--- a/src/HOL/Nitpick_Examples/minipick.ML Wed Sep 29 23:04:00 2021 +0200
+++ b/src/HOL/Nitpick_Examples/minipick.ML Wed Sep 29 23:45:50 2021 +0200
@@ -24,11 +24,11 @@
S_Rep |
R_Rep of bool
-fun check_type ctxt raw_infinite (Type (\<^type_name>\<open>fun\<close>, Ts)) =
- List.app (check_type ctxt raw_infinite) Ts
- | check_type ctxt raw_infinite (Type (\<^type_name>\<open>prod\<close>, Ts)) =
- List.app (check_type ctxt raw_infinite) Ts
- | check_type _ _ \<^typ>\<open>bool\<close> = ()
+fun check_type ctxt raw_infinite \<^Type>\<open>fun T1 T2\<close> =
+ List.app (check_type ctxt raw_infinite) [T1, T2]
+ | check_type ctxt raw_infinite \<^Type>\<open>prod T1 T2\<close> =
+ List.app (check_type ctxt raw_infinite) [T1, T2]
+ | check_type _ _ \<^Type>\<open>bool\<close> = ()
| check_type _ _ (TFree (_, \<^sort>\<open>{}\<close>)) = ()
| check_type _ _ (TFree (_, \<^sort>\<open>HOL.type\<close>)) = ()
| check_type ctxt raw_infinite T =
@@ -37,15 +37,14 @@
else
error ("Not supported: Type " ^ quote (Syntax.string_of_typ ctxt T) ^ ".")
-fun atom_schema_of S_Rep card (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
+fun atom_schema_of S_Rep card \<^Type>\<open>fun T1 T2\<close> =
replicate_list (card T1) (atom_schema_of S_Rep card T2)
- | atom_schema_of (R_Rep true) card
- (Type (\<^type_name>\<open>fun\<close>, [T1, \<^typ>\<open>bool\<close>])) =
+ | atom_schema_of (R_Rep true) card \<^Type>\<open>fun T1 \<^Type>\<open>bool\<close>\<close> =
atom_schema_of S_Rep card T1
- | atom_schema_of (rep as R_Rep _) card (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
+ | atom_schema_of (rep as R_Rep _) card \<^Type>\<open>fun T1 T2\<close> =
atom_schema_of S_Rep card T1 @ atom_schema_of rep card T2
- | atom_schema_of _ card (Type (\<^type_name>\<open>prod\<close>, Ts)) =
- maps (atom_schema_of S_Rep card) Ts
+ | atom_schema_of _ card \<^Type>\<open>prod T1 T2\<close> =
+ maps (atom_schema_of S_Rep card) [T1, T2]
| atom_schema_of _ card T = [card T]
val arity_of = length ooo atom_schema_of
val atom_seqs_of = map (AtomSeq o rpair 0) ooo atom_schema_of
@@ -79,7 +78,7 @@
fun S_rep_from_F NONE f = RelIf (f, true_atom, false_atom)
| S_rep_from_F (SOME true) f = RelIf (f, true_atom, None)
| S_rep_from_F (SOME false) f = RelIf (Not f, false_atom, None)
- fun R_rep_from_S_rep (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) r =
+ fun R_rep_from_S_rep \<^Type>\<open>fun T1 T2\<close> r =
if total andalso T2 = bool_T then
let
val jss = atom_schema_of S_Rep card T1 |> map (rpair 0)
@@ -109,12 +108,12 @@
|> foldl1 Union
end
| R_rep_from_S_rep _ r = r
- fun S_rep_from_R_rep Ts (T as Type (\<^type_name>\<open>fun\<close>, _)) r =
+ fun S_rep_from_R_rep Ts (T as \<^Type>\<open>fun _ _\<close>) r =
Comprehension (decls_for S_Rep card Ts T,
RelEq (R_rep_from_S_rep T
(rel_expr_for_bound_var card S_Rep (T :: Ts) 0), r))
| S_rep_from_R_rep _ _ r = r
- fun partial_eq pos Ts (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) t1 t2 =
