--- a/src/HOL/Bali/AxCompl.thy Wed Jun 13 03:31:11 2007 +0200
+++ b/src/HOL/Bali/AxCompl.thy Wed Jun 13 10:43:38 2007 +0200
@@ -937,7 +937,7 @@
\<rightarrow> abupd (abrupt_if (\<exists>y. abrupt s1 = Some y) (abrupt s1)) s2"
proof -
obtain abr1 str1 where s1: "s1=(abr1,str1)"
- by (cases s1) simp
+ by (cases s1)
with eval_c1 eval_c2 obtain
eval_c1': "G\<turnstile>Norm s0 \<midarrow>c1\<rightarrow> (abr1,str1)" and
eval_c2': "G\<turnstile>Norm str1 \<midarrow>c2\<rightarrow> s2"
@@ -1072,14 +1072,13 @@
done
next
case (FVar accC statDeclC stat e fn)
- have "G,A\<turnstile>{=:n} \<langle>e\<rangle>\<^sub>e\<succ> {G\<rightarrow>}".
- from MGFn_Init [OF hyp] this wf
+ from MGFn_Init [OF hyp] and `G,A\<turnstile>{=:n} \<langle>e\<rangle>\<^sub>e\<succ> {G\<rightarrow>}` and wf
show ?case
by (rule MGFn_FVar)
next
case (AVar e1 e2)
- have mgf_e1: "G,A\<turnstile>{=:n} \<langle>e1\<rangle>\<^sub>e\<succ> {G\<rightarrow>}".
- have mgf_e2: "G,A\<turnstile>{=:n} \<langle>e2\<rangle>\<^sub>e\<succ> {G\<rightarrow>}".
+ note mgf_e1 = `G,A\<turnstile>{=:n} \<langle>e1\<rangle>\<^sub>e\<succ> {G\<rightarrow>}`
+ note mgf_e2 = `G,A\<turnstile>{=:n} \<langle>e2\<rangle>\<^sub>e\<succ> {G\<rightarrow>}`
show "G,A\<turnstile>{=:n} \<langle>e1.[e2]\<rangle>\<^sub>v\<succ> {G\<rightarrow>}"
apply (rule MGFn_NormalI)
apply (rule ax_derivs.AVar)
@@ -1222,8 +1221,8 @@
done
next
case (Call accC statT mode e mn pTs' ps)
- have mgf_e: "G,A\<turnstile>{=:n} \<langle>e\<rangle>\<^sub>e\<succ> {G\<rightarrow>}".
- have mgf_ps: "G,A\<turnstile>{=:n} \<langle>ps\<rangle>\<^sub>l\<succ> {G\<rightarrow>}".
+ note mgf_e = `G,A\<turnstile>{=:n} \<langle>e\<rangle>\<^sub>e\<succ> {G\<rightarrow>}`
+ note mgf_ps = `G,A\<turnstile>{=:n} \<langle>ps\<rangle>\<^sub>l\<succ> {G\<rightarrow>}`
from mgf_methds mgf_e mgf_ps wf
show "G,A\<turnstile>{=:n} \<langle>{accC,statT,mode}e\<cdot>mn({pTs'}ps)\<rangle>\<^sub>e\<succ> {G\<rightarrow>}"
by (rule MGFn_Call)
@@ -1234,7 +1233,7 @@
by simp
next
case (Body D c)
- have mgf_c: "G,A\<turnstile>{=:n} \<langle>c\<rangle>\<^sub>s\<succ> {G\<rightarrow>}" .
+ note mgf_c = `G,A\<turnstile>{=:n} \<langle>c\<rangle>\<^sub>s\<succ> {G\<rightarrow>}`
from wf MGFn_Init [OF hyp] mgf_c
show "G,A\<turnstile>{=:n} \<langle>Body D c\<rangle>\<^sub>e\<succ> {G\<rightarrow>}"
by (rule MGFn_Body)
@@ -1302,8 +1301,8 @@
done
next
case (Loop l e c)
- have mgf_e: "G,A\<turnstile>{=:n} \<langle>e\<rangle>\<^sub>e\<succ> {G\<rightarrow>}".
- have mgf_c: "G,A\<turnstile>{=:n} \<langle>c\<rangle>\<^sub>s\<succ> {G\<rightarrow>}".
