--- a/src/HOL/Tools/ATP/atp_problem.ML Fri Jun 17 14:31:13 2011 +0200
+++ b/src/HOL/Tools/ATP/atp_problem.ML Fri Jun 17 14:35:24 2011 +0200
@@ -317,6 +317,7 @@
AConn (c, [opn pos1 phi1, opn pos2 phi2])
end
| opn _ (AAtom t) = AAtom (t |> conj ? open_conjecture_term)
+ | opn _ phi = phi
in opn (SOME (not conj)) end
fun open_formula_line (Formula (ident, kind, phi, source, info)) =
Formula (ident, kind, open_formula (kind = Conjecture) phi, source, info)
--- a/src/HOL/Tools/ATP/atp_reconstruct.ML Fri Jun 17 14:31:13 2011 +0200
+++ b/src/HOL/Tools/ATP/atp_reconstruct.ML Fri Jun 17 14:35:24 2011 +0200
@@ -215,7 +215,7 @@
union (op =) (resolve_fact facts_offset fact_names name)
| add_fact ctxt _ _ (Inference (_, _, deps)) =
if AList.defined (op =) deps leo2_ext then
- insert (op =) (ext_name ctxt, General (* or Chained... *))
+ insert (op =) (ext_name ctxt, Extensionality)
else
I
| add_fact _ _ _ _ = I
--- a/src/HOL/Tools/ATP/atp_translate.ML Fri Jun 17 14:31:13 2011 +0200
+++ b/src/HOL/Tools/ATP/atp_translate.ML Fri Jun 17 14:35:24 2011 +0200
@@ -40,7 +40,9 @@
CombVar of name * typ |
CombApp of combterm * combterm
- datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
+ datatype locality =
+ General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
+ Chained
datatype polymorphism = Polymorphic | Monomorphic | Mangled_Monomorphic
datatype type_level =
@@ -534,7 +536,9 @@
|> (fn (s, T) => (CombConst (`make_bound_var s, T, []), atyps_of T))
| combterm_from_term _ _ (Abs _) = raise Fail "HOL clause: Abs"
-datatype locality = General | Intro | Elim | Simp | Local | Assum | Chained
+datatype locality =
+ General | Helper | Extensionality | Intro | Elim | Simp | Local | Assum |
+ Chained
(* (quasi-)underapproximation of the truth *)
fun is_locality_global Local = false
@@ -1357,7 +1361,7 @@
(if mangled_s = unmangled_s then "" else "_" ^ ascii_of mangled_s) ^
(if needs_fairly_sound then typed_helper_suffix
else untyped_helper_suffix),
- General),
+ Helper),
let val t = th |> prop_of in
t |> should_specialize_helper type_sys t
? (case types of
@@ -1467,12 +1471,12 @@
CombApp (CombConst (type_pred, T --> @{typ bool}, [T])
|> enforce_type_arg_policy_in_combterm ctxt format type_sys, tm)
-fun var_occurs_positively_naked_in_term _ (SOME false) _ accum = accum
- | var_occurs_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
+fun is_var_positively_naked_in_term _ (SOME false) _ accum = accum
+ | is_var_positively_naked_in_term name _ (ATerm ((s, _), tms)) accum =
accum orelse (is_tptp_equal s andalso member (op =) tms (ATerm (name, [])))
fun is_var_nonmonotonic_in_formula _ _ (SOME false) _ = false
| is_var_nonmonotonic_in_formula pos phi _ name =
- formula_fold pos (var_occurs_positively_naked_in_term name) phi false
+ formula_fold pos (is_var_positively_naked_in_term name) phi false
fun mk_const_aterm format type_sys x T_args args =
ATerm (x, map_filter (fo_term_for_type_arg format type_sys) T_args @ args)
@@ -1652,11 +1656,6 @@
? (fold (add_fact true) conjs #> fold (add_fact false) facts)
end
-(* These types witness that the type classes they belong to allow infinite
- models and hence that any types with these type classes is monotonic. *)
-val known_infinite_types =
- [@{typ nat}, Type ("Int.int", []), @{typ "nat => bool"}]
-
(* This inference is described in section 2.3 of Claessen et al.'s "Sorting it
out with monotonicity" paper presented at CADE 2011. *)
fun add_combterm_nonmonotonic_types _ _ _ (SOME false) _ = I
@@ -1667,7 +1666,7 @@
(case level of
Noninf_Nonmono_Types =>
not (is_locality_global locality) orelse
- not (is_type_surely_infinite ctxt known_infinite_types T)
+ not (is_type_surely_infinite ctxt T)
| Fin_Nonmono_Types => is_type_surely_finite ctxt T
| _ => true)) ? insert_type ctxt I (deep_freeze_type T)
| add_combterm_nonmonotonic_types _ _ _ _ _ = I
--- a/src/HOL/Tools/ATP/atp_util.ML Fri Jun 17 14:31:13 2011 +0200
+++ b/src/HOL/Tools/ATP/atp_util.ML Fri Jun 17 14:35:24 2011 +0200
@@ -22,7 +22,7 @@
Datatype_Aux.descr -> (Datatype_Aux.dtyp * typ) list -> Datatype_Aux.dtyp
-> typ
val is_type_surely_finite : Proof.context -> typ -> bool
- val is_type_surely_infinite : Proof.context -> typ list -> typ -> bool
+ val is_type_surely_infinite : Proof.context -> typ -> bool
val monomorphic_term : Type.tyenv -> term -> term
val eta_expand : typ list -> term -> int -> term
val transform_elim_prop : term -> term
@@ -136,70 +136,64 @@
0 means infinite type, 1 means singleton type (e.g., "unit"), and 2 means
cardinality 2 or more. The specified default cardinality is returned if the
cardinality of the type can't be determined. *)
-fun tiny_card_of_type ctxt default_card assigns T =
+fun tiny_card_of_type ctxt default_card T =
let
val thy = Proof_Context.theory_of ctxt
val max = 2 (* 1 would be too small for the "fun" case *)
fun aux slack avoid T =
if member (op =) avoid T then
0
- else case AList.lookup (Sign.typ_instance thy o swap) assigns T of
- SOME k => k
- | NONE =>
- case T of
- Type (@{type_name fun}, [T1, T2]) =>
- (case (aux slack avoid T1, aux slack avoid T2) of
- (k, 1) => if slack andalso k = 0 then 0 else 1
- | (0, _) => 0
- | (_, 0) => 0
- | (k1, k2) =>
- if k1 >= max orelse k2 >= max then max
- else Int.min (max, Integer.pow k2 k1))
- | @{typ prop} => 2
- | @{typ bool} => 2 (* optimization *)
- | @{typ nat} => 0 (* optimization *)
- | Type ("Int.int", []) => 0 (* optimization *)
- | Type (s, _) =>
- (case datatype_constrs thy T of
- constrs as _ :: _ =>
- let
- val constr_cards =
- map (Integer.prod o map (aux slack (T :: avoid)) o binder_types
- o snd) constrs
- in
- if exists (curry (op =) 0) constr_cards then 0
- else Int.min (max, Integer.sum constr_cards)
- end
- | [] =>
- case Typedef.get_info ctxt s of
- ({abs_type, rep_type, ...}, _) :: _ =>
- (* We cheat here by assuming that typedef types are infinite if
- their underlying type is infinite. This is unsound in general
- but it's hard to think of a realistic example where this would
- not be the case. We are also slack with representation types:
- If a representation type has the form "sigma => tau", we
- consider it enough to check "sigma" for infiniteness. (Look
- for "slack" in this function.) *)
- (case varify_and_instantiate_type ctxt
- (Logic.varifyT_global abs_type) T
- (Logic.varifyT_global rep_type)
- |> aux true avoid of
- 0 => 0
- | 1 => 1
- | _ => default_card)
- | [] => default_card)
- (* Very slightly unsound: Type variables are assumed not to be
- constrained to cardinality 1. (In practice, the user would most
- likely have used "unit" directly anyway.) *)
- | TFree _ => if default_card = 1 then 2 else default_card
- (* Schematic type variables that contain only unproblematic sorts
- (with no finiteness axiom) can safely be considered infinite. *)
- | TVar _ => default_card
+ else case T of
+ Type (@{type_name fun}, [T1, T2]) =>
+ (case (aux slack avoid T1, aux slack avoid T2) of
+ (k, 1) => if slack andalso k = 0 then 0 else 1
+ | (0, _) => 0
+ | (_, 0) => 0
+ | (k1, k2) =>
