: "(0::real) < inverse (2^nat (-e))"
+      by auto
+    show ?thesis
+      using False unfolding bl_def[symmetric]
+      using \<open>0 < real_of_int m\<close> \<open>0 \<le> bl\<close>
+      by (auto simp add: lne ln_mult ln_powr ln_div field_simps)
+  qed
+qed
+
+lemma ub_ln_lb_ln_bounds':
+  assumes "1 \<le> x"
+  shows "the (lb_ln prec x) \<le> ln x \<and> ln x \<le> the (ub_ln prec x)"
+    (is "?lb \<le> ?ln \<and> ?ln \<le> ?ub")
+proof (cases "x < Float 1 1")
+  case True
+  hence "real_of_float (x - 1) < 1" and "real_of_float x < 2" by auto
+  have "\<not> x \<le> 0" and "\<not> x < 1" using \<open>1 \<le> x\<close> by auto
+  hence "0 \<le> real_of_float (x - 1)" using \<open>1 \<le> x\<close> by auto
+
+  have [simp]: "(Float 3 (- 1)) = 3 / 2" by simp
+
+  show ?thesis
+  proof (cases "x \<le> Float 3 (- 1)")
+    case True
+    show ?thesis
+      unfolding lb_ln.simps
+      unfolding ub_ln.simps Let_def
+      using ln_float_bounds[OF \<open>0 \<le> real_of_float (x - 1)\<close> \<open>real_of_float (x - 1) < 1\<close>, of prec]
+        \<open>\<not> x \<le> 0\<close> \<open>\<not> x < 1\<close> True
+      by (auto intro!: float_round_down_le float_round_up_le)
+  next
+    case False
+    hence *: "3 / 2 < x" by auto
+
+    with ln_add[of "3 / 2" "x - 3 / 2"]
+    have add: "ln x = ln (3 / 2) + ln (real_of_float x * 2 / 3)"
+      by (auto simp add: algebra_simps diff_divide_distrib)
+
+    let "?ub_horner x" = "float_round_up prec (x * ub_ln_horner prec (get_odd prec) 1 x)"
+    let "?lb_horner x" = "float_round_down prec (x * lb_ln_horner prec (get_even prec) 1 x)"
+
+    { have up: "real_of_float (rapprox_rat prec 2 3) \<le> 1"
+        by (rule rapprox_rat_le1) simp_all
+      have low: "2 / 3 \<le> rapprox_rat prec 2 3"
+        by (rule order_trans[OF _ rapprox_rat]) simp
+      from mult_less_le_imp_less[OF * low] *
+      have pos: "0 < real_of_float (x * rapprox_rat prec 2 3 - 1)" by auto
+
+      have "ln (real_of_float x * 2/3)
+        \<le> ln (real_of_float (x * rapprox_rat prec 2 3 - 1) + 1)"
+      proof (rule ln_le_cancel_iff[symmetric, THEN iffD1])
+        show "real_of_float x * 2 / 3 \<le> real_of_float (x * rapprox_rat prec 2 3 - 1) + 1"
+          using * low by auto
+        show "0 < real_of_float x * 2 / 3" using * by simp
+        show "0 < real_of_float (x * rapprox_rat prec 2 3 - 1) + 1" using pos by auto
+      qed
+      also have "\<dots> \<le> ?ub_horner (x * rapprox_rat prec 2 3 - 1)"
+      proof (rule float_round_up_le, rule ln_float_bounds(2))
+        from mult_less_le_imp_less[OF \<open>real_of_float x < 2\<close> up] low *
+        show "real_of_float (x * rapprox_rat prec 2 3 - 1) < 1" by auto
+        show "0 \<le> real_of_float (x * rapprox_rat prec 2 3 - 1)" using pos by auto
+      qed
+     finally have "ln x \<le> ?ub_horner (Float 1 (-1))
+          + ?ub_horner ((x * rapprox_rat prec 2 3 - 1))"
+        using ln_float_bounds(2)[of "Float 1 (- 1)" prec prec] add
+        by (auto intro!: add_mono float_round_up_le)
+      note float_round_up_le[OF this, of prec]
+    }
+    moreover
+    { let ?max = "max (x * lapprox_rat prec 2 3 - 1) 0"
+
+      have up: "lapprox_rat prec 2 3 \<le> 2/3"
+        by (rule order_trans[OF lapprox_rat], simp)
+
+      have low: "0 \<le> real_of_float (lapprox_rat prec 2 3)"
+        using lapprox_rat_nonneg[of 2 3 prec] by simp
+
+      have "?lb_horner ?max
+        \<le> ln (real_of_float ?max + 1)"
+      proof (rule float_round_down_le, rule ln_float_bounds(1))
+        from mult_less_le_imp_less[OF \<open>real_of_float x < 2\<close> up] * low
+        show "real_of_float ?max < 1" by (cases "real_of_float (lapprox_rat prec 2 3) = 0",
+          auto simp add: real_of_float_max)
+        show "0 \<le> real_of_float ?max" by (auto simp add: real_of_float_max)
+      qed
+      also have "\<dots> \<le> ln (real_of_float x * 2/3)"
+      proof (rule ln_le_cancel_iff[symmetric, THEN iffD1])
+        show "0 < real_of_float ?max + 1" by (auto simp add: real_of_float_max)
+        show "0 < real_of_float x * 2/3" using * by auto
+        show "real_of_float ?max + 1 \<le> real_of_float x * 2/3" using * up
+          by (cases "0 < real_of_float x * real_of_float (lapprox_posrat prec 2 3) - 1",
+              auto simp add: max_def)
+      qed
+      finally have "?lb_horner (Float 1 (- 1)) + ?lb_horner ?max \<le> ln x"
+        using ln_float_bounds(1)[of "Float 1 (- 1)" prec prec] add
+        by (auto intro!: add_mono float_round_down_le)
+      note float_round_down_le[OF this, of prec]
+    }
+    ultimately
+    show ?thesis unfolding lb_ln.simps unfolding ub_ln.simps Let_def
+      using \<open>\<not> x \<le> 0\<close> \<open>\<not> x < 1\<close> True False by auto
+  qed
+next
+  case False
+  hence "\<not> x \<le> 0" and "\<not> x < 1" "0 < x" "\<not> x \<le> Float 3 (- 1)"
+    using \<open>1 \<le> x\<close> by auto
+  show ?thesis
+  proof -
+    define m where "m = mantissa x"
+    define e where "e = exponent x"
+    from Float_mantissa_exponent[of x] have Float: "x = Float m e"
+      by (simp add: m_def e_def)
+    let ?s = "Float (e + (bitlen m - 1)) 0"
+    let ?x = "Float m (- (bitlen m - 1))"
+
+    have "0 < m" and "m \<noteq> 0" using \<open>0 < x\<close> Float powr_gt_zero[of 2 e]
+      apply (auto simp add: zero_less_mult_iff)
+      using not_le powr_ge_pzero apply blast
+      done
+    define bl where "bl = bitlen m - 1"
+    hence "bl \<ge> 0"
+      using \<open>m > 0\<close> by (simp add: bitlen_alt_def)
+    have "1 \<le> Float m e"
+      using \<open>1 \<le> x\<close> Float unfolding less_eq_float_def by auto
+    from bitlen_div[OF \<open>0 < m\<close>] float_gt1_scale[OF \<open>1 \<le> Float m e\<close>] \<open>bl \<ge> 0\<close>
+    have x_bnds: "0 \<le> real_of_float (?x - 1)" "real_of_float (?x - 1) < 1"
+      unfolding bl_def[symmetric]
+      by (auto simp: powr_realpow[symmetric] field_simps)
+         (auto simp : powr_minus field_simps)
+
+    {
+      have "float_round_down prec (lb_ln2 prec * ?s) \<le> ln 2 * (e + (bitlen m - 1))"
+          (is "real_of_float ?lb2 \<le> _")
+        apply (rule float_round_down_le)
+        unfolding nat_0 power_0 mult_1_right times_float.rep_eq
+        using lb_ln2[of prec]
+      proof (rule mult_mono)
+        from float_gt1_scale[OF \<open>1 \<le> Float m e\<close>]
+        show "0 \<le> real_of_float (Float (e + (bitlen m - 1)) 0)" by simp
+      qed auto
+      moreover
+      from ln_float_bounds(1)[OF x_bnds]
+      have "float_round_down prec ((?x - 1) * lb_ln_horner prec (get_even prec) 1 (?x - 1)) \<le> ln ?x" (is "real_of_float ?lb_horner \<le> _")
+        by (auto intro!: float_round_down_le)
+      ultimately have "float_plus_down prec ?lb2 ?lb_horner \<le> ln x"
+        unfolding Float ln_shifted_float[OF \<open>0 < m\<close>, of e] by (auto intro!: float_plus_down_le)
+    }
+    moreover
+    {
+      from ln_float_bounds(2)[OF x_bnds]
+      have "ln ?x \<le> float_round_up prec ((?x - 1) * ub_ln_horner prec (get_odd prec) 1 (?x - 1))"
+          (is "_ \<le> real_of_float ?ub_horner")
+        by (auto intro!: float_round_up_le)
+      moreover
+      have "ln 2 * (e + (bitlen m - 1)) \<le> float_round_up prec (ub_ln2 prec * ?s)"
+          (is "_ \<le> real_of_float ?ub2")
+        apply (rule float_round_up_le)
+        unfolding nat_0 power_0 mult_1_right times_float.rep_eq
+        using ub_ln2[of prec]
+      proof (rule mult_mono)
+        from float_gt1_scale[OF \<open>1 \<le> Float m e\<close>]
+        show "0 \<le> real_of_int (e + (bitlen m - 1))" by auto
+        have "0 \<le> ln (2 :: real)" by simp
+        thus "0 \<le> real_of_float (ub_ln2 prec)" using ub_ln2[of prec] by arith
+      qed auto
+      ultimately have "ln x \<le> float_plus_up prec ?ub2 ?ub_horner"
+        unfolding Float ln_shifted_float[OF \<open>0 < m\<close>, of e]
+        by (auto intro!: float_plus_up_le)
+    }
+    ultimately show ?thesis
+      unfolding lb_ln.simps
+      unfolding ub_ln.simps
+      unfolding if_not_P[OF \<open>\<not> x \<le> 0\<close>] if_not_P[OF \<open>\<not> x < 1\<close>]
+        if_not_P[OF False] if_not_P[OF \<open>\<not> x \<le> Float 3 (- 1)\<close>] Let_def
+      unfolding plus_float.rep_eq e_def[symmetric] m_def[symmetric]
+      by simp
+  qed
+qed
+
+lemma ub_ln_lb_ln_bounds:
+  assumes "0 < x"
+  shows "the (lb_ln prec x) \<le> ln x \<and> ln x \<le> the (ub_ln prec x)"
+    (is "?lb \<le> ?ln \<and> ?ln \<le> ?ub")
+proof (cases "x < 1")
+  case False
+  hence "1 \<le> x"
+    unfolding less_float_def less_eq_float_def by auto
+  show ?thesis
+    using ub_ln_lb_ln_bounds'[OF \<open>1 \<le> x\<close>] .
+next
+  case True
+  have "\<not> x \<le> 0" using \<open>0 < x\<close> by auto
+  from True have "real_of_float x \<le> 1" "x \<le> 1"
+    by simp_all
+  have "0 < real_of_float x" and "real_of_float x \<noteq> 0"
+    using \<open>0 < x\<close> by auto
+  hence A: "0 < 1 / real_of_float x" by auto
+
+  {
+    let ?divl = "float_divl (max prec 1) 1 x"
+    have A': "1 \<le> ?divl" using float_divl_pos_less1_bound[OF \<open>0 < real_of_float x\<close> \<open>real_of_float x \<le> 1\<close>] by auto
+    hence B: "0 < real_of_float ?divl" by auto
+
+    have "ln ?divl \<le> ln (1 / x)" unfolding ln_le_cancel_iff[OF B A] using float_divl[of _ 1 x] by auto
+    hence "ln x \<le> - ln ?divl" unfolding nonzero_inverse_eq_divide[OF \<open>real_of_float x \<noteq> 0\<close>, symmetric] ln_inverse[OF \<open>0 < real_of_float x\<close>] by auto
+    from this ub_ln_lb_ln_bounds'[OF A', THEN conjunct1, THEN le_imp_neg_le]
+    have "?ln \<le> - the (lb_ln prec ?divl)" unfolding uminus_float.rep_eq by (rule order_trans)
+  } moreover
+  {
+    let ?divr = "float_divr prec 1 x"
+    have A': "1 \<le> ?divr" using float_divr_pos_less1_lower_bound[OF \<open>0 < x\<close> \<open>x \<le> 1\<close>] unfolding less_eq_float_def less_float_def by auto
+    hence B: "0 < real_of_float ?divr" by auto
+
+    have "ln (1 / x) \<le> ln ?divr" unfolding ln_le_cancel_iff[OF A B] using float_divr[of 1 x] by auto
+    hence "- ln ?divr \<le> ln x" unfolding nonzero_inverse_eq_divide[OF \<open>real_of_float x \<noteq> 0\<close>, symmetric] ln_inverse[OF \<open>0 < real_of_float x\<close>] by auto
+    from ub_ln_lb_ln_bounds'[OF A', THEN conjunct2, THEN le_imp_neg_le] this
+    have "- the (ub_ln prec ?divr) \<le> ?ln" unfolding uminus_float.rep_eq by (rule order_trans)
+  }
+  ultimately show ?thesis unfolding lb_ln.simps[where x=x]  ub_ln.simps[where x=x]
+    unfolding if_not_P[OF \<open>\<not> x \<le> 0\<close>] if_P[OF True] by auto
+qed
+
+lemma lb_ln:
+  assumes "Some y = lb_ln prec x"
+  shows "y \<le> ln x" and "0 < real_of_float x"
+proof -
+  have "0 < x"
+  proof (rule ccontr)
+    assume "\<not> 0 < x"
+    hence "x \<le> 0"
+      unfolding less_eq_float_def less_float_def by auto
+    thus False
+      using assms by auto
+  qed
+  thus "0 < real_of_float x" by auto
+  have "the (lb_ln prec x) \<le> ln x"
+    using ub_ln_lb_ln_bounds[OF \<open>0 < x\<close>] ..
+  thus "y \<le> ln x"
+    unfolding assms[symmetric] by auto
+qed
+
+lemma ub_ln:
+  assumes "Some y = ub_ln prec x"
+  shows "ln x \<le> y" and "0 < real_of_float x"
+proof -
+  have "0 < x"
+  proof (rule ccontr)
+    assume "\<not> 0 < x"
+    hence "x \<le> 0" by auto
+    thus False
+      using assms by auto
+  qed
+  thus "0 < real_of_float x" by auto
+  have "ln x \<le> the (ub_ln prec x)"
+    using ub_ln_lb_ln_bounds[OF \<open>0 < x\<close>] ..
+  thus "ln x \<le> y"
+    unfolding assms[symmetric] by auto
+qed
+
+lemma bnds_ln: "\<forall>(x::real) lx ux. (Some l, Some u) =
+  (lb_ln prec lx, ub_ln prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> ln x \<and> ln x \<le> u"
+proof (rule allI, rule allI, rule allI, rule impI)
+  fix x :: real
+  fix lx ux
+  assume "(Some l, Some u) = (lb_ln prec lx, ub_ln prec ux) \<and> x \<in> {lx .. ux}"
+  hence l: "Some l = lb_ln prec lx " and u: "Some u = ub_ln prec ux" and x: "x \<in> {lx .. ux}"
+    by auto
+
+  have "ln ux \<le> u" and "0 < real_of_float ux"
+    using ub_ln u by auto
+  have "l \<le> ln lx" and "0 < real_of_float lx" and "0 < x"
+    using lb_ln[OF l] x by auto
+
+  from ln_le_cancel_iff[OF \<open>0 < real_of_float lx\<close> \<open>0 < x\<close>] \<open>l \<le> ln lx\<close>
+  have "l \<le> ln x"
+    using x unfolding atLeastAtMost_iff by auto
+  moreover
+  from ln_le_cancel_iff[OF \<open>0 < x\<close> \<open>0 < real_of_float ux\<close>] \<open>ln ux \<le> real_of_float u\<close>
+  have "ln x \<le> u"
+    using x unfolding atLeastAtMost_iff by auto
+  ultimately show "l \<le> ln x \<and> ln x \<le> u" ..
+qed
+
+
+section \<open>Real power function\<close>
+
+definition bnds_powr :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> (float \<times> float) option" where
+  "bnds_powr prec l1 u1 l2 u2 = (
+     if l1 = 0 \<and> u1 = 0 then
+       Some (0, 0)
+     else if l1 = 0 \<and> l2 \<ge> 1 then
+       let uln = the (ub_ln prec u1)
+       in  Some (0, ub_exp prec (float_round_up prec (uln * (if uln \<ge> 0 then u2 else l2))))
+     else if l1 \<le> 0 then
+       None
+     else
+       Some (map_bnds lb_exp ub_exp prec 
+               (bnds_mult prec (the (lb_ln prec l1)) (the (ub_ln prec u1)) l2 u2)))"
+
+lemmas [simp del] = lb_exp.simps ub_exp.simps
+
+lemma mono_exp_real: "mono (exp :: real \<Rightarrow> real)"
+  by (auto simp: mono_def)
+
+lemma ub_exp_nonneg: "real_of_float (ub_exp prec x) \<ge> 0"
+proof -
+  have "0 \<le> exp (real_of_float x)" by simp
+  also from exp_boundaries[of x prec] 
+    have "\<dots> \<le> real_of_float (ub_exp prec x)" by simp
+  finally show ?thesis .
