--- a/src/ZF/AC/AC16_WO4.thy Thu Jul 27 18:28:14 1995 +0200
+++ b/src/ZF/AC/AC16_WO4.thy Fri Jul 28 11:02:22 1995 +0200
@@ -1,6 +1,6 @@
(* Title: ZF/AC/AC16_WO4.thy
ID: $Id$
- Author: Krzysztof Gr`abczewski
+ Author: Krzysztof Grabczewski
*)
AC16_WO4 = OrderType + AC16_lemmas + Cardinal_aux +
--- a/src/ZF/AC/AC18_AC19.thy Thu Jul 27 18:28:14 1995 +0200
+++ b/src/ZF/AC/AC18_AC19.thy Fri Jul 28 11:02:22 1995 +0200
@@ -1,6 +1,6 @@
(* Title: ZF/AC/AC18_AC19.thy
ID: $Id$
- Author: Krzysztof Gr`abczewski
+ Author: Krzysztof Grabczewski
Additional definition used in the proof AC19 ==> AC1 which is a part
of the chain AC1 ==> AC18 ==> AC19 ==> AC1
@@ -15,4 +15,4 @@
u_def "u_(a) == {c Un {0}. c:a}"
-end
\ No newline at end of file
+end
--- a/src/ZF/AC/AC_Equiv.thy Thu Jul 27 18:28:14 1995 +0200
+++ b/src/ZF/AC/AC_Equiv.thy Fri Jul 28 11:02:22 1995 +0200
@@ -1,6 +1,6 @@
(* Title: ZF/AC/AC_Equiv.thy
ID: $Id$
- Author: Krzysztof Gr`abczewski
+ Author: Krzysztof Grabczewski
Axioms AC1 -- AC19 come from "Equivalents of the Axiom of Choice, II"
by H. Rubin and J.E. Rubin, 1985.
--- a/src/ZF/AC/DC.thy Thu Jul 27 18:28:14 1995 +0200
+++ b/src/ZF/AC/DC.thy Fri Jul 28 11:02:22 1995 +0200
@@ -1,6 +1,6 @@
(* Title: ZF/AC/DC.thy
ID: $Id$
- Author: Krzysztof Gr`abczewski
+ Author: Krzysztof Grabczewski
Theory file for the proofs concernind the Axiom of Dependent Choice
*)
--- a/src/ZF/AC/HH.thy Thu Jul 27 18:28:14 1995 +0200
+++ b/src/ZF/AC/HH.thy Fri Jul 28 11:02:22 1995 +0200
@@ -1,6 +1,6 @@
(* Title: ZF/AC/HH.thy
ID: $Id$
- Author: Krzysztof Gr`abczewski
+ Author: Krzysztof Grabczewski
The theory file for the proofs of
AC17 ==> AC1
--- a/src/ZF/AC/Hartog.thy Thu Jul 27 18:28:14 1995 +0200
+++ b/src/ZF/AC/Hartog.thy Fri Jul 28 11:02:22 1995 +0200
@@ -1,6 +1,6 @@
(* Title: ZF/AC/Hartog.thy
ID: $Id$
- Author: Krzysztof Gr`abczewski
+ Author: Krzysztof Grabczewski
Hartog's function.
*)
@@ -15,4 +15,4 @@
Hartog_def "Hartog(X) == LEAST i. ~i lepoll X"
-end
\ No newline at end of file
+end
--- a/src/ZF/AC/OrdQuant.thy Thu Jul 27 18:28:14 1995 +0200
+++ b/src/ZF/AC/OrdQuant.thy Fri Jul 28 11:02:22 1995 +0200
@@ -1,6 +1,6 @@
(* Title: ZF/AC/OrdQuant.thy
ID: $Id$
- Authors: Krzysztof Gr`abczewski and L C Paulson
+ Authors: Krzysztof Grabczewski and L C Paulson
Quantifiers and union operator for ordinals.
*)
--- a/src/ZF/AC/Transrec2.thy Thu Jul 27 18:28:14 1995 +0200
+++ b/src/ZF/AC/Transrec2.thy Fri Jul 28 11:02:22 1995 +0200
@@ -1,6 +1,6 @@
(* Title: ZF/AC/Transrec2.thy
ID: $Id$
- Author: Krzysztof Gr`abczewski
+ Author: Krzysztof Grabczewski
Transfinite recursion introduced to handle definitions based on the three
cases of ordinals.
--- a/src/ZF/AC/WO6_WO1.thy Thu Jul 27 18:28:14 1995 +0200
+++ b/src/ZF/AC/WO6_WO1.thy Fri Jul 28 11:02:22 1995 +0200
@@ -1,6 +1,6 @@
(* Title: ZF/AC/WO6_WO1.thy
ID: $Id$
- Author: Krzysztof Gr`abczewski
+ Author: Krzysztof Grabczewski
The proof of "WO6 ==> WO1".
--- a/src/ZF/AC/first.thy Thu Jul 27 18:28:14 1995 +0200
+++ b/src/ZF/AC/first.thy Fri Jul 28 11:02:22 1995 +0200
@@ -1,6 +1,6 @@
(* Title: ZF/AC/first.thy
ID: $Id$
- Author: Krzysztof Gr`abczewski
+ Author: Krzysztof Grabczewski
Theory helpful in proofs using first element of a well ordered set
*)