+ fun partial_eq pos Ts \<^Type>\<open>fun T1 T2\<close> t1 t2 =
HOLogic.mk_all ("x", T1,
HOLogic.eq_const T2 $ (incr_boundvars 1 t1 $ Bound 0)
$ (incr_boundvars 1 t2 $ Bound 0))
@@ -127,27 +126,24 @@
|> (if pos then Some o Intersect else Lone o Union)
and to_F pos Ts t =
(case t of
- \<^const>\<open>Not\<close> $ t1 => Not (to_F (Option.map not pos) Ts t1)
- | \<^const>\<open>False\<close> => False
- | \<^const>\<open>True\<close> => True
- | Const (\<^const_name>\<open>All\<close>, _) $ Abs (_, T, t') =>
+ \<^Const_>\<open>Not for t1\<close> => Not (to_F (Option.map not pos) Ts t1)
+ | \<^Const_>\<open>False\<close> => False
+ | \<^Const_>\<open>True\<close> => True
+ | \<^Const_>\<open>All _ for \<open>Abs (_, T, t')\<close>\<close> =>
if pos = SOME true andalso not (complete T) then False
else All (decls_for S_Rep card Ts T, to_F pos (T :: Ts) t')
- | (t0 as Const (\<^const_name>\<open>All\<close>, _)) $ t1 =>
+ | (t0 as \<^Const_>\<open>All _\<close>) $ t1 =>
to_F pos Ts (t0 $ eta_expand Ts t1 1)
- | Const (\<^const_name>\<open>Ex\<close>, _) $ Abs (_, T, t') =>
+ | \<^Const_>\<open>Ex _ for \<open>Abs (_, T, t')\<close>\<close> =>
if pos = SOME false andalso not (complete T) then True
else Exist (decls_for S_Rep card Ts T, to_F pos (T :: Ts) t')
- | (t0 as Const (\<^const_name>\<open>Ex\<close>, _)) $ t1 =>
+ | (t0 as \<^Const_>\<open>Ex _\<close>) $ t1 =>
to_F pos Ts (t0 $ eta_expand Ts t1 1)
- | Const (\<^const_name>\<open>HOL.eq\<close>, Type (_, [T, _])) $ t1 $ t2 =>
+ | \<^Const_>\<open>HOL.eq T for t1 t2\<close> =>
(case pos of
NONE => RelEq (to_R_rep Ts t1, to_R_rep Ts t2)
| SOME pos => partial_eq pos Ts T t1 t2)
- | Const (\<^const_name>\<open>ord_class.less_eq\<close>,
- Type (\<^type_name>\<open>fun\<close>,
- [Type (\<^type_name>\<open>fun\<close>, [T', \<^typ>\<open>bool\<close>]), _]))
- $ t1 $ t2 =>
+ | \<^Const_>\<open>less_eq \<^Type>\<open>fun T' \<^Type>\<open>bool\<close>\<close> for t1 t2\<close> =>
(case pos of
NONE => Subset (to_R_rep Ts t1, to_R_rep Ts t2)
| SOME true =>
@@ -158,11 +154,11 @@
Subset (Join (to_R_rep Ts t1, true_atom),
Difference (atom_seq_product_of S_Rep card T',
Join (to_R_rep Ts t2, false_atom))))
- | \<^const>\<open>HOL.conj\<close> $ t1 $ t2 => And (to_F pos Ts t1, to_F pos Ts t2)
- | \<^const>\<open>HOL.disj\<close> $ t1 $ t2 => Or (to_F pos Ts t1, to_F pos Ts t2)
- | \<^const>\<open>HOL.implies\<close> $ t1 $ t2 =>
+ | \<^Const_>\<open>conj for t1 t2\<close> => And (to_F pos Ts t1, to_F pos Ts t2)
+ | \<^Const_>\<open>disj for t1 t2\<close> => Or (to_F pos Ts t1, to_F pos Ts t2)
+ | \<^Const_>\<open>implies for t1 t2\<close> =>
Implies (to_F (Option.map not pos) Ts t1, to_F pos Ts t2)
- | Const (\<^const_name>\<open>Set.member\<close>, _) $ t1 $ t2 => to_F pos Ts (t2 $ t1)
+ | \<^Const_>\<open>Set.member _ for t1 t2\<close> => to_F pos Ts (t2 $ t1)
| t1 $ t2 =>
(case pos of
NONE => Subset (to_S_rep Ts t2, to_R_rep Ts t1)
@@ -181,22 +177,21 @@