+qed
+
+lemma bnds_powr:
+  assumes lu: "Some (l, u) = bnds_powr prec l1 u1 l2 u2"
+  assumes x: "x \<in> {real_of_float l1..real_of_float u1}"
+  assumes y: "y \<in> {real_of_float l2..real_of_float u2}"
+  shows   "x powr y \<in> {real_of_float l..real_of_float u}"
+proof -
+  consider "l1 = 0" "u1 = 0" | "l1 = 0" "u1 \<noteq> 0" "l2 \<ge> 1" | 
+           "l1 \<le> 0" "\<not>(l1 = 0 \<and> (u1 = 0 \<or> l2 \<ge> 1))" | "l1 > 0" by force
+  thus ?thesis
+  proof cases
+    assume "l1 = 0" "u1 = 0"
+    with x lu show ?thesis by (auto simp: bnds_powr_def)
+  next
+    assume A: "l1 = 0" "u1 \<noteq> 0" "l2 \<ge> 1"
+    define uln where "uln = the (ub_ln prec u1)"
+    show ?thesis
+    proof (cases "x = 0")
+      case False
+      with A x y have "x powr y = exp (ln x * y)" by (simp add: powr_def)
+      also {
+        from A x False have "ln x \<le> ln (real_of_float u1)" by simp
+        also from ub_ln_lb_ln_bounds[of u1 prec] A y x False
+          have "ln (real_of_float u1) \<le> real_of_float uln" by (simp add: uln_def del: lb_ln.simps)
+        also from A x y have "\<dots> * y \<le> real_of_float uln * (if uln \<ge> 0 then u2 else l2)"
+          by (auto intro: mult_left_mono mult_left_mono_neg)
+        also have "\<dots> \<le> real_of_float (float_round_up prec (uln * (if uln \<ge> 0 then u2 else l2)))"
+          by (simp add: float_round_up_le)
+        finally have "ln x * y \<le> \<dots>" using A y by - simp
+      }
+      also have "exp (real_of_float (float_round_up prec (uln * (if uln \<ge> 0 then u2 else l2)))) \<le>
+                   real_of_float (ub_exp prec (float_round_up prec
+                       (uln * (if uln \<ge> 0 then u2 else l2))))"
+        using exp_boundaries by simp
+      finally show ?thesis using A x y lu 
+        by (simp add: bnds_powr_def uln_def Let_def del: lb_ln.simps ub_ln.simps)
+    qed (insert x y lu A, simp_all add: bnds_powr_def Let_def ub_exp_nonneg
+                                   del: lb_ln.simps ub_ln.simps)
+  next
+    assume "l1 \<le> 0" "\<not>(l1 = 0 \<and> (u1 = 0 \<or> l2 \<ge> 1))"
+    with lu show ?thesis by (simp add: bnds_powr_def split: if_split_asm)
+  next
+    assume l1: "l1 > 0"
+    obtain lm um where lmum:
+      "(lm, um) = bnds_mult prec (the (lb_ln prec l1)) (the (ub_ln prec u1)) l2 u2"
+      by (cases "bnds_mult prec (the (lb_ln prec l1)) (the (ub_ln prec u1)) l2 u2") simp
+    with l1 have "(l, u) = map_bnds lb_exp ub_exp prec (lm, um)"
+      using lu by (simp add: bnds_powr_def del: lb_ln.simps ub_ln.simps split: if_split_asm)
+    hence "exp (ln x * y) \<in> {real_of_float l..real_of_float u}"
+    proof (rule map_bnds[OF _ mono_exp_real], goal_cases)
+      case 1
+      let ?lln = "the (lb_ln prec l1)" and ?uln = "the (ub_ln prec u1)"
+      from ub_ln_lb_ln_bounds[of l1 prec] ub_ln_lb_ln_bounds[of u1 prec] x l1
+        have "real_of_float ?lln \<le> ln (real_of_float l1) \<and> 
+              ln (real_of_float u1) \<le> real_of_float ?uln"
+        by (auto simp del: lb_ln.simps ub_ln.simps)
+      moreover from l1 x have "ln (real_of_float l1) \<le> ln x \<and> ln x \<le> ln (real_of_float u1)"
+        by auto
+      ultimately have ln: "real_of_float ?lln \<le> ln x \<and> ln x \<le> real_of_float ?uln" by simp
+      from lmum show ?case
+        by (rule bnds_mult) (insert y ln, simp_all)
+    qed (insert exp_boundaries[of lm prec] exp_boundaries[of um prec], simp_all)
+    with x l1 show ?thesis
+      by (simp add: powr_def mult_ac)
+  qed
+qed
+
+end