merged
authorblanchet
Mon, 28 Jun 2010 08:55:46 +0200
changeset 37586 a209fff74792
parent 37561 19fca77829ea (current diff)
parent 37585 c2ed8112ce57 (diff)
child 37587 466031e057a0
merged
src/HOL/Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML
src/HOL/Tools/Sledgehammer/sledgehammer_fol_clause.ML
src/HOL/Tools/Sledgehammer/sledgehammer_hol_clause.ML
--- a/doc-src/Sledgehammer/sledgehammer.tex	Sun Jun 27 08:33:01 2010 +0100
+++ b/doc-src/Sledgehammer/sledgehammer.tex	Mon Jun 28 08:55:46 2010 +0200
@@ -448,13 +448,6 @@
 should be considered particularly relevant. Enabling this option tends to lead
 to larger problems and typically slows down the ATPs.
 
-\optrue{respect\_no\_atp}{ignore\_no\_atp}
-Specifies whether Sledgehammer should honor the \textit{no\_atp} attributes. The
-\textit{no\_atp} attributes marks theorems that tend to confuse ATPs, typically
-because they can lead to unsound ATP proofs \cite{boehme-nipkow-2010}. It is
-normally a good idea to leave this option enabled, unless you are debugging
-Sledgehammer.
-
 \end{enum}
 
 \subsection{Output Format}
--- a/src/HOL/IsaMakefile	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/IsaMakefile	Mon Jun 28 08:55:46 2010 +0200
@@ -267,6 +267,7 @@
   $(SRC)/Provers/Arith/extract_common_term.ML \
   $(SRC)/Tools/cache_io.ML \
   $(SRC)/Tools/Metis/metis.ML \
+  Tools/ATP_Manager/async_manager.ML \
   Tools/ATP_Manager/atp_manager.ML \
   Tools/ATP_Manager/atp_systems.ML \
   Tools/choice_specification.ML \
@@ -313,13 +314,12 @@
   Tools/Quotient/quotient_typ.ML \
   Tools/recdef.ML \
   Tools/semiring_normalizer.ML \
+  Tools/Sledgehammer/clausifier.ML \
   Tools/Sledgehammer/meson_tactic.ML \
+  Tools/Sledgehammer/metis_clauses.ML \
   Tools/Sledgehammer/metis_tactics.ML \
   Tools/Sledgehammer/sledgehammer_fact_filter.ML \
   Tools/Sledgehammer/sledgehammer_fact_minimizer.ML \
-  Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML \
-  Tools/Sledgehammer/sledgehammer_fol_clause.ML \
-  Tools/Sledgehammer/sledgehammer_hol_clause.ML \
   Tools/Sledgehammer/sledgehammer_isar.ML \
   Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML \
   Tools/Sledgehammer/sledgehammer_tptp_format.ML \
--- a/src/HOL/Mirabelle/Tools/mirabelle_sledgehammer.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Mirabelle/Tools/mirabelle_sledgehammer.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -325,7 +325,7 @@
       NONE => (message, SH_OK (time_isa, time_atp, relevant_thm_names))
     | SOME _ => (message, SH_FAIL (time_isa, time_atp))
   end
-  handle Sledgehammer_HOL_Clause.TRIVIAL () => ("trivial", SH_OK (0, 0, []))
+  handle Metis_Clauses.TRIVIAL () => ("trivial", SH_OK (0, 0, []))
        | ERROR msg => ("error: " ^ msg, SH_ERROR)
        | TimeLimit.TimeOut => ("timeout", SH_ERROR)
 
@@ -382,7 +382,7 @@
 
 fun run_minimize args named_thms id ({pre=st, log, ...}: Mirabelle.run_args) =
   let
-    open Sledgehammer_Fact_Minimizer
+    open Metis_Clauses
     open Sledgehammer_Isar
     val thy = Proof.theory_of st
     val n0 = length (these (!named_thms))
--- a/src/HOL/Sledgehammer.thy	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Sledgehammer.thy	Mon Jun 28 08:55:46 2010 +0200
@@ -11,19 +11,19 @@
 imports Plain Hilbert_Choice
 uses
   "~~/src/Tools/Metis/metis.ML"
-  "Tools/Sledgehammer/sledgehammer_util.ML"
-  ("Tools/Sledgehammer/sledgehammer_fol_clause.ML")
-  ("Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML")
-  ("Tools/Sledgehammer/sledgehammer_hol_clause.ML")
-  ("Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML")
+  ("Tools/Sledgehammer/clausifier.ML")
+  ("Tools/Sledgehammer/meson_tactic.ML")
+  ("Tools/Sledgehammer/metis_clauses.ML")
+  ("Tools/Sledgehammer/metis_tactics.ML")
+  ("Tools/Sledgehammer/sledgehammer_util.ML")
   ("Tools/Sledgehammer/sledgehammer_fact_filter.ML")
   ("Tools/Sledgehammer/sledgehammer_tptp_format.ML")
+  ("Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML")
+  ("Tools/ATP_Manager/async_manager.ML")
   ("Tools/ATP_Manager/atp_manager.ML")
   ("Tools/ATP_Manager/atp_systems.ML")
   ("Tools/Sledgehammer/sledgehammer_fact_minimizer.ML")
   ("Tools/Sledgehammer/sledgehammer_isar.ML")
-  ("Tools/Sledgehammer/meson_tactic.ML")
-  ("Tools/Sledgehammer/metis_tactics.ML")
 begin
 
 definition skolem_id :: "'a \<Rightarrow> 'a" where
@@ -85,32 +85,25 @@
 apply (simp add: COMBC_def) 
 done
 
-
-subsection {* Setup of external ATPs *}
+use "Tools/Sledgehammer/clausifier.ML"
+setup Clausifier.setup
 
-use "Tools/Sledgehammer/sledgehammer_fol_clause.ML"
-use "Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML"
-setup Sledgehammer_Fact_Preprocessor.setup
-use "Tools/Sledgehammer/sledgehammer_hol_clause.ML"
-use "Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML"
+use "Tools/Sledgehammer/meson_tactic.ML"
+setup Meson_Tactic.setup
+
+use "Tools/Sledgehammer/metis_clauses.ML"
+use "Tools/Sledgehammer/metis_tactics.ML"
+
+use "Tools/Sledgehammer/sledgehammer_util.ML"
 use "Tools/Sledgehammer/sledgehammer_fact_filter.ML"
 use "Tools/Sledgehammer/sledgehammer_tptp_format.ML"
+use "Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML"
+use "Tools/ATP_Manager/async_manager.ML"
 use "Tools/ATP_Manager/atp_manager.ML"
 use "Tools/ATP_Manager/atp_systems.ML"
 setup ATP_Systems.setup
 use "Tools/Sledgehammer/sledgehammer_fact_minimizer.ML"
 use "Tools/Sledgehammer/sledgehammer_isar.ML"
-
-
-subsection {* The MESON prover *}
-
-use "Tools/Sledgehammer/meson_tactic.ML"
-setup Meson_Tactic.setup
-
-
-subsection {* The Metis prover *}
-
-use "Tools/Sledgehammer/metis_tactics.ML"
 setup Metis_Tactics.setup
 
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/ATP_Manager/async_manager.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -0,0 +1,241 @@
+(*  Title:      HOL/Tools/ATP_Manager/async_manager.ML
+    Author:     Fabian Immler, TU Muenchen
+    Author:     Makarius
+    Author:     Jasmin Blanchette, TU Muenchen
+
+Central manager for asynchronous diagnosis tool threads.
+*)
+
+signature ASYNC_MANAGER =
+sig
+  val launch :
+    string -> bool -> Time.time -> Time.time -> string -> (unit -> string)
+    -> unit
+  val kill_threads : string -> string -> unit
+  val running_threads : string -> string -> unit
+  val thread_messages : string -> string -> int option -> unit
+end;
+
+structure Async_Manager : ASYNC_MANAGER =
+struct
+
+(** preferences **)
+
+val message_store_limit = 20;
+val message_display_limit = 5;
+
+
+(** thread management **)
+
+(* data structures over threads *)
+
+structure Thread_Heap = Heap
+(
+  type elem = Time.time * Thread.thread;
+  fun ord ((a, _), (b, _)) = Time.compare (a, b);
+);
+
+fun lookup_thread xs = AList.lookup Thread.equal xs;
+fun delete_thread xs = AList.delete Thread.equal xs;
+fun update_thread xs = AList.update Thread.equal xs;
+
+
+(* state of thread manager *)
+
+type state =
+  {manager: Thread.thread option,
+   timeout_heap: Thread_Heap.T,
+   active: (Thread.thread * (string * Time.time * Time.time * string)) list,
+   canceling: (Thread.thread * (string * Time.time * string)) list,
+   messages: (string * string) list,
+   store: (string * string) list}
+
+fun make_state manager timeout_heap active canceling messages store : state =
+  {manager = manager, timeout_heap = timeout_heap, active = active,
+   canceling = canceling, messages = messages, store = store}
+
+val global_state = Synchronized.var "async_manager"
+  (make_state NONE Thread_Heap.empty [] [] [] []);
+
+
+(* unregister thread *)
+
+fun unregister verbose message thread =
+  Synchronized.change global_state
+  (fn state as {manager, timeout_heap, active, canceling, messages, store} =>
+    (case lookup_thread active thread of
+      SOME (tool, birth_time, _, desc) =>
+        let
+          val active' = delete_thread thread active;
+          val now = Time.now ()
+          val canceling' = (thread, (tool, now, desc)) :: canceling
+          val message' =
+            desc ^ "\n" ^ message ^
+            (if verbose then
+               "Total time: " ^ Int.toString (Time.toMilliseconds
+                                          (Time.- (now, birth_time))) ^ " ms.\n"
+             else
+               "")
+          val messages' = (tool, message') :: messages;
+          val store' = (tool, message') ::
+            (if length store <= message_store_limit then store
+             else #1 (chop message_store_limit store));
+        in make_state manager timeout_heap active' canceling' messages' store' end
+    | NONE => state));
+
+
+(* main manager thread -- only one may exist *)
+
+val min_wait_time = Time.fromMilliseconds 300;
+val max_wait_time = Time.fromSeconds 10;
+
+fun replace_all bef aft =
+  let
+    fun aux seen "" = String.implode (rev seen)
+      | aux seen s =
+        if String.isPrefix bef s then
+          aux seen "" ^ aft ^ aux [] (unprefix bef s)
+        else
+          aux (String.sub (s, 0) :: seen) (String.extract (s, 1, NONE))
+  in aux [] end
+
+(* This is a workaround for Proof General's off-by-a-few sendback display bug,
+   whereby "pr" in "proof" is not highlighted. *)
+val break_into_chunks =
+  maps (space_explode "\000" o replace_all "\n\n" "\000" o snd)
+
+fun print_new_messages () =
+  case Synchronized.change_result global_state
+         (fn {manager, timeout_heap, active, canceling, messages, store} =>
+             (messages, make_state manager timeout_heap active canceling []
+                                   store)) of
+    [] => ()
+  | msgs as (tool, _) :: _ =>
+    let val ss = break_into_chunks msgs in
+      List.app priority (tool ^ ": " ^ hd ss :: tl ss)
+    end
+
+fun check_thread_manager verbose = Synchronized.change global_state
+  (fn state as {manager, timeout_heap, active, canceling, messages, store} =>
+    if (case manager of SOME thread => Thread.isActive thread | NONE => false) then state
+    else let val manager = SOME (Toplevel.thread false (fn () =>
+      let
+        fun time_limit timeout_heap =
+          (case try Thread_Heap.min timeout_heap of
+            NONE => Time.+ (Time.now (), max_wait_time)
+          | SOME (time, _) => time);
+
+        (*action: find threads whose timeout is reached, and interrupt canceling threads*)
+        fun action {manager, timeout_heap, active, canceling, messages, store} =
+          let val (timeout_threads, timeout_heap') =
+            Thread_Heap.upto (Time.now (), Thread.self ()) timeout_heap;
+          in
+            if null timeout_threads andalso null canceling then
+              NONE
+            else
+              let
+                val _ = List.app (Simple_Thread.interrupt o #1) canceling
+                val canceling' = filter (Thread.isActive o #1) canceling
+                val state' = make_state manager timeout_heap' active canceling' messages store;
+              in SOME (map #2 timeout_threads, state') end
+          end;
+      in
+        while Synchronized.change_result global_state
+          (fn state as {timeout_heap, active, canceling, messages, store, ...} =>
+            if null active andalso null canceling andalso null messages
+            then (false, make_state NONE timeout_heap active canceling messages store)
+            else (true, state))
+        do
+          (Synchronized.timed_access global_state (SOME o time_limit o #timeout_heap) action
+            |> these
+            |> List.app (unregister verbose "Timed out.\n");
+            print_new_messages ();
+            (*give threads some time to respond to interrupt*)
+            OS.Process.sleep min_wait_time)
+      end))
+    in make_state manager timeout_heap active canceling messages store end)
+
+
+(* register thread *)
+
+fun register tool verbose birth_time death_time desc thread =
+ (Synchronized.change global_state
+    (fn {manager, timeout_heap, active, canceling, messages, store} =>
+      let
+        val timeout_heap' = Thread_Heap.insert (death_time, thread) timeout_heap;
+        val active' = update_thread (thread, (tool, birth_time, death_time, desc)) active;
+        val state' = make_state manager timeout_heap' active' canceling messages store;
+      in state' end);
+  check_thread_manager verbose);
+
+
+fun launch tool verbose birth_time death_time desc f =
+  (Toplevel.thread true
+       (fn () =>
+           let
+             val self = Thread.self ()
+             val _ = register tool verbose birth_time death_time desc self
+             val message = f ()
+           in unregister verbose message self end);
+   ())
+
+
+(** user commands **)
+
+(* kill threads *)
+
+fun kill_threads tool workers = Synchronized.change global_state
+  (fn {manager, timeout_heap, active, canceling, messages, store} =>
+    let
+      val killing =
+        map_filter (fn (th, (tool', _, _, desc)) =>
+                       if tool' = tool then SOME (th, (tool', Time.now (), desc))
+                       else NONE) active
+      val state' = make_state manager timeout_heap [] (killing @ canceling) messages store;
+      val _ = if null killing then () else priority ("Killed active " ^ workers ^ ".")
+    in state' end);
+
+
+(* running threads *)
+
+fun seconds time = string_of_int (Time.toSeconds time) ^ " s"
+
+fun running_threads tool workers =
+  let
+    val {active, canceling, ...} = Synchronized.value global_state;
+
+    val now = Time.now ();
+    fun running_info (_, (tool', birth_time, death_time, desc)) =
+      if tool' = tool then
+        SOME ("Running: " ^ seconds (Time.- (now, birth_time)) ^ " -- " ^
+              seconds (Time.- (death_time, now)) ^ " to live:\n" ^ desc)
+      else
+        NONE
+    fun canceling_info (_, (tool', death_time, desc)) =
+      if tool' = tool then
+        SOME ("Trying to interrupt thread since " ^
+              seconds (Time.- (now, death_time)) ^ ":\n" ^ desc)
+      else
+        NONE
+    val running =
+      case map_filter running_info active of
+        [] => ["No " ^ workers ^ " running."]
+      | ss => "Running " ^ workers ^ ":" :: ss
+    val interrupting =
+      case map_filter canceling_info canceling of
+        [] => []
+      | ss => "Trying to interrupt the following " ^ workers ^ ":" :: ss
+  in priority (space_implode "\n\n" (running @ interrupting)) end
+
+fun thread_messages tool worker opt_limit =
+  let
+    val limit = the_default message_display_limit opt_limit;
+    val tool_store = Synchronized.value global_state
+                     |> #store |> filter (curry (op =) tool o fst)
+    val header =
+      "Recent " ^ worker ^ " messages" ^
+        (if length tool_store <= limit then ":"
+         else " (" ^ string_of_int limit ^ " displayed):");
+  in List.app priority (header :: break_into_chunks (#1 (chop limit tool_store))) end
+
+end;
--- a/src/HOL/Tools/ATP_Manager/atp_manager.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Tools/ATP_Manager/atp_manager.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -8,8 +8,8 @@
 
 signature ATP_MANAGER =
 sig
-  type name_pool = Sledgehammer_FOL_Clause.name_pool
-  type cnf_thm = Sledgehammer_Fact_Preprocessor.cnf_thm
+  type cnf_thm = Clausifier.cnf_thm
+  type name_pool = Metis_Clauses.name_pool
   type relevance_override = Sledgehammer_Fact_Filter.relevance_override
   type minimize_command = Sledgehammer_Proof_Reconstruct.minimize_command
   type params =
@@ -19,7 +19,6 @@
      atps: string list,
      full_types: bool,
      explicit_apply: bool,
-     respect_no_atp: bool,
      relevance_threshold: real,
      relevance_convergence: real,
      theory_relevant: bool option,
@@ -57,19 +56,26 @@
   val add_prover: string * prover -> theory -> theory
   val get_prover: theory -> string -> prover
   val available_atps: theory -> unit
-  val start_prover_thread:
-    params -> Time.time -> Time.time -> int -> int -> relevance_override
-    -> (string -> minimize_command) -> Proof.state -> string -> unit
+  val start_prover_thread :
+    params -> int -> int -> relevance_override -> (string -> minimize_command)
+    -> Proof.state -> string -> unit
 end;
 
 structure ATP_Manager : ATP_MANAGER =
 struct
 
-open Sledgehammer_Util
+open Metis_Clauses
 open Sledgehammer_Fact_Filter
-open Sledgehammer_HOL_Clause
 open Sledgehammer_Proof_Reconstruct
 
+(** The Sledgehammer **)
+
+val das_Tool = "Sledgehammer"
+
+fun kill_atps () = Async_Manager.kill_threads das_Tool "ATPs"
+fun running_atps () = Async_Manager.running_threads das_Tool "ATPs"
+val messages = Async_Manager.thread_messages das_Tool "ATP"
+
 (** problems, results, provers, etc. **)
 
 type params =
@@ -79,7 +85,6 @@
    atps: string list,
    full_types: bool,
    explicit_apply: bool,
-   respect_no_atp: bool,
    relevance_threshold: real,
    relevance_convergence: real,
    theory_relevant: bool option,
@@ -115,221 +120,24 @@
 type prover =
   params -> minimize_command -> Time.time -> problem -> prover_result
 
-
-(** preferences **)
-
-val message_store_limit = 20;
-val message_display_limit = 5;
-
-
-(** thread management **)
-
-(* data structures over threads *)
-
-structure Thread_Heap = Heap
-(
-  type elem = Time.time * Thread.thread;
-  fun ord ((a, _), (b, _)) = Time.compare (a, b);
-);
-
-fun lookup_thread xs = AList.lookup Thread.equal xs;
-fun delete_thread xs = AList.delete Thread.equal xs;
-fun update_thread xs = AList.update Thread.equal xs;
-
-
-(* state of thread manager *)
-
-type state =
- {manager: Thread.thread option,
-  timeout_heap: Thread_Heap.T,
-  active: (Thread.thread * (Time.time * Time.time * string)) list,
-  cancelling: (Thread.thread * (Time.time * string)) list,
-  messages: string list,
-  store: string list};
-
-fun make_state manager timeout_heap active cancelling messages store : state =
-  {manager = manager, timeout_heap = timeout_heap, active = active,
-    cancelling = cancelling, messages = messages, store = store};
-
-val global_state = Synchronized.var "atp_manager"
-  (make_state NONE Thread_Heap.empty [] [] [] []);
-
-
-(* unregister ATP thread *)
-
-fun unregister ({verbose, ...} : params) message thread =
-  Synchronized.change global_state
-  (fn state as {manager, timeout_heap, active, cancelling, messages, store} =>
-    (case lookup_thread active thread of
-      SOME (birth_time, _, desc) =>
-        let
-          val active' = delete_thread thread active;
-          val now = Time.now ()
-          val cancelling' = (thread, (now, desc)) :: cancelling;
-          val message' =
-            desc ^ "\n" ^ message ^
-            (if verbose then
-               "Total time: " ^ Int.toString (Time.toMilliseconds
-                                          (Time.- (now, birth_time))) ^ " ms.\n"
-             else
-               "")
-          val messages' = message' :: messages;
-          val store' = message' ::
-            (if length store <= message_store_limit then store
-             else #1 (chop message_store_limit store));
-        in make_state manager timeout_heap active' cancelling' messages' store' end
-    | NONE => state));
-
-
-(* main manager thread -- only one may exist *)
-
-val min_wait_time = Time.fromMilliseconds 300;
-val max_wait_time = Time.fromSeconds 10;
-
-(* This is a workaround for Proof General's off-by-a-few sendback display bug,
-   whereby "pr" in "proof" is not highlighted. *)
-val break_into_chunks =
-  map (replace_all "\n\n" "\000") #> maps (space_explode "\000")
-
-fun print_new_messages () =
-  case Synchronized.change_result global_state
-         (fn {manager, timeout_heap, active, cancelling, messages, store} =>
-             (messages, make_state manager timeout_heap active cancelling []
-                                   store)) of
-    [] => ()
-  | msgs =>
-    msgs |> break_into_chunks
-         |> (fn msg :: msgs => "Sledgehammer: " ^ msg :: msgs)
-         |> List.app priority
-
-fun check_thread_manager params = Synchronized.change global_state
-  (fn state as {manager, timeout_heap, active, cancelling, messages, store} =>
-    if (case manager of SOME thread => Thread.isActive thread | NONE => false) then state
-    else let val manager = SOME (Toplevel.thread false (fn () =>
-      let
-        fun time_limit timeout_heap =
-          (case try Thread_Heap.min timeout_heap of
-            NONE => Time.+ (Time.now (), max_wait_time)
-          | SOME (time, _) => time);
-
-        (*action: find threads whose timeout is reached, and interrupt cancelling threads*)
-        fun action {manager, timeout_heap, active, cancelling, messages, store} =
-          let val (timeout_threads, timeout_heap') =
-            Thread_Heap.upto (Time.now (), Thread.self ()) timeout_heap;
-          in
-            if null timeout_threads andalso null cancelling
-            then NONE
-            else
-              let
-                val _ = List.app (Simple_Thread.interrupt o #1) cancelling;
-                val cancelling' = filter (Thread.isActive o #1) cancelling;
-                val state' = make_state manager timeout_heap' active cancelling' messages store;
-              in SOME (map #2 timeout_threads, state') end
-          end;
-      in
-        while Synchronized.change_result global_state
-          (fn state as {timeout_heap, active, cancelling, messages, store, ...} =>
-            if null active andalso null cancelling andalso null messages
-            then (false, make_state NONE timeout_heap active cancelling messages store)
-            else (true, state))
-        do
-          (Synchronized.timed_access global_state (SOME o time_limit o #timeout_heap) action
-            |> these
-            |> List.app (unregister params "Timed out.\n");
-            print_new_messages ();
-            (*give threads some time to respond to interrupt*)
-            OS.Process.sleep min_wait_time)
-      end))
-    in make_state manager timeout_heap active cancelling messages store end);
-
-
-(* register ATP thread *)
-
-fun register params birth_time death_time (thread, desc) =
- (Synchronized.change global_state
-    (fn {manager, timeout_heap, active, cancelling, messages, store} =>
-      let
-        val timeout_heap' = Thread_Heap.insert (death_time, thread) timeout_heap;
-        val active' = update_thread (thread, (birth_time, death_time, desc)) active;
-        val state' = make_state manager timeout_heap' active' cancelling messages store;
-      in state' end);
-  check_thread_manager params);
-
-
-
-(** user commands **)
-
-(* kill ATPs *)
-
-fun kill_atps () = Synchronized.change global_state
-  (fn {manager, timeout_heap, active, cancelling, messages, store} =>
-    let
-      val killing = map (fn (th, (_, _, desc)) => (th, (Time.now (), desc))) active;
-      val state' = make_state manager timeout_heap [] (killing @ cancelling) messages store;
-      val _ = if null active then ()
-              else priority "Killed active Sledgehammer threads."
-    in state' end);
-
-
-(* running_atps *)
-
-fun seconds time = string_of_int (Time.toSeconds time) ^ "s";
-
-fun running_atps () =
-  let
-    val {active, cancelling, ...} = Synchronized.value global_state;
-
-    val now = Time.now ();
-    fun running_info (_, (birth_time, death_time, desc)) =
-      "Running: " ^ seconds (Time.- (now, birth_time)) ^ " -- " ^
-        seconds (Time.- (death_time, now)) ^ " to live:\n" ^ desc;
-    fun cancelling_info (_, (deadth_time, desc)) =
-      "Trying to interrupt thread since " ^ seconds (Time.- (now, deadth_time)) ^ ":\n" ^ desc;
-
-    val running =
-      if null active then "No ATPs running."
-      else space_implode "\n\n" ("Running ATPs:" :: map running_info active);
-    val interrupting =
-      if null cancelling then ""
-      else
-        space_implode "\n\n"
-          ("Trying to interrupt the following ATPs:" :: map cancelling_info cancelling);
-
-  in priority (running ^ "\n" ^ interrupting) end;
-
-fun messages opt_limit =
-  let
-    val limit = the_default message_display_limit opt_limit;
-    val {store, ...} = Synchronized.value global_state;
-    val header =
-      "Recent ATP messages" ^
-        (if length store <= limit then ":" else " (" ^ string_of_int limit ^ " displayed):");
-  in List.app priority (header :: break_into_chunks (#1 (chop limit store))) end
-
-
-(** The Sledgehammer **)
-
 (* named provers *)
 
-fun err_dup_prover name = error ("Duplicate prover: " ^ quote name ^ ".");
-
 structure Data = Theory_Data
 (
   type T = (prover * stamp) Symtab.table;
   val empty = Symtab.empty;
   val extend = I;
   fun merge data : T = Symtab.merge (eq_snd op =) data
-    handle Symtab.DUP name => err_dup_prover name;
+    handle Symtab.DUP name => error ("Duplicate ATP: " ^ quote name ^ ".")
 );
 
 fun add_prover (name, prover) thy =
   Data.map (Symtab.update_new (name, (prover, stamp ()))) thy
-  handle Symtab.DUP name => err_dup_prover name;
+  handle Symtab.DUP name => error ("Duplicate ATP: " ^ quote name ^ ".")
 
 fun get_prover thy name =
-  case Symtab.lookup (Data.get thy) name of
-    SOME (prover, _) => prover
-  | NONE => error ("Unknown ATP: " ^ name)
+  the (Symtab.lookup (Data.get thy) name) |> fst
+  handle Option.Option => error ("Unknown ATP: " ^ name ^ ".")
 
 fun available_atps thy =
   priority ("Available ATPs: " ^
@@ -338,28 +146,29 @@
 
 (* start prover thread *)
 
-fun start_prover_thread (params as {full_types, timeout, ...}) birth_time
-                        death_time i n relevance_override minimize_command
-                        proof_state name =
+fun start_prover_thread (params as {verbose, full_types, timeout, ...}) i n
+                        relevance_override minimize_command proof_state name =
   let
+    val birth_time = Time.now ()
+    val death_time = Time.+ (birth_time, timeout)
     val prover = get_prover (Proof.theory_of proof_state) name
     val {context = ctxt, facts, goal} = Proof.goal proof_state;
     val desc =
       "ATP " ^ quote name ^ " for subgoal " ^ string_of_int i ^ ":\n" ^
       Syntax.string_of_term ctxt (Thm.term_of (Thm.cprem_of goal i));
-    val _ = Toplevel.thread true (fn () =>
-      let
-        val _ = register params birth_time death_time (Thread.self (), desc)
-        val problem =
-          {subgoal = i, goal = (ctxt, (facts, goal)),
-           relevance_override = relevance_override, axiom_clauses = NONE,
-           filtered_clauses = NONE}
-        val message =
-          #message (prover params (minimize_command name) timeout problem)
-          handle TRIVIAL () => metis_line full_types i n []
-               | ERROR message => "Error: " ^ message ^ "\n"
-        val _ = unregister params message (Thread.self ());
-      in () end)
-  in () end
+  in
+    Async_Manager.launch das_Tool verbose birth_time death_time desc
+        (fn () =>
+            let
+              val problem =
+                {subgoal = i, goal = (ctxt, (facts, goal)),
+                 relevance_override = relevance_override, axiom_clauses = NONE,
+                 filtered_clauses = NONE}
+            in
+              prover params (minimize_command name) timeout problem |> #message
+              handle TRIVIAL () => metis_line full_types i n []
+                   | ERROR message => "Error: " ^ message ^ "\n"
+            end)
+  end
 
 end;
--- a/src/HOL/Tools/ATP_Manager/atp_systems.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Tools/ATP_Manager/atp_systems.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -22,12 +22,12 @@
 structure ATP_Systems : ATP_SYSTEMS =
 struct
 
+open Clausifier
+open Metis_Clauses
 open Sledgehammer_Util
-open Sledgehammer_Fact_Preprocessor
-open Sledgehammer_HOL_Clause
 open Sledgehammer_Fact_Filter
+open Sledgehammer_TPTP_Format
 open Sledgehammer_Proof_Reconstruct
-open Sledgehammer_TPTP_Format
 open ATP_Manager
 
