--- a/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Tue Aug 15 22:23:28 2017 +0200
+++ b/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Tue Aug 15 22:22:34 2017 +0100
@@ -2089,40 +2089,35 @@
qed
finally show ?case .
next
- note f' = f_int[of a b, unfolded absolutely_integrable_on_def]
- note f = f'[THEN conjunct1] f'[THEN conjunct2]
- note * = this(2)[unfolded has_integral_integral has_integral[of "\<lambda>x. norm (f x)"],rule_format]
have "e/2>0"
using \<open>e > 0\<close> by auto
- from * [OF this] obtain d1 where
- d1: "gauge d1" "\<forall>p. p tagged_division_of (cbox a b) \<and> d1 fine p \<longrightarrow>
+ moreover
+ have f: "f integrable_on cbox a b" "(\<lambda>x. norm (f x)) integrable_on cbox a b"
+ using f_int by (auto simp: absolutely_integrable_on_def)
+ ultimately obtain d1 where "gauge d1"
+ and d1: "\<And>p. \<lbrakk>p tagged_division_of (cbox a b); d1 fine p\<rbrakk> \<Longrightarrow>
norm ((\<Sum>(x,k) \<in> p. content k *\<^sub>R norm (f x)) - integral (cbox a b) (\<lambda>x. norm (f x))) < e/2"
- by auto
- from henstock_lemma [OF f(1) \<open>e/2>0\<close>] obtain d2 where
- d2: "gauge d2" "\<forall>p. p tagged_partial_division_of (cbox a b) \<and> d2 fine p \<longrightarrow>
- (\<Sum>(x,k) \<in> p. norm (content k *\<^sub>R f x - integral k f)) < e/2" .
- obtain p where
+ unfolding has_integral_integral has_integral by meson
+ obtain d2 where "gauge d2"
+ and d2: "\<And>p. \<lbrakk>p tagged_partial_division_of (cbox a b); d2 fine p\<rbrakk> \<Longrightarrow>
+ (\<Sum>(x,k) \<in> p. norm (content k *\<^sub>R f x - integral k f)) < e/2"
+ by (blast intro: henstock_lemma [OF f(1) \<open>e/2>0\<close>])
+ obtain p where
p: "p tagged_division_of (cbox a b)" "d1 fine p" "d2 fine p"
- by (rule fine_division_exists [OF gauge_Int [OF d1(1) d2(1)], of a b])
+ by (rule fine_division_exists [OF gauge_Int [OF \<open>gauge d1\<close> \<open>gauge d2\<close>], of a b])
(auto simp add: fine_Int)
- have *: "\<And>sf sf' si di. sf' = sf \<longrightarrow> si \<le> ?S \<longrightarrow> \<bar>sf - si\<bar> < e/2 \<longrightarrow>
- \<bar>sf' - di\<bar> < e/2 \<longrightarrow> di < ?S + e"
+ have *: "\<And>sf sf' si di. \<lbrakk>sf' = sf; si \<le> ?S; \<bar>sf - si\<bar> < e/2;
+ \<bar>sf' - di\<bar> < e/2\<rbrakk> \<Longrightarrow> di < ?S + e"
by arith
- show "integral (cbox a b) (\<lambda>x. if x \<in> UNIV then norm (f x) else 0) < ?S + e"
- apply (subst if_P)
- apply rule
- proof (rule *[rule_format])
+ have "integral (cbox a b) (\<lambda>x. norm (f x)) < ?S + e"
+ proof (rule *)
show "\<bar>(\<Sum>(x,k)\<in>p. norm (content k *\<^sub>R f x)) - (\<Sum>(x,k)\<in>p. norm (integral k f))\<bar> < e/2"
unfolding split_def
apply (rule absdiff_norm_less)
- using d2(2)[rule_format,of p]
- using p(1,3)
- unfolding tagged_division_of_def split_def
- apply auto
+ using d2[of p] p(1,3) apply (auto simp: tagged_division_of_def split_def)
done
show "\<bar>(\<Sum>(x,k) \<in> p. content k *\<^sub>R norm (f x)) - integral (cbox a b) (\<lambda>x. norm(f x))\<bar> < e/2"
- using d1(2)[rule_format,OF conjI[OF p(1,2)]]
- by (simp only: real_norm_def)
+ using d1[OF p(1,2)] by (simp only: real_norm_def)
show "(\<Sum>(x,k) \<in> p. content k *\<^sub>R norm (f x)) = (\<Sum>(x,k) \<in> p. norm (content k *\<^sub>R f x))"
apply (rule sum.cong)
apply (rule refl)
@@ -2133,10 +2128,12 @@
using partial_division_of_tagged_division[of p "cbox a b"] p(1)
apply (subst sum.over_tagged_division_lemma[OF p(1)])
apply (simp add: content_eq_0_interior)
- apply (intro cSUP_upper2[OF D(2), of "snd ` p"])
+ apply (intro cSUP_upper2 D)
apply (auto simp: tagged_partial_division_of_def)
done
qed
+ then show "integral (cbox a b) (\<lambda>x. if x \<in> UNIV then norm (f x) else 0) < ?S + e"
+ by simp
qed
qed (insert K, auto)
qed
--- a/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy Tue Aug 15 22:23:28 2017 +0200
+++ b/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy Tue Aug 15 22:22:34 2017 +0100
@@ -5670,10 +5670,10 @@
assumes "f integrable_on cbox a b"
and "e > 0"
and "gauge d"
- and "(\<forall>p. p tagged_division_of (cbox a b) \<and> d fine p \<longrightarrow>
- norm (sum (\<lambda>(x,k). content k *\<^sub>R f x) p - integral(cbox a b) f) < e)"
+ and less_e: "\<And>p. \<lbrakk>p tagged_division_of (cbox a b); d fine p\<rbrakk> \<Longrightarrow>
+ norm (sum (\<lambda>(x,K). content K *\<^sub>R f x) p - integral(cbox a b) f) < e"
and p: "p tagged_partial_division_of (cbox a b)" "d fine p"
- shows "norm (sum (\<lambda>(x,k). content k *\<^sub>R f x - integral k f) p) \<le> e"
+ shows "norm (sum (\<lambda>(x,K). content K *\<^sub>R f x - integral K f) p) \<le> e"
(is "?x \<le> e")
proof -
{ presume "\<And>k. 0<k \<Longrightarrow> ?x \<le> e + k" then show ?thesis by (blast intro: field_le_epsilon) }
@@ -5720,15 +5720,9 @@
let ?p = "p \<union> \<Union>(qq ` r)"
have "norm ((\<Sum>(x, k)\<in>?p. content k *\<^sub>R f x) - integral (cbox a b) f) < e"
- apply (rule assms(4)[rule_format])
- proof
+ proof (rