--- a/src/HOL/Cardinals/Wellorder_Embedding_Base.thy Wed Oct 10 15:01:20 2012 +0200
+++ b/src/HOL/Cardinals/Wellorder_Embedding_Base.thy Wed Oct 10 15:17:40 2012 +0200
@@ -273,7 +273,7 @@
lemma embed_underS:
-assumes WELL: "Well_order r" and WELL: "Well_order r'" and
+assumes WELL: "Well_order r" and WELL': "Well_order r'" and
EMB: "embed r r' f" and IN: "a \<in> Field r"
shows "bij_betw f (rel.underS r a) (rel.underS r' (f a))"
proof-
--- a/src/HOL/NthRoot.thy Wed Oct 10 15:01:20 2012 +0200
+++ b/src/HOL/NthRoot.thy Wed Oct 10 15:17:40 2012 +0200
@@ -398,9 +398,9 @@
lemma DERIV_real_root_generic:
assumes "0 < n" and "x \<noteq> 0"
- and even: "\<lbrakk> even n ; 0 < x \<rbrakk> \<Longrightarrow> D = inverse (real n * root n x ^ (n - Suc 0))"
- and even: "\<lbrakk> even n ; x < 0 \<rbrakk> \<Longrightarrow> D = - inverse (real n * root n x ^ (n - Suc 0))"
- and odd: "odd n \<Longrightarrow> D = inverse (real n * root n x ^ (n - Suc 0))"
+ and "\<lbrakk> even n ; 0 < x \<rbrakk> \<Longrightarrow> D = inverse (real n * root n x ^ (n - Suc 0))"
+ and "\<lbrakk> even n ; x < 0 \<rbrakk> \<Longrightarrow> D = - inverse (real n * root n x ^ (n - Suc 0))"
+ and "odd n \<Longrightarrow> D = inverse (real n * root n x ^ (n - Suc 0))"
shows "DERIV (root n) x :> D"
using assms by (cases "even n", cases "0 < x",
auto intro: DERIV_real_root[THEN DERIV_cong]