 (** generic ATP **)
@@ -126,9 +126,9 @@
 fun generic_tptp_prover
         (name, {home_var, executable, arguments, proof_delims, known_failures,
                 max_axiom_clauses, prefers_theory_relevant})
-        ({debug, overlord, full_types, explicit_apply, respect_no_atp,
-          relevance_threshold, relevance_convergence, theory_relevant,
-          defs_relevant, isar_proof, isar_shrink_factor, ...} : params)
+        ({debug, overlord, full_types, explicit_apply, relevance_threshold,
+          relevance_convergence, theory_relevant, defs_relevant, isar_proof,
+          isar_shrink_factor, ...} : params)
         minimize_command timeout
         ({subgoal, goal, relevance_override, axiom_clauses, filtered_clauses}
          : problem) =
@@ -140,7 +140,7 @@
     val goal_cls = List.concat goal_clss
     val the_filtered_clauses =
       (case filtered_clauses of
-        NONE => relevant_facts full_types respect_no_atp relevance_threshold
+        NONE => relevant_facts full_types relevance_threshold
                     relevance_convergence defs_relevant max_axiom_clauses
                     (the_default prefers_theory_relevant theory_relevant)
                     relevance_override goal goal_cls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Sledgehammer/clausifier.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -0,0 +1,571 @@
+(*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
+    Author:     Jia Meng, Cambridge University Computer Laboratory
+    Author:     Jasmin Blanchette, TU Muenchen
+
+Transformation of axiom rules (elim/intro/etc) into CNF forms.
+*)
+
+signature CLAUSIFIER =
+sig
+  type cnf_thm = thm * ((string * int) * thm)
+
+  val sledgehammer_prefix: string
+  val chained_prefix: string
+  val trace: bool Unsynchronized.ref
+  val trace_msg: (unit -> string) -> unit
+  val name_thms_pair_from_ref :
+    Proof.context -> thm list -> Facts.ref -> string * thm list
+  val skolem_theory_name: string
+  val skolem_prefix: string
+  val skolem_infix: string
+  val is_skolem_const_name: string -> bool
+  val num_type_args: theory -> string -> int
+  val cnf_axiom: theory -> thm -> thm list
+  val multi_base_blacklist: string list
+  val is_theorem_bad_for_atps: thm -> bool
+  val type_has_topsort: typ -> bool
+  val cnf_rules_pairs : theory -> (string * thm) list -> cnf_thm list
+  val saturate_cache: theory -> theory option
+  val auto_saturate_cache: bool Unsynchronized.ref
+  val neg_clausify: thm -> thm list
+  val neg_conjecture_clauses:
+    Proof.context -> thm -> int -> thm list list * (string * typ) list
+  val setup: theory -> theory
+end;
+
+structure Clausifier : CLAUSIFIER =
+struct
+
+type cnf_thm = thm * ((string * int) * thm)
+
+val sledgehammer_prefix = "Sledgehammer" ^ Long_Name.separator
+
+(* Used to label theorems chained into the goal. *)
+val chained_prefix = sledgehammer_prefix ^ "chained_"
+
+val trace = Unsynchronized.ref false;
+fun trace_msg msg = if !trace then tracing (msg ()) else ();
+
+fun name_thms_pair_from_ref ctxt chained_ths xref =
+  let
+    val ths = ProofContext.get_fact ctxt xref
+    val name = Facts.string_of_ref xref
+               |> forall (member Thm.eq_thm chained_ths) ths
+                  ? prefix chained_prefix
+  in (name, ths) end
+
+val skolem_theory_name = sledgehammer_prefix ^ "Sko"
+val skolem_prefix = "sko_"
+val skolem_infix = "$"
+
+val type_has_topsort = Term.exists_subtype
+  (fn TFree (_, []) => true
+    | TVar (_, []) => true
+    | _ => false);
+
+
+(**** Transformation of Elimination Rules into First-Order Formulas****)
+
+val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
+val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
+
+(*Converts an elim-rule into an equivalent theorem that does not have the
+  predicate variable.  Leaves other theorems unchanged.  We simply instantiate the
+  conclusion variable to False.*)
+fun transform_elim th =
+  case concl_of th of    (*conclusion variable*)
+       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
+           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
+    | v as Var(_, @{typ prop}) =>
+           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
+    | _ => th;
+
+(*To enforce single-threading*)
+exception Clausify_failure of theory;
+
+
+(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
+
+(*Keep the full complexity of the original name*)
+fun flatten_name s = space_implode "_X" (Long_Name.explode s);
+
+fun skolem_name thm_name j var_name =
+  skolem_prefix ^ thm_name ^ "_" ^ Int.toString j ^
+  skolem_infix ^ (if var_name = "" then "g" else flatten_name var_name)
+
+(* Hack: Could return false positives (e.g., a user happens to declare a
+   constant called "SomeTheory.sko_means_shoe_in_$wedish". *)
+val is_skolem_const_name =
+  Long_Name.base_name
+  #> String.isPrefix skolem_prefix andf String.isSubstring skolem_infix
+
+(* The number of type arguments of a constant, zero if it's monomorphic. For
+   (instances of) Skolem pseudoconstants, this information is encoded in the
+   constant name. *)
+fun num_type_args thy s =
+  if String.isPrefix skolem_theory_name s then
+    s |> unprefix skolem_theory_name
+      |> space_explode skolem_infix |> hd
+      |> space_explode "_" |> List.last |> Int.fromString |> the
+  else
+    (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
+
+fun rhs_extra_types lhsT rhs =
+  let val lhs_vars = Term.add_tfreesT lhsT []
+      fun add_new_TFrees (TFree v) =
+            if member (op =) lhs_vars v then I else insert (op =) (TFree v)
+        | add_new_TFrees _ = I
+      val rhs_consts = fold_aterms (fn Const c => insert (op =) c | _ => I) rhs []
+  in fold (#2 #> Term.fold_atyps add_new_TFrees) rhs_consts [] end;
+
+fun skolem_type_and_args bound_T body =
+  let
+    val args1 = OldTerm.term_frees body
+    val Ts1 = map type_of args1
+    val Ts2 = rhs_extra_types (Ts1 ---> bound_T) body
+    val args2 = map (fn T => Free (gensym "vsk", T)) Ts2
+  in (Ts2 ---> Ts1 ---> bound_T, args2 @ args1) end
+
+(* Traverse a theorem, declaring Skolem function definitions. String "s" is the
+   suggested prefix for the Skolem constants. *)
+fun declare_skolem_funs s th thy =
+  let
+    val skolem_count = Unsynchronized.ref 0    (* FIXME ??? *)
+    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (s', T, p)))
+                (axs, thy) =
+        (*Existential: declare a Skolem function, then insert into body and continue*)
+        let
+          val id = skolem_name s (Unsynchronized.inc skolem_count) s'
+          val (cT, args) = skolem_type_and_args T body
+          val rhs = list_abs_free (map dest_Free args,
+                                   HOLogic.choice_const T $ body)
+                  (*Forms a lambda-abstraction over the formal parameters*)
+          val (c, thy) =
+            Sign.declare_const ((Binding.conceal (Binding.name id), cT), NoSyn) thy
+          val cdef = id ^ "_def"
+          val ((_, ax), thy) =
+            Thm.add_def true false (Binding.name cdef, Logic.mk_equals (c, rhs)) thy
+          val ax' = Drule.export_without_context ax
+        in dec_sko (subst_bound (list_comb (c, args), p)) (ax' :: axs, thy) end
+      | dec_sko (Const (@{const_name All}, _) $ (Abs (a, T, p))) thx =
+        (*Universal quant: insert a free variable into body and continue*)
+        let val fname = Name.variant (OldTerm.add_term_names (p, [])) a
+        in dec_sko (subst_bound (Free (fname, T), p)) thx end
+      | dec_sko (@{const "op &"} $ p $ q) thx = dec_sko q (dec_sko p thx)
+      | dec_sko (@{const "op |"} $ p $ q) thx = dec_sko q (dec_sko p thx)
+      | dec_sko (@{const Trueprop} $ p) thx = dec_sko p thx
+      | dec_sko _ thx = thx
+  in dec_sko (prop_of th) ([], thy) end
+
+fun mk_skolem_id t =
+  let val T = fastype_of t in
+    Const (@{const_name skolem_id}, T --> T) $ t
+  end
+
+fun quasi_beta_eta_contract (Abs (s, T, t')) =
+    Abs (s, T, quasi_beta_eta_contract t')
+  | quasi_beta_eta_contract t = Envir.beta_eta_contract t
+
+(*Traverse a theorem, accumulating Skolem function definitions.*)
+fun assume_skolem_funs s th =
+  let
+    val skolem_count = Unsynchronized.ref 0   (* FIXME ??? *)
+    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (s', T, p))) defs =
+        (*Existential: declare a Skolem function, then insert into body and continue*)
+        let
+          val skos = map (#1 o Logic.dest_equals) defs  (*existing sko fns*)
+          val args = subtract (op =) skos (OldTerm.term_frees body) (*the formal parameters*)
+          val Ts = map type_of args
+          val cT = Ts ---> T (* FIXME: use "skolem_type_and_args" *)
+          val id = skolem_name s (Unsynchronized.inc skolem_count) s'
+          val c = Free (id, cT) (* FIXME: needed? ### *)
+          (* Forms a lambda-abstraction over the formal parameters *)
+          val rhs =
+            list_abs_free (map dest_Free args,
+                           HOLogic.choice_const T
+                           $ quasi_beta_eta_contract body)
+            |> mk_skolem_id
+          val def = Logic.mk_equals (c, rhs)
+          val comb = list_comb (rhs, args)
+        in dec_sko (subst_bound (comb, p)) (def :: defs) end
+      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) defs =
+        (*Universal quant: insert a free variable into body and continue*)
+        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
+        in dec_sko (subst_bound (Free(fname,T), p)) defs end
+      | dec_sko (@{const "op &"} $ p $ q) defs = dec_sko q (dec_sko p defs)
+      | dec_sko (@{const "op |"} $ p $ q) defs = dec_sko q (dec_sko p defs)
+      | dec_sko (@{const Trueprop} $ p) defs = dec_sko p defs
+      | dec_sko _ defs = defs
+  in  dec_sko (prop_of th) []  end;
+
+
+(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
+
+(*Returns the vars of a theorem*)
+fun vars_of_thm th =
+  map (Thm.cterm_of (theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th []);
+
+val fun_cong_all = @{thm expand_fun_eq [THEN iffD1]}
+
+(* Removes the lambdas from an equation of the form t = (%x. u). *)
+fun extensionalize th =
+  case prop_of th of
+    _ $ (Const (@{const_name "op ="}, Type (_, [Type (@{type_name fun}, _), _]))
+         $ _ $ Abs (s, _, _)) => extensionalize (th RS fun_cong_all)
+  | _ => th
+
+fun is_quasi_lambda_free (Const (@{const_name skolem_id}, _) $ _) = true
+  | is_quasi_lambda_free (t1 $ t2) =
+    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
+  | is_quasi_lambda_free (Abs _) = false
+  | is_quasi_lambda_free _ = true
+
+val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
+val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
+val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
+
+(*FIXME: requires more use of cterm constructors*)
+fun abstract ct =
+  let
+      val thy = theory_of_cterm ct
+      val Abs(x,_,body) = term_of ct
+      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
+      val cxT = ctyp_of thy xT and cbodyT = ctyp_of thy bodyT
+      fun makeK() = instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)] @{thm abs_K}
+  in
+      case body of
+          Const _ => makeK()
+        | Free _ => makeK()
+        | Var _ => makeK()  (*though Var isn't expected*)
+        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
+        | rator$rand =>
+            if loose_bvar1 (rator,0) then (*C or S*)
+               if loose_bvar1 (rand,0) then (*S*)
+                 let val crator = cterm_of thy (Abs(x,xT,rator))
+                     val crand = cterm_of thy (Abs(x,xT,rand))
+                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
+                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
+                 in
+                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
+                 end
+               else (*C*)
+                 let val crator = cterm_of thy (Abs(x,xT,rator))
+                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
+                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
+                 in
+                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
+                 end
+            else if loose_bvar1 (rand,0) then (*B or eta*)
+               if rand = Bound 0 then Thm.eta_conversion ct
+               else (*B*)
+                 let val crand = cterm_of thy (Abs(x,xT,rand))
+                     val crator = cterm_of thy rator
+                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
+                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
+                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
+            else makeK()
+        | _ => raise Fail "abstract: Bad term"
+  end;
+
+(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
+fun do_introduce_combinators ct =
+  if is_quasi_lambda_free (term_of ct) then
+    Thm.reflexive ct
+  else case term_of ct of
+    Abs _ =>
+    let
+      val (cv, cta) = Thm.dest_abs NONE ct
+      val (v, _) = dest_Free (term_of cv)
+      val u_th = do_introduce_combinators cta
+      val cu = Thm.rhs_of u_th
+      val comb_eq = abstract (Thm.cabs cv cu)
+    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
+  | _ $ _ =>
+    let val (ct1, ct2) = Thm.dest_comb ct in
+        Thm.combination (do_introduce_combinators ct1)
+                        (do_introduce_combinators ct2)
+    end
+
+fun introduce_combinators th =
+  if is_quasi_lambda_free (prop_of th) then
+    th
+  else
+    let
+      val th = Drule.eta_contraction_rule th
+      val eqth = do_introduce_combinators (cprop_of th)
+    in Thm.equal_elim eqth th end
+    handle THM (msg, _, _) =>
+           (warning ("Error in the combinator translation of " ^
+                     Display.string_of_thm_without_context th ^
+                     "\nException message: " ^ msg ^ ".");
+            (* A type variable of sort "{}" will make abstraction fail. *)
+            TrueI)
+
+(*cterms are used throughout for efficiency*)
+val cTrueprop = Thm.cterm_of @{theory HOL} HOLogic.Trueprop;
+
+(*cterm version of mk_cTrueprop*)
+fun c_mkTrueprop A = Thm.capply cTrueprop A;
+
+(*Given an abstraction over n variables, replace the bound variables by free
+  ones. Return the body, along with the list of free variables.*)
+fun c_variant_abs_multi (ct0, vars) =
+      let val (cv,ct) = Thm.dest_abs NONE ct0
+      in  c_variant_abs_multi (ct, cv::vars)  end
+      handle CTERM _ => (ct0, rev vars);
+
+(*Given the definition of a Skolem function, return a theorem to replace
+  an existential formula by a use of that function.
+   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
+fun skolem_theorem_of_def inline def =
+  let
+      val (c, rhs) = def |> Drule.legacy_freeze_thaw |> #1 |> cprop_of
+                         |> Thm.dest_equals
+      val rhs' = rhs |> inline ? (snd o Thm.dest_comb)
+      val (ch, frees) = c_variant_abs_multi (rhs', [])
+      val (chilbert, cabs) = ch |> Thm.dest_comb
+      val thy = Thm.theory_of_cterm chilbert
+      val t = Thm.term_of chilbert
+      val T =
+        case t of
+          Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
+        | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [t])
+      val cex = Thm.cterm_of thy (HOLogic.exists_const T)
+      val ex_tm = c_mkTrueprop (Thm.capply cex cabs)
+      and conc =
+        Drule.list_comb (if inline then rhs else c, frees)
+        |> Drule.beta_conv cabs |> c_mkTrueprop
+      fun tacf [prem] =
+        (if inline then rewrite_goals_tac @{thms skolem_id_def_raw}
+         else rewrite_goals_tac [def])
+        THEN rtac ((prem |> inline ? rewrite_rule @{thms skolem_id_def_raw})
+                   RS @{thm someI_ex}) 1
+  in  Goal.prove_internal [ex_tm] conc tacf
+       |> forall_intr_list frees
+       |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
+       |> Thm.varifyT_global
+  end;
+
+
+(*Converts an Isabelle theorem (intro, elim or simp format, even higher-order) into NNF.*)
+fun to_nnf th ctxt0 =
+  let val th1 = th |> transform_elim |> zero_var_indexes
+      val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
+      val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
+                    |> extensionalize
+                    |> Meson.make_nnf ctxt
+  in  (th3, ctxt)  end;
+
+(*Generate Skolem functions for a theorem supplied in nnf*)
+fun skolem_theorems_of_assume s th =
+  map (skolem_theorem_of_def true o Thm.assume o cterm_of (theory_of_thm th))
+      (assume_skolem_funs s th)
+
+
+(*** Blacklisting (more in "Sledgehammer_Fact_Filter") ***)
+
+val max_lambda_nesting = 3
+
+fun term_has_too_many_lambdas max (t1 $ t2) =
+    exists (term_has_too_many_lambdas max) [t1, t2]
+  | term_has_too_many_lambdas max (Abs (_, _, t)) =
+    max = 0 orelse term_has_too_many_lambdas (max - 1) t
+  | term_has_too_many_lambdas _ _ = false
+
+fun is_formula_type T = (T = HOLogic.boolT orelse T = propT)
+
+(* Don't count nested lambdas at the level of formulas, since they are
+   quantifiers. *)
+fun formula_has_too_many_lambdas Ts (Abs (_, T, t)) =
+    formula_has_too_many_lambdas (T :: Ts) t
+  | formula_has_too_many_lambdas Ts t =
+    if is_formula_type (fastype_of1 (Ts, t)) then
+      exists (formula_has_too_many_lambdas Ts) (#2 (strip_comb t))
+    else
+      term_has_too_many_lambdas max_lambda_nesting t
+
+(* The max apply depth of any "metis" call in "Metis_Examples" (on 31-10-2007)
+   was 11. *)
+val max_apply_depth = 15
+
+fun apply_depth (f $ t) = Int.max (apply_depth f, apply_depth t + 1)
+  | apply_depth (Abs (_, _, t)) = apply_depth t
+  | apply_depth _ = 0
+
+fun is_formula_too_complex t =
+  apply_depth t > max_apply_depth orelse Meson.too_many_clauses NONE t orelse
+  formula_has_too_many_lambdas [] t
+
+fun is_strange_thm th =
+  case head_of (concl_of th) of
+      Const (a, _) => (a <> @{const_name Trueprop} andalso
+                       a <> @{const_name "=="})
+    | _ => false;
+
+fun is_theorem_bad_for_atps thm =
+  let val t = prop_of thm in
+    is_formula_too_complex t orelse exists_type type_has_topsort t orelse
+    is_strange_thm thm
+  end
+
+(* FIXME: put other record thms here, or declare as "no_atp" *)
+val multi_base_blacklist =
+  ["defs", "select_defs", "update_defs", "induct", "inducts", "split", "splits",
+   "split_asm", "cases", "ext_cases"];
+
+fun fake_name th =
+  if Thm.has_name_hint th then flatten_name (Thm.get_name_hint th)
+  else gensym "unknown_thm_";
+
+(*Skolemize a named theorem, with Skolem functions as additional premises.*)
+fun skolemize_theorem s th =
+  if member (op =) multi_base_blacklist (Long_Name.base_name s) orelse
+     is_theorem_bad_for_atps th then
+    []
+  else
+    let
+      val ctxt0 = Variable.global_thm_context th
+      val (nnfth, ctxt) = to_nnf th ctxt0
+      val defs = skolem_theorems_of_assume s nnfth
+      val (cnfs, ctxt) = Meson.make_cnf defs nnfth ctxt
+    in
+      cnfs |> map introduce_combinators
+           |> Variable.export ctxt ctxt0
+           |> Meson.finish_cnf
+    end
+    handle THM _ => []
+
+(*The cache prevents repeated clausification of a theorem, and also repeated declaration of
+  Skolem functions.*)
+structure ThmCache = Theory_Data
+(
+  type T = thm list Thmtab.table * unit Symtab.table;
+  val empty = (Thmtab.empty, Symtab.empty);
+  val extend = I;
+  fun merge ((cache1, seen1), (cache2, seen2)) : T =
+    (Thmtab.merge (K true) (cache1, cache2), Symtab.merge (K true) (seen1, seen2));
+);
+
+val lookup_cache = Thmtab.lookup o #1 o ThmCache.get;
+val already_seen = Symtab.defined o #2 o ThmCache.get;
+
+val update_cache = ThmCache.map o apfst o Thmtab.update;
+fun mark_seen name = ThmCache.map (apsnd (Symtab.update (name, ())));
+
+(* Convert Isabelle theorems into axiom clauses. *)
+fun cnf_axiom thy th0 =
+  let val th = Thm.transfer thy th0 in
+    case lookup_cache thy th of
+      SOME cls => cls
+    | NONE => map Thm.close_derivation (skolemize_theorem (fake_name th) th)
+  end;
+
+
+(**** Translate a set of theorems into CNF ****)
+
+(*The combination of rev and tail recursion preserves the original order*)
+fun cnf_rules_pairs thy =
+  let
+    fun do_one _ [] = []
+      | do_one ((name, k), th) (cls :: clss) =
+        (cls, ((name, k), th)) :: do_one ((name, k + 1), th) clss
+    fun do_all pairs [] = pairs
+      | do_all pairs ((name, th) :: ths) =
+        let
+          val new_pairs = do_one ((name, 0), th) (cnf_axiom thy th)
+                          handle THM _ => []
+        in do_all (new_pairs @ pairs) ths end
+  in do_all [] o rev end
+
+
+(**** Convert all facts of the theory into FOL or HOL clauses ****)
+
+local
+
+fun skolem_def (name, th) thy =
+  let val ctxt0 = Variable.global_thm_context th in
+    case try (to_nnf th) ctxt0 of
+      NONE => (NONE, thy)
+    | SOME (nnfth, ctxt) =>
+      let val (defs, thy') = declare_skolem_funs (flatten_name name) nnfth thy
+      in (SOME (th, ctxt0, ctxt, nnfth, defs), thy') end
+  end;
+
+fun skolem_cnfs (th, ctxt0, ctxt, nnfth, defs) =
+  let
+    val (cnfs, ctxt) =
+      Meson.make_cnf (map (skolem_theorem_of_def false) defs) nnfth ctxt
+    val cnfs' = cnfs
+      |> map introduce_combinators
+      |> Variable.export ctxt ctxt0
+      |> Meson.finish_cnf
+      |> map Thm.close_derivation;
+    in (th, cnfs') end;
+
+in
+
+fun saturate_cache thy =
+  let
+    val facts = PureThy.facts_of thy;
+    val new_facts = (facts, []) |-> Facts.fold_static (fn (name, ths) =>
+      if Facts.is_concealed facts name orelse already_seen thy name then I
+      else cons (name, ths));
+    val new_thms = (new_facts, []) |-> fold (fn (name, ths) =>
+      if member (op =) multi_base_blacklist (Long_Name.base_name name) then
+        I
+      else
+        fold_index (fn (i, th) =>
+          if is_theorem_bad_for_atps th orelse
+             is_some (lookup_cache thy th) then
+            I
+          else
+            cons (name ^ "_" ^ string_of_int (i + 1), Thm.transfer thy th)) ths)
+  in
+    if null new_facts then
+      NONE
+    else
+      let
+        val (defs, thy') = thy
+          |> fold (mark_seen o #1) new_facts
+          |> fold_map skolem_def (sort_distinct (Thm.thm_ord o pairself snd) new_thms)
+          |>> map_filter I;
+        val cache_entries = Par_List.map skolem_cnfs defs;
+      in SOME (fold update_cache cache_entries thy') end
+  end;
+
+end;
+
+(* For emergency use where the Skolem cache causes problems. *)
+val auto_saturate_cache = Unsynchronized.ref true
+
+fun conditionally_saturate_cache thy =
+  if !auto_saturate_cache then saturate_cache thy else NONE
+
+
+(*** Converting a subgoal into negated conjecture clauses. ***)
+
+fun neg_skolemize_tac ctxt =
+  EVERY' [rtac ccontr, Object_Logic.atomize_prems_tac, Meson.skolemize_tac ctxt]
+
+val neg_clausify =
+  single
+  #> Meson.make_clauses_unsorted
+  #> map introduce_combinators
+  #> Meson.finish_cnf
+
+fun neg_conjecture_clauses ctxt st0 n =
+  let
+    (* "Option" is thrown if the assumptions contain schematic variables. *)
+    val st = Seq.hd (neg_skolemize_tac ctxt n st0) handle Option.Option => st0
+    val ({params, prems, ...}, _) =
+      Subgoal.focus (Variable.set_body false ctxt) n st
+  in (map neg_clausify prems, map (dest_Free o term_of o #2) params) end
+
+
+(** setup **)
+
+val setup =
+  perhaps conditionally_saturate_cache
+  #> Theory.at_end conditionally_saturate_cache
+
+end;
--- a/src/HOL/Tools/Sledgehammer/meson_tactic.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Tools/Sledgehammer/meson_tactic.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -14,11 +14,9 @@
 structure Meson_Tactic : MESON_TACTIC =
 struct
 
-open Sledgehammer_Fact_Preprocessor
-
 (*Expand all new definitions of abstraction or Skolem functions in a proof state.*)
 fun is_absko (Const (@{const_name "=="}, _) $ Free (a, _) $ _) =
-    String.isPrefix skolem_prefix a
+    String.isPrefix Clausifier.skolem_prefix a
   | is_absko _ = false;
 
 fun is_okdef xs (Const (@{const_name "=="}, _) $ t $ _) =   (*Definition of Free, not in certain terms*)
@@ -43,7 +41,10 @@
   let
     val thy = ProofContext.theory_of ctxt
     val ctxt0 = Classical.put_claset HOL_cs ctxt
-  in (Meson.meson_tac ctxt0 (maps (cnf_axiom thy) ths) i THEN expand_defs_tac st0) st0 end;
+  in
+    (Meson.meson_tac ctxt0 (maps (Clausifier.cnf_axiom thy) ths) i
+     THEN expand_defs_tac st0) st0
+  end
 
