author | chaieb |
Fri, 19 Nov 2004 14:00:31 +0100 | |
changeset 15298 | a5bea99352d6 |
parent 15297 | 0aff5d912422 |
child 15299 | 576fd0b65ed8 |
src/HOL/Integ/Barith.thy | file | annotate | diff | comparison | revisions | |
src/HOL/Integ/barith.ML | file | annotate | diff | comparison | revisions | |
src/HOL/IsaMakefile | file | annotate | diff | comparison | revisions | |
src/HOL/PreList.thy | file | annotate | diff | comparison | revisions |
--- a/src/HOL/Integ/Barith.thy Thu Nov 18 18:46:09 2004 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,714 +0,0 @@ -theory Barith = Presburger -files ("barith.ML") : - -lemma imp_commute: "(PROP P ==> PROP Q -==> PROP R) == (PROP Q ==> -PROP P ==> PROP R)" -proof - assume h1: "PROP P \<Longrightarrow> PROP Q \<Longrightarrow> -PROP R" - assume h2: "PROP Q" - assume h3: "PROP P" - from h3 h2 show "PROP R" by (rule h1) -next - assume h1: "PROP Q \<Longrightarrow> PROP P \<Longrightarrow> -PROP R" - assume h2: "PROP P" - assume h3: "PROP Q" - from h3 h2 show "PROP R" by (rule h1) -qed - -lemma imp_simplify: "(PROP P \<Longrightarrow> PROP P -\<Longrightarrow> PROP Q) \<equiv> (PROP P \<Longrightarrow> -PROP Q)" -proof - assume h1: "PROP P \<Longrightarrow> PROP P \<Longrightarrow> -PROP Q" - assume h2: "PROP P" - from h2 h2 show "PROP Q" by (rule h1) -next - assume h: "PROP P \<Longrightarrow> PROP Q" - assume "PROP P" - then show "PROP Q" by (rule h) -qed - -(* Simple lemmas needed for simplification before the procedure runs*) -lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0" - by simp - -lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1" - by simp - -lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0" - by simp - -lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1" - by simp - -lemma z_less_imp_le1 : "(a::int) < b \<Longrightarrow> a +1 <= b" -by simp - -lemma z_eq_imp_le_conj: "(a::int) = b \<Longrightarrow> a <= b \<and> b <= a" -by simp - -lemma zpower_Pls: "(z::int)^Numeral0 = 1" - by simp - -lemma zpower_Min: "(z::int)^((-1)::nat) = 1" -proof - - have 1:"((-1)::nat) = 0" - by simp - show ?thesis by (simp add: 1) -qed - - -(* Abstraction of constants *) -lemma abs_const: "(x::int) <= x \<and> x <= x" -by simp - -(* Abstraction of Variables *) -lemma abs_var: "l <= (x::int) \<and> x <= u \<Longrightarrow> l <= (x::int) \<and> x <= u" -by simp - -(* Unary operators *) -lemma abs_neg: "l <= (x::int) \<and> x <= u \<Longrightarrow> -u <= -x \<and> -x <= -l" -by arith - - -(* Binary operations *) -(* Addition*) -lemma abs_add: "\<lbrakk> l1 <= (x1::int) \<and> x1 <= u1 ; l2 <= (x2::int) \<and> x2 <= u2\<rbrakk> - \<Longrightarrow> l1 + l2 <= x1 + x2 \<and> x1 + x2 <= u1 + u2" -by arith - -lemma abs_sub: "\<lbrakk> l1 <= (x1::int) \<and> x1 <= u1 ; l2 <= (x2::int) \<and> x2 <= u2\<rbrakk> - \<Longrightarrow> l1 - u2 <= x1 - x2 \<and> x1 - x2 <= u1 - l2" -by arith - -lemma abs_sub_x: "l <= (x::int) \<and> x <= u \<Longrightarrow> 0 <= x - x \<and> x - x <= 0" -by arith - -(* For resolving the last step*) -lemma subinterval: "\<lbrakk>l <= (e::int) \<and> e <= u ; l' <= l ; u <= u' \<rbrakk> - \<Longrightarrow> l' <= e \<and> e <= u'" -by arith - -lemma min_max_minus : "min (-a ::int) (-b) = - max a b" -by arith - -lemma max_min_minus : " max (-a ::int) (-b) = - min a b" -by arith - -lemma max_max_commute : "max (max (a::int) b) (max c d) = max (max a c) (max b d)" -by arith - -lemma min_min_commute : "min (min (a::int) b) (min c d) = min (min a c) (min b d)" -by arith - -lemma zintervals_min: "\<lbrakk> l1 <= (x1::int) \<and> x1<= u1 ; l2 <= x2 \<and> x2 <= u2 \<rbrakk> - \<Longrightarrow> min l1 l2 <= x1 \<and> x1 <= max u1 u2" by arith - -lemma zmult_zle_mono: "(i::int) \<le> j \<Longrightarrow> 0 \<le> k \<Longrightarrow> k * i \<le> k * j" - apply (erule order_le_less [THEN iffD1, THEN disjE, of "0::int"]) - apply (erule order_le_less [THEN iffD1, THEN disjE]) - apply (rule order_less_imp_le) - apply (rule zmult_zless_mono2) - apply simp_all - done - -lemma zmult_mono: - assumes l1_pos : "0 <= l1" - and l2_pos : "0 <= l2" - and l1_le : "l1 <= (x1::int)" - and l2_le : "l2 <= (x2::int)" - shows "l1*l2 <= x1*x2" -proof - - from l1_pos and l1_le have x1_pos: "0 \<le> x1" by (rule order_trans) - from l1_le and l2_pos - have "l2 * l1 \<le> l2 * x1" by (rule zmult_zle_mono) - then have "l1 * l2 \<le> x1 * l2" by (simp add: mult_ac) - also from l2_le and x1_pos - have "x1 * l2 \<le> x1 * x2" by (rule zmult_zle_mono) - finally show ?thesis . -qed - -lemma zinterval_lposlpos: - assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1" - and x2_lu : "l2 <= (x2::int) \<and> x2 <= u2" - and l1_pos : "0 <= l1" - and l2_pos : "0 <= l2" - shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 - \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" -proof- - from x1_lu have l1_le : "l1 <= x1" by simp - from x1_lu have x1_le : "x1 <= u1" by simp - from x2_lu have l2_le : "l2 <= x2" by simp - from x2_lu have x2_le : "x2 <= u2" by simp - from x1_lu have l1_leu : "l1 <= u1" by arith - from x2_lu have l2_leu : "l2 <= u2" by arith - from l1_pos l2_pos l1_le l2_le - have l1l2_le : "l1*l2 <= x1*x2" by (simp add: zmult_mono) - from l1_pos x1_lu have x1_pos : "0 <= x1" by arith - from l2_pos x2_lu have x2_pos : "0 <= x2" by arith - from l1_pos x1_lu have u1_pos : "0 <= u1" by arith - from l2_pos x2_lu have u2_pos : "0 <= u2" by arith - from x1_pos x2_pos x1_le x2_le - have x1x2_le : "x1*x2 <= u1*u2" by (simp add: zmult_mono) - from l2_leu l1_pos have l1l2_leu2 : "l1*l2 <= l1*u2" - by (simp add: zmult_zle_mono) - from l1l2_leu2 have min1 : "l1*l2 = min (l1*l2) (l1*u2)" by arith - from l2_leu u1_pos have u1l2_le : "u1*l2 <=u1*u2" by (simp add: zmult_zle_mono) - from u1l2_le have min2 : "u1*l2 = min (u1*l2) (u1*u2)" by arith - from l1_leu l2_pos have "l2*l1 <= l2*u1" by (simp add:zmult_zle_mono) - then have l1l2_le_u1l2 : "l1*l2 <= u1*l2" by (simp add: mult_ac) - from min1 min2 l1l2_le_u1l2 have min_th : - "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) = (l1*l2)" by arith - from l1l2_leu2 have max1 : "l1*u2 = max (l1*l2) (l1*u2)" by arith - from u1l2_le have max2 : "u1*u2 = max (u1*l2) (u1*u2)" by arith - from l1_leu u2_pos have "u2*l1 <= u2*u1" by (simp add:zmult_zle_mono) - then have l1u2_le_u1u2 : "l1*u2 <= u1*u2" by (simp add: mult_ac) - from max1 max2 l1u2_le_u1u2 have max_th : - "max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2)) = (u1*u2)" by arith - from min_th have min_th' : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= l1*l2" by arith - from max_th have max_th' : "u1*u2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" by arith - from min_th' max_th' l1l2_le x1x2_le - show ?thesis by simp -qed - -lemma min_le_I1 : "min (a::int) b <= a" by arith -lemma min_le_I2 : "min (a::int) b <= b" by arith -lemma zinterval_lneglpos : - assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1" - and x2_lu : "l2 <= (x2::int) \<and> x2 <= u2" - and l1_neg : "l1 <= 0" - and x1_pos : "0 <= x1" - and l2_pos : "0 <= l2" - shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 - \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" - -proof- - from x1_lu x1_pos have x1_0_u1 : "0 <= x1 \<and> x1 <= u1" by simp - from l1_neg have ml1_pos : "0 <= -l1" by simp - from x1_lu x1_pos have u1_pos : "0 <= u1" by arith - from x2_lu l2_pos have u2_pos : "0 <= u2" by arith - from x2_lu have l2_le_u2 : "l2 <= u2" by arith - from l2_le_u2 u1_pos - have u1l2_le_u1u2 : "u1*l2 <= u1*u2" by (simp add: zmult_zle_mono) - have trv_0 : "(0::int) <= 0" by simp - have "0*0 <= u1*l2" - by (simp only: zmult_mono[OF trv_0 trv_0 u1_pos l2_pos]) - then have u1l2_pos : "0 <= u1*l2" by simp - from l1_neg have ml1_pos : "0 <= -l1" by simp - from ml1_pos l2_pos have "0*0 <= (-l1)*l2" - by (simp only: zmult_mono[OF trv_0 trv_0 ml1_pos l2_pos]) - then have "0 <= -(l1*l2)" by simp - then have "0 - (-(l1*l2)) <= 0" by arith - then - have l1l2_neg : "l1*l2 <= 0" by simp - from ml1_pos u2_pos have "0*0 <= (-l1)*u2" - by (simp only: zmult_mono[OF trv_0 trv_0 ml1_pos u2_pos]) - then have "0 <= -(l1*u2)" by simp - then have "0 - (-(l1*u2)) <= 0" by arith - then - have l1u2_neg : "l1*u2 <= 0" by simp - from l1l2_neg u1l2_pos have l1l2_le_u1l2: "l1*l2 <= u1*l2" by simp - from l1u2_neg u1l2_pos have l1u2_le_u1l2 : "l1*u2 <= u1*l2" by simp - from ml1_pos l2_le_u2 have "(-l1)*l2 <= (-l1)*u2" - by (simp only: zmult_zle_mono) - then have l1u2_le_l1l2 : "l1*u2 <= l1*l2" by simp - from l1u2_le_l1l2 l1l2_le_u1l2 u1l2_le_u1u2 - have min1 : "l1*u2 = min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2))" - by arith - from u1l2_pos u1l2_le_u1u2 have "0 = min (min (0 * l2) (0 * u2)) (min (u1 * l2) (u1 * u2))" by arith - with l1u2_neg min1 have minth : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= min (min (0 * l2) (0 * u2)) (min (u1 * l2) (u1 * u2))" by simp - from l1u2_le_l1l2 l1l2_le_u1l2 u1l2_le_u1u2 - have max1 : "u1*u2 = max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" - by arith - from u1l2_pos u1l2_le_u1u2 have "u1*u2 = max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2))" by arith - with max1 have "max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2)) = max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2))" by simp - then have maxth : " max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2)) <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" by simp - have x1x2_0_u : "min (min (0 * l2) (0 * u2)) (min (u1 * l2) (u1 * u2)) <= x1 * x2 & -x1 * x2 <= max (max (0 * l2) (0 * u2)) (max (u1 * l2) (u1 * u2))" - by (simp only: zinterval_lposlpos[OF x1_0_u1 x2_lu trv_0 l2_pos],simp) - from minth maxth x1x2_0_u show ?thesis by (simp add: subinterval[OF _ minth maxth]) -qed - -lemma zinterval_lneglneg : - assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1" - and x2_lu : "l2 <= (x2::int) \<and> x2 <= u2" - and l1_neg : "l1 <= 0" - and x1_pos : "0 <= x1" - and l2_neg : "l2 <= 0" - and x2_pos : "0 <= x2" - shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 - \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" - -proof- - from x1_lu x1_pos have x1_0_u1 : "0 <= x1 \<and> x1 <= u1" by simp - from l1_neg have ml1_pos : "0 <= -l1" by simp - from l1_neg have l1_le0 : "l1 <= 0" by simp - from x1_lu x1_pos have u1_pos : "0 <= u1" by arith - from x2_lu x2_pos have x2_0_u2 : "0 <= x2 \<and> x2 <= u2" by simp - from l2_neg have ml2_pos : "0 <= -l2" by simp - from l2_neg have l2_le0 : "l2 <= 0" by simp - from x2_lu x2_pos have u2_pos : "0 <= u2" by arith - have trv_0 : "(0::int) <= 0" by simp - - have x1x2_th1 : - "min (min (l1 * 0) (l1 * u2)) (min (u1 * 0) (u1 * u2)) \<le> x1 * x2 \<and> - x1 * x2 \<le> max (max (l1 * 0) (l1 * u2)) (max (u1 * 0) (u1 * u2))" - by (rule_tac zinterval_lneglpos[OF x1_lu x2_0_u2 l1_le0 x1_pos trv_0]) - - have x1x2_eq_x2x1 : "x1*x2 = x2*x1" by (simp add: mult_ac) - have - "min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)) \<le> x2 * x1 \<and> - x2 * x1 \<le> max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1))" - by (rule_tac zinterval_lneglpos[OF x2_lu x1_0_u1 l2_le0 x2_pos trv_0]) - - then have x1x2_th2 : - "min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)) \<le> x1 * x2 \<and> - x1 * x2 \<le> max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1))" - by (simp add: x1x2_eq_x2x1) - - from x1x2_th1 x1x2_th2 have x1x2_th3: - "min (min (min (l1 * 0) (l1 * u2)) (min (u1 * 0) (u1 * u2))) - (min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1))) - \<le> x1 * x2 \<and> - x1 * x2 - \<le> max (max (max (l1 * 0) (l1 * u2)) (max (u1 * 0) (u1 * u2))) - (max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1)))" - by (rule_tac zintervals_min[OF x1x2_th1 x1x2_th2]) - - from ml1_pos u2_pos - have "0*0 <= -l1*u2" - by (simp only: zmult_mono[OF trv_0 trv_0 ml1_pos u2_pos]) - then have l1u2_neg : "l1*u2 <= 0" by simp - from l1u2_neg have min_l1u2_0 : "min (0) (l1*u2) = l1*u2" by arith - from l1u2_neg have max_l1u2_0 : "max (0) (l1*u2) = 0" by arith - from u1_pos u2_pos - have "0*0 <= u1*u2" - by (simp only: zmult_mono[OF trv_0 trv_0 u1_pos u2_pos]) - then have u1u2_pos :"0 <= u1*u2" by simp - from u1u2_pos have min_0_u1u2 : "min 0 (u1*u2) = 0" by arith - from u1u2_pos have max_0_u1u2 : "max 0 (u1*u2) = u1*u2" by arith - from ml2_pos u1_pos have "0*0 <= -l2*u1" - by (simp only: zmult_mono[OF trv_0 trv_0 ml2_pos u1_pos]) - then have l2u1_neg : "l2*u1 <= 0" by simp - from l2u1_neg have min_l2u1_0 : "min 0 (l2*u1) = l2*u1" by arith - from l2u1_neg have max_l2u1_0 : "max 0 (l2*u1) = 0" by arith - from min_l1u2_0 min_0_u1u2 min_l2u1_0 - have min_th1: - " min (l2*u1) (l1*u2) <= min (min (min (l1 * 0) (l1 * u2)) (min (u1 * 0) (u1 * u2))) - (min (min (l2 * 0) (l2 * u1)) (min (u2 * 0) (u2 * u1)))" - by (simp add: min_commute mult_ac) - from max_l1u2_0 max_0_u1u2 max_l2u1_0 - have max_th1: "max (max (max (l1 * 0) (l1 * u2)) (max (u1 * 0) (u1 * u2))) - (max (max (l2 * 0) (l2 * u1)) (max (u2 * 0) (u2 * u1))) <= u1*u2" - by (simp add: max_commute mult_ac) - have x1x2_th4: "min (l2*u1) (l1*u2) <= x1*x2 \<and> x1*x2 <= u1*u2" - by (rule_tac subinterval[OF x1x2_th3 min_th1 max_th1]) - - have " min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) = min (min (l1*l2) (u1*u2)) (min (l1*u2) (l2*u1))" by (simp add: min_min_commute min_commute mult_ac) - moreover - have " min (min (l1*l2) (u1*u2)) (min (l1*u2) (l2*u1)) <= min (l1*u2) (l2*u1)" - by - (rule_tac min_le_I2 [of "(min (l1*l2) (u1*u2))" "(min (l1*u2) (l2*u1))"]) - ultimately have "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= min (l1*u2) (l2*u1)" by simp - then - have min_le1: "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <=min (l2*u1) (l1*u2)" - by (simp add: min_commute mult_ac) - have "u1*u2 <= max (u1*l2) (u1*u2)" - by (rule_tac le_maxI2[of "u1*u2" "u1*l2"]) - - moreover have "max (u1*l2) (u1*u2) <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" - by(rule_tac le_maxI2[of "(max (u1*l2) (u1*u2))" "(max (l1*l2) (l1*u2))"]) - then - have max_le1:"u1*u2 <= max (max (l1 * l2) (l1 * u2)) (max (u1 * l2) (u1 * u2))" - by simp - show ?thesis by (simp add: subinterval[OF x1x2_th4 min_le1 max_le1]) - qed - -lemma zinterval_lpos: - assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1" - and x2_lu : "l2 <= (x2::int) \<and> x2 <= u2" - and l1_pos: "0 <= l1" - shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 - \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" -proof- - from x1_lu have l1_le : "l1 <= x1" by simp - from x1_lu have x1_le : "x1 <= u1" by simp - from x2_lu have l2_le : "l2 <= x2" by simp - from x2_lu have x2_le : "x2 <= u2" by simp - from x1_lu have l1_leu : "l1 <= u1" by arith - from x2_lu have l2_leu : "l2 <= u2" by arith - have "(0 <= l2) \<or> (l2 < 0 \<and> 0<= x2) \<or> (x2 <0 \<and> 0 <= u2) \<or> (u2 <0)" by arith - moreover - { - assume l2_pos: "0 <= l2" - have ?thesis by (simp add: zinterval_lposlpos[OF x1_lu x2_lu l1_pos l2_pos]) - } -moreover -{ - assume l2_neg : "l2 < 0" and x2_pos: "0<= x2" - from l2_neg have l2_le_0 : "l2 <= 0" by arith - thm zinterval_lneglpos[OF x2_lu x1_lu l2_le_0 x2_pos l1_pos] -have th1 : - "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) \<le> x2 * x1 \<and> - x2 * x1 \<le> max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1))" - by (simp add : zinterval_lneglpos[OF x2_lu x1_lu l2_le_0 x2_pos l1_pos]) -have mth1 : "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) = min (min (l1 * l2) (l1 * u2)) (min (u1 * l2) (u1 * u2))" - by (simp add: min_min_commute mult_ac) -have mth2: "max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1)) = max (max (l1 * l2) (l1 * u2)) (max (u1 * l2) (u1 * u2))" - by (simp add: max_max_commute mult_ac) -have x1x2_th : "x2*x1 = x1*x2" by (simp add: mult_ac) -from th1 mth1 mth2 x1x2_th have - "min (min (l1 * l2) (l1 * u2)) (min (u1 * l2) (u1 * u2)) \<le> x1 * x2 \<and> - x1 * x2 \<le> max (max (l1 * l2) (l1 * u2)) (max (u1 * l2) (u1 * u2))" -by auto - then have ?thesis by simp -} -moreover -{ - assume x2_neg : "x2 <0" and u2_pos : "0 <= u2" - from x2_lu x2_neg have mx2_mu2_ml2 : "-u2 <= -x2 \<and> -x2 <= -l2" by simp - from u2_pos have mu2_neg : "-u2 <= 0" by simp - from x2_neg have mx2_pos : "0 <= -x2" by simp -thm zinterval_lneglpos[OF mx2_mu2_ml2 x1_lu mu2_neg mx2_pos