+ note mgf_e = `G,A\<turnstile>{=:n} \<langle>e\<rangle>\<^sub>e\<succ> {G\<rightarrow>}`
+ note mgf_c = `G,A\<turnstile>{=:n} \<langle>c\<rangle>\<^sub>s\<succ> {G\<rightarrow>}`
from mgf_e mgf_c wf
show "G,A\<turnstile>{=:n} \<langle>l\<bullet> While(e) c\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
by (rule MGFn_Loop)
@@ -1339,8 +1338,8 @@
done
next
case (Fin c1 c2)
- have mgf_c1: "G,A\<turnstile>{=:n} \<langle>c1\<rangle>\<^sub>s\<succ> {G\<rightarrow>}".
- have mgf_c2: "G,A\<turnstile>{=:n} \<langle>c2\<rangle>\<^sub>s\<succ> {G\<rightarrow>}".
+ note mgf_c1 = `G,A\<turnstile>{=:n} \<langle>c1\<rangle>\<^sub>s\<succ> {G\<rightarrow>}`
+ note mgf_c2 = `G,A\<turnstile>{=:n} \<langle>c2\<rangle>\<^sub>s\<succ> {G\<rightarrow>}`
from wf mgf_c1 mgf_c2
show "G,A\<turnstile>{=:n} \<langle>c1 Finally c2\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
by (rule MGFn_Fin)
--- a/src/HOL/Bali/AxSound.thy Wed Jun 13 03:31:11 2007 +0200
+++ b/src/HOL/Bali/AxSound.thy Wed Jun 13 10:43:38 2007 +0200
@@ -564,7 +564,7 @@
from eval wt da conf_s0 wf
have "s3\<Colon>\<preceq>(G, L)"
by (rule evaln_type_sound [elim_format]) simp
- ultimately show ?thesis using Q by simp
+ ultimately show ?thesis using Q R by simp
qed
qed
next
@@ -612,8 +612,8 @@
from eval_e1 wt_e1 da_e1 wf True
have "nrm E1 \<subseteq> dom (locals (store s1))"
by (cases rule: da_good_approx_evalnE) iprover
- with da_e2 show ?thesis
- by (rule da_weakenE)
+ with da_e2 show thesis
+ by (rule da_weakenE) (rule that)
qed
with valid_e2 Q' valid_A conf_s1 eval_e2 wt_e2
show ?thesis
@@ -633,7 +633,7 @@
qed
next
case (NewC A P C Q)
- have valid_init: "G,A|\<Turnstile>\<Colon>{ {Normal P} .Init C. {Alloc G (CInst C) Q} }".
+ note valid_init = `G,A|\<Turnstile>\<Colon>{ {Normal P} .Init C. {Alloc G (CInst C) Q} }`
show "G,A|\<Turnstile>\<Colon>{ {Normal P} NewC C-\<succ> {Q} }"
proof (rule valid_expr_NormalI)
fix n s0 L accC T E v s2 Y Z
@@ -728,8 +728,8 @@
from eval_init
have "dom (locals (store s0)) \<subseteq> dom (locals (store s1))"
by (rule dom_locals_evaln_mono_elim)
- with da_e show ?thesis
- by (rule da_weakenE)
+ with da_e show thesis
+ by (rule da_weakenE) (rule that)
qed
with valid_e Q valid_A conf_s1 eval_e wt_e
have "(\<lambda>Val:i:. abupd (check_neg i) .;
@@ -746,9 +746,9 @@
qed
next
case (Cast A P e T Q)
- have valid_e: "G,A|\<Turnstile>\<Colon>{ {Normal P} e-\<succ>
+ note valid_e = `G,A|\<Turnstile>\<Colon>{ {Normal P} e-\<succ>
{\<lambda>Val:v:. \<lambda>s.. abupd (raise_if (\<not> G,s\<turnstile>v fits T) ClassCast) .;
- Q\<leftarrow>In1 v} }" .