 val setup =
   Method.setup @{binding meson} (Attrib.thms >> (fn ths => fn ctxt =>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Sledgehammer/metis_clauses.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -0,0 +1,685 @@
+(*  Title:      HOL/Tools/Sledgehammer/metis_clauses.ML
+    Author:     Jia Meng, Cambridge University Computer Laboratory
+    Author:     Jasmin Blanchette, TU Muenchen
+
+Storing/printing FOL clauses and arity clauses.  Typed equality is
+treated differently.
+*)
+
+signature METIS_CLAUSES =
+sig
+  type cnf_thm = Clausifier.cnf_thm
+  type name = string * string
+  type name_pool = string Symtab.table * string Symtab.table
+  datatype kind = Axiom | Conjecture
+  datatype type_literal =
+    TyLitVar of string * name |
+    TyLitFree of string * name
+  datatype arLit =
+      TConsLit of class * string * string list
+    | TVarLit of class * string
+  datatype arity_clause = ArityClause of
+   {axiom_name: string, conclLit: arLit, premLits: arLit list}
+  datatype classrel_clause = ClassrelClause of
+   {axiom_name: string, subclass: class, superclass: class}
+  datatype combtyp =
+    TyVar of name |
+    TyFree of name |
+    TyConstr of name * combtyp list
+  datatype combterm =
+    CombConst of name * combtyp * combtyp list (* Const and Free *) |
+    CombVar of name * combtyp |
+    CombApp of combterm * combterm
+  datatype literal = Literal of bool * combterm
+  datatype hol_clause =
+    HOLClause of {clause_id: int, axiom_name: string, th: thm, kind: kind,
+                  literals: literal list, ctypes_sorts: typ list}
+  exception TRIVIAL of unit
+
+  val type_wrapper_name : string
+  val schematic_var_prefix: string
+  val fixed_var_prefix: string
+  val tvar_prefix: string
+  val tfree_prefix: string
+  val const_prefix: string
+  val tconst_prefix: string
+  val class_prefix: string
+  val union_all: ''a list list -> ''a list
+  val invert_const: string -> string
+  val ascii_of: string -> string
+  val undo_ascii_of: string -> string
+  val strip_prefix: string -> string -> string option
+  val make_schematic_var : string * int -> string
+  val make_fixed_var : string -> string
+  val make_schematic_type_var : string * int -> string
+  val make_fixed_type_var : string -> string
+  val make_fixed_const : string -> string
+  val make_fixed_type_const : string -> string
+  val make_type_class : string -> string
+  val empty_name_pool : bool -> name_pool option
+  val pool_map : ('a -> 'b -> 'c * 'b) -> 'a list -> 'b -> 'c list * 'b
+  val nice_name : name -> name_pool option -> string * name_pool option
+  val type_literals_for_types : typ list -> type_literal list
+  val make_classrel_clauses: theory -> class list -> class list -> classrel_clause list
+  val make_arity_clauses: theory -> string list -> class list -> class list * arity_clause list
+  val type_of_combterm : combterm -> combtyp
+  val strip_combterm_comb : combterm -> combterm * combterm list
+  val literals_of_term : theory -> term -> literal list * typ list
+  val conceal_skolem_somes :
+    int -> (string * term) list -> term -> (string * term) list * term
+  val is_quasi_fol_theorem : theory -> thm -> bool
+  val make_clause_table : (thm * 'a) list -> (thm * 'a) Termtab.table
+  val tfree_classes_of_terms : term list -> string list
+  val tvar_classes_of_terms : term list -> string list
+  val type_consts_of_terms : theory -> term list -> string list
+  val prepare_clauses :
+    bool -> thm list -> cnf_thm list -> cnf_thm list -> theory
+    -> string vector
+       * (hol_clause list * hol_clause list * hol_clause list * hol_clause list
+          * classrel_clause list * arity_clause list)
+end
+
+structure Metis_Clauses : METIS_CLAUSES =
+struct
+
+open Clausifier
+
+val type_wrapper_name = "ti"
+
+val schematic_var_prefix = "V_";
+val fixed_var_prefix = "v_";
+
+val tvar_prefix = "T_";
+val tfree_prefix = "t_";
+
+val classrel_clause_prefix = "clsrel_";
+
+val const_prefix = "c_";
+val tconst_prefix = "tc_";
+val class_prefix = "class_";
+
+fun union_all xss = fold (union (op =)) xss []
+
+(* Readable names for the more common symbolic functions. Do not mess with the
+   last nine entries of the table unless you know what you are doing. *)
+val const_trans_table =
+  Symtab.make [(@{const_name "op ="}, "equal"),
+               (@{const_name "op &"}, "and"),
+               (@{const_name "op |"}, "or"),
+               (@{const_name "op -->"}, "implies"),
+               (@{const_name "op :"}, "in"),
+               (@{const_name fequal}, "fequal"),
+               (@{const_name COMBI}, "COMBI"),
+               (@{const_name COMBK}, "COMBK"),
+               (@{const_name COMBB}, "COMBB"),
+               (@{const_name COMBC}, "COMBC"),
+               (@{const_name COMBS}, "COMBS"),
+               (@{const_name True}, "True"),
+               (@{const_name False}, "False"),
+               (@{const_name If}, "If"),
+               (@{type_name "*"}, "prod"),
+               (@{type_name "+"}, "sum")]
+
+(* Invert the table of translations between Isabelle and ATPs. *)
+val const_trans_table_inv =
+  Symtab.update ("fequal", @{const_name "op ="})
+                (Symtab.make (map swap (Symtab.dest const_trans_table)))
+
+val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
+
+(*Escaping of special characters.
+  Alphanumeric characters are left unchanged.
+  The character _ goes to __
+  Characters in the range ASCII space to / go to _A to _P, respectively.
+  Other printing characters go to _nnn where nnn is the decimal ASCII code.*)
+val A_minus_space = Char.ord #"A" - Char.ord #" ";
+
+fun stringN_of_int 0 _ = ""
+  | stringN_of_int k n = stringN_of_int (k-1) (n div 10) ^ Int.toString (n mod 10);
+
+fun ascii_of_c c =
+  if Char.isAlphaNum c then String.str c
+  else if c = #"_" then "__"
+  else if #" " <= c andalso c <= #"/"
+       then "_" ^ String.str (Char.chr (Char.ord c + A_minus_space))
+  else if Char.isPrint c
+       then ("_" ^ stringN_of_int 3 (Char.ord c))  (*fixed width, in case more digits follow*)
+  else ""
+
+val ascii_of = String.translate ascii_of_c;
+
+(** Remove ASCII armouring from names in proof files **)
+
+(*We don't raise error exceptions because this code can run inside the watcher.
+  Also, the errors are "impossible" (hah!)*)
+fun undo_ascii_aux rcs [] = String.implode(rev rcs)
+  | undo_ascii_aux rcs [#"_"] = undo_ascii_aux (#"_"::rcs) []  (*ERROR*)
+      (*Three types of _ escapes: __, _A to _P, _nnn*)
+  | undo_ascii_aux rcs (#"_" :: #"_" :: cs) = undo_ascii_aux (#"_"::rcs) cs
+  | undo_ascii_aux rcs (#"_" :: c :: cs) =
+      if #"A" <= c andalso c<= #"P"  (*translation of #" " to #"/"*)
+      then undo_ascii_aux (Char.chr(Char.ord c - A_minus_space) :: rcs) cs
+      else
+        let val digits = List.take (c::cs, 3) handle Subscript => []
+        in
+            case Int.fromString (String.implode digits) of
+                NONE => undo_ascii_aux (c:: #"_"::rcs) cs  (*ERROR*)
+              | SOME n => undo_ascii_aux (Char.chr n :: rcs) (List.drop (cs, 2))
+        end
+  | undo_ascii_aux rcs (c::cs) = undo_ascii_aux (c::rcs) cs;
+
+val undo_ascii_of = undo_ascii_aux [] o String.explode;
+
+(* If string s has the prefix s1, return the result of deleting it,
+   un-ASCII'd. *)
+fun strip_prefix s1 s =
+  if String.isPrefix s1 s then
+    SOME (undo_ascii_of (String.extract (s, size s1, NONE)))
+  else
+    NONE
+
+(*Remove the initial ' character from a type variable, if it is present*)
+fun trim_type_var s =
+  if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
+  else error ("trim_type: Malformed type variable encountered: " ^ s);
+
+fun ascii_of_indexname (v,0) = ascii_of v
+  | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ Int.toString i;
+
+fun make_schematic_var v = schematic_var_prefix ^ (ascii_of_indexname v);
+fun make_fixed_var x = fixed_var_prefix ^ (ascii_of x);
+
+fun make_schematic_type_var (x,i) =
+      tvar_prefix ^ (ascii_of_indexname (trim_type_var x,i));
+fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x));
+
+fun lookup_const c =
+  case Symtab.lookup const_trans_table c of
+    SOME c' => c'
+  | NONE => ascii_of c
+
+(* "op =" MUST BE "equal" because it's built into ATPs. *)
+fun make_fixed_const @{const_name "op ="} = "equal"
+  | make_fixed_const c = const_prefix ^ lookup_const c
+
+fun make_fixed_type_const c = tconst_prefix ^ lookup_const c
+
+fun make_type_class clas = class_prefix ^ ascii_of clas;
+
+
+(**** name pool ****)
+ 
+type name = string * string
+type name_pool = string Symtab.table * string Symtab.table
+
+fun empty_name_pool readable_names =
+  if readable_names then SOME (`I Symtab.empty) else NONE
+
+fun pool_fold f xs z = pair z #> fold_rev (fn x => uncurry (f x)) xs
+fun pool_map f xs =
+  pool_fold (fn x => fn ys => fn pool => f x pool |>> (fn y => y :: ys)) xs []
+
+fun add_nice_name full_name nice_prefix j the_pool =
+  let
+    val nice_name = nice_prefix ^ (if j = 0 then "" else "_" ^ Int.toString j)
+  in
+    case Symtab.lookup (snd the_pool) nice_name of
+      SOME full_name' =>
+      if full_name = full_name' then (nice_name, the_pool)
+      else add_nice_name full_name nice_prefix (j + 1) the_pool
+    | NONE =>
+      (nice_name, (Symtab.update_new (full_name, nice_name) (fst the_pool),
+                   Symtab.update_new (nice_name, full_name) (snd the_pool)))
+  end
+
+fun translate_first_char f s =
+  String.str (f (String.sub (s, 0))) ^ String.extract (s, 1, NONE)
+
+fun readable_name full_name s =
+  let
+    val s = s |> Long_Name.base_name |> Name.desymbolize false
+    val s' = s |> explode |> rev |> dropwhile (curry (op =) "'")
+    val s' =
+      (s' |> rev
+          |> implode
+          |> String.translate
+                 (fn c => if Char.isAlphaNum c orelse c = #"_" then String.str c
+                          else ""))
+      ^ replicate_string (String.size s - length s') "_"
+    val s' =
+      if s' = "" orelse not (Char.isAlpha (String.sub (s', 0))) then "X" ^ s'
+      else s'
+    (* Avoid "equal", since it's built into ATPs; and "op" is very ambiguous
+       ("op &", "op |", etc.). *)
+    val s' = if s' = "equal" orelse s' = "op" then full_name else s'
+  in
+    case (Char.isLower (String.sub (full_name, 0)),
+          Char.isLower (String.sub (s', 0))) of
+      (true, false) => translate_first_char Char.toLower s'
+    | (false, true) => translate_first_char Char.toUpper s'
+    | _ => s'
+  end
+
+fun nice_name (full_name, _) NONE = (full_name, NONE)
+  | nice_name (full_name, desired_name) (SOME the_pool) =
+    case Symtab.lookup (fst the_pool) full_name of
+      SOME nice_name => (nice_name, SOME the_pool)
+    | NONE => add_nice_name full_name (readable_name full_name desired_name) 0
+                            the_pool
+              |> apsnd SOME
+
+(**** Definitions and functions for FOL clauses for TPTP format output ****)
+
+datatype kind = Axiom | Conjecture
+
+(**** Isabelle FOL clauses ****)
+
+(* The first component is the type class; the second is a TVar or TFree. *)
+datatype type_literal =
+  TyLitVar of string * name |
+  TyLitFree of string * name
+
+exception CLAUSE of string * term;
+
+(*Make literals for sorted type variables*)
+fun sorts_on_typs_aux (_, [])   = []
+  | sorts_on_typs_aux ((x,i),  s::ss) =
+      let val sorts = sorts_on_typs_aux ((x,i), ss)
+      in
+          if s = "HOL.type" then sorts
+          else if i = ~1 then TyLitFree (make_type_class s, `make_fixed_type_var x) :: sorts
+          else TyLitVar (make_type_class s, (make_schematic_type_var (x,i), x)) :: sorts
+      end;
+
+fun sorts_on_typs (TFree (a,s)) = sorts_on_typs_aux ((a,~1),s)
+  | sorts_on_typs (TVar (v,s))  = sorts_on_typs_aux (v,s);
+
+(*Given a list of sorted type variables, return a list of type literals.*)
+fun type_literals_for_types Ts =
+  fold (union (op =)) (map sorts_on_typs Ts) []
+
+(** make axiom and conjecture clauses. **)
+
+(**** Isabelle arities ****)
+
+datatype arLit = TConsLit of class * string * string list
+               | TVarLit of class * string;
+
+datatype arity_clause =
+  ArityClause of {axiom_name: string, conclLit: arLit, premLits: arLit list}
+
+
+fun gen_TVars 0 = []
+  | gen_TVars n = ("T_" ^ Int.toString n) :: gen_TVars (n-1);
+
+fun pack_sort(_,[])  = []
+  | pack_sort(tvar, "HOL.type"::srt) = pack_sort(tvar, srt)   (*IGNORE sort "type"*)
+  | pack_sort(tvar, cls::srt) =  (cls, tvar) :: pack_sort(tvar, srt);
+
+(*Arity of type constructor tcon :: (arg1,...,argN)res*)
+fun make_axiom_arity_clause (tcons, axiom_name, (cls,args)) =
+   let val tvars = gen_TVars (length args)
+       val tvars_srts = ListPair.zip (tvars,args)
+   in
+     ArityClause {axiom_name = axiom_name, 
+                  conclLit = TConsLit (cls, make_fixed_type_const tcons, tvars),
+                  premLits = map TVarLit (union_all(map pack_sort tvars_srts))}
+   end;
+
+
+(**** Isabelle class relations ****)
+
+datatype classrel_clause =
+  ClassrelClause of {axiom_name: string, subclass: class, superclass: class}
+
+(*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
+fun class_pairs _ [] _ = []
+  | class_pairs thy subs supers =
+      let
+        val class_less = Sorts.class_less (Sign.classes_of thy)
+        fun add_super sub super = class_less (sub, super) ? cons (sub, super)
+        fun add_supers sub = fold (add_super sub) supers
+      in fold add_supers subs [] end
+
+fun make_classrel_clause (sub,super) =
+  ClassrelClause {axiom_name = classrel_clause_prefix ^ ascii_of sub ^ "_" ^
+                               ascii_of super,
+                  subclass = make_type_class sub,
+                  superclass = make_type_class super};
+
+fun make_classrel_clauses thy subs supers =
+  map make_classrel_clause (class_pairs thy subs supers);
+
+
+(** Isabelle arities **)
+
+fun arity_clause _ _ (_, []) = []
+  | arity_clause seen n (tcons, ("HOL.type",_)::ars) =  (*ignore*)
+      arity_clause seen n (tcons,ars)
+  | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
+      if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
+          make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ Int.toString n, ar) ::
+          arity_clause seen (n+1) (tcons,ars)
+      else
+          make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
+          arity_clause (class::seen) n (tcons,ars)
+
+fun multi_arity_clause [] = []
+  | multi_arity_clause ((tcons, ars) :: tc_arlists) =
+      arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
+
+(*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
+  provided its arguments have the corresponding sorts.*)
+fun type_class_pairs thy tycons classes =
+  let val alg = Sign.classes_of thy
+      fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
+      fun add_class tycon class =
+        cons (class, domain_sorts tycon class)
+        handle Sorts.CLASS_ERROR _ => I
+      fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
+  in  map try_classes tycons  end;
+
+(*Proving one (tycon, class) membership may require proving others, so iterate.*)
+fun iter_type_class_pairs _ _ [] = ([], [])
+  | iter_type_class_pairs thy tycons classes =
+      let val cpairs = type_class_pairs thy tycons classes
+          val newclasses = union_all (union_all (union_all (map (map #2 o #2) cpairs)))
+            |> subtract (op =) classes |> subtract (op =) HOLogic.typeS
+          val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
+      in (union (op =) classes' classes, union (op =) cpairs' cpairs) end;
+
+fun make_arity_clauses thy tycons classes =
+  let val (classes', cpairs) = iter_type_class_pairs thy tycons classes
+  in  (classes', multi_arity_clause cpairs)  end;
+
+datatype combtyp =
+  TyVar of name |
+  TyFree of name |
+  TyConstr of name * combtyp list
+
+datatype combterm =
+  CombConst of name * combtyp * combtyp list (* Const and Free *) |
+  CombVar of name * combtyp |
+  CombApp of combterm * combterm
+
+datatype literal = Literal of bool * combterm
+
+datatype hol_clause =
+  HOLClause of {clause_id: int, axiom_name: string, th: thm, kind: kind,
+                literals: literal list, ctypes_sorts: typ list}
+
+(*********************************************************************)
+(* convert a clause with type Term.term to a clause with type clause *)
+(*********************************************************************)
+
+(*Result of a function type; no need to check that the argument type matches.*)
+fun result_type (TyConstr (_, [_, tp2])) = tp2
+  | result_type _ = raise Fail "non-function type"
+
+fun type_of_combterm (CombConst (_, tp, _)) = tp
+  | type_of_combterm (CombVar (_, tp)) = tp
+  | type_of_combterm (CombApp (t1, _)) = result_type (type_of_combterm t1)
+
+(*gets the head of a combinator application, along with the list of arguments*)
+fun strip_combterm_comb u =
+    let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
+        |   stripc  x =  x
+    in stripc(u,[]) end
+
+fun isFalse (Literal (pol, CombConst ((c, _), _, _))) =
+      (pol andalso c = "c_False") orelse (not pol andalso c = "c_True")
+  | isFalse _ = false;
+
+fun isTrue (Literal (pol, CombConst ((c, _), _, _))) =
+      (pol andalso c = "c_True") orelse
+      (not pol andalso c = "c_False")
+  | isTrue _ = false;
+
+fun isTaut (HOLClause {literals,...}) = exists isTrue literals;
+
+fun type_of (Type (a, Ts)) =
+    let val (folTypes,ts) = types_of Ts in
+      (TyConstr (`make_fixed_type_const a, folTypes), ts)
+    end
+  | type_of (tp as TFree (a, _)) = (TyFree (`make_fixed_type_var a), [tp])
+  | type_of (tp as TVar (x, _)) =
+    (TyVar (make_schematic_type_var x, string_of_indexname x), [tp])
+and types_of Ts =
+    let val (folTyps, ts) = ListPair.unzip (map type_of Ts) in
+      (folTyps, union_all ts)
+    end
+
+(* same as above, but no gathering of sort information *)
+fun simp_type_of (Type (a, Ts)) =
+      TyConstr (`make_fixed_type_const a, map simp_type_of Ts)
+  | simp_type_of (TFree (a, _)) = TyFree (`make_fixed_type_var a)
+  | simp_type_of (TVar (x, _)) =
+    TyVar (make_schematic_type_var x, string_of_indexname x)
+
+(* convert a Term.term (with combinators) into a combterm, also accummulate sort info *)
+fun combterm_of thy (Const (c, T)) =
+      let
+        val (tp, ts) = type_of T
+        val tvar_list =
+          (if String.isPrefix skolem_theory_name c then
+             [] |> Term.add_tvarsT T |> map TVar
+           else
+             (c, T) |> Sign.const_typargs thy)
+          |> map simp_type_of
+        val c' = CombConst (`make_fixed_const c, tp, tvar_list)
+      in  (c',ts)  end
+  | combterm_of _ (Free(v, T)) =
+      let val (tp,ts) = type_of T
+          val v' = CombConst (`make_fixed_var v, tp, [])
+      in  (v',ts)  end
+  | combterm_of _ (Var(v, T)) =
+      let val (tp,ts) = type_of T
+          val v' = CombVar ((make_schematic_var v, string_of_indexname v), tp)
+      in  (v',ts)  end
+  | combterm_of thy (P $ Q) =
+      let val (P', tsP) = combterm_of thy P
+          val (Q', tsQ) = combterm_of thy Q
+      in  (CombApp (P', Q'), union (op =) tsP tsQ)  end
+  | combterm_of _ (t as Abs _) = raise Fail "HOL clause: Abs"
+
+fun predicate_of thy ((@{const Not} $ P), pos) = predicate_of thy (P, not pos)
+  | predicate_of thy (t, pos) = (combterm_of thy (Envir.eta_contract t), pos)
+
+fun literals_of_term1 args thy (@{const Trueprop} $ P) =
+    literals_of_term1 args thy P
+  | literals_of_term1 args thy (@{const "op |"} $ P $ Q) =
+    literals_of_term1 (literals_of_term1 args thy P) thy Q
+  | literals_of_term1 (lits, ts) thy P =
+    let val ((pred, ts'), pol) = predicate_of thy (P, true) in
+      (Literal (pol, pred) :: lits, union (op =) ts ts')
+    end
+val literals_of_term = literals_of_term1 ([], [])
+
+fun skolem_name i j num_T_args =
+  skolem_prefix ^ (space_implode "_" (map Int.toString [i, j, num_T_args])) ^
+  skolem_infix ^ "g"
+
+fun conceal_skolem_somes i skolem_somes t =
+  if exists_Const (curry (op =) @{const_name skolem_id} o fst) t then
+    let
+      fun aux skolem_somes
+              (t as (Const (@{const_name skolem_id}, Type (_, [_, T])) $ _)) =
+          let
+            val (skolem_somes, s) =
+              if i = ~1 then
+                (skolem_somes, @{const_name undefined})
+              else case AList.find (op aconv) skolem_somes t of
+                s :: _ => (skolem_somes, s)
+              | [] =>
+                let
+                  val s = skolem_theory_name ^ "." ^
+                          skolem_name i (length skolem_somes)
+                                        (length (Term.add_tvarsT T []))
+                in ((s, t) :: skolem_somes, s) end
+          in (skolem_somes, Const (s, T)) end
+        | aux skolem_somes (t1 $ t2) =
+          let
+            val (skolem_somes, t1) = aux skolem_somes t1
+            val (skolem_somes, t2) = aux skolem_somes t2
+          in (skolem_somes, t1 $ t2) end
+        | aux skolem_somes (Abs (s, T, t')) =
+          let val (skolem_somes, t') = aux skolem_somes t' in
+            (skolem_somes, Abs (s, T, t'))
+          end
+        | aux skolem_somes t = (skolem_somes, t)
+    in aux skolem_somes t end
+  else
+    (skolem_somes, t)
+
+fun is_quasi_fol_theorem thy =
+  Meson.is_fol_term thy o snd o conceal_skolem_somes ~1 [] o prop_of
+
+(* Trivial problem, which resolution cannot handle (empty clause) *)
+exception TRIVIAL of unit
+
+(* making axiom and conjecture clauses *)
+fun make_clause thy (clause_id, axiom_name, kind, th) skolem_somes =
+  let
+    val (skolem_somes, t) =
+      th |> prop_of |> conceal_skolem_somes clause_id skolem_somes
+    val (lits, ctypes_sorts) = literals_of_term thy t
+  in
+    if forall isFalse lits then
+      raise TRIVIAL ()
+    else
+      (skolem_somes,
+       HOLClause {clause_id = clause_id, axiom_name = axiom_name, th = th,
+                  kind = kind, literals = lits, ctypes_sorts = ctypes_sorts})
+  end
+
+fun add_axiom_clause thy (th, ((name, id), _ : thm)) (skolem_somes, clss) =
+  let
+    val (skolem_somes, cls) = make_clause thy (id, name, Axiom, th) skolem_somes
+  in (skolem_somes, clss |> not (isTaut cls) ? cons (name, cls)) end
+
+fun make_axiom_clauses thy clauses =
+  ([], []) |> fold_rev (add_axiom_clause thy) clauses |> snd
+
+fun make_conjecture_clauses thy =
+  let
+    fun aux _ _ [] = []
+      | aux n skolem_somes (th :: ths) =
+        let
+          val (skolem_somes, cls) =
+            make_clause thy (n, "conjecture", Conjecture, th) skolem_somes
+        in cls :: aux (n + 1) skolem_somes ths end
+  in aux 0 [] end
+
+(** Helper clauses **)
+
+fun count_combterm (CombConst ((c, _), _, _)) =
+    Symtab.map_entry c (Integer.add 1)
+  | count_combterm (CombVar _) = I
+  | count_combterm (CombApp (t1, t2)) = count_combterm t1 #> count_combterm t2
+fun count_literal (Literal (_, t)) = count_combterm t
+fun count_clause (HOLClause {literals, ...}) = fold count_literal literals
+
+fun raw_cnf_rules_pairs ps = map (fn (name, thm) => (thm, ((name, 0), thm))) ps
+fun cnf_helper_thms thy raw =
+  map (`Thm.get_name_hint)
+  #> (if raw then raw_cnf_rules_pairs else cnf_rules_pairs thy)
+
+val optional_helpers =
+  [(["c_COMBI", "c_COMBK"], (false, @{thms COMBI_def COMBK_def})),
+   (["c_COMBB", "c_COMBC"], (false, @{thms COMBB_def COMBC_def})),
+   (["c_COMBS"], (false, @{thms COMBS_def}))]
+val optional_typed_helpers =
+  [(["c_True", "c_False"], (true, @{thms True_or_False})),
+   (["c_If"], (true, @{thms if_True if_False True_or_False}))]
+val mandatory_helpers = @{thms fequal_imp_equal equal_imp_fequal}
+
+val init_counters =
+  Symtab.make (maps (maps (map (rpair 0) o fst))
+                    [optional_helpers, optional_typed_helpers])
+
+fun get_helper_clauses thy is_FO full_types conjectures axcls =
+  let
+    val axclauses = map snd (make_axiom_clauses thy axcls)
+    val ct = fold (fold count_clause) [conjectures, axclauses] init_counters
+    fun is_needed c = the (Symtab.lookup ct c) > 0
+    val cnfs =
+      (optional_helpers
+       |> full_types ? append optional_typed_helpers
+       |> maps (fn (ss, (raw, ths)) =>
+                   if exists is_needed ss then cnf_helper_thms thy raw ths
+                   else []))
+      @ (if is_FO then [] else cnf_helper_thms thy false mandatory_helpers)
+  in map snd (make_axiom_clauses thy cnfs) end
+
+fun make_clause_table xs =
+  fold (Termtab.update o `(prop_of o fst)) xs Termtab.empty
+
+
+(***************************************************************)
+(* Type Classes Present in the Axiom or Conjecture Clauses     *)
+(***************************************************************)
+
+fun set_insert (x, s) = Symtab.update (x, ()) s
+
+fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
+
+(*Remove this trivial type class*)
+fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset;
+
+fun tfree_classes_of_terms ts =
+  let val sorts_list = map (map #2 o OldTerm.term_tfrees) ts
+  in  Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list))  end;
+
+fun tvar_classes_of_terms ts =
+  let val sorts_list = map (map #2 o OldTerm.term_tvars) ts
+  in  Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list))  end;
+
+(*fold type constructors*)
+fun fold_type_consts f (Type (a, Ts)) x = fold (fold_type_consts f) Ts (f (a,x))
+  | fold_type_consts _ _ x = x;
+
+(*Type constructors used to instantiate overloaded constants are the only ones needed.*)
+fun add_type_consts_in_term thy =
+  let
+    val const_typargs = Sign.const_typargs thy
+    fun aux (Const x) = fold (fold_type_consts set_insert) (const_typargs x)
+      | aux (Abs (_, _, u)) = aux u
+      | aux (Const (@{const_name skolem_id}, _) $ _) = I
+      | aux (t $ u) = aux t #> aux u
+      | aux _ = I
+  in aux end
+
+fun type_consts_of_terms thy ts =
+  Symtab.keys (fold (add_type_consts_in_term thy) ts Symtab.empty);
+
+(* Remove existing axiom clauses from the conjecture clauses, as this can
+   dramatically boost an ATP's performance (for some reason). *)
+fun subtract_cls ax_clauses =
+  filter_out (Termtab.defined (make_clause_table ax_clauses) o prop_of)
+
+(* prepare for passing to writer,
+   create additional clauses based on the information from extra_cls *)
+fun prepare_clauses full_types goal_cls axcls extra_cls thy =
+  let
+    val is_FO = forall (Meson.is_fol_term thy o prop_of) goal_cls
+    val ccls = subtract_cls extra_cls goal_cls
+    val _ = app (fn th => trace_msg (fn _ => Display.string_of_thm_global thy th)) ccls
+    val ccltms = map prop_of ccls
+    and axtms = map (prop_of o #1) extra_cls
+    val subs = tfree_classes_of_terms ccltms
+    and supers = tvar_classes_of_terms axtms
+    and tycons = type_consts_of_terms thy (ccltms @ axtms)
+    (*TFrees in conjecture clauses; TVars in axiom clauses*)
+    val conjectures = make_conjecture_clauses thy ccls
+    val (_, extra_clauses) = ListPair.unzip (make_axiom_clauses thy extra_cls)
+    val (clnames, axiom_clauses) = ListPair.unzip (make_axiom_clauses thy axcls)
+    val helper_clauses =
+      get_helper_clauses thy is_FO full_types conjectures extra_cls
+    val (supers', arity_clauses) = make_arity_clauses thy tycons supers
+    val classrel_clauses = make_classrel_clauses thy subs supers'
+  in
+    (Vector.fromList clnames,
+      (conjectures, axiom_clauses, extra_clauses, helper_clauses, classrel_clauses, arity_clauses))
+  end
+
+end;
--- a/src/HOL/Tools/Sledgehammer/metis_tactics.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Tools/Sledgehammer/metis_tactics.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -18,13 +18,8 @@
 structure Metis_Tactics : METIS_TACTICS =
 struct
 
-open Sledgehammer_Util
-open Sledgehammer_FOL_Clause
-open Sledgehammer_Fact_Preprocessor
-open Sledgehammer_HOL_Clause
-open Sledgehammer_Proof_Reconstruct
-open Sledgehammer_Fact_Filter
-open Sledgehammer_TPTP_Format
+open Clausifier
+open Metis_Clauses
 
 exception METIS of string * string
 
@@ -234,7 +229,7 @@
         | NONE   => make_tvar v)
   | fol_type_to_isa ctxt (Metis.Term.Fn(x, tys)) =
      (case strip_prefix tconst_prefix x of
-          SOME tc => Term.Type (invert_type_const tc, map (fol_type_to_isa ctxt) tys)
+          SOME tc => Term.Type (invert_const tc, map (fol_type_to_isa ctxt) tys)
         | NONE    =>
       case strip_prefix tfree_prefix x of
           SOME tf => mk_tfree ctxt tf
@@ -295,7 +290,7 @@
               | NONE => (*Not a constant. Is it a type constructor?*)
             case strip_prefix tconst_prefix a of
                 SOME b =>
-                  Type (Term.Type (invert_type_const b, types_of (map tm_to_tt ts)))
+                  Type (Term.Type (invert_const b, types_of (map tm_to_tt ts)))
               | NONE => (*Maybe a TFree. Should then check that ts=[].*)
             case strip_prefix tfree_prefix a of
                 SOME b => Type (mk_tfree ctxt b)
@@ -724,6 +719,7 @@
 
 fun common_thm ths1 ths2 = exists (member Thm.eq_thm ths1) (map Meson.make_meta_clause ths2);
 
+
 (* Main function to start Metis proof and reconstruction *)
 fun FOL_SOLVE mode ctxt cls ths0 =
   let val thy = ProofContext.theory_of ctxt
@@ -737,7 +733,8 @@
       val (mode, {axioms, tfrees, skolem_somes}) = build_map mode ctxt cls ths
       val _ = if null tfrees then ()
               else (trace_msg (fn () => "TFREE CLAUSES");
-                    app (fn tf => trace_msg (fn _ => tptp_of_type_literal true tf NONE |> fst)) tfrees)
+                    app (fn TyLitFree (s, (s', _)) =>
+                            trace_msg (fn _ => s ^ "(" ^ s' ^ ")")) tfrees)
       val _ = trace_msg (fn () => "CLAUSES GIVEN TO METIS")
       val thms = map #1 axioms
       val _ = app (fn th => trace_msg (fn () => Metis.Thm.toString th)) thms
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_fact_filter.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_fact_filter.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -5,10 +5,7 @@
 
 signature SLEDGEHAMMER_FACT_FILTER =
 sig
-  type cnf_thm = Sledgehammer_Fact_Preprocessor.cnf_thm
-  type classrel_clause = Sledgehammer_FOL_Clause.classrel_clause
-  type arity_clause = Sledgehammer_FOL_Clause.arity_clause
-  type hol_clause = Sledgehammer_HOL_Clause.hol_clause
+  type cnf_thm = Clausifier.cnf_thm
 
   type relevance_override =
     {add: Facts.ref list,
@@ -16,29 +13,18 @@
      only: bool}
 
   val use_natural_form : bool Unsynchronized.ref
-  val name_thms_pair_from_ref :
-    Proof.context -> thm list -> Facts.ref -> string * thm list
-  val tvar_classes_of_terms : term list -> string list
-  val tfree_classes_of_terms : term list -> string list
-  val type_consts_of_terms : theory -> term list -> string list
-  val is_quasi_fol_theorem : theory -> thm -> bool
   val relevant_facts :
-    bool -> bool -> real -> real -> bool -> int -> bool -> relevance_override
+    bool -> real -> real -> bool -> int -> bool -> relevance_override
     -> Proof.context * (thm list * 'a) -> thm list -> cnf_thm list
-  val prepare_clauses :
-    bool -> thm list -> cnf_thm list -> cnf_thm list -> theory
-    -> string vector
-       * (hol_clause list * hol_clause list * hol_clause list
-          * hol_clause list * classrel_clause list * arity_clause list)
 end;
 
 structure Sledgehammer_Fact_Filter : SLEDGEHAMMER_FACT_FILTER =
 struct
 
-open Sledgehammer_FOL_Clause
-open Sledgehammer_Fact_Preprocessor
-open Sledgehammer_HOL_Clause
+open Clausifier
+open Metis_Clauses
 
+val respect_no_atp = true
 (* Experimental feature: Filter theorems in natural form or in CNF? *)
 val use_natural_form = Unsynchronized.ref false
 
@@ -280,13 +266,13 @@
         | _ => false
     end;
 
-type annotated_clause = cnf_thm * ((string * const_typ list) list)
+type annotated_cnf_thm = cnf_thm * ((string * const_typ list) list)
 
 (*For a reverse sort, putting the largest values first.*)
 fun compare_pairs ((_, w1), (_, w2)) = Real.compare (w2, w1)
 
 (*Limit the number of new clauses, to prevent runaway acceptance.*)
-fun take_best max_new (newpairs : (annotated_clause * real) list) =
+fun take_best max_new (newpairs : (annotated_cnf_thm * real) list) =
   let val nnew = length newpairs
   in
     if nnew <= max_new then (map #1 newpairs, [])
@@ -392,10 +378,6 @@
 
 (*** retrieve lemmas and filter them ***)
 
-(*Hashing to detect duplicate and variant clauses, e.g. from the [iff] attribute*)
-
-fun setinsert (x,s) = Symtab.update (x,()) s;
-
 (*Reject theorems with names like "List.filter.filter_list_def" or
   "Accessible_Part.acc.defs", as these are definitions arising from packages.*)
 fun is_package_def a =
@@ -406,21 +388,12 @@
      String.isSuffix "_def" a  orelse  String.isSuffix "_defs" a
   end;
 
-fun mk_clause_table xs =
-  fold (Termtab.update o `(prop_of o fst)) xs Termtab.empty
-
-fun make_unique xs =
-  Termtab.fold (cons o snd) (mk_clause_table xs) []
-
-(* Remove existing axiom clauses from the conjecture clauses, as this can
-   dramatically boost an ATP's performance (for some reason). *)
-fun subtract_cls ax_clauses =
-  filter_out (Termtab.defined (mk_clause_table ax_clauses) o prop_of)
+fun make_unique xs = Termtab.fold (cons o snd) (make_clause_table xs) []
 
 val exists_sledgehammer_const =
   exists_Const (fn (s, _) => String.isPrefix sledgehammer_prefix s) o prop_of
 
-fun all_name_thms_pairs respect_no_atp ctxt chained_ths =
+fun all_name_thms_pairs ctxt chained_ths =
   let
     val global_facts = PureThy.facts_of (ProofContext.theory_of ctxt);
     val local_facts = ProofContext.facts_of ctxt;
@@ -464,7 +437,7 @@
 
 (* The single-name theorems go after the multiple-name ones, so that single
    names are preferred when both are available. *)
-fun name_thm_pairs respect_no_atp ctxt name_thms_pairs =
+fun name_thm_pairs ctxt respect_no_atp name_thms_pairs =
   let
     val (mults, singles) = List.partition is_multi name_thms_pairs
     val ps = [] |> fold add_names singles |> fold add_names mults
@@ -475,64 +448,16 @@
               Display.string_of_thm_without_context th); false)
   | is_named _ = true
 fun checked_name_thm_pairs respect_no_atp ctxt =
-  name_thm_pairs respect_no_atp ctxt
+  name_thm_pairs ctxt respect_no_atp
   #> tap (fn ps => trace_msg
                         (fn () => ("Considering " ^ Int.toString (length ps) ^
                                    " theorems")))
   #> filter is_named
 
-fun name_thms_pair_from_ref ctxt chained_ths xref =
-  let
-    val ths = ProofContext.get_fact ctxt xref
-    val name = Facts.string_of_ref xref
-               |> forall (member Thm.eq_thm chained_ths) ths
-                  ? prefix chained_prefix
-  in (name, ths) end
-
-
-(***************************************************************)
-(* Type Classes Present in the Axiom or Conjecture Clauses     *)
-(***************************************************************)
-
-fun add_classes (sorts, cset) = List.foldl setinsert cset (flat sorts);
-
-(*Remove this trivial type class*)
-fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset;
-
-fun tvar_classes_of_terms ts =
-  let val sorts_list = map (map #2 o OldTerm.term_tvars) ts
-  in  Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list))  end;
-
-fun tfree_classes_of_terms ts =
-  let val sorts_list = map (map #2 o OldTerm.term_tfrees) ts
-  in  Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list))  end;
-
-(*fold type constructors*)
-fun fold_type_consts f (Type (a, Ts)) x = fold (fold_type_consts f) Ts (f (a,x))
-  | fold_type_consts _ _ x = x;
-
-(*Type constructors used to instantiate overloaded constants are the only ones needed.*)
-fun add_type_consts_in_term thy =
-  let
-    val const_typargs = Sign.const_typargs thy
-    fun aux (Const cT) = fold (fold_type_consts setinsert) (const_typargs cT)
-      | aux (Abs (_, _, u)) = aux u
-      | aux (Const (@{const_name skolem_id}, _) $ _) = I
-      | aux (t $ u) = aux t #> aux u
-      | aux _ = I
-  in aux end
-
-fun type_consts_of_terms thy ts =
-  Symtab.keys (fold (add_type_consts_in_term thy) ts Symtab.empty);
-
-
 (***************************************************************)
 (* ATP invocation methods setup                                *)
 (***************************************************************)
 
-fun is_quasi_fol_theorem thy =
-  Meson.is_fol_term thy o snd o conceal_skolem_somes ~1 [] o prop_of
-
 (**** Predicates to detect unwanted clauses (prolific or likely to cause
       unsoundness) ****)
 
@@ -581,22 +506,19 @@
     (has_typed_var dangerous_types t orelse
      forall too_general_equality (HOLogic.disjuncts (strip_Trueprop t)))
 
-fun is_fol_goal thy = forall (Meson.is_fol_term thy) o map prop_of
-
-fun relevant_facts full_types respect_no_atp relevance_threshold
-                   relevance_convergence defs_relevant max_new theory_relevant
+fun relevant_facts full_types relevance_threshold relevance_convergence
+                   defs_relevant max_new theory_relevant
                    (relevance_override as {add, del, only})
                    (ctxt, (chained_ths, _)) goal_cls =
   let
     val thy = ProofContext.theory_of ctxt
     val add_thms = maps (ProofContext.get_fact ctxt) add
     val has_override = not (null add) orelse not (null del)
-    val is_FO = is_fol_goal thy goal_cls
+    val is_FO = forall (Meson.is_fol_term thy o prop_of) goal_cls
     val axioms =
       checked_name_thm_pairs (respect_no_atp andalso not only) ctxt
           (map (name_thms_pair_from_ref ctxt chained_ths) add @
-           (if only then []
-            else all_name_thms_pairs respect_no_atp ctxt chained_ths))
+           (if only then [] else all_name_thms_pairs ctxt chained_ths))
       |> cnf_rules_pairs thy
       |> not has_override ? make_unique
       |> filter (fn (cnf_thm, (_, orig_thm)) =>
@@ -611,70 +533,4 @@
     |> sort (prod_ord string_ord int_ord o pairself (fst o snd))
   end
 
-(** Helper clauses **)
-
-fun count_combterm (CombConst ((c, _), _, _)) =
-    Symtab.map_entry c (Integer.add 1)
-  | count_combterm (CombVar _) = I
-  | count_combterm (CombApp (t1, t2)) = count_combterm t1 #> count_combterm t2
-fun count_literal (Literal (_, t)) = count_combterm t
-fun count_clause (HOLClause {literals, ...}) = fold count_literal literals
-
-fun raw_cnf_rules_pairs ps = map (fn (name, thm) => (thm, ((name, 0), thm))) ps
-fun cnf_helper_thms thy raw =
-  map (`Thm.get_name_hint)
-  #> (if raw then raw_cnf_rules_pairs else cnf_rules_pairs thy)
-
-val optional_helpers =
-  [(["c_COMBI", "c_COMBK"], (false, @{thms COMBI_def COMBK_def})),
-   (["c_COMBB", "c_COMBC"], (false, @{thms COMBB_def COMBC_def})),
-   (["c_COMBS"], (false, @{thms COMBS_def}))]
-val optional_typed_helpers =
-  [(["c_True", "c_False"], (true, @{thms True_or_False})),
-   (["c_If"], (true, @{thms if_True if_False True_or_False}))]
-val mandatory_helpers = @{thms fequal_imp_equal equal_imp_fequal}
-
-val init_counters =
-  Symtab.make (maps (maps (map (rpair 0) o fst))
-                    [optional_helpers, optional_typed_helpers])
-
-fun get_helper_clauses thy is_FO full_types conjectures axcls =
-  let
-    val axclauses = map snd (make_axiom_clauses thy axcls)
-    val ct = fold (fold count_clause) [conjectures, axclauses] init_counters
-    fun is_needed c = the (Symtab.lookup ct c) > 0
-    val cnfs =
-      (optional_helpers
-       |> full_types ? append optional_typed_helpers
-       |> maps (fn (ss, (raw, ths)) =>
-                   if exists is_needed ss then cnf_helper_thms thy raw ths
-                   else []))
-      @ (if is_FO then [] else cnf_helper_thms thy false mandatory_helpers)
-  in map snd (make_axiom_clauses thy cnfs) end
-
-(* prepare for passing to writer,
-   create additional clauses based on the information from extra_cls *)
-fun prepare_clauses full_types goal_cls axcls extra_cls thy =
-  let
-    val is_FO = is_fol_goal thy goal_cls
-    val ccls = subtract_cls extra_cls goal_cls
-    val _ = app (fn th => trace_msg (fn _ => Display.string_of_thm_global thy th)) ccls
-    val ccltms = map prop_of ccls
-    and axtms = map (prop_of o #1) extra_cls
-    val subs = tfree_classes_of_terms ccltms
-    and supers = tvar_classes_of_terms axtms
-    and tycons = type_consts_of_terms thy (ccltms @ axtms)
-    (*TFrees in conjecture clauses; TVars in axiom clauses*)
-    val conjectures = make_conjecture_clauses thy ccls
-    val (_, extra_clauses) = ListPair.unzip (make_axiom_clauses thy extra_cls)
-    val (clnames, axiom_clauses) = ListPair.unzip (make_axiom_clauses thy axcls)
-    val helper_clauses =
-      get_helper_clauses thy is_FO full_types conjectures extra_cls
-    val (supers', arity_clauses) = make_arity_clauses thy tycons supers
-    val classrel_clauses = make_classrel_clauses thy subs supers'
-  in
-    (Vector.fromList clnames,
-      (conjectures, axiom_clauses, extra_clauses, helper_clauses, classrel_clauses, arity_clauses))
-  end
-
 end;
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_fact_minimizer.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_fact_minimizer.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -18,9 +18,9 @@
 structure Sledgehammer_Fact_Minimizer : SLEDGEHAMMER_FACT_MINIMIZER =
 struct
 
+open Clausifier
+open Metis_Clauses
 open Sledgehammer_Util
-open Sledgehammer_Fact_Preprocessor
-open Sledgehammer_HOL_Clause
 open Sledgehammer_Proof_Reconstruct
 open ATP_Manager
 