+ if k1 >= max orelse k2 >= max then max
+ else Int.min (max, Integer.pow k2 k1))
+ | @{typ prop} => 2
+ | @{typ bool} => 2 (* optimization *)
+ | @{typ nat} => 0 (* optimization *)
+ | Type ("Int.int", []) => 0 (* optimization *)
+ | Type (s, _) =>
+ (case datatype_constrs thy T of
+ constrs as _ :: _ =>
+ let
+ val constr_cards =
+ map (Integer.prod o map (aux slack (T :: avoid)) o binder_types
+ o snd) constrs
+ in
+ if exists (curry (op =) 0) constr_cards then 0
+ else Int.min (max, Integer.sum constr_cards)
+ end
+ | [] =>
+ case Typedef.get_info ctxt s of
+ ({abs_type, rep_type, ...}, _) :: _ =>
+ (* We cheat here by assuming that typedef types are infinite if
+ their underlying type is infinite. This is unsound in general
+ but it's hard to think of a realistic example where this would
+ not be the case. We are also slack with representation types:
+ If a representation type has the form "sigma => tau", we
+ consider it enough to check "sigma" for infiniteness. (Look
+ for "slack" in this function.) *)
+ (case varify_and_instantiate_type ctxt
+ (Logic.varifyT_global abs_type) T
+ (Logic.varifyT_global rep_type)
+ |> aux true avoid of
+ 0 => 0
+ | 1 => 1
+ | _ => default_card)
+ | [] => default_card)
+ (* Very slightly unsound: Type variables are assumed not to be
+ constrained to cardinality 1. (In practice, the user would most
+ likely have used "unit" directly anyway.) *)
+ | TFree _ => if default_card = 1 then 2 else default_card
+ | TVar _ => default_card
in Int.min (max, aux false [] T) end
-fun is_type_surely_finite ctxt T = tiny_card_of_type ctxt 0 [] T <> 0
-fun is_type_surely_infinite ctxt infinite_Ts T =
- tiny_card_of_type ctxt 1 (map (rpair 0) infinite_Ts) T = 0
+fun is_type_surely_finite ctxt T = tiny_card_of_type ctxt 0 T <> 0
+fun is_type_surely_infinite ctxt T = tiny_card_of_type ctxt 1 T = 0
fun monomorphic_term subst =
map_types (map_type_tvar (fn v =>
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_filter.ML Fri Jun 17 14:31:13 2011 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_filter.ML Fri Jun 17 14:35:24 2011 +0200
@@ -141,9 +141,11 @@
in
(ths, (0, []))
|-> fold (fn th => fn (j, rest) =>
- (j + 1, ((nth_name j,
- if member Thm.eq_thm_prop chained_ths th then Chained
- else General), th) :: rest))
+ (j + 1,
+ ((nth_name j,
+ if member Thm.eq_thm_prop chained_ths th then Chained
+ else if Thm.eq_thm_prop (th, @{thm ext}) then Extensionality
+ else General), th) :: rest))
|> snd
end
@@ -479,13 +481,13 @@
chained_const_irrel_weight (irrel_weight_for fudge) swap
const_tab chained_const_tab
-fun locality_bonus (_ : relevance_fudge) General = 0.0
- | locality_bonus {intro_bonus, ...} Intro = intro_bonus
+fun locality_bonus ({intro_bonus, ...} : relevance_fudge) Intro = intro_bonus
| locality_bonus {elim_bonus, ...} Elim = elim_bonus
| locality_bonus {simp_bonus, ...} Simp = simp_bonus
| locality_bonus {local_bonus, ...} Local = local_bonus
| locality_bonus {assum_bonus, ...} Assum = assum_bonus
| locality_bonus {chained_bonus, ...} Chained = chained_bonus
+ | locality_bonus _ _ = 0.0
fun is_odd_const_name s =
s = abs_name orelse String.isPrefix skolem_prefix s orelse
@@ -827,7 +829,10 @@
if is_chained th then
Chained
else if global then
- Termtab.lookup clasimpset_table (prop_of th) |> the_default General
+ case Termtab.lookup clasimpset_table (prop_of th) of
+ SOME loc => loc
+ | NONE => if Thm.eq_thm_prop (th, @{thm ext}) then Extensionality
+ else General
else
if is_assum th then Assum else Local
fun is_good_unnamed_local th =