l1_pos] - have mx1x2_lu : -"min (min (- u2 * l1) (- u2 * u1)) (min (- l2 * l1) (- l2 * u1)) -\<le> - x2 * x1 \<and> -- x2 * x1 \<le> max (max (- u2 * l1) (- u2 * u1)) (max (- l2 * l1) (- l2 * u1))" - by (simp only: zinterval_lneglpos [OF mx2_mu2_ml2 x1_lu mu2_neg mx2_pos l1_pos],simp) - have min_eq_mmax : - "min (min (- u2 * l1) (- u2 * u1)) (min (- l2 * l1) (- l2 * u1)) = - - max (max (u2 * l1) (u2 * u1)) (max (l2 * l1) (l2 * u1))" - by (simp add: min_max_minus max_min_minus) - have max_eq_mmin : - " max (max (- u2 * l1) (- u2 * u1)) (max (- l2 * l1) (- l2 * u1)) = - -min (min (u2 * l1) (u2 * u1)) (min (l2 * l1) (l2 * u1))" - by (simp add: min_max_minus max_min_minus) - from mx1x2_lu min_eq_mmax max_eq_mmin - have "- max (max (u2 * l1) (u2 * u1)) (max (l2 * l1) (l2 * u1))<= - x1 * x2 & - - x1*x2 <= -min (min (u2 * l1) (u2 * u1)) (min (l2 * l1) (l2 * u1))" by (simp add: mult_ac) - then have ?thesis by (simp add: min_min_commute min_commute max_commute max_max_commute mult_ac) - -} -moreover -{ - assume u2_neg : "u2 < 0" - from x2_lu have mx2_lu : "-u2 <= -x2 \<and> -x2 <= -l2" by arith - from u2_neg have mu2_pos : "0 <= -u2" by arith -thm zinterval_lposlpos [OF x1_lu mx2_lu l1_pos mu2_pos] -have "min (min (l1 * - u2) (l1 * - l2)) (min (u1 * - u2) (u1 * - l2)) -\<le> x1 * - x2 \<and> -x1 * - x2 \<le> max (max (l1 * - u2) (l1 * - l2)) (max (u1 * - u2) (u1 * - l2)) - " by (rule_tac zinterval_lposlpos [OF x1_lu mx2_lu l1_pos mu2_pos]) -then have mx1x2_lu: - "min (min (-l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2)) \<le> - x1 * x2 \<and> -- x1 * x2 \<le> max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2)) - " by simp -moreover have "min (min (-l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2)) =- max (max (l1 * u2) ( l1 * l2)) (max ( u1 * u2) ( u1 * l2)) " - by (simp add: min_max_minus max_min_minus) -moreover -have -"max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2)) = - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2))" - by (simp add: min_max_minus max_min_minus) -thm subinterval[OF mx1x2_lu] -ultimately have "- max (max (l1 * u2) ( l1 * l2)) (max ( u1 * u2) ( u1 * l2))\<le> - x1 * x2 \<and> -- x1 * x2 \<le> - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2)) " by simp - then have ?thesis by (simp add: max_commute min_commute) -} -ultimately show ?thesis by blast -qed - -lemma zinterval_uneg : -assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1" - and x2_lu : "l2 <= (x2::int) \<and> x2 <= u2" - and u1_neg: "u1 <= 0" - shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 - \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" -proof- - from x1_lu have mx1_lu : "-u1 <= -x1 \<and> -x1 <= -l1" by arith - from u1_neg have mu1_pos : "0 <= -u1" by arith - thm zinterval_lpos [OF mx1_lu x2_lu mu1_pos] - have mx1x2_lu : - "min (min (- u1 * l2) (- u1 * u2)) (min (- l1 * l2) (- l1 * u2)) - \<le> - x1 * x2 \<and> - x1 * x2 \<le> - max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2))" -by (rule_tac zinterval_lpos [OF mx1_lu x2_lu mu1_pos]) -moreover have - "min (min (- u1 * l2) (- u1 * u2)) (min (- l1 * l2) (- l1 * u2)) = - max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2))" by (simp add: min_max_minus max_min_minus) -moreover have - "max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2)) = - min (min (u1 * l2) ( u1 * u2)) (min (l1 * l2) (l1 * u2))" by (simp add: min_max_minus max_min_minus) -ultimately have "- max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2))\<le> - x1 * x2 \<and> - x1 * x2 \<le> - min (min (u1 * l2) ( u1 * u2)) (min (l1 * l2) (l1 * u2))" by simp -then show ?thesis by (simp add: min_commute max_commute mult_ac) -qed - -lemma zinterval_lnegxpos: -assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1" - and x2_lu : "l2 <= (x2::int) \<and> x2 <= u2" - and l1_neg: "l1 <= 0" - and x1_pos: "0<= x1" - shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 - \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" -proof- - have "(0 <= l2) \<or> (l2 < 0 \<and> 0<= x2) \<or> (x2 <0 \<and> 0 <= u2) \<or> (u2 <= 0)" by arith - moreover - { - assume l2_pos: "0 <= l2" - thm zinterval_lpos [OF x2_lu x1_lu l2_pos] - have - "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) \<le> x2 * x1 \<and> - x2 * x1 \<le> max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1))" - by (rule_tac zinterval_lpos [OF x2_lu x1_lu l2_pos]) - moreover have "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) = min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2))" by (simp add: mult_ac min_commute min_min_commute) -moreover have "max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1)) = max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" - by (simp add: mult_ac max_commute max_max_commute) -ultimately have ?thesis by (simp add: mult_ac) - -} - -moreover -{ - assume l2_neg: "l2 < 0" and x2_pos: " 0<= x2" - from l1_neg have l1_le0 : "l1 <= 0" by simp - from l2_neg have l2_le0 : "l2 <= 0" by simp - have ?thesis by (simp add: zinterval_lneglneg [OF x1_lu x2_lu l1_le0 x1_pos l2_le0 x2_pos]) -} - -moreover -{ - assume x2_neg: "x2 <0" and u2_pos: "0 <= u2" - from x2_lu have mx2_lu: "-u2 <= -x2 \<and> -x2 <= -l2" by arith - from x2_neg have mx2_pos: "0 <= -x2" by simp - from u2_pos have mu2_neg: "-u2 <= 0" by simp - from l1_neg have l1_le0 : "l1 <= 0" by simp -thm zinterval_lneglneg [OF x1_lu mx2_lu l1_le0 x1_pos mu2_neg mx2_pos] -have "min (min (l1 * - u2) (l1 * - l2)) (min (u1 * - u2) (u1 * - l2)) -\<le> x1 * - x2 \<and> -x1 * - x2 \<le> max (max (l1 * - u2) (l1 * - l2)) (max (u1 * - u2) (u1 * - l2))" by (rule_tac zinterval_lneglneg [OF x1_lu mx2_lu l1_le0 x1_pos mu2_neg mx2_pos]) -then have "min (min (- l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2)) -\<le> - x1 * x2 \<and> -- x1 * x2 \<le> max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2))" by simp -moreover have "min (min (- l1 * u2) (- l1 * l2)) (min (- u1 * u2) (- u1 * l2)) = - max (max (l1 * u2) (l1 * l2)) (max (u1 * u2) (u1 * l2))" by (simp add: min_max_minus max_min_minus) -moreover have "max (max (- l1 * u2) (- l1 * l2)) (max (- u1 * u2) (- u1 * l2)) = - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2))" by (simp add: min_max_minus max_min_minus) -ultimately have "- max (max (l1 * u2) (l1 * l2)) (max (u1 * u2) (u1 * l2))\<le> - x1 * x2 \<and> -- x1 * x2 \<le> - min (min (l1 * u2) (l1 * l2)) (min (u1 * u2) (u1 * l2))" by simp - -then have ?thesis by (simp add: min_commute max_commute mult_ac) -} - -moreover -{ - assume u2_neg: "u2 <= 0" - thm zinterval_uneg[OF x2_lu x1_lu u2_neg] -have "min (min (l2 * l1) (l2 * u1)) (min (u2 * l1) (u2 * u1)) \<le> x2 * x1 \<and> -x2 * x1 \<le> max (max (l2 * l1) (l2 * u1)) (max (u2 * l1) (u2 * u1))" by (rule_tac zinterval_uneg[OF x2_lu x1_lu u2_neg]) -then have ?thesis by (simp add: mult_ac min_commute max_commute min_min_commute max_max_commute) -} -ultimately show ?thesis by blast - -qed - -lemma zinterval_xnegupos: -assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1" - and x2_lu : "l2 <= (x2::int) \<and> x2 <= u2" - and x1_neg: "x1 <= 0" - and u1_pos: "0<= u1" - shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 - \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" -proof- - from x1_lu have mx1_lu : "-u1 <= -x1 \<and> -x1 <= -l1" by arith - from u1_pos have mu1_neg : "-u1 <= 0" by simp - from x1_neg have mx1_pos : "0 <= -x1" by simp - thm zinterval_lnegxpos[OF mx1_lu x2_lu mu1_neg mx1_pos ] - have "min (min (- u1 * l2) (- u1 * u2)) (min (- l1 * l2) (- l1 * u2)) -\<le> - x1 * x2 \<and> -- x1 * x2 \<le> max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2))" - by (rule_tac zinterval_lnegxpos[OF mx1_lu x2_lu mu1_neg mx1_pos ]) - moreover have - "min (min (- u1 * l2) (- u1 * u2)) (min (- l1 * l2) (- l1 * u2)) = - max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2))" - by (simp add: min_max_minus max_min_minus) - moreover have - "max (max (- u1 * l2) (- u1 * u2)) (max (- l1 * l2) (- l1 * u2)) = - min (min (u1 * l2) (u1 * u2)) (min (l1 * l2) (l1 * u2))" - by (simp add: min_max_minus max_min_minus) - ultimately have "- max (max (u1 * l2) (u1 * u2)) (max (l1 * l2) (l1 * u2))\<le> - x1 * x2 \<and> -- x1 * x2 \<le> - min (min (u1 * l2) (u1 * u2)) (min (l1 * l2) (l1 * u2))" - by simp -then show ?thesis by (simp add: mult_ac min_commute max_commute) -qed - -lemma abs_mul: - assumes x1_lu : "l1 <= (x1::int) \<and> x1 <= u1" - and x2_lu : "l2 <= (x2::int) \<and> x2 <= u2" - shows conc : "min (min (l1*l2) (l1*u2)) (min (u1*l2) (u1*u2)) <= x1 * x2 - \<and> x1 * x2 <= max (max (l1*l2) (l1*u2)) (max (u1*l2) (u1*u2))" -proof- - have "(0 <= l1) \<or> (l1 <= 0 \<and> 0<= x1) \<or> (x1 <=0 \<and> 0 <= u1) \<or> (u1 <= 0)" - by arith - moreover - { - assume l1_pos: "0 <= l1" - have ?thesis by (rule_tac zinterval_lpos [OF x1_lu x2_lu l1_pos]) - } - - moreover - { - assume l1_neg :"l1 <= 0" and x1_pos: "0<= x1" - have ?thesis by (rule_tac zinterval_lnegxpos[OF x1_lu x2_lu l1_neg x1_pos]) - } - - moreover - { - assume x1_neg : "x1 <= 0" and u1_pos: "0 <= u1" - have ?thesis by (rule_tac zinterval_xnegupos [OF x1_lu x2_lu x1_neg u1_pos]) - } - - moreover - { - assume u1_neg: "u1 <= 0" - have ?thesis by (rule_tac zinterval_uneg [OF x1_lu x2_lu u1_neg]) - } - - ultimately show ?thesis by blast -qed - -lemma mult_x_mono_lpos : -assumes l_pos : "0 <= (l::int)" - and x_lu : "l <= (x::int) \<and> x <= u" - shows "l*l <= x*x \<and> x*x <= u*u" - -proof- - from x_lu have x_l : "l <= x" by arith - thm zmult_mono[OF l_pos l_pos x_l x_l] - then have xx_l : "l*l <= x*x" - by (simp add: zmult_mono[OF l_pos l_pos x_l x_l]) - moreover - from x_lu have x_u : "x <= u" by arith - from l_pos x_l have x_pos : "0 <= x" by arith - thm zmult_mono[OF x_pos x_pos x_u x_u] - then have xx_u : "x*x <= u*u" - by (simp add: zmult_mono[OF x_pos x_pos x_u x_u]) -ultimately show ?thesis by simp -qed - -lemma mult_x_mono_luneg : -assumes l_neg : "(l::int) <= 0" - and u_neg : "u <= 0" - and x_lu : "l <= (x::int) \<and> x <= u" - shows "u*u <= x*x \<and> x*x <= l*l" - -proof- - from x_lu have mx_lu : "-u <= -x \<and> -x <= -l" by arith - from u_neg have mu_pos : "0<= -u" by simp - thm mult_x_mono_lpos[OF mu_pos mx_lu] - have "- u * - u \<le> - x * - x \<and> - x * - x \<le> - l * - l" - by (rule_tac mult_x_mono_lpos[OF mu_pos mx_lu]) - then show ?thesis by simp -qed - -lemma mult_x_mono_lxnegupos : -assumes l_neg : "(l::int) <= 0" - and u_pos : "0 <= u" - and x_neg : "x <= 0" - and x_lu : "l <= (x::int) \<and> x <= u" - shows "0 <= x*x \<and> x*x <= max (l*l) (u*u)" -proof- - from x_lu x_neg have mx_0l : "0 <= - x \<and> - x <= - l" by arith - have trv_0 : "(0::int) <= 0" by arith - thm mult_x_mono_lpos[OF trv_0 mx_0l] - have "0 * 0 \<le> - x * - x \<and> - x * - x \<le> - l * - l" - by (rule_tac mult_x_mono_lpos[OF trv_0 mx_0l]) - then have xx_0ll : "0 <= x*x \<and> x*x <= l*l" by simp - have "l*l <= max (l*l) (u*u)" by (simp add: le_maxI1) - with xx_0ll show ?thesis by arith -qed - -lemma mult_x_mono_lnegupos : -assumes l_neg : "(l::int) <= 0" - and u_pos : "0 <= u" - and x_lu : "l <= (x::int) \<and> x <= u" - shows "0 <= x*x \<and> x*x <= max (l*l) (u*u)" -proof- - have "0<= x \<or> x <= 0" by arith -moreover -{ - assume x_neg : "x <= 0" - thm mult_x_mono_lxnegupos[OF l_neg u_pos x_neg x_lu] - have ?thesis by (rule_tac mult_x_mono_lxnegupos[OF l_neg u_pos x_neg x_lu]) -} -moreover - -{ - assume x_pos : "0 <= x" - from x_lu have mx_lu : "-u <= -x \<and> -x <= -l" by arith - from x_pos have mx_neg : "-x <= 0" by simp - from u_pos have mu_neg : "-u <= 0" by simp - from x_lu x_pos have ml_pos : "0 <= -l" by simp - thm mult_x_mono_lxnegupos[OF mu_neg ml_pos mx_neg mx_lu] - have "0 \<le> - x * - x \<and> - x * - x \<le> max (- u * - u) (- l * - l)" - by (rule_tac mult_x_mono_lxnegupos[OF mu_neg ml_pos mx_neg mx_lu]) - then have ?thesis by (simp add: max_commute) - -} -ultimately show ?thesis by blast - -qed -lemma abs_mul_x: - assumes x_lu : "l <= (x::int) \<and> x <= u" - shows - "(if 0 <= l then l*l else if u <= 0 then u*u else 0) <= x*x - \<and> x*x <= (if 0 <= l then u*u else if u <= 0 then l*l else (max (l*l) (u*u)))" -proof- - have "(0 <= l) \<or> (l < 0 \<and> u <= 0) \<or> (l < 0 \<and> 0 < u)" by arith - - moreover - { - assume l_pos : "0 <= l" - from l_pos have "(if 0 <= l then l*l else if u <= 0 then u*u else 0) = l*l" - by simp - moreover from l_pos have "(if 0 <= l then u*u else if u <= 0 then l*l else (max (l*l) (u*u))) = u*u" by simp - - moreover have "l * l \<le> x * x \<and> x * x \<le> u * u" - by (rule_tac mult_x_mono_lpos[OF l_pos x_lu]) - ultimately have ?thesis by simp - } - - moreover - { - assume l_neg : "l < 0" and u_neg : "u <= 0" - from l_neg have l_le0 : "l <= 0" by simp - from l_neg u_neg have "(if 0 <= l then l*l else if u <= 0 then u*u else 0) = u*u" - by simp - moreover - from l_neg u_neg have "(if 0 <= l then u*u else if u <= 0 then l*l else (max (l*l) (u*u))) = l*l" by simp - moreover - have "u * u \<le> x * x \<and> x * x \<le> l * l" - by (rule_tac mult_x_mono_luneg[OF l_le0 u_neg x_lu]) - - ultimately have ?thesis by simp - } - moreover - { - assume l_neg : "l < 0" and u_pos: "0 < u" - from l_neg have l_le0 : "l <= 0" by simp - from u_pos have u_ge0 : "0 <= u" by simp - from l_neg u_pos have "(if 0 <= l then l*l else if u <= 0 then u*u else 0) = 0" - by simp - moreover from l_neg u_pos have "(if 0 <= l then u*u else if u <= 0 then l*l else (max (l*l) (u*u))) = max (l*l) (u*u)" by simp - moreover have "0 \<le> x * x \<and> x * x \<le> max (l * l) (u * u)" - by (rule_tac mult_x_mono_lnegupos[OF l_le0 u_ge0 x_lu]) - - ultimately have ?thesis by simp - - } - - ultimately show ?thesis by blast -qed - - -use"barith.ML" -setup Barith.setup - -end -
--- a/src/HOL/Integ/barith.ML Thu Nov 18 18:46:09 2004 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,383 +0,0 @@ -(**************************************************************) -(* *) -(* *) -(* Trying to implement an Bounded arithmetic *) -(* Chaieb Amine *) -(* *) -(**************************************************************) - -signature BARITH = -sig - val barith_tac : int -> tactic - val setup : (theory -> theory) list - -end; - - -structure Barith = -struct - -(* Theorems we use from Barith.thy*) -val abs_const = thm "abs_const"; -val abs_var = thm "abs_var"; -val abs_neg = thm "abs_neg"; -val abs_add = thm "abs_add"; -val abs_sub = thm "abs_sub"; -val abs_sub_x = thm "abs_sub_x"; -val abs_mul = thm "abs_mul"; -val abs_mul_x = thm "abs_mul_x"; -val subinterval = thm "subinterval"; -val imp_commute = thm "imp_commute"; -val imp_simplify = thm "imp_simplify"; - -exception NORMCONJ of string; - -fun interval_of_conj t = case t of - Const("op &",_) $ - (t1 as (Const("op <=",_) $ l1 $(x as Free(xn,xT))))$ - (t2 as (Const("op <=",_) $ y $ u1)) => - if (x = y andalso type_of x = HOLogic.intT) - then [(x,(l1,u1))] - else (interval_of_conj t1) union (interval_of_conj t2) -| Const("op &",_) $(t1 as (Const("op <=",_) $ y $ u1))$ - (t2 as (Const("op <=",_) $ l1 $(x as Free(xn,xT)))) => - if (x = y andalso type_of x = HOLogic.intT) - then [(x,(l1,u1))] - else (interval_of_conj t1) union (interval_of_conj t2) -|(Const("op <=",_) $ l $(x as Free(xn,xT))) => [(x,(l,HOLogic.false_const))] -|(Const("op <=",_) $ (x as Free(xn,xT))$ u) => [(x,(HOLogic.false_const,u))] -|Const("op &",_)$t1$t2 => (interval_of_conj t1) union (interval_of_conj t2) -|_ => raise (NORMCONJ "Not in normal form - unknown conjunct"); - - -(* The input to this function should be a list *) -(*of meta-implications of the following form:*) -(* l1 <= x1 & x1 <= u1 ==> ... ==> ln <= xn & xn <= un*) -(* the output will be a list of Var*interval*) - -val iT = HOLogic.intT; -fun maxterm (Const("False",_)) t = t - |maxterm t (Const("False",_)) = t - |maxterm t1 t2 = Const("HOL.max",iT --> iT --> iT)$t1$t2; - -fun minterm (Const("False",_)) t = t - |minterm t (Const("False",_)) = t - |minterm t1 t2 = Const("HOL.min",iT --> iT --> iT)$t1$t2; - -fun intervals_of_premise p = - let val ps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems p) - fun tight [] = [] - |tight ((x,(Const("False",_),Const("False",_)))::ls) = tight ls - |tight ((x,(l as Const("False",_),u))::ls) = - let val ls' = tight ls in - case assoc (ls',x) of - None => (x,(l,u))::ls' - |Some (l',u') => - let - val ln = l' - val un = - if (CooperDec.is_numeral u) andalso (CooperDec.is_numeral u') - then CooperDec.mk_numeral - (Int.min (CooperDec.dest_numeral u,CooperDec.dest_numeral u')) - else (minterm u u') - in (x,(ln,un))::(filter (fn p => not (fst p = x)) ls') - end - end - |tight ((x,(l,u as Const("False",_)))::ls) = - let val ls' = tight ls in - case assoc (ls',x) of - None => (x,(l,u))::ls' - |Some (l',u') => - let - val ln = - if (CooperDec.is_numeral l) andalso (CooperDec.is_numeral l') - then CooperDec.mk_numeral - (Int.max (CooperDec.dest_numeral l,CooperDec.dest_numeral l')) - else (maxterm l l') - val un = u' - in (x,(ln,un))::(filter (fn p => not (fst p = x)) ls') - end - end - |tight ((x,(l,u))::ls) = - let val ls' = tight ls in - case assoc (ls',x) of - None => (x,(l,u))::ls' - |Some (l',u') => let val ln = if (CooperDec.is_numeral l) andalso (CooperDec.is_numeral l') then CooperDec.mk_numeral (Int.max (CooperDec.dest_numeral l,CooperDec.dest_numeral l')) else (maxterm l l') - val un = if (CooperDec.is_numeral u) andalso (CooperDec.is_numeral u') then CooperDec.mk_numeral (Int.min (CooperDec.dest_numeral u,CooperDec.dest_numeral u')) else (minterm u u') - in (x,(ln,un))::(filter (fn p => not (fst p = x)) ls') - end - end - in tight (foldr (fn (p,l) => (interval_of_conj p) union l) (ps,[])) -end ; - -fun exp_of_concl p = case p of - Const("op &",_) $ - (Const("op <=",_) $ l $ e)$ - (Const("op <=",_) $ e' $ u) => - if e = e' then [(e,(Some l,Some u))] - else raise NORMCONJ "Conclusion not in normal form-- different exp in conj" -|Const("op &",_) $ - (Const("op <=",_) $ e' $ u)$ - (Const("op <=",_) $ l $ e) => - if e = e' then [(e,(Some l,Some u))] - else raise NORMCONJ "Conclusion not in normal form-- different exp in conj" -|(Const("op <=",_) $ e $ u) => - if (CooperDec.is_numeral u) then [(e,(None,Some u))] - else - if (CooperDec.is_numeral e) then [(u,(Some e,None))] - else raise NORMCONJ "Bounds has to be numerals" -|(Const("op &",_)$a$b) => (exp_of_concl a) @ (exp_of_concl b) -|_ => raise NORMCONJ "Conclusion not in normal form---unknown connective"; - - -fun strip_problem p = -let - val is = intervals_of_premise p - val e = exp_of_concl ((HOLogic.dest_Trueprop o Logic.strip_imp_concl) p) -in (is,e) -end; - - - - -(*Abstract interpretation of Intervals over theorems *) -exception ABSEXP of string; - -fun decomp_absexp sg is e = case e of - Free(xn,_) => ([], fn [] => case assoc (is,e) of - Some (l,u) => instantiate' [] - (map (fn a => Some (cterm_of sg a)) [l,e,u]) abs_var - |_ => raise ABSEXP ("No Interval for Variable " ^ xn) ) -|Const("op +",_) $ e1 $ e2 => - ([e1,e2], fn [th1,th2] => [th1,th2] MRS abs_add) -|Const("op -",_) $ e1 $ e2 => - if e1 = e2 then - ([e1],fn [th] => th RS abs_sub_x) - else - ([e1,e2], fn [th1,th2] => [th1,th2] MRS abs_sub) -|Const("op *",_) $ e1 $ e2 => - if e1 = e2 then - ([e1],fn [th] => th RS abs_mul_x) - else - ([e1,e2], fn [th1,th2] => [th1,th2] MRS abs_mul) -|Const("op uminus",_) $ e' => - ([e'], fn [th] => th RS abs_neg) -|_ => if CooperDec.is_numeral e then - ([], fn [] => instantiate' [] [Some (cterm_of sg e)] abs_const) - else raise ABSEXP "Unknown arithmetical expression"; - -fun absexp sg is (e,(lo,uo)) = case (lo,uo) of - (Some l, Some u) => - let - val th1 = CooperProof.thm_of sg (decomp_absexp sg is) e - val th2 = instantiate' [] [None,None,None,Some (cterm_of sg l),Some (cterm_of sg u)] subinterval - val ss = (simpset_of (theory "Presburger")) addsimps [max_def,min_def] - val my_ss = HOL_basic_ss addsimps [imp_commute, imp_simplify] - val th' = th1 - val th = th' RS th2 - in th - end -|(None, Some u) => - let - val th1 = CooperProof.thm_of sg (decomp_absexp sg is) e - val Const("op &",_)$ - (Const("op <=",_)$l$_)$_= (HOLogic.dest_Trueprop o concl_of) th1 - val th2 = instantiate' [] [None,None,None,Some (cterm_of sg l),Some (cterm_of sg u)] subinterval - val ss = (simpset_of (theory "Presburger")) addsimps [max_def,min_def] - val my_ss = HOL_basic_ss addsimps [imp_commute, imp_simplify] - val th' = th1 - val th = th' RS th2 - in th RS conjunct2 - end - -|(Some l, None) => let - val th1 = CooperProof.thm_of sg (decomp_absexp sg is) e - val Const("op &",_)$_$ - (Const("op <=",_)$_$u)= (HOLogic.dest_Trueprop o concl_of) th1 - val th2 = instantiate' [] [None,None,None,Some (cterm_of sg l),Some (cterm_of sg u)] subinterval - val ss = (simpset_of (theory "Presburger")) addsimps [max_def,min_def] - val my_ss = HOL_basic_ss addsimps [imp_commute, imp_simplify] - val th' = th1 - val th = th' RS th2 - in th RS conjunct1 - end - -|(None,None) => raise ABSEXP "No bounds for conclusion"; - -fun free_occ e = case e of - Free(_,i) => if i = HOLogic.intT then 1 else 0 -|f$a => (free_occ f) + (free_occ a) -|Abs(_,_,p) => free_occ p -|_ => 0; - - -(* -fun simp_exp sg p = - let val (is,(e,(l,u))) = strip_problem p - val th = absexp sg is (e,(l,u)) - val _ = prth th - in (th, free_occ e) -end; -*) - -fun simp_exp sg p = - let val (is,es) = strip_problem p - val ths = map (absexp sg is) es - val n = foldr (fn ((e,(_,_)),x) => (free_occ e) + x) (es,0) - in (ths, n) -end; - - - -(* ============================ *) -(* The barith Tactic *) -(* ============================ *) - -(* -fun barith_tac i = ObjectLogic.atomize_tac i THEN (fn st => - let - fun assm_tac n j = REPEAT_DETERM_N n ((assume_tac j) ORELSE (simple_arith_tac j)) - val g = BasisLibrary.List.nth (prems_of st, i - 1) - val sg = sign_of_thm st - val ss = (simpset_of (the_context())) addsimps [max_def,min_def] - val (th,n) = simp_exp sg g - in (rtac th i - THEN assm_tac n i - THEN (TRY (REPEAT_DETERM_N 2 (simp_tac ss i)))) st -end); - -*) - - -fun barith_tac i = ObjectLogic.atomize_tac i THEN (fn st => - let - fun assm_tac n j = REPEAT_DETERM_N n ((assume_tac j) ORELSE (simple_arith_tac j)) - val g = BasisLibrary.List.nth (prems_of st, i - 1) - val sg = sign_of_thm st - val ss = (simpset_of (theory "Barith")) addsimps [max_def,min_def] - val cg = cterm_of sg g - val mybinarith = - map thm ["Pls_0_eq", "Min_1_eq", - "bin_pred_Pls", "bin_pred_Min", "bin_pred_1", - "bin_pred_0", "bin_succ_Pls", "bin_succ_Min", - "bin_succ_1", "bin_succ_0", - "bin_add_Pls", "bin_add_Min", "bin_add_BIT_0", - "bin_add_BIT_10", - "bin_add_BIT_11", "bin_minus_Pls", "bin_minus_Min", - "bin_minus_1", - "bin_minus_0", "bin_mult_Pls", "bin_mult_Min", - "bin_mult_1", "bin_mult_0", - "bin_add_Pls_right", "bin_add_Min_right", - "abs_zero", "abs_one", - "eq_number_of_eq", - "iszero_number_of_Pls", "nonzero_number_of_Min", - "iszero_number_of_0", "iszero_number_of_1", - "less_number_of_eq_neg", - "not_neg_number_of_Pls", "neg_number_of_Min", - "neg_number_of_BIT", - "le_number_of_eq"] - - val myringarith = - [number_of_add RS sym, number_of_minus RS sym, - diff_number_of_eq, number_of_mult RS sym, - thm "zero_eq_Numeral0_nring", thm "one_eq_Numeral1_nring"] - - val mynatarith = - [thm "zero_eq_Numeral0_nat", thm "one_eq_Numeral1_nat", - thm "add_nat_number_of", thm "diff_nat_number_of", - thm "mult_nat_number_of", thm "eq_nat_number_of", thm - "less_nat_number_of"] - - val mypowerarith = - [thm "nat_number_of", thm "zpower_number_of_even", thm - "zpower_number_of_odd", thm "zpower_Pls", thm "zpower_Min"] - - val myiflet = [if_False, if_True, thm "Let_def"] - val myifletcongs = [if_weak_cong, let_weak_cong] - - val mysimpset = HOL_basic_ss - addsimps mybinarith - addsimps myringarith - addsimps mynatarith addsimps mypowerarith - addsimps myiflet addsimps simp_thms - addcongs myifletcongs - - val simpset0 = HOL_basic_ss - addsimps [thm "z_less_imp_le1", thm "z_eq_imp_le_conj"] - val pre_thm = Seq.hd (EVERY (map TRY - [simp_tac simpset0 1, simp_tac mysimpset 1]) - (trivial cg)) - val tac = case (prop_of pre_thm) of - Const ("==>", _) $ t1 $ _ => - let - val (ths,n) = simp_exp sg t1 - val cn = length ths - 1 - fun conjIs thn j = EVERY (map (rtac conjI) (j upto (thn + j - 1))) - fun thtac thms j = EVERY (map - (fn t => rtac t j THEN assm_tac n j - THEN (TRY (REPEAT_DETERM_N 2 (simp_tac ss j)))) thms) - in ((conjIs cn i) THEN (thtac ths i)) - end - |_ => assume_tac i - in (tac st) -end); - -fun barith_args meth = - let val parse_flag = - Args.$$$ "no_quantify" >> K (apfst (K false)) - || Args.$$$ "abs" >> K (apsnd (K true)); - in - Method.simple_args - (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] - >> - curry (foldl op |>) (true, false)) - (fn (q,a) => fn _ => meth 1) - end; - -fun barith_method i = Method.METHOD (fn facts => - Method.insert_tac facts 1 THEN barith_tac i) - -val setup = - [Method.add_method ("barith", - Method.no_args (barith_method 1), - "VERY simple decision procedure for bounded arithmetic")]; - - -(* End of Structure *) -end; - -(* Test *) -(* -open Barith; - -Goal "-1 <= (x::int) & x <= 1 ==> 0 <= (y::int) & y <= 5 + 7 ==> -13 <= x*x + y*x & x*x + y*x <= 20"; -by(barith_tac 1); - -Goal "-1 <= (x::int) & x <= 1 ==> 0 <= (y::int) & y <= 5 + 7 ==> 0 <= x - x + y & x - x + y<= 12"; -by(barith_tac 1); - -Goal "-1 <= (x::int) & x <= 1 ==> 0 <= (y::int) & y <= 5 + 7 ==> 0 <= x - x + x*x & x - x + x*x<= 1"; -by(barith_tac 1); - -Goal "(x::int) <= 1& 1 <= x ==> 0 <= (y::int) & y <= 5 + 7 ==> 0 <= x - x + x*x & x - x + x*x<= 1"; -by(barith_tac 1); - -Goal "(x::int) <= 1& 1 <= x ==> (t::int) <= 8 ==>(x::int) <= 2& 0 <= x ==> 0 <= (y::int) & y <= 5 + 7 ==> 0 <= x - x + x*x & x - x + x*x<= 1"; -by(barith_tac 1); - -Goal "-1 <= (x::int) ==> x <= 1 & 1 <= (z::int) ==> z <= 2+3 ==> 0 <= (y::int) & y <= 5 + 7 ==> -4 <= x - x + x*x"; -by(Barith.barith_tac 1); - -Goal "[|(0::int) <= x & x <= 5 ; 0 <= (y::int) & y <= 7|]==> (0 <= x*x*x & x*x*x <= 125 ) & (0 <= x*x & x*x <= 100) & (0 <= x*x + x & x*x + x <= 30) & (0<= x*y & x*y <= 35)"; -by (barith_tac 1); -*) - - -(* -val st = topthm(); -val sg = sign_of_thm st; -val g = BasisLibrary.List.nth (prems_of st, 0); -val (ths,n) = simp_exp sg g; -fun assm_tac n j = REPEAT_DETERM_N n ((assume_tac j) ORELSE (simple_arith_tac j)); - -*)
--- a/src/HOL/IsaMakefile Thu Nov 18 18:46:09 2004 +0100 +++ b/src/HOL/IsaMakefile Fri Nov 19 14:00:31 2004 +0100 @@ -85,7 +85,6 @@ Divides.thy Extraction.thy Finite_Set.ML Finite_Set.thy \ Fun.thy Gfp.ML Gfp.thy Hilbert_Choice.thy HOL.ML \ HOL.thy HOL_lemmas.ML Inductive.thy Infinite_Set.thy Integ/Numeral.thy \ - Integ/barith.ML Integ/Barith.thy \ Integ/cooper_dec.ML Integ/cooper_proof.ML \ Integ/Equiv.thy Integ/IntArith.thy Integ/IntDef.thy \ Integ/IntDiv.thy Integ/NatBin.thy Integ/NatSimprocs.thy Integ/Parity.thy \
--- a/src/HOL/PreList.thy Thu Nov 18 18:46:09 2004 +0100 +++ b/src/HOL/PreList.thy Fri Nov 19 14:00:31 2004 +0100 @@ -7,7 +7,7 @@ header{*A Basis for Building the Theory of Lists*} theory PreList -imports Wellfounded_Relations Barith Recdef Relation_Power Parity +imports Wellfounded_Relations Presburger Recdef Relation_Power Parity begin text {*