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML	Sun Jun 27 08:33:01 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,553 +0,0 @@
-(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML
-    Author:     Jia Meng, Cambridge University Computer Laboratory
-    Author:     Jasmin Blanchette, TU Muenchen
-
-Transformation of axiom rules (elim/intro/etc) into CNF forms.
-*)
-
-signature SLEDGEHAMMER_FACT_PREPROCESSOR =
-sig
-  type cnf_thm = thm * ((string * int) * thm)
-
-  val sledgehammer_prefix: string
-  val chained_prefix: string
-  val trace: bool Unsynchronized.ref
-  val trace_msg: (unit -> string) -> unit
-  val skolem_theory_name: string
-  val skolem_prefix: string
-  val skolem_infix: string
-  val is_skolem_const_name: string -> bool
-  val cnf_axiom: theory -> thm -> thm list
-  val multi_base_blacklist: string list
-  val is_theorem_bad_for_atps: thm -> bool
-  val type_has_topsort: typ -> bool
-  val cnf_rules_pairs : theory -> (string * thm) list -> cnf_thm list
-  val saturate_skolem_cache: theory -> theory option
-  val auto_saturate_skolem_cache: bool Unsynchronized.ref
-  val neg_clausify: thm -> thm list
-  val neg_conjecture_clauses:
-    Proof.context -> thm -> int -> thm list list * (string * typ) list
-  val setup: theory -> theory
-end;
-
-structure Sledgehammer_Fact_Preprocessor : SLEDGEHAMMER_FACT_PREPROCESSOR =
-struct
-
-open Sledgehammer_FOL_Clause
-
-type cnf_thm = thm * ((string * int) * thm)
-
-val sledgehammer_prefix = "Sledgehammer" ^ Long_Name.separator
-
-(* Used to label theorems chained into the goal. *)
-val chained_prefix = sledgehammer_prefix ^ "chained_"
-
-val trace = Unsynchronized.ref false;
-fun trace_msg msg = if !trace then tracing (msg ()) else ();
-
-val skolem_theory_name = sledgehammer_prefix ^ "Sko"
-val skolem_prefix = "sko_"
-val skolem_infix = "$"
-
-fun freeze_thm th = #1 (Drule.legacy_freeze_thaw th);
-
-val type_has_topsort = Term.exists_subtype
-  (fn TFree (_, []) => true
-    | TVar (_, []) => true
-    | _ => false);
-
-
-(**** Transformation of Elimination Rules into First-Order Formulas****)
-
-val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
-val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
-
-(*Converts an elim-rule into an equivalent theorem that does not have the
-  predicate variable.  Leaves other theorems unchanged.  We simply instantiate the
-  conclusion variable to False.*)
-fun transform_elim th =
-  case concl_of th of    (*conclusion variable*)
-       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
-           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
-    | v as Var(_, @{typ prop}) =>
-           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
-    | _ => th;
-
-(*To enforce single-threading*)
-exception Clausify_failure of theory;
-
-
-(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
-
-(*Keep the full complexity of the original name*)
-fun flatten_name s = space_implode "_X" (Long_Name.explode s);
-
-fun skolem_name thm_name j var_name =
-  skolem_prefix ^ thm_name ^ "_" ^ Int.toString j ^
-  skolem_infix ^ (if var_name = "" then "g" else flatten_name var_name)
-
-(* Hack: Could return false positives (e.g., a user happens to declare a
-   constant called "SomeTheory.sko_means_shoe_in_$wedish". *)
-val is_skolem_const_name =
-  Long_Name.base_name
-  #> String.isPrefix skolem_prefix andf String.isSubstring skolem_infix
-
-fun rhs_extra_types lhsT rhs =
-  let val lhs_vars = Term.add_tfreesT lhsT []
-      fun add_new_TFrees (TFree v) =
-            if member (op =) lhs_vars v then I else insert (op =) (TFree v)
-        | add_new_TFrees _ = I
-      val rhs_consts = fold_aterms (fn Const c => insert (op =) c | _ => I) rhs []
-  in fold (#2 #> Term.fold_atyps add_new_TFrees) rhs_consts [] end;
-
-fun skolem_type_and_args bound_T body =
-  let
-    val args1 = OldTerm.term_frees body
-    val Ts1 = map type_of args1
-    val Ts2 = rhs_extra_types (Ts1 ---> bound_T) body
-    val args2 = map (fn T => Free (gensym "vsk", T)) Ts2
-  in (Ts2 ---> Ts1 ---> bound_T, args2 @ args1) end
-
-(* Traverse a theorem, declaring Skolem function definitions. String "s" is the
-   suggested prefix for the Skolem constants. *)
-fun declare_skolem_funs s th thy =
-  let
-    val skolem_count = Unsynchronized.ref 0    (* FIXME ??? *)
-    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (s', T, p)))
-                (axs, thy) =
-        (*Existential: declare a Skolem function, then insert into body and continue*)
-        let
-          val id = skolem_name s (Unsynchronized.inc skolem_count) s'
-          val (cT, args) = skolem_type_and_args T body
-          val rhs = list_abs_free (map dest_Free args,
-                                   HOLogic.choice_const T $ body)
-                  (*Forms a lambda-abstraction over the formal parameters*)
-          val (c, thy) =
-            Sign.declare_const ((Binding.conceal (Binding.name id), cT), NoSyn) thy
-          val cdef = id ^ "_def"
-          val ((_, ax), thy) =
-            Thm.add_def true false (Binding.name cdef, Logic.mk_equals (c, rhs)) thy
-          val ax' = Drule.export_without_context ax
-        in dec_sko (subst_bound (list_comb (c, args), p)) (ax' :: axs, thy) end
-      | dec_sko (Const (@{const_name All}, _) $ (Abs (a, T, p))) thx =
-        (*Universal quant: insert a free variable into body and continue*)
-        let val fname = Name.variant (OldTerm.add_term_names (p, [])) a
-        in dec_sko (subst_bound (Free (fname, T), p)) thx end
-      | dec_sko (@{const "op &"} $ p $ q) thx = dec_sko q (dec_sko p thx)
-      | dec_sko (@{const "op |"} $ p $ q) thx = dec_sko q (dec_sko p thx)
-      | dec_sko (@{const Trueprop} $ p) thx = dec_sko p thx
-      | dec_sko _ thx = thx
-  in dec_sko (prop_of th) ([], thy) end
-
-fun mk_skolem_id t =
-  let val T = fastype_of t in
-    Const (@{const_name skolem_id}, T --> T) $ t
-  end
-
-fun quasi_beta_eta_contract (Abs (s, T, t')) =
-    Abs (s, T, quasi_beta_eta_contract t')
-  | quasi_beta_eta_contract t = Envir.beta_eta_contract t
-
-(*Traverse a theorem, accumulating Skolem function definitions.*)
-fun assume_skolem_funs s th =
-  let
-    val skolem_count = Unsynchronized.ref 0   (* FIXME ??? *)
-    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (s', T, p))) defs =
-        (*Existential: declare a Skolem function, then insert into body and continue*)
-        let
-          val skos = map (#1 o Logic.dest_equals) defs  (*existing sko fns*)
-          val args = subtract (op =) skos (OldTerm.term_frees body) (*the formal parameters*)
-          val Ts = map type_of args
-          val cT = Ts ---> T (* FIXME: use "skolem_type_and_args" *)
-          val id = skolem_name s (Unsynchronized.inc skolem_count) s'
-          val c = Free (id, cT) (* FIXME: needed? ### *)
-          (* Forms a lambda-abstraction over the formal parameters *)
-          val rhs =
-            list_abs_free (map dest_Free args,
-                           HOLogic.choice_const T
-                           $ quasi_beta_eta_contract body)
-            |> mk_skolem_id
-          val def = Logic.mk_equals (c, rhs)
-          val comb = list_comb (rhs, args)
-        in dec_sko (subst_bound (comb, p)) (def :: defs) end
-      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) defs =
-        (*Universal quant: insert a free variable into body and continue*)
-        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
-        in dec_sko (subst_bound (Free(fname,T), p)) defs end
-      | dec_sko (@{const "op &"} $ p $ q) defs = dec_sko q (dec_sko p defs)
-      | dec_sko (@{const "op |"} $ p $ q) defs = dec_sko q (dec_sko p defs)
-      | dec_sko (@{const Trueprop} $ p) defs = dec_sko p defs
-      | dec_sko _ defs = defs
-  in  dec_sko (prop_of th) []  end;
-
-
-(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
-
-(*Returns the vars of a theorem*)
-fun vars_of_thm th =
-  map (Thm.cterm_of (theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th []);
-
-val fun_cong_all = @{thm expand_fun_eq [THEN iffD1]}
-
-(* Removes the lambdas from an equation of the form t = (%x. u). *)
-fun extensionalize th =
-  case prop_of th of
-    _ $ (Const (@{const_name "op ="}, Type (_, [Type (@{type_name fun}, _), _]))
-         $ _ $ Abs (s, _, _)) => extensionalize (th RS fun_cong_all)
-  | _ => th
-
-fun is_quasi_lambda_free (Const (@{const_name skolem_id}, _) $ _) = true
-  | is_quasi_lambda_free (t1 $ t2) =
-    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
-  | is_quasi_lambda_free (Abs _) = false
-  | is_quasi_lambda_free _ = true
-
-val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
-val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
-val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
-
-(*FIXME: requires more use of cterm constructors*)
-fun abstract ct =
-  let
-      val thy = theory_of_cterm ct
-      val Abs(x,_,body) = term_of ct
-      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
-      val cxT = ctyp_of thy xT and cbodyT = ctyp_of thy bodyT
-      fun makeK() = instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)] @{thm abs_K}
-  in
-      case body of
-          Const _ => makeK()
-        | Free _ => makeK()
-        | Var _ => makeK()  (*though Var isn't expected*)
-        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
-        | rator$rand =>
-            if loose_bvar1 (rator,0) then (*C or S*)
-               if loose_bvar1 (rand,0) then (*S*)
-                 let val crator = cterm_of thy (Abs(x,xT,rator))
-                     val crand = cterm_of thy (Abs(x,xT,rand))
-                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
-                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
-                 in
-                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
-                 end
-               else (*C*)
-                 let val crator = cterm_of thy (Abs(x,xT,rator))
-                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
-                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
-                 in
-                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
-                 end
-            else if loose_bvar1 (rand,0) then (*B or eta*)
-               if rand = Bound 0 then Thm.eta_conversion ct
-               else (*B*)
-                 let val crand = cterm_of thy (Abs(x,xT,rand))
-                     val crator = cterm_of thy rator
-                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
-                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
-                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
-            else makeK()
-        | _ => raise Fail "abstract: Bad term"
-  end;
-
-(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
-fun do_introduce_combinators ct =
-  if is_quasi_lambda_free (term_of ct) then
-    Thm.reflexive ct
-  else case term_of ct of
-    Abs _ =>
-    let
-      val (cv, cta) = Thm.dest_abs NONE ct
-      val (v, _) = dest_Free (term_of cv)
-      val u_th = do_introduce_combinators cta
-      val cu = Thm.rhs_of u_th
-      val comb_eq = abstract (Thm.cabs cv cu)
-    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
-  | _ $ _ =>
-    let val (ct1, ct2) = Thm.dest_comb ct in
-        Thm.combination (do_introduce_combinators ct1)
-                        (do_introduce_combinators ct2)
-    end
-
-fun introduce_combinators th =
-  if is_quasi_lambda_free (prop_of th) then
-    th
-  else
-    let
-      val th = Drule.eta_contraction_rule th
-      val eqth = do_introduce_combinators (cprop_of th)
-    in Thm.equal_elim eqth th end
-    handle THM (msg, _, _) =>
-           (warning ("Error in the combinator translation of " ^
-                     Display.string_of_thm_without_context th ^
-                     "\nException message: " ^ msg ^ ".");
-            (* A type variable of sort "{}" will make abstraction fail. *)
-            TrueI)
-
-(*cterms are used throughout for efficiency*)
-val cTrueprop = Thm.cterm_of @{theory HOL} HOLogic.Trueprop;
-
-(*cterm version of mk_cTrueprop*)
-fun c_mkTrueprop A = Thm.capply cTrueprop A;
-
-(*Given an abstraction over n variables, replace the bound variables by free
-  ones. Return the body, along with the list of free variables.*)
-fun c_variant_abs_multi (ct0, vars) =
-      let val (cv,ct) = Thm.dest_abs NONE ct0
-      in  c_variant_abs_multi (ct, cv::vars)  end
-      handle CTERM _ => (ct0, rev vars);
-
-(*Given the definition of a Skolem function, return a theorem to replace
-  an existential formula by a use of that function.
-   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
-fun skolem_theorem_of_def inline def =
-  let
-      val (c, rhs) = Thm.dest_equals (cprop_of (freeze_thm def))
-      val rhs' = rhs |> inline ? (snd o Thm.dest_comb)
-      val (ch, frees) = c_variant_abs_multi (rhs', [])
-      val (chilbert, cabs) = ch |> Thm.dest_comb
-      val thy = Thm.theory_of_cterm chilbert
-      val t = Thm.term_of chilbert
-      val T =
-        case t of
-          Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
-        | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [t])
-      val cex = Thm.cterm_of thy (HOLogic.exists_const T)
-      val ex_tm = c_mkTrueprop (Thm.capply cex cabs)
-      and conc =
-        Drule.list_comb (if inline then rhs else c, frees)
-        |> Drule.beta_conv cabs |> c_mkTrueprop
-      fun tacf [prem] =
-        (if inline then rewrite_goals_tac @{thms skolem_id_def_raw}
-         else rewrite_goals_tac [def])
-        THEN rtac ((prem |> inline ? rewrite_rule @{thms skolem_id_def_raw})
-                   RS @{thm someI_ex}) 1
-  in  Goal.prove_internal [ex_tm] conc tacf
-       |> forall_intr_list frees
-       |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
-       |> Thm.varifyT_global
-  end;
-
-
-(*Converts an Isabelle theorem (intro, elim or simp format, even higher-order) into NNF.*)
-fun to_nnf th ctxt0 =
-  let val th1 = th |> transform_elim |> zero_var_indexes
-      val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
-      val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
-                    |> extensionalize
-                    |> Meson.make_nnf ctxt
-  in  (th3, ctxt)  end;
-
-(*Generate Skolem functions for a theorem supplied in nnf*)
-fun skolem_theorems_of_assume s th =
-  map (skolem_theorem_of_def true o Thm.assume o cterm_of (theory_of_thm th))
-      (assume_skolem_funs s th)
-
-
-(*** Blacklisting (more in "Sledgehammer_Fact_Filter") ***)
-
-val max_lambda_nesting = 3
-
-fun term_has_too_many_lambdas max (t1 $ t2) =
-    exists (term_has_too_many_lambdas max) [t1, t2]
-  | term_has_too_many_lambdas max (Abs (_, _, t)) =
-    max = 0 orelse term_has_too_many_lambdas (max - 1) t
-  | term_has_too_many_lambdas _ _ = false
-
-fun is_formula_type T = (T = HOLogic.boolT orelse T = propT)
-
-(* Don't count nested lambdas at the level of formulas, since they are
-   quantifiers. *)
-fun formula_has_too_many_lambdas Ts (Abs (_, T, t)) =
-    formula_has_too_many_lambdas (T :: Ts) t
-  | formula_has_too_many_lambdas Ts t =
-    if is_formula_type (fastype_of1 (Ts, t)) then
-      exists (formula_has_too_many_lambdas Ts) (#2 (strip_comb t))
-    else
-      term_has_too_many_lambdas max_lambda_nesting t
-
-(* The max apply depth of any "metis" call in "Metis_Examples" (on 31-10-2007)
-   was 11. *)
-val max_apply_depth = 15
-
-fun apply_depth (f $ t) = Int.max (apply_depth f, apply_depth t + 1)
-  | apply_depth (Abs (_, _, t)) = apply_depth t
-  | apply_depth _ = 0
-
-fun is_formula_too_complex t =
-  apply_depth t > max_apply_depth orelse Meson.too_many_clauses NONE t orelse
-  formula_has_too_many_lambdas [] t
-
-fun is_strange_thm th =
-  case head_of (concl_of th) of
-      Const (a, _) => (a <> @{const_name Trueprop} andalso
-                       a <> @{const_name "=="})
-    | _ => false;
-
-fun is_theorem_bad_for_atps thm =
-  let val t = prop_of thm in
-    is_formula_too_complex t orelse exists_type type_has_topsort t orelse
-    is_strange_thm thm
-  end
-
-(* FIXME: put other record thms here, or declare as "no_atp" *)
-val multi_base_blacklist =
-  ["defs", "select_defs", "update_defs", "induct", "inducts", "split", "splits",
-   "split_asm", "cases", "ext_cases"];
-
-fun fake_name th =
-  if Thm.has_name_hint th then flatten_name (Thm.get_name_hint th)
-  else gensym "unknown_thm_";
-
-(*Skolemize a named theorem, with Skolem functions as additional premises.*)
-fun skolemize_theorem s th =
-  if member (op =) multi_base_blacklist (Long_Name.base_name s) orelse
-     is_theorem_bad_for_atps th then
-    []
-  else
-    let
-      val ctxt0 = Variable.global_thm_context th
-      val (nnfth, ctxt) = to_nnf th ctxt0
-      val defs = skolem_theorems_of_assume s nnfth
-      val (cnfs, ctxt) = Meson.make_cnf defs nnfth ctxt
-    in
-      cnfs |> map introduce_combinators
-           |> Variable.export ctxt ctxt0
-           |> Meson.finish_cnf
-    end
-    handle THM _ => []
-
-(*The cache prevents repeated clausification of a theorem, and also repeated declaration of
-  Skolem functions.*)
-structure ThmCache = Theory_Data
-(
-  type T = thm list Thmtab.table * unit Symtab.table;
-  val empty = (Thmtab.empty, Symtab.empty);
-  val extend = I;
-  fun merge ((cache1, seen1), (cache2, seen2)) : T =
-    (Thmtab.merge (K true) (cache1, cache2), Symtab.merge (K true) (seen1, seen2));
-);
-
-val lookup_cache = Thmtab.lookup o #1 o ThmCache.get;
-val already_seen = Symtab.defined o #2 o ThmCache.get;
-
-val update_cache = ThmCache.map o apfst o Thmtab.update;
-fun mark_seen name = ThmCache.map (apsnd (Symtab.update (name, ())));
-
-(* Convert Isabelle theorems into axiom clauses. *)
-fun cnf_axiom thy th0 =
-  let val th = Thm.transfer thy th0 in
-    case lookup_cache thy th of
-      SOME cls => cls
-    | NONE => map Thm.close_derivation (skolemize_theorem (fake_name th) th)
-  end;
-
-
-(**** Translate a set of theorems into CNF ****)
-
-(*The combination of rev and tail recursion preserves the original order*)
-fun cnf_rules_pairs thy =
-  let
-    fun do_one _ [] = []
-      | do_one ((name, k), th) (cls :: clss) =
-        (cls, ((name, k), th)) :: do_one ((name, k + 1), th) clss
-    fun do_all pairs [] = pairs
-      | do_all pairs ((name, th) :: ths) =
-        let
-          val new_pairs = do_one ((name, 0), th) (cnf_axiom thy th)
-                          handle THM _ => [] |
-                                 CLAUSE _ => []
-        in do_all (new_pairs @ pairs) ths end
-  in do_all [] o rev end
-
-
-(**** Convert all facts of the theory into FOL or HOL clauses ****)
-
-local
-
-fun skolem_def (name, th) thy =
-  let val ctxt0 = Variable.global_thm_context th in
-    case try (to_nnf th) ctxt0 of
-      NONE => (NONE, thy)
-    | SOME (nnfth, ctxt) =>
-      let val (defs, thy') = declare_skolem_funs (flatten_name name) nnfth thy
-      in (SOME (th, ctxt0, ctxt, nnfth, defs), thy') end
-  end;
-
-fun skolem_cnfs (th, ctxt0, ctxt, nnfth, defs) =
-  let
-    val (cnfs, ctxt) =
-      Meson.make_cnf (map (skolem_theorem_of_def false) defs) nnfth ctxt
-    val cnfs' = cnfs
-      |> map introduce_combinators
-      |> Variable.export ctxt ctxt0
-      |> Meson.finish_cnf
-      |> map Thm.close_derivation;
-    in (th, cnfs') end;
-
-in
-
-fun saturate_skolem_cache thy =
-  let
-    val facts = PureThy.facts_of thy;
-    val new_facts = (facts, []) |-> Facts.fold_static (fn (name, ths) =>
-      if Facts.is_concealed facts name orelse already_seen thy name then I
-      else cons (name, ths));
-    val new_thms = (new_facts, []) |-> fold (fn (name, ths) =>
-      if member (op =) multi_base_blacklist (Long_Name.base_name name) then
-        I
-      else
-        fold_index (fn (i, th) =>
-          if is_theorem_bad_for_atps th orelse
-             is_some (lookup_cache thy th) then
-            I
-          else
-            cons (name ^ "_" ^ string_of_int (i + 1), Thm.transfer thy th)) ths)
-  in
-    if null new_facts then
-      NONE
-    else
-      let
-        val (defs, thy') = thy
-          |> fold (mark_seen o #1) new_facts
-          |> fold_map skolem_def (sort_distinct (Thm.thm_ord o pairself snd) new_thms)
-          |>> map_filter I;
-        val cache_entries = Par_List.map skolem_cnfs defs;
-      in SOME (fold update_cache cache_entries thy') end
-  end;
-
-end;
-
-(* For emergency use where the Skolem cache causes problems. *)
-val auto_saturate_skolem_cache = Unsynchronized.ref true
-
-fun conditionally_saturate_skolem_cache thy =
-  if !auto_saturate_skolem_cache then saturate_skolem_cache thy else NONE
-
-
-(*** Converting a subgoal into negated conjecture clauses. ***)
-
-fun neg_skolemize_tac ctxt =
-  EVERY' [rtac ccontr, Object_Logic.atomize_prems_tac, Meson.skolemize_tac ctxt]
-
-val neg_clausify =
-  single
-  #> Meson.make_clauses_unsorted
-  #> map introduce_combinators
-  #> Meson.finish_cnf
-
-fun neg_conjecture_clauses ctxt st0 n =
-  let
-    (* "Option" is thrown if the assumptions contain schematic variables. *)
-    val st = Seq.hd (neg_skolemize_tac ctxt n st0) handle Option.Option => st0
-    val ({params, prems, ...}, _) =
-      Subgoal.focus (Variable.set_body false ctxt) n st
-  in (map neg_clausify prems, map (dest_Free o term_of o #2) params) end
-
-
-(** setup **)
-
-val setup =
-  perhaps conditionally_saturate_skolem_cache
-  #> Theory.at_end conditionally_saturate_skolem_cache
-
-end;
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_fol_clause.ML	Sun Jun 27 08:33:01 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,361 +0,0 @@
-(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_fol_clause.ML
-    Author:     Jia Meng, Cambridge University Computer Laboratory
-    Author:     Jasmin Blanchette, TU Muenchen
-
-Storing/printing FOL clauses and arity clauses.  Typed equality is
-treated differently.
-
-FIXME: combine with sledgehammer_hol_clause!
-*)
-
-signature SLEDGEHAMMER_FOL_CLAUSE =
-sig
-  val type_wrapper_name : string
-  val schematic_var_prefix: string
-  val fixed_var_prefix: string
-  val tvar_prefix: string
-  val tfree_prefix: string
-  val const_prefix: string
-  val tconst_prefix: string
-  val class_prefix: string
-  val union_all: ''a list list -> ''a list
-  val const_trans_table: string Symtab.table
-  val type_const_trans_table: string Symtab.table
-  val ascii_of: string -> string
-  val undo_ascii_of: string -> string
-  val make_schematic_var : string * int -> string
-  val make_fixed_var : string -> string
-  val make_schematic_type_var : string * int -> string
-  val make_fixed_type_var : string -> string
-  val make_fixed_const : string -> string
-  val make_fixed_type_const : string -> string
-  val make_type_class : string -> string
-  type name = string * string
-  type name_pool = string Symtab.table * string Symtab.table
-  val empty_name_pool : bool -> name_pool option
-  val pool_map : ('a -> 'b -> 'c * 'b) -> 'a list -> 'b -> 'c list * 'b
-  val nice_name : name -> name_pool option -> string * name_pool option
-  datatype kind = Axiom | Conjecture
-  datatype type_literal =
-    TyLitVar of string * name |
-    TyLitFree of string * name
-  exception CLAUSE of string * term
-  val type_literals_for_types : typ list -> type_literal list
-  datatype arLit =
-      TConsLit of class * string * string list
-    | TVarLit of class * string
-  datatype arity_clause = ArityClause of
-   {axiom_name: string, conclLit: arLit, premLits: arLit list}
-  datatype classrel_clause = ClassrelClause of
-   {axiom_name: string, subclass: class, superclass: class}
-  val make_classrel_clauses: theory -> class list -> class list -> classrel_clause list
-  val make_arity_clauses: theory -> string list -> class list -> class list * arity_clause list
-end
-
-structure Sledgehammer_FOL_Clause : SLEDGEHAMMER_FOL_CLAUSE =
-struct
-
-open Sledgehammer_Util
-
-val type_wrapper_name = "ti"
-
-val schematic_var_prefix = "V_";
-val fixed_var_prefix = "v_";
-
-val tvar_prefix = "T_";
-val tfree_prefix = "t_";
-
-val classrel_clause_prefix = "clsrel_";
-
-val const_prefix = "c_";
-val tconst_prefix = "tc_";
-val class_prefix = "class_";
-
-fun union_all xss = fold (union (op =)) xss []
-
-(* Readable names for the more common symbolic functions. Do not mess with the
-   last nine entries of the table unless you know what you are doing. *)
-val const_trans_table =
-  Symtab.make [(@{const_name "op ="}, "equal"),
-               (@{const_name "op &"}, "and"),
-               (@{const_name "op |"}, "or"),
-               (@{const_name "op -->"}, "implies"),
-               (@{const_name "op :"}, "in"),
-               (@{const_name fequal}, "fequal"),
-               (@{const_name COMBI}, "COMBI"),
-               (@{const_name COMBK}, "COMBK"),
-               (@{const_name COMBB}, "COMBB"),
-               (@{const_name COMBC}, "COMBC"),
-               (@{const_name COMBS}, "COMBS"),
-               (@{const_name True}, "True"),
-               (@{const_name False}, "False"),
-               (@{const_name If}, "If")]
-
-val type_const_trans_table =
-  Symtab.make [(@{type_name "*"}, "prod"),
-               (@{type_name "+"}, "sum")]
-
-(*Escaping of special characters.
-  Alphanumeric characters are left unchanged.
-  The character _ goes to __
-  Characters in the range ASCII space to / go to _A to _P, respectively.
-  Other printing characters go to _nnn where nnn is the decimal ASCII code.*)
-val A_minus_space = Char.ord #"A" - Char.ord #" ";
-
-fun stringN_of_int 0 _ = ""
-  | stringN_of_int k n = stringN_of_int (k-1) (n div 10) ^ Int.toString (n mod 10);
-
-fun ascii_of_c c =
-  if Char.isAlphaNum c then String.str c
-  else if c = #"_" then "__"
-  else if #" " <= c andalso c <= #"/"
-       then "_" ^ String.str (Char.chr (Char.ord c + A_minus_space))
-  else if Char.isPrint c
-       then ("_" ^ stringN_of_int 3 (Char.ord c))  (*fixed width, in case more digits follow*)
-  else ""
-
-val ascii_of = String.translate ascii_of_c;
-
-(** Remove ASCII armouring from names in proof files **)
-
-(*We don't raise error exceptions because this code can run inside the watcher.
-  Also, the errors are "impossible" (hah!)*)
-fun undo_ascii_aux rcs [] = String.implode(rev rcs)
-  | undo_ascii_aux rcs [#"_"] = undo_ascii_aux (#"_"::rcs) []  (*ERROR*)
-      (*Three types of _ escapes: __, _A to _P, _nnn*)
-  | undo_ascii_aux rcs (#"_" :: #"_" :: cs) = undo_ascii_aux (#"_"::rcs) cs
-  | undo_ascii_aux rcs (#"_" :: c :: cs) =
-      if #"A" <= c andalso c<= #"P"  (*translation of #" " to #"/"*)
-      then undo_ascii_aux (Char.chr(Char.ord c - A_minus_space) :: rcs) cs
-      else
-        let val digits = List.take (c::cs, 3) handle Subscript => []
-        in
-            case Int.fromString (String.implode digits) of
-                NONE => undo_ascii_aux (c:: #"_"::rcs) cs  (*ERROR*)
-              | SOME n => undo_ascii_aux (Char.chr n :: rcs) (List.drop (cs, 2))
-        end
-  | undo_ascii_aux rcs (c::cs) = undo_ascii_aux (c::rcs) cs;
-
-val undo_ascii_of = undo_ascii_aux [] o String.explode;
-
-(*Remove the initial ' character from a type variable, if it is present*)
-fun trim_type_var s =
-  if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
-  else error ("trim_type: Malformed type variable encountered: " ^ s);
-
-fun ascii_of_indexname (v,0) = ascii_of v
-  | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ Int.toString i;
-
-fun make_schematic_var v = schematic_var_prefix ^ (ascii_of_indexname v);
-fun make_fixed_var x = fixed_var_prefix ^ (ascii_of x);
-
-fun make_schematic_type_var (x,i) =
-      tvar_prefix ^ (ascii_of_indexname (trim_type_var x,i));
-fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x));
-
-fun lookup_const c =
-  case Symtab.lookup const_trans_table c of
-    SOME c' => c'
-  | NONE => ascii_of c
-
-fun lookup_type_const c =
-  case Symtab.lookup type_const_trans_table c of
-    SOME c' => c'
-  | NONE => ascii_of c
-
-(* "op =" MUST BE "equal" because it's built into ATPs. *)
-fun make_fixed_const @{const_name "op ="} = "equal"
-  | make_fixed_const c = const_prefix ^ lookup_const c
-
-fun make_fixed_type_const c = tconst_prefix ^ lookup_type_const c
-
-fun make_type_class clas = class_prefix ^ ascii_of clas;
-
-
-(**** name pool ****)
- 
-type name = string * string
-type name_pool = string Symtab.table * string Symtab.table
-
-fun empty_name_pool readable_names =
-  if readable_names then SOME (`I Symtab.empty) else NONE
-
-fun pool_fold f xs z = pair z #> fold_rev (fn x => uncurry (f x)) xs
-fun pool_map f xs =
-  pool_fold (fn x => fn ys => fn pool => f x pool |>> (fn y => y :: ys)) xs []
-
-fun add_nice_name full_name nice_prefix j the_pool =
-  let
-    val nice_name = nice_prefix ^ (if j = 0 then "" else "_" ^ Int.toString j)
-  in
-    case Symtab.lookup (snd the_pool) nice_name of
-      SOME full_name' =>
-      if full_name = full_name' then (nice_name, the_pool)
-      else add_nice_name full_name nice_prefix (j + 1) the_pool
-    | NONE =>
-      (nice_name, (Symtab.update_new (full_name, nice_name) (fst the_pool),
-                   Symtab.update_new (nice_name, full_name) (snd the_pool)))
-  end
-
-fun translate_first_char f s =
-  String.str (f (String.sub (s, 0))) ^ String.extract (s, 1, NONE)
-
-fun readable_name full_name s =
-  let
-    val s = s |> Long_Name.base_name
-              |> fold remove_all ["\<^sub>", "\<^bsub>", "\<^esub>", "\<^isub>"]
-    val s' = s |> explode |> rev |> dropwhile (curry (op =) "'")
-    val s' =
-      (s' |> rev
-          |> implode
-          |> String.translate
-                 (fn c => if Char.isAlphaNum c orelse c = #"_" then String.str c
-                          else ""))
-      ^ replicate_string (String.size s - length s') "_"
-    val s' =
-      if s' = "" orelse not (Char.isAlpha (String.sub (s', 0))) then "X" ^ s'
-      else s'
-    (* Avoid "equal", since it's built into ATPs; and "op" is very ambiguous
-       ("op &", "op |", etc.). *)
-    val s' = if s' = "equal" orelse s' = "op" then full_name else s'
-  in
-    case (Char.isLower (String.sub (full_name, 0)),
-          Char.isLower (String.sub (s', 0))) of
-      (true, false) => translate_first_char Char.toLower s'
-    | (false, true) => translate_first_char Char.toUpper s'
-    | _ => s'
-  end
-
-fun nice_name (full_name, _) NONE = (full_name, NONE)
-  | nice_name (full_name, desired_name) (SOME the_pool) =
-    case Symtab.lookup (fst the_pool) full_name of
-      SOME nice_name => (nice_name, SOME the_pool)
-    | NONE => add_nice_name full_name (readable_name full_name desired_name) 0
-                            the_pool
-              |> apsnd SOME
-
-(**** Definitions and functions for FOL clauses for TPTP format output ****)
-
-datatype kind = Axiom | Conjecture;
-
-(**** Isabelle FOL clauses ****)
-
-(* The first component is the type class; the second is a TVar or TFree. *)
-datatype type_literal =
-  TyLitVar of string * name |
-  TyLitFree of string * name
-
-exception CLAUSE of string * term;
-
-(*Make literals for sorted type variables*)
-fun sorts_on_typs_aux (_, [])   = []
-  | sorts_on_typs_aux ((x,i),  s::ss) =
-      let val sorts = sorts_on_typs_aux ((x,i), ss)
-      in
-          if s = "HOL.type" then sorts
-          else if i = ~1 then TyLitFree (make_type_class s, `make_fixed_type_var x) :: sorts
-          else TyLitVar (make_type_class s, (make_schematic_type_var (x,i), x)) :: sorts
-      end;
-
-fun sorts_on_typs (TFree (a,s)) = sorts_on_typs_aux ((a,~1),s)
-  | sorts_on_typs (TVar (v,s))  = sorts_on_typs_aux (v,s);
-
-(*Given a list of sorted type variables, return a list of type literals.*)
-fun type_literals_for_types Ts =
-  fold (union (op =)) (map sorts_on_typs Ts) []
-
-(** make axiom and conjecture clauses. **)
-
-(**** Isabelle arities ****)
-
-datatype arLit = TConsLit of class * string * string list
-               | TVarLit of class * string;
-
-datatype arity_clause =
-  ArityClause of {axiom_name: string, conclLit: arLit, premLits: arLit list}
-
-
-fun gen_TVars 0 = []
-  | gen_TVars n = ("T_" ^ Int.toString n) :: gen_TVars (n-1);
-
-fun pack_sort(_,[])  = []
-  | pack_sort(tvar, "HOL.type"::srt) = pack_sort(tvar, srt)   (*IGNORE sort "type"*)
-  | pack_sort(tvar, cls::srt) =  (cls, tvar) :: pack_sort(tvar, srt);
-
-(*Arity of type constructor tcon :: (arg1,...,argN)res*)
-fun make_axiom_arity_clause (tcons, axiom_name, (cls,args)) =
-   let val tvars = gen_TVars (length args)
-       val tvars_srts = ListPair.zip (tvars,args)
-   in
-     ArityClause {axiom_name = axiom_name, 
-                  conclLit = TConsLit (cls, make_fixed_type_const tcons, tvars),
-                  premLits = map TVarLit (union_all(map pack_sort tvars_srts))}
-   end;
-
-
-(**** Isabelle class relations ****)
-
-datatype classrel_clause =
-  ClassrelClause of {axiom_name: string, subclass: class, superclass: class}
-
-(*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
-fun class_pairs _ [] _ = []
-  | class_pairs thy subs supers =
-      let
-        val class_less = Sorts.class_less (Sign.classes_of thy)
-        fun add_super sub super = class_less (sub, super) ? cons (sub, super)
-        fun add_supers sub = fold (add_super sub) supers
-      in fold add_supers subs [] end
-
-fun make_classrel_clause (sub,super) =
-  ClassrelClause {axiom_name = classrel_clause_prefix ^ ascii_of sub ^ "_" ^
-                               ascii_of super,
-                  subclass = make_type_class sub,
-                  superclass = make_type_class super};
-
-fun make_classrel_clauses thy subs supers =
-  map make_classrel_clause (class_pairs thy subs supers);
-
-
-(** Isabelle arities **)
-
-fun arity_clause _ _ (_, []) = []
-  | arity_clause seen n (tcons, ("HOL.type",_)::ars) =  (*ignore*)
-      arity_clause seen n (tcons,ars)
-  | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
-      if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
-          make_axiom_arity_clause (tcons, lookup_type_const tcons ^ "_" ^ class ^ "_" ^ Int.toString n, ar) ::
-          arity_clause seen (n+1) (tcons,ars)
-      else
-          make_axiom_arity_clause (tcons, lookup_type_const tcons ^ "_" ^ class, ar) ::
-          arity_clause (class::seen) n (tcons,ars)
-
-fun multi_arity_clause [] = []
-  | multi_arity_clause ((tcons, ars) :: tc_arlists) =
-      arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
-
-(*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
-  provided its arguments have the corresponding sorts.*)
-fun type_class_pairs thy tycons classes =
-  let val alg = Sign.classes_of thy
-      fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
-      fun add_class tycon class =
-        cons (class, domain_sorts tycon class)
-        handle Sorts.CLASS_ERROR _ => I
-      fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
-  in  map try_classes tycons  end;
-
-(*Proving one (tycon, class) membership may require proving others, so iterate.*)
-fun iter_type_class_pairs _ _ [] = ([], [])
-  | iter_type_class_pairs thy tycons classes =
-      let val cpairs = type_class_pairs thy tycons classes
-          val newclasses = union_all (union_all (union_all (map (map #2 o #2) cpairs)))
-            |> subtract (op =) classes |> subtract (op =) HOLogic.typeS
-          val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
-      in (union (op =) classes' classes, union (op =) cpairs' cpairs) end;
-
-fun make_arity_clauses thy tycons classes =
-  let val (classes', cpairs) = iter_type_class_pairs thy tycons classes
-  in  (classes', multi_arity_clause cpairs)  end;
-
-end;
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_hol_clause.ML	Sun Jun 27 08:33:01 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,231 +0,0 @@
-(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_hol_clause.ML
-    Author:     Jia Meng, NICTA
-    Author:     Jasmin Blanchette, TU Muenchen
-
-FOL clauses translated from HOL formulas.
-*)
-
-signature SLEDGEHAMMER_HOL_CLAUSE =
-sig
-  type cnf_thm = Sledgehammer_Fact_Preprocessor.cnf_thm
-  type name = Sledgehammer_FOL_Clause.name
-  type name_pool = Sledgehammer_FOL_Clause.name_pool
-  type kind = Sledgehammer_FOL_Clause.kind
-  type classrel_clause = Sledgehammer_FOL_Clause.classrel_clause
-  type arity_clause = Sledgehammer_FOL_Clause.arity_clause
-  type polarity = bool
-
-  datatype combtyp =
-    TyVar of name |
-    TyFree of name |
-    TyConstr of name * combtyp list
-  datatype combterm =
-    CombConst of name * combtyp * combtyp list (* Const and Free *) |
-    CombVar of name * combtyp |
-    CombApp of combterm * combterm
-  datatype literal = Literal of polarity * combterm
-  datatype hol_clause =
-    HOLClause of {clause_id: int, axiom_name: string, th: thm, kind: kind,
-                  literals: literal list, ctypes_sorts: typ list}
-
-  val type_of_combterm : combterm -> combtyp
-  val strip_combterm_comb : combterm -> combterm * combterm list
-  val literals_of_term : theory -> term -> literal list * typ list
-  val conceal_skolem_somes :
-    int -> (string * term) list -> term -> (string * term) list * term
-  exception TRIVIAL of unit
-  val make_conjecture_clauses : theory -> thm list -> hol_clause list
-  val make_axiom_clauses : theory -> cnf_thm list -> (string * hol_clause) list
-end
-
-structure Sledgehammer_HOL_Clause : SLEDGEHAMMER_HOL_CLAUSE =
-struct
-
-open Sledgehammer_Util
-open Sledgehammer_FOL_Clause
-open Sledgehammer_Fact_Preprocessor
-
-(******************************************************)
-(* data types for typed combinator expressions        *)
-(******************************************************)
-
-type polarity = bool
-
-datatype combtyp =
-  TyVar of name |
-  TyFree of name |
-  TyConstr of name * combtyp list
-
-datatype combterm =
-  CombConst of name * combtyp * combtyp list (* Const and Free *) |
-  CombVar of name * combtyp |
-  CombApp of combterm * combterm
-
-datatype literal = Literal of polarity * combterm;
-
-datatype hol_clause =
-  HOLClause of {clause_id: int, axiom_name: string, th: thm, kind: kind,
-                literals: literal list, ctypes_sorts: typ list}
-
-(*********************************************************************)
-(* convert a clause with type Term.term to a clause with type clause *)
-(*********************************************************************)
-
-(*Result of a function type; no need to check that the argument type matches.*)
-fun result_type (TyConstr (_, [_, tp2])) = tp2
-  | result_type _ = raise Fail "non-function type"
-
-fun type_of_combterm (CombConst (_, tp, _)) = tp
-  | type_of_combterm (CombVar (_, tp)) = tp
-  | type_of_combterm (CombApp (t1, _)) = result_type (type_of_combterm t1)
-
-(*gets the head of a combinator application, along with the list of arguments*)
-fun strip_combterm_comb u =
-    let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
-        |   stripc  x =  x
-    in stripc(u,[]) end
-
-fun isFalse (Literal (pol, CombConst ((c, _), _, _))) =
-      (pol andalso c = "c_False") orelse (not pol andalso c = "c_True")
-  | isFalse _ = false;
-
-fun isTrue (Literal (pol, CombConst ((c, _), _, _))) =
-      (pol andalso c = "c_True") orelse
-      (not pol andalso c = "c_False")
-  | isTrue _ = false;
-
-fun isTaut (HOLClause {literals,...}) = exists isTrue literals;
-
-fun type_of (Type (a, Ts)) =
-    let val (folTypes,ts) = types_of Ts in
-      (TyConstr (`make_fixed_type_const a, folTypes), ts)
-    end
-  | type_of (tp as TFree (a, _)) = (TyFree (`make_fixed_type_var a), [tp])
-  | type_of (tp as TVar (x, _)) =
-    (TyVar (make_schematic_type_var x, string_of_indexname x), [tp])
-and types_of Ts =
-    let val (folTyps, ts) = ListPair.unzip (map type_of Ts) in
-      (folTyps, union_all ts)
-    end
-
-(* same as above, but no gathering of sort information *)
-fun simp_type_of (Type (a, Ts)) =
-      TyConstr (`make_fixed_type_const a, map simp_type_of Ts)
-  | simp_type_of (TFree (a, _)) = TyFree (`make_fixed_type_var a)
-  | simp_type_of (TVar (x, _)) =
-    TyVar (make_schematic_type_var x, string_of_indexname x)
-
-(* convert a Term.term (with combinators) into a combterm, also accummulate sort info *)
-fun combterm_of thy (Const (c, T)) =
-      let
-        val (tp, ts) = type_of T
-        val tvar_list =
-          (if String.isPrefix skolem_theory_name c then
-             [] |> Term.add_tvarsT T |> map TVar
-           else
-             (c, T) |> Sign.const_typargs thy)
-          |> map simp_type_of
-        val c' = CombConst (`make_fixed_const c, tp, tvar_list)
-      in  (c',ts)  end
-  | combterm_of _ (Free(v, T)) =
-      let val (tp,ts) = type_of T
-          val v' = CombConst (`make_fixed_var v, tp, [])
-      in  (v',ts)  end
-  | combterm_of _ (Var(v, T)) =
-      let val (tp,ts) = type_of T
-          val v' = CombVar ((make_schematic_var v, string_of_indexname v), tp)
-      in  (v',ts)  end
-  | combterm_of thy (P $ Q) =
-      let val (P', tsP) = combterm_of thy P
-          val (Q', tsQ) = combterm_of thy Q
-      in  (CombApp (P', Q'), union (op =) tsP tsQ)  end
-  | combterm_of _ (t as Abs _) = raise CLAUSE ("HOL clause", t)
-
-fun predicate_of thy ((@{const Not} $ P), polarity) =
-    predicate_of thy (P, not polarity)
-  | predicate_of thy (t, polarity) =
-    (combterm_of thy (Envir.eta_contract t), polarity)
-
-fun literals_of_term1 args thy (@{const Trueprop} $ P) =
-    literals_of_term1 args thy P
-  | literals_of_term1 args thy (@{const "op |"} $ P $ Q) =
-    literals_of_term1 (literals_of_term1 args thy P) thy Q
-  | literals_of_term1 (lits, ts) thy P =
-    let val ((pred, ts'), pol) = predicate_of thy (P, true) in
-      (Literal (pol, pred) :: lits, union (op =) ts ts')
-    end
-val literals_of_term = literals_of_term1 ([], [])
-
-fun skolem_name i j num_T_args =
-  skolem_prefix ^ (space_implode "_" (map Int.toString [i, j, num_T_args])) ^
-  skolem_infix ^ "g"
-
-fun conceal_skolem_somes i skolem_somes t =
-  if exists_Const (curry (op =) @{const_name skolem_id} o fst) t then
-    let
-      fun aux skolem_somes
-              (t as (Const (@{const_name skolem_id}, Type (_, [_, T])) $ _)) =
-          let
-            val (skolem_somes, s) =
-              if i = ~1 then
-                (skolem_somes, @{const_name undefined})
-              else case AList.find (op aconv) skolem_somes t of
-                s :: _ => (skolem_somes, s)
-              | [] =>
-                let
-                  val s = skolem_theory_name ^ "." ^
-                          skolem_name i (length skolem_somes)
-                                        (length (Term.add_tvarsT T []))
-                in ((s, t) :: skolem_somes, s) end
-          in (skolem_somes, Const (s, T)) end
-        | aux skolem_somes (t1 $ t2) =
-          let
-            val (skolem_somes, t1) = aux skolem_somes t1
-            val (skolem_somes, t2) = aux skolem_somes t2
-          in (skolem_somes, t1 $ t2) end
-        | aux skolem_somes (Abs (s, T, t')) =
-          let val (skolem_somes, t') = aux skolem_somes t' in
-            (skolem_somes, Abs (s, T, t'))
-          end
-        | aux skolem_somes t = (skolem_somes, t)
-    in aux skolem_somes t end
-  else
-    (skolem_somes, t)
-
-(* Trivial problem, which resolution cannot handle (empty clause) *)
-exception TRIVIAL of unit
-
-(* making axiom and conjecture clauses *)
-fun make_clause thy (clause_id, axiom_name, kind, th) skolem_somes =
-  let
-    val (skolem_somes, t) =
-      th |> prop_of |> conceal_skolem_somes clause_id skolem_somes
-    val (lits, ctypes_sorts) = literals_of_term thy t
-  in
-    if forall isFalse lits then
-      raise TRIVIAL ()
-    else
-      (skolem_somes,
-       HOLClause {clause_id = clause_id, axiom_name = axiom_name, th = th,
-                  kind = kind, literals = lits, ctypes_sorts = ctypes_sorts})
-  end
-
-fun add_axiom_clause thy (th, ((name, id), _ : thm)) (skolem_somes, clss) =
-  let
-    val (skolem_somes, cls) = make_clause thy (id, name, Axiom, th) skolem_somes
-  in (skolem_somes, clss |> not (isTaut cls) ? cons (name, cls)) end
-
-fun make_axiom_clauses thy clauses =
-  ([], []) |> fold_rev (add_axiom_clause thy) clauses |> snd
-
-fun make_conjecture_clauses thy =
-  let
-    fun aux _ _ [] = []
-      | aux n skolem_somes (th :: ths) =
-        let
-          val (skolem_somes, cls) =
-            make_clause thy (n, "conjecture", Conjecture, th) skolem_somes
-        in cls :: aux (n + 1) skolem_somes ths end
-  in aux 0 [] end
-
-end;
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_isar.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_isar.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -17,9 +17,8 @@
 structure Sledgehammer_Isar : SLEDGEHAMMER_ISAR =
 struct
 