handle SAME () => F_from_S_rep pos (to_R_rep Ts t)
and to_S_rep Ts t =
case t of
- Const (\<^const_name>\<open>Pair\<close>, _) $ t1 $ t2 =>
- Product (to_S_rep Ts t1, to_S_rep Ts t2)
- | Const (\<^const_name>\<open>Pair\<close>, _) $ _ => to_S_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>Pair\<close>, _) => to_S_rep Ts (eta_expand Ts t 2)
- | Const (\<^const_name>\<open>fst\<close>, _) $ t1 =>
+ \<^Const_>\<open>Pair _ _ for t1 t2\<close> => Product (to_S_rep Ts t1, to_S_rep Ts t2)
+ | \<^Const_>\<open>Pair _ _ for _\<close> => to_S_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>Pair _ _\<close> => to_S_rep Ts (eta_expand Ts t 2)
+ | \<^Const_>\<open>fst _ _ for t1\<close> =>
let val fst_arity = arity_of S_Rep card (fastype_of1 (Ts, t)) in
Project (to_S_rep Ts t1, num_seq 0 fst_arity)
end
- | Const (\<^const_name>\<open>fst\<close>, _) => to_S_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>snd\<close>, _) $ t1 =>
+ | \<^Const_>\<open>fst _ _\<close> => to_S_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>snd _ _ for t1\<close> =>
let
val pair_arity = arity_of S_Rep card (fastype_of1 (Ts, t1))
val snd_arity = arity_of S_Rep card (fastype_of1 (Ts, t))
val fst_arity = pair_arity - snd_arity
in Project (to_S_rep Ts t1, num_seq fst_arity snd_arity) end
- | Const (\<^const_name>\<open>snd\<close>, _) => to_S_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>snd _ _\<close> => to_S_rep Ts (eta_expand Ts t 1)
| Bound j => rel_expr_for_bound_var card S_Rep Ts j
| _ => S_rep_from_R_rep Ts (fastype_of1 (Ts, t)) (to_R_rep Ts t)
and partial_set_op swap1 swap2 op1 op2 Ts t1 t2 =
@@ -211,37 +206,30 @@
end
and to_R_rep Ts t =
(case t of
- \<^const>\<open>Not\<close> => to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>All\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>Ex\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>HOL.eq\<close>, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>HOL.eq\<close>, _) => to_R_rep Ts (eta_expand Ts t 2)
- | Const (\<^const_name>\<open>ord_class.less_eq\<close>,
- Type (\<^type_name>\<open>fun\<close>,
- [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _])) $ _ =>
- to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>ord_class.less_eq\<close>, _) =>
- to_R_rep Ts (eta_expand Ts t 2)
- | \<^const>\<open>HOL.conj\<close> $ _ => to_R_rep Ts (eta_expand Ts t 1)
- | \<^const>\<open>HOL.conj\<close> => to_R_rep Ts (eta_expand Ts t 2)
- | \<^const>\<open>HOL.disj\<close> $ _ => to_R_rep Ts (eta_expand Ts t 1)
- | \<^const>\<open>HOL.disj\<close> => to_R_rep Ts (eta_expand Ts t 2)
- | \<^const>\<open>HOL.implies\<close> $ _ => to_R_rep Ts (eta_expand Ts t 1)
- | \<^const>\<open>HOL.implies\<close> => to_R_rep Ts (eta_expand Ts t 2)
- | Const (\<^const_name>\<open>Set.member\<close>, _) $ _ =>
- to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>Set.member\<close>, _) => to_R_rep Ts (eta_expand Ts t 2)
