--- a/src/HOL/Code_Eval.thy Wed Oct 22 14:15:42 2008 +0200
+++ b/src/HOL/Code_Eval.thy Wed Oct 22 14:15:43 2008 +0200
@@ -15,14 +15,10 @@
datatype "term" = dummy_term
-definition
- Const :: "message_string \<Rightarrow> typerep \<Rightarrow> term"
-where
+definition Const :: "message_string \<Rightarrow> typerep \<Rightarrow> term" where
"Const _ _ = dummy_term"
-definition
- App :: "term \<Rightarrow> term \<Rightarrow> term"
-where
+definition App :: "term \<Rightarrow> term \<Rightarrow> term" where
"App _ _ = dummy_term"
code_datatype Const App
--- a/src/HOL/Int.thy Wed Oct 22 14:15:42 2008 +0200
+++ b/src/HOL/Int.thy Wed Oct 22 14:15:43 2008 +0200
@@ -21,9 +21,7 @@
subsection {* The equivalence relation underlying the integers *}
-definition
- intrel :: "((nat \<times> nat) \<times> (nat \<times> nat)) set"
-where
+definition intrel :: "((nat \<times> nat) \<times> (nat \<times> nat)) set" where
[code del]: "intrel = {((x, y), (u, v)) | x y u v. x + v = u +y }"
typedef (Integ)
--- a/src/HOL/ex/Efficient_Nat_examples.thy Wed Oct 22 14:15:42 2008 +0200
+++ b/src/HOL/ex/Efficient_Nat_examples.thy Wed Oct 22 14:15:43 2008 +0200
@@ -9,34 +9,24 @@
imports Main "~~/src/HOL/Real/RealDef" Efficient_Nat
begin
-fun
- to_n :: "nat \<Rightarrow> nat list"
-where
+fun to_n :: "nat \<Rightarrow> nat list" where
"to_n 0 = []"
| "to_n (Suc 0) = []"
| "to_n (Suc (Suc 0)) = []"
| "to_n (Suc n) = n # to_n n"
-definition
- naive_prime :: "nat \<Rightarrow> bool"
-where
+definition naive_prime :: "nat \<Rightarrow> bool" where
"naive_prime n \<longleftrightarrow> n \<ge> 2 \<and> filter (\<lambda>m. n mod m = 0) (to_n n) = []"
-primrec
- fac :: "nat \<Rightarrow> nat"
-where
+primrec fac :: "nat \<Rightarrow> nat" where
"fac 0 = 1"
| "fac (Suc n) = Suc n * fac n"
-primrec
- rat_of_nat :: "nat \<Rightarrow> rat"
-where
+primrec rat_of_nat :: "nat \<Rightarrow> rat" where
"rat_of_nat 0 = 0"
| "rat_of_nat (Suc n) = rat_of_nat n + 1"
-primrec
- harmonic :: "nat \<Rightarrow> rat"
-where
+primrec harmonic :: "nat \<Rightarrow> rat" where
"harmonic 0 = 0"
| "harmonic (Suc n) = 1 / rat_of_nat (Suc n) + harmonic n"