+ Q\<leftarrow>In1 v} }`
show "G,A|\<Turnstile>\<Colon>{ {Normal P} Cast T e-\<succ> {Q} }"
proof (rule valid_expr_NormalI)
fix n s0 L accC castT E v s2 Y Z
@@ -1060,8 +1060,8 @@
from eval_var wt_var da_var wf True
have "nrm V \<subseteq> dom (locals (store s1))"
by (cases rule: da_good_approx_evalnE) iprover
- with da_e show ?thesis
- by (rule da_weakenE)
+ with da_e show thesis
+ by (rule da_weakenE) (rule that)
qed
note ve=validE [OF valid_e,OF Q' valid_A conf_s1 eval_e wt_e da_e']
show ?thesis
@@ -1101,8 +1101,8 @@
from eval_var
have "dom (locals (store s0)) \<subseteq> dom (locals (store (s1)))"
by (rule dom_locals_evaln_mono_elim)
- with da_e show ?thesis
- by (rule da_weakenE)
+ with da_e show thesis
+ by (rule da_weakenE) (rule that)
qed
note ve=validE [OF valid_e,OF Q' valid_A conf_s1 eval_e wt_e da_e']
show ?thesis
@@ -1296,8 +1296,8 @@
from evaln_e wt_e da_e wf True
have "nrm C \<subseteq> dom (locals (store s1))"
by (cases rule: da_good_approx_evalnE) iprover
- with da_args show ?thesis
- by (rule da_weakenE)
+ with da_args show thesis
+ by (rule da_weakenE) (rule that)
qed
with valid_args Q valid_A conf_s1 evaln_args wt_args
obtain "(R a) \<lfloor>vs\<rfloor>\<^sub>l s2 Z" "s2\<Colon>\<preceq>(G,L)"
@@ -1364,7 +1364,7 @@
by (cases s2) (auto simp add: init_lvars_def2 split: split_if_asm)
moreover
obtain abr2 str2 where s2: "s2=(abr2,str2)"
- by (cases s2) simp
+ by (cases s2)
from s3 s2 conf_s2 have "(abrupt s3,str2)\<Colon>\<preceq>(G, L)"
by (auto simp add: init_lvars_def2 split: split_if_asm)
ultimately show ?thesis
@@ -1401,8 +1401,8 @@
from evaln_e wt_e da_e wf normal_s1
have "nrm C \<subseteq> dom (locals (store s1))"
by (cases rule: da_good_approx_evalnE) iprover
- with da_args show ?thesis
- by (rule da_weakenE)
+ with da_args show thesis
+ by (rule da_weakenE) (rule that)
qed
from evaln_args
have eval_args: "G\<turnstile>s1 \<midarrow>args\<doteq>\<succ>vs\<rightarrow> s2"
@@ -1583,9 +1583,9 @@
using da
by (iprover intro: da.Body assigned.select_convs)
from _ this [simplified]
- show ?thesis
+ show thesis
by (rule da.Methd [simplified,elim_format])
- (auto intro: dynM')
+ (auto intro: dynM' that)
qed
from valid_methd R' valid_A conf_s3' evaln_methd wt_methd da_methd
have "(set_lvars l .; S) \<lfloor>v\<rfloor>\<^sub>e s4 Z"
@@ -1599,9 +1599,9 @@
qed
next
case (Methd A P Q ms)
- have valid_body: "G,A \<union> {{P} Methd-\<succ> {Q} | ms}|\<Turnstile>\<Colon>{{P} body G-\<succ> {Q} | ms}".
+ note valid_body = `G,A \<union> {{P} Methd-\<succ> {Q} | ms}|\<Turnstile>\<Colon>{{P} body G-\<succ> {Q} | ms}`
show "G,A|\<Turnstile>\<Colon>{{P} Methd-\<succ> {Q} | ms}"
- by (rule Methd_sound)
+ by (rule Methd_sound) (rule Methd.hyps)
next
case (Body A P D Q c R)
note valid_init = `G,A|\<Turnstile>\<Colon>{ {Normal P} .Init D. {Q} }`
@@ -1646,7 +1646,7 @@
from eval_init
have "(dom (locals (store s0))) \<subseteq> (dom (locals (store s1)))"
by (rule dom_locals_evaln_mono_elim)
- with da_c show ?thesis by (rule da_weakenE)
+ with da_c show thesis by (rule da_weakenE) (rule that)
qed
from valid_init P valid_A conf_s0 eval_init wt_init da_init
obtain Q: "Q \<diamondsuit> s1 Z" and conf_s1: "s1\<Colon>\<preceq>(G,L)"
@@ -1697,7 +1697,7 @@
qed
next
case (Cons A P e Q es R)
- have valid_e: "G,A|\<Turnstile>\<Colon>{ {Normal P} e-\<succ> {Q} }".