- | Const (\<^const_name>\<open>Collect\<close>, _) $ t' => to_R_rep Ts t'
- | Const (\<^const_name>\<open>Collect\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>bot_class.bot\<close>,
- T as Type (\<^type_name>\<open>fun\<close>, [T', \<^typ>\<open>bool\<close>])) =>
+ \<^Const_>\<open>Not\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>All _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>Ex _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>HOL.eq _ for _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>HOL.eq _\<close> => to_R_rep Ts (eta_expand Ts t 2)
+ | \<^Const_>\<open>less_eq \<^Type>\<open>fun _ \<^Type>\<open>bool\<close>\<close> for _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>less_eq _\<close> => to_R_rep Ts (eta_expand Ts t 2)
+ | \<^Const_>\<open>conj for _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>conj\<close> => to_R_rep Ts (eta_expand Ts t 2)
+ | \<^Const_>\<open>disj for _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>disj\<close> => to_R_rep Ts (eta_expand Ts t 2)
+ | \<^Const_>\<open>implies for _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>implies\<close> => to_R_rep Ts (eta_expand Ts t 2)
+ | \<^Const_>\<open>Set.member _ for _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>Set.member _\<close> => to_R_rep Ts (eta_expand Ts t 2)
+ | \<^Const_>\<open>Collect _ for t'\<close> => to_R_rep Ts t'
+ | \<^Const_>\<open>Collect _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>bot \<open>T as \<^Type>\<open>fun T' \<^Type>\<open>bool\<close>\<close>\<close>\<close> =>
if total then empty_n_ary_rel (arity_of (R_Rep total) card T)
else Product (atom_seq_product_of (R_Rep total) card T', false_atom)
- | Const (\<^const_name>\<open>top_class.top\<close>,
- T as Type (\<^type_name>\<open>fun\<close>, [T', \<^typ>\<open>bool\<close>])) =>
+ | \<^Const_>\<open>top \<open>T as \<^Type>\<open>fun T' \<^Type>\<open>bool\<close>\<close>\<close>\<close> =>
if total then atom_seq_product_of (R_Rep total) card T
else Product (atom_seq_product_of (R_Rep total) card T', true_atom)
- | Const (\<^const_name>\<open>insert\<close>, Type (_, [T, _])) $ t1 $ t2 =>
+ | \<^Const_>\<open>insert T for t1 t2\<close> =>
if total then
Union (to_S_rep Ts t1, to_R_rep Ts t2)
else
@@ -258,9 +246,9 @@
Difference (kt2, Product (atom_seq_product_of S_Rep card T,
false_atom)))
end
- | Const (\<^const_name>\<open>insert\<close>, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>insert\<close>, _) => to_R_rep Ts (eta_expand Ts t 2)
- | Const (\<^const_name>\<open>trancl\<close>,
+ | \<^Const_>\<open>insert _ for _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>insert _\<close> => to_R_rep Ts (eta_expand Ts t 2)
+ | Const (\<^const_name>\<open>trancl\<close>, (* FIXME proper type!? *)
Type (_, [Type (_, [Type (_, [T', _]), _]), _])) $ t1 =>
if arity_of S_Rep card T' = 1 then
if total then
@@ -281,57 +269,38 @@
end
else
error "Not supported: Transitive closure for function or pair type."