+open Clausifier
 open Sledgehammer_Util
-open Sledgehammer_Fact_Filter
-open Sledgehammer_Fact_Preprocessor
 open ATP_Manager
 open ATP_Systems
 open Sledgehammer_Fact_Minimizer
@@ -69,7 +68,6 @@
    ("verbose", "false"),
    ("overlord", "false"),
    ("explicit_apply", "false"),
-   ("respect_no_atp", "true"),
    ("relevance_threshold", "50"),
    ("relevance_convergence", "320"),
    ("theory_relevant", "smart"),
@@ -86,7 +84,6 @@
    ("no_overlord", "overlord"),
    ("partial_types", "full_types"),
    ("implicit_apply", "explicit_apply"),
-   ("ignore_no_atp", "respect_no_atp"),
    ("theory_irrelevant", "theory_relevant"),
    ("defs_irrelevant", "defs_relevant"),
    ("no_isar_proof", "isar_proof")]
@@ -168,7 +165,6 @@
     val atps = lookup_string "atps" |> space_explode " "
     val full_types = lookup_bool "full_types"
     val explicit_apply = lookup_bool "explicit_apply"
-    val respect_no_atp = lookup_bool "respect_no_atp"
     val relevance_threshold =
       0.01 * Real.fromInt (lookup_int "relevance_threshold")
     val relevance_convergence =
@@ -182,7 +178,7 @@
   in
     {debug = debug, verbose = verbose, overlord = overlord, atps = atps,
      full_types = full_types, explicit_apply = explicit_apply,
-     respect_no_atp = respect_no_atp, relevance_threshold = relevance_threshold,
+     relevance_threshold = relevance_threshold,
      relevance_convergence = relevance_convergence,
      theory_relevant = theory_relevant, defs_relevant = defs_relevant,
      isar_proof = isar_proof, isar_shrink_factor = isar_shrink_factor,
@@ -203,13 +199,10 @@
       0 => priority "No subgoal!"
     | n =>
       let
-        val birth_time = Time.now ()
-        val death_time = Time.+ (birth_time, timeout)
         val _ = kill_atps ()
         val _ = priority "Sledgehammering..."
-        val _ = app (start_prover_thread params birth_time death_time i n
-                                         relevance_override minimize_command
-                                         state) atps
+        val _ = app (start_prover_thread params i n relevance_override
+                                         minimize_command state) atps
       in () end
 
 fun minimize override_params i refs state =
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -8,12 +8,8 @@
 signature SLEDGEHAMMER_PROOF_RECONSTRUCT =
 sig
   type minimize_command = string list -> string
-  type name_pool = Sledgehammer_FOL_Clause.name_pool
+  type name_pool = Metis_Clauses.name_pool
 
-  val invert_const: string -> string
-  val invert_type_const: string -> string
-  val num_type_args: theory -> string -> int
-  val strip_prefix: string -> string -> string option
   val metis_line: bool -> int -> int -> string list -> string
   val metis_proof_text:
     bool * minimize_command * string * string vector * thm * int
@@ -31,10 +27,9 @@
 structure Sledgehammer_Proof_Reconstruct : SLEDGEHAMMER_PROOF_RECONSTRUCT =
 struct
 
+open Clausifier
+open Metis_Clauses
 open Sledgehammer_Util
-open Sledgehammer_FOL_Clause
-open Sledgehammer_HOL_Clause
-open Sledgehammer_Fact_Preprocessor
 
 type minimize_command = string list -> string
 
@@ -212,28 +207,13 @@
 
 exception NODE of node list
 
-(*If string s has the prefix s1, return the result of deleting it.*)
-fun strip_prefix s1 s =
-  if String.isPrefix s1 s
-  then SOME (undo_ascii_of (String.extract (s, size s1, NONE)))
-  else NONE;
-
-(*Invert the table of translations between Isabelle and ATPs*)
-val type_const_trans_table_inv =
-      Symtab.make (map swap (Symtab.dest type_const_trans_table));
-
-fun invert_type_const c =
-    case Symtab.lookup type_const_trans_table_inv c of
-        SOME c' => c'
-      | NONE => c;
-
 (* Type variables are given the basic sort "HOL.type". Some will later be
   constrained by information from type literals, or by type inference. *)
 fun type_from_node _ (u as IntLeaf _) = raise NODE [u]
   | type_from_node tfrees (u as StrNode (a, us)) =
     let val Ts = map (type_from_node tfrees) us in
       case strip_prefix tconst_prefix a of
-        SOME b => Type (invert_type_const b, Ts)
+        SOME b => Type (invert_const b, Ts)
       | NONE =>
         if not (null us) then
           raise NODE [u]  (* only "tconst"s have type arguments *)
@@ -250,24 +230,6 @@
             Type_Infer.param 0 (a, HOLogic.typeS)
     end
 
-(*Invert the table of translations between Isabelle and ATPs*)
-val const_trans_table_inv =
-  Symtab.update ("fequal", @{const_name "op ="})
-                (Symtab.make (map swap (Symtab.dest const_trans_table)))
-
-fun invert_const c = c |> Symtab.lookup const_trans_table_inv |> the_default c
-
-(* The number of type arguments of a constant, zero if it's monomorphic. For
-   (instances of) Skolem pseudoconstants, this information is encoded in the
-   constant name. *)
-fun num_type_args thy s =
-  if String.isPrefix skolem_theory_name s then
-    s |> unprefix skolem_theory_name
-      |> space_explode skolem_infix |> hd
-      |> space_explode "_" |> List.last |> Int.fromString |> the
-  else
-    (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
-
 fun fix_atp_variable_name s =
   let
     fun subscript_name s n = s ^ nat_subscript n
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_tptp_format.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_tptp_format.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -7,11 +7,11 @@
 
 signature SLEDGEHAMMER_TPTP_FORMAT =
 sig
-  type name_pool = Sledgehammer_FOL_Clause.name_pool
-  type type_literal = Sledgehammer_FOL_Clause.type_literal
-  type classrel_clause = Sledgehammer_FOL_Clause.classrel_clause
-  type arity_clause = Sledgehammer_FOL_Clause.arity_clause
-  type hol_clause = Sledgehammer_HOL_Clause.hol_clause
+  type name_pool = Metis_Clauses.name_pool
+  type type_literal = Metis_Clauses.type_literal
+  type classrel_clause = Metis_Clauses.classrel_clause
+  type arity_clause = Metis_Clauses.arity_clause
+  type hol_clause = Metis_Clauses.hol_clause
 
   val tptp_of_type_literal :
     bool -> type_literal -> name_pool option -> string * name_pool option
@@ -25,9 +25,8 @@
 structure Sledgehammer_TPTP_Format : SLEDGEHAMMER_TPTP_FORMAT =
 struct
 
+open Metis_Clauses
 open Sledgehammer_Util
-open Sledgehammer_FOL_Clause
-open Sledgehammer_HOL_Clause
 
 type const_info = {min_arity: int, max_arity: int, sub_level: bool}
 
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_util.ML	Sun Jun 27 08:33:01 2010 +0100
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_util.ML	Mon Jun 28 08:55:46 2010 +0200
@@ -8,8 +8,6 @@
 sig
   val plural_s : int -> string
   val serial_commas : string -> string list -> string list
-  val replace_all : string -> string -> string -> string
-  val remove_all : string -> string -> string
   val timestamp : unit -> string
   val parse_bool_option : bool -> string -> string -> bool option
   val parse_time_option : string -> string -> Time.time option
@@ -31,17 +29,6 @@
   | serial_commas conj [s1, s2, s3] = [s1 ^ ",", s2 ^ ",", conj, s3]
   | serial_commas conj (s :: ss) = s ^ "," :: serial_commas conj ss
 
-fun replace_all bef aft =
-  let
-    fun aux seen "" = String.implode (rev seen)
-      | aux seen s =
-        if String.isPrefix bef s then
-          aux seen "" ^ aft ^ aux [] (unprefix bef s)
-        else
-          aux (String.sub (s, 0) :: seen) (String.extract (s, 1, NONE))
-  in aux [] end
-fun remove_all bef = replace_all bef ""
-
 val timestamp = Date.fmt "%Y-%m-%d %H:%M:%S" o Date.fromTimeLocal o Time.now
 
 fun parse_bool_option option name s =