+ note valid_e = `G,A|\<Turnstile>\<Colon>{ {Normal P} e-\<succ> {Q} }`
have valid_es: "\<And> v. G,A|\<Turnstile>\<Colon>{ {Q\<leftarrow>\<lfloor>v\<rfloor>\<^sub>e} es\<doteq>\<succ> {\<lambda>Vals:vs:. R\<leftarrow>\<lfloor>(v # vs)\<rfloor>\<^sub>l} }"
using Cons.hyps by simp
show "G,A|\<Turnstile>\<Colon>{ {Normal P} e # es\<doteq>\<succ> {R} }"
@@ -1739,8 +1739,8 @@
from eval_e wt_e da_e wf True
have "nrm E1 \<subseteq> dom (locals (store s1))"
by (cases rule: da_good_approx_evalnE) iprover
- with da_es show ?thesis
- by (rule da_weakenE)
+ with da_es show thesis
+ by (rule da_weakenE) (rule that)
qed
from valid_es Q' valid_A conf_s1 eval_es wt_es da_es'
show ?thesis
@@ -1884,8 +1884,8 @@
from eval_c1 wt_c1 da_c1 wf True
have "nrm C1 \<subseteq> dom (locals (store s1))"
by (cases rule: da_good_approx_evalnE) iprover
- with da_c2 show ?thesis
- by (rule da_weakenE)
+ with da_c2 show thesis
+ by (rule da_weakenE) (rule that)
qed
with valid_c2 Q valid_A conf_s1 eval_c2 wt_c2
show ?thesis
@@ -2091,8 +2091,8 @@
have "dom (locals (store ((Norm s0')::state)))
\<union> assigns_if True e \<subseteq> dom (locals (store s1'))"
by (rule Un_least)
- with da_c show ?thesis
- by (rule da_weakenE)
+ with da_c show thesis
+ by (rule da_weakenE) (rule that)
qed
with valid_c P'' valid_A conf_s1' eval_c wt_c
obtain "(abupd (absorb (Cont l)) .; P) \<diamondsuit> s2' Z" and
@@ -2173,10 +2173,10 @@
qed
next
case (Abrupt abr s t' n' Y' T E)
- have t': "t' = \<langle>l\<bullet> While(e) c\<rangle>\<^sub>s".
- have conf: "(Some abr, s)\<Colon>\<preceq>(G, L)".
- have P: "P Y' (Some abr, s) Z".
- have valid_A: "\<forall>t\<in>A. G\<Turnstile>n'\<Colon>t".
+ note t' = `t' = \<langle>l\<bullet> While(e) c\<rangle>\<^sub>s`
+ note conf = `(Some abr, s)\<Colon>\<preceq>(G, L)`
+ note P = `P Y' (Some abr, s) Z`
+ note valid_A = `\<forall>t\<in>A. G\<Turnstile>n'\<Colon>t`
show "(P'\<leftarrow>=False\<down>=\<diamondsuit>) (arbitrary3 t') (Some abr, s) Z"
proof -
have eval_e:
@@ -2188,7 +2188,7 @@
with t' show ?thesis
by auto
qed
- qed (simp_all)
+ qed simp_all
} note generalized=this
from eval _ valid_A P conf_s0 wt da
have "(P'\<leftarrow>=False\<down>=\<diamondsuit>) \<diamondsuit> s3 Z"
@@ -2388,8 +2388,8 @@
ultimately show ?thesis
by (rule Un_least)
qed
- with da_c2 show ?thesis
- by (rule da_weakenE)
+ with da_c2 show thesis
+ by (rule da_weakenE) (rule that)
qed
from Q eval_c2 True
have "(Q \<and>. (\<lambda>s. G,s\<turnstile>catch C) ;. new_xcpt_var vn)
@@ -2466,8 +2466,8 @@
hence "dom (locals (store s0))
\<subseteq> dom (locals (store ((Norm s1)::state)))"
by simp
- with da_c2 show ?thesis
- by (rule da_weakenE)
+ with da_c2 show thesis
+ by (rule da_weakenE) (rule that)
qed
from valid_c2 Q' valid_A conf_Norm_s1 eval_c2 wt_c2 da_c2'
have "(abupd (abrupt_if (abr1 \<noteq> None) abr1) .; R) \<diamondsuit> s2 Z"