- | Const (\<^const_name>\<open>trancl\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>inf_class.inf\<close>,
- Type (\<^type_name>\<open>fun\<close>,
- [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _]))
- $ t1 $ t2 =>
+ | \<^Const_>\<open>trancl _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>inf \<^Type>\<open>fun _ \<^Type>\<open>bool\<close>\<close> for t1 t2\<close> =>
if total then Intersect (to_R_rep Ts t1, to_R_rep Ts t2)
else partial_set_op true true Intersect Union Ts t1 t2
- | Const (\<^const_name>\<open>inf_class.inf\<close>, _) $ _ =>
- to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>inf_class.inf\<close>, _) =>
- to_R_rep Ts (eta_expand Ts t 2)
- | Const (\<^const_name>\<open>sup_class.sup\<close>,
- Type (\<^type_name>\<open>fun\<close>,
- [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _]))
- $ t1 $ t2 =>
+ | \<^Const_>\<open>inf _ for _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>inf _\<close> => to_R_rep Ts (eta_expand Ts t 2)
+ | \<^Const_>\<open>sup \<^Type>\<open>fun _ \<^Type>\<open>bool\<close>\<close> for t1 t2\<close> =>
if total then Union (to_R_rep Ts t1, to_R_rep Ts t2)
else partial_set_op true true Union Intersect Ts t1 t2
- | Const (\<^const_name>\<open>sup_class.sup\<close>, _) $ _ =>
- to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>sup_class.sup\<close>, _) =>
- to_R_rep Ts (eta_expand Ts t 2)
- | Const (\<^const_name>\<open>minus_class.minus\<close>,
- Type (\<^type_name>\<open>fun\<close>,
- [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _]))
- $ t1 $ t2 =>
+ | \<^Const_>\<open>sup _ for _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>sup _\<close> => to_R_rep Ts (eta_expand Ts t 2)
+ | \<^Const_>\<open>minus \<^Type>\<open>fun _ \<^Type>\<open>bool\<close>\<close> for t1 t2\<close> =>
if total then Difference (to_R_rep Ts t1, to_R_rep Ts t2)
else partial_set_op true false Intersect Union Ts t1 t2
- | Const (\<^const_name>\<open>minus_class.minus\<close>,
- Type (\<^type_name>\<open>fun\<close>,
- [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _])) $ _ =>
- to_R_rep Ts (eta_expand Ts t 1)
- | Const (\<^const_name>\<open>minus_class.minus\<close>,
- Type (\<^type_name>\<open>fun\<close>,
- [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _])) =>
- to_R_rep Ts (eta_expand Ts t 2)
- | Const (\<^const_name>\<open>Pair\<close>, _) $ _ $ _ => to_S_rep Ts t
- | Const (\<^const_name>\<open>Pair\<close>, _) $ _ => to_S_rep Ts t
- | Const (\<^const_name>\<open>Pair\<close>, _) => to_S_rep Ts t
- | Const (\<^const_name>\<open>fst\<close>, _) $ _ => raise SAME ()
- | Const (\<^const_name>\<open>fst\<close>, _) => raise SAME ()
- | Const (\<^const_name>\<open>snd\<close>, _) $ _ => raise SAME ()
- | Const (\<^const_name>\<open>snd\<close>, _) => raise SAME ()
- | \<^const>\<open>False\<close> => false_atom
- | \<^const>\<open>True\<close> => true_atom
+ | \<^Const_>\<open>minus \<^Type>\<open>fun _ \<^Type>\<open>bool\<close>\<close> for _\<close> => to_R_rep Ts (eta_expand Ts t 1)
+ | \<^Const_>\<open>minus \<^Type>\<open>fun _ \<^Type>\<open>bool\<close>\<close>\<close> => to_R_rep Ts (eta_expand Ts t 2)
+ | \<^Const_>\<open>Pair _ _ for _ _\<close> => to_S_rep Ts t
+ | \<^Const_>\<open>Pair _ _ for _\<close> => to_S_rep Ts t
+ | \<^Const_>\<open>Pair _ _\<close> => to_S_rep Ts t
+ | \<^Const_>\<open>fst _ _ for _\<close> => raise SAME ()
+ | \<^Const_>\<open>fst _ _\<close> => raise SAME ()
+ | \<^Const_>\<open>snd _ _ for _\<close> => raise SAME ()
+ | \<^Const_>\<open>snd _ _\<close> => raise SAME ()
+ | \<^Const_>\<open>False\<close> => false_atom
+ | \<^Const_>\<open>True\<close> => true_atom
| Free (x as (_, T)) =>
Rel (arity_of (R_Rep total) card T, find_index (curry (op =) x) frees)
| Term.Var _ => error "Not supported: Schematic variables."
