moved Primes.thy from NumberTheory to Library
authorpaulson
Sat, 09 Jun 2001 08:41:25 +0200
changeset 11363 a548865b1b6a
parent 11362 2511e48c5324
child 11364 01020b10c0a7
moved Primes.thy from NumberTheory to Library
src/HOL/IsaMakefile
src/HOL/Library/Primes.thy
src/HOL/NumberTheory/Primes.thy
--- a/src/HOL/IsaMakefile	Fri Jun 08 08:50:08 2001 +0200
+++ b/src/HOL/IsaMakefile	Sat Jun 09 08:41:25 2001 +0200
@@ -181,7 +181,8 @@
 
 $(LOG)/HOL-Library.gz: $(OUT)/HOL Library/Accessible_Part.thy \
   Library/Library.thy Library/List_Prefix.thy Library/Multiset.thy \
-  Library/Permutation.thy Library/Quotient.thy Library/Ring_and_Field.thy \
+  Library/Permutation.thy Library/Primes.thy \
+  Library/Quotient.thy Library/Ring_and_Field.thy \
   Library/Ring_and_Field_Example.thy Library/Nat_Infinity.thy \
   Library/README.html Library/Continuity.thy \
   Library/Nested_Environment.thy Library/Rational_Numbers.thy Library/ROOT.ML \
@@ -241,7 +242,7 @@
 HOL-NumberTheory: HOL $(LOG)/HOL-NumberTheory.gz
 
 $(LOG)/HOL-NumberTheory.gz: $(OUT)/HOL \
-  Library/Permutation.thy NumberTheory/Fib.thy NumberTheory/Primes.thy \
+  Library/Permutation.thy Library/Primes.thy NumberTheory/Fib.thy \
   NumberTheory/Factorization.thy NumberTheory/BijectionRel.thy \
   NumberTheory/Chinese.thy NumberTheory/EulerFermat.thy \
   NumberTheory/IntFact.thy NumberTheory/IntPrimes.thy \
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Primes.thy	Sat Jun 09 08:41:25 2001 +0200
@@ -0,0 +1,230 @@
+(*  Title:      HOL/NumberTheory/Primes.thy
+    ID:         $Id$
+    Author:     Christophe Tabacznyj and Lawrence C Paulson
+    Copyright   1996  University of Cambridge
+*)
+
+header {* The Greatest Common Divisor and Euclid's algorithm *}
+
+theory Primes = Main:
+
+text {*
+  (See H. Davenport, "The Higher Arithmetic".  6th edition.  (CUP, 1992))
+
+  \bigskip
+*}
+
+consts
+  gcd  :: "nat * nat => nat"  -- {* Euclid's algorithm *}
+
+recdef gcd  "measure ((\<lambda>(m, n). n) :: nat * nat => nat)"
+  "gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
+
+constdefs
+  is_gcd :: "nat => nat => nat => bool"  -- {* @{term gcd} as a relation *}
+  "is_gcd p m n == p dvd m \<and> p dvd n \<and>
+    (\<forall>d. d dvd m \<and> d dvd n --> d dvd p)"
+
+  coprime :: "nat => nat => bool"
+  "coprime m n == gcd (m, n) = 1"
+
+  prime :: "nat set"
+  "prime == {p. 1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p)}"
+
+
+lemma gcd_induct:
+  "(!!m. P m 0) ==>
+    (!!m n. 0 < n ==> P n (m mod n) ==> P m n)
+  ==> P (m::nat) (n::nat)"
+  apply (induct m n rule: gcd.induct)
+  apply (case_tac "n = 0")
+   apply simp_all
+  done
+
+
+lemma gcd_0 [simp]: "gcd (m, 0) = m"
+  apply simp
+  done
+
+lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)"
+  apply simp
+  done
+
+declare gcd.simps [simp del]
+
+lemma gcd_1 [simp]: "gcd (m, 1) = 1"
+  apply (simp add: gcd_non_0)
+  done
+
+text {*
+  \medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}.  The
+  conjunctions don't seem provable separately.
+*}
+
+lemma gcd_dvd_both: "gcd (m, n) dvd m \<and> gcd (m, n) dvd n"
+  apply (induct m n rule: gcd_induct)
+   apply (simp_all add: gcd_non_0)
+  apply (blast dest: dvd_mod_imp_dvd)
+  done
+
+lemmas gcd_dvd1 [iff] = gcd_dvd_both [THEN conjunct1, standard]
+lemmas gcd_dvd2 [iff] = gcd_dvd_both [THEN conjunct2, standard]
+
+
+text {*
+  \medskip Maximality: for all @{term m}, @{term n}, @{term k}
+  naturals, if @{term k} divides @{term m} and @{term k} divides
+  @{term n} then @{term k} divides @{term "gcd (m, n)"}.
+*}
+
+lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)"
+  apply (induct m n rule: gcd_induct)
+   apply (simp_all add: gcd_non_0 dvd_mod)
+  done
+
+lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m \<and> k dvd n)"
+  apply (blast intro!: gcd_greatest intro: dvd_trans)
+  done
+
+
+text {*
+  \medskip Function gcd yields the Greatest Common Divisor.
+*}
+
+lemma is_gcd: "is_gcd (gcd (m, n)) m n"
+  apply (simp add: is_gcd_def gcd_greatest)
+  done
+
+text {*
+  \medskip Uniqueness of GCDs.
+*}
+
+lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n"
+  apply (simp add: is_gcd_def)
+  apply (blast intro: dvd_anti_sym)
+  done
+
+lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m"
+  apply (auto simp add: is_gcd_def)
+  done
+
+
+text {*
+  \medskip Commutativity
+*}
+
+lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
+  apply (auto simp add: is_gcd_def)
+  done
+
+lemma gcd_commute: "gcd (m, n) = gcd (n, m)"
+  apply (rule is_gcd_unique)
+   apply (rule is_gcd)
+  apply (subst is_gcd_commute)
+  apply (simp add: is_gcd)
+  done
+
+lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
+  apply (rule is_gcd_unique)
+   apply (rule is_gcd)
+  apply (simp add: is_gcd_def)
+  apply (blast intro: dvd_trans)
+  done
+
+lemma gcd_0_left [simp]: "gcd (0, m) = m"
+  apply (simp add: gcd_commute [of 0])
+  done
+
+lemma gcd_1_left [simp]: "gcd (1, m) = 1"
+  apply (simp add: gcd_commute [of 1])
+  done
+
+
+text {*
+  \medskip Multiplication laws
+*}
+
+lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)"
+    -- {* Davenport, page 27 *}
+  apply (induct m n rule: gcd_induct)
+   apply simp
+  apply (case_tac "k = 0")
+   apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
+  done
+
+lemma gcd_mult [simp]: "gcd (k, k * n) = k"
+  apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
+  done
+
+lemma gcd_self [simp]: "gcd (k, k) = k"
+  apply (rule gcd_mult [of k 1, simplified])
+  done
+
+lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m"
+  apply (insert gcd_mult_distrib2 [of m k n])
+  apply simp
+  apply (erule_tac t = m in ssubst)
+  apply simp
+  done
+
+lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)"
+  apply (blast intro: relprime_dvd_mult dvd_trans)
+  done
+
+lemma prime_imp_relprime: "p \<in> prime ==> \<not> p dvd n ==> gcd (p, n) = 1"
+  apply (auto simp add: prime_def)
+  apply (drule_tac x = "gcd (p, n)" in spec)
+  apply auto
+  apply (insert gcd_dvd2 [of p n])
+  apply simp
+  done
+
+text {*
+  This theorem leads immediately to a proof of the uniqueness of
+  factorization.  If @{term p} divides a product of primes then it is
+  one of those primes.
+*}
+
+lemma prime_dvd_mult: "p \<in> prime ==> p dvd m * n ==> p dvd m \<or> p dvd n"
+  apply (blast intro: relprime_dvd_mult prime_imp_relprime)
+  done
+
+
+text {* \medskip Addition laws *}
+
+lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)"
+  apply (case_tac "n = 0")
+   apply (simp_all add: gcd_non_0)
+  done
+
+lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
+  apply (rule gcd_commute [THEN trans])
+  apply (subst add_commute)
+  apply (simp add: gcd_add1)
+  apply (rule gcd_commute)
+  done
+
+lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
+  apply (subst add_commute)
+  apply (rule gcd_add2)
+  done
+
+lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
+  apply (induct k)
+   apply (simp_all add: gcd_add2 add_assoc)
+  done
+
+
+text {* \medskip More multiplication laws *}
+
+lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)"
+  apply (rule dvd_anti_sym)
+   apply (rule gcd_greatest)
+    apply (rule_tac n = k in relprime_dvd_mult)
+     apply (simp add: gcd_assoc)
+     apply (simp add: gcd_commute)
+    apply (simp_all add: mult_commute gcd_dvd1 gcd_dvd2)
+  apply (blast intro: gcd_dvd1 dvd_trans)
+  done
+
+end
--- a/src/HOL/NumberTheory/Primes.thy	Fri Jun 08 08:50:08 2001 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,230 +0,0 @@
-(*  Title:      HOL/NumberTheory/Primes.thy
-    ID:         $Id$
-    Author:     Christophe Tabacznyj and Lawrence C Paulson
-    Copyright   1996  University of Cambridge
-*)
-
-header {* The Greatest Common Divisor and Euclid's algorithm *}
-
-theory Primes = Main:
-
-text {*
-  (See H. Davenport, "The Higher Arithmetic".  6th edition.  (CUP, 1992))
-
-  \bigskip
-*}
-
-consts
-  gcd  :: "nat * nat => nat"  -- {* Euclid's algorithm *}
-
-recdef gcd  "measure ((\<lambda>(m, n). n) :: nat * nat => nat)"
-  "gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
-
-constdefs
-  is_gcd :: "nat => nat => nat => bool"  -- {* @{term gcd} as a relation *}
-  "is_gcd p m n == p dvd m \<and> p dvd n \<and>
-    (\<forall>d. d dvd m \<and> d dvd n --> d dvd p)"
-
-  coprime :: "nat => nat => bool"
-  "coprime m n == gcd (m, n) = 1"
-
-  prime :: "nat set"
-  "prime == {p. 1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p)}"
-
-
-lemma gcd_induct:
-  "(!!m. P m 0) ==>
-    (!!m n. 0 < n ==> P n (m mod n) ==> P m n)
-  ==> P (m::nat) (n::nat)"
-  apply (induct m n rule: gcd.induct)
-  apply (case_tac "n = 0")
-   apply simp_all
-  done
-
-
-lemma gcd_0 [simp]: "gcd (m, 0) = m"
-  apply simp
-  done
-
-lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)"
-  apply simp
-  done
-
-declare gcd.simps [simp del]
-
-lemma gcd_1 [simp]: "gcd (m, 1) = 1"
-  apply (simp add: gcd_non_0)
-  done
-
-text {*
-  \medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}.  The
-  conjunctions don't seem provable separately.
-*}
-
-lemma gcd_dvd_both: "gcd (m, n) dvd m \<and> gcd (m, n) dvd n"
-  apply (induct m n rule: gcd_induct)
-   apply (simp_all add: gcd_non_0)
-  apply (blast dest: dvd_mod_imp_dvd)
-  done
-
-lemmas gcd_dvd1 [iff] = gcd_dvd_both [THEN conjunct1, standard]
-lemmas gcd_dvd2 [iff] = gcd_dvd_both [THEN conjunct2, standard]
-
-
-text {*
-  \medskip Maximality: for all @{term m}, @{term n}, @{term k}
-  naturals, if @{term k} divides @{term m} and @{term k} divides
-  @{term n} then @{term k} divides @{term "gcd (m, n)"}.
-*}
-
-lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)"
-  apply (induct m n rule: gcd_induct)
-   apply (simp_all add: gcd_non_0 dvd_mod)
-  done
-
-lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m \<and> k dvd n)"
-  apply (blast intro!: gcd_greatest intro: dvd_trans)
-  done
-
-
-text {*
-  \medskip Function gcd yields the Greatest Common Divisor.