| Bound _ => raise SAME ()
| Abs (_, T, t') =>
(case (total, fastype_of1 (T :: Ts, t')) of
- (true, \<^typ>\<open>bool\<close>) =>
+ (true, \<^Type>\<open>bool\<close>) =>
Comprehension (decls_for S_Rep card Ts T, to_F NONE (T :: Ts) t')
| (_, T') =>
Comprehension (decls_for S_Rep card Ts T @
@@ -341,7 +310,7 @@
to_R_rep (T :: Ts) t')))
| t1 $ t2 =>
(case fastype_of1 (Ts, t) of
- \<^typ>\<open>bool\<close> =>
+ \<^Type>\<open>bool\<close> =>
if total then
S_rep_from_F NONE (to_F NONE Ts t)
else
@@ -373,8 +342,7 @@
|> tuple_set_from_atom_schema])
end
-fun declarative_axiom_for_rel_expr total card Ts
- (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) r =
+fun declarative_axiom_for_rel_expr total card Ts \<^Type>\<open>fun T1 T2\<close> r =
if total andalso body_type T2 = bool_T then
True
else
@@ -388,28 +356,25 @@
(Rel (arity_of (R_Rep total) card T, i))
(* Hack to make the old code work as is with sets. *)
-fun unsetify_type (Type (\<^type_name>\<open>set\<close>, [T])) = unsetify_type T --> bool_T
+fun unsetify_type \<^Type>\<open>set T\<close> = unsetify_type T --> bool_T
| unsetify_type (Type (s, Ts)) = Type (s, map unsetify_type Ts)
| unsetify_type T = T
fun kodkod_problem_from_term ctxt total raw_card raw_infinite t =
let
val thy = Proof_Context.theory_of ctxt
- fun card (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
- reasonable_power (card T2) (card T1)
- | card (Type (\<^type_name>\<open>prod\<close>, [T1, T2])) = card T1 * card T2
- | card \<^typ>\<open>bool\<close> = 2
+ fun card \<^Type>\<open>fun T1 T2\<close> = reasonable_power (card T2) (card T1)
+ | card \<^Type>\<open>prod T1 T2\<close> = card T1 * card T2
+ | card \<^Type>\<open>bool\<close> = 2
| card T = Int.max (1, raw_card T)
- fun complete (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
- concrete T1 andalso complete T2
- | complete (Type (\<^type_name>\<open>prod\<close>, Ts)) = forall complete Ts
+ fun complete \<^Type>\<open>fun T1 T2\<close> = concrete T1 andalso complete T2
+ | complete \<^Type>\<open>prod T1 T2\<close> = complete T1 andalso complete T2
| complete T = not (raw_infinite T)
- and concrete (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
- complete T1 andalso concrete T2
- | concrete (Type (\<^type_name>\<open>prod\<close>, Ts)) = forall concrete Ts
+ and concrete \<^Type>\<open>fun T1 T2\<close> = complete T1 andalso concrete T2
+ | concrete \<^Type>\<open>prod T1 T2\<close> = concrete T1 andalso concrete T2
| concrete _ = true
val neg_t =
- \<^const>\<open>Not\<close> $ Object_Logic.atomize_term ctxt t
+ \<^Const>\<open>Not\<close> $ Object_Logic.atomize_term ctxt t
|> map_types unsetify_type
val _ = fold_types (K o check_type ctxt raw_infinite) neg_t ()
val frees = Term.add_frees neg_t []
@@ -442,7 +407,7 @@
| Error (s, _) => error ("Kodkod error: " ^ s)
end
-val default_raw_infinite = member (op =) [\<^typ>\<open>nat\<close>, \<^typ>\<open>int\<close>]
+val default_raw_infinite = member (op =) [\<^Type>\<open>nat\<close>, \<^Type>\<open>int\<close>]
fun minipick ctxt n t =
let