-*}
-
-lemma is_gcd: "is_gcd (gcd (m, n)) m n"
-  apply (simp add: is_gcd_def gcd_greatest)
-  done
-
-text {*
-  \medskip Uniqueness of GCDs.
-*}
-
-lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n"
-  apply (simp add: is_gcd_def)
-  apply (blast intro: dvd_anti_sym)
-  done
-
-lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m"
-  apply (auto simp add: is_gcd_def)
-  done
-
-
-text {*
-  \medskip Commutativity
-*}
-
-lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
-  apply (auto simp add: is_gcd_def)
-  done
-
-lemma gcd_commute: "gcd (m, n) = gcd (n, m)"
-  apply (rule is_gcd_unique)
-   apply (rule is_gcd)
-  apply (subst is_gcd_commute)
-  apply (simp add: is_gcd)
-  done
-
-lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
-  apply (rule is_gcd_unique)
-   apply (rule is_gcd)
-  apply (simp add: is_gcd_def)
-  apply (blast intro: dvd_trans)
-  done
-
-lemma gcd_0_left [simp]: "gcd (0, m) = m"
-  apply (simp add: gcd_commute [of 0])
-  done
-
-lemma gcd_1_left [simp]: "gcd (1, m) = 1"
-  apply (simp add: gcd_commute [of 1])
-  done
-
-
-text {*
-  \medskip Multiplication laws
-*}
-
-lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)"
-    -- {* Davenport, page 27 *}
-  apply (induct m n rule: gcd_induct)
-   apply simp
-  apply (case_tac "k = 0")
-   apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
-  done
-
-lemma gcd_mult [simp]: "gcd (k, k * n) = k"
-  apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
-  done
-
-lemma gcd_self [simp]: "gcd (k, k) = k"
-  apply (rule gcd_mult [of k 1, simplified])
-  done
-
-lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m"
-  apply (insert gcd_mult_distrib2 [of m k n])
-  apply simp
-  apply (erule_tac t = m in ssubst)
-  apply simp
-  done
-
-lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)"
-  apply (blast intro: relprime_dvd_mult dvd_trans)
-  done
-
-lemma prime_imp_relprime: "p \<in> prime ==> \<not> p dvd n ==> gcd (p, n) = 1"
-  apply (auto simp add: prime_def)
-  apply (drule_tac x = "gcd (p, n)" in spec)
-  apply auto
-  apply (insert gcd_dvd2 [of p n])
-  apply simp
-  done
-
-text {*
-  This theorem leads immediately to a proof of the uniqueness of
-  factorization.  If @{term p} divides a product of primes then it is
-  one of those primes.
-*}
-
-lemma prime_dvd_mult: "p \<in> prime ==> p dvd m * n ==> p dvd m \<or> p dvd n"
-  apply (blast intro: relprime_dvd_mult prime_imp_relprime)
-  done
-
-
-text {* \medskip Addition laws *}
-
-lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)"
-  apply (case_tac "n = 0")
-   apply (simp_all add: gcd_non_0)
-  done
-
-lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
-  apply (rule gcd_commute [THEN trans])
-  apply (subst add_commute)
-  apply (simp add: gcd_add1)
-  apply (rule gcd_commute)
-  done
-
-lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
-  apply (subst add_commute)
-  apply (rule gcd_add2)
-  done
-
-lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
-  apply (induct k)
-   apply (simp_all add: gcd_add2 add_assoc)
-  done
-
-
-text {* \medskip More multiplication laws *}
-
-lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)"
-  apply (rule dvd_anti_sym)
-   apply (rule gcd_greatest)
-    apply (rule_tac n = k in relprime_dvd_mult)
-     apply (simp add: gcd_assoc)
-     apply (simp add: gcd_commute)
-    apply (simp_all add: mult_commute gcd_dvd1 gcd_dvd2)
-  apply (blast intro: gcd_dvd1 dvd_trans)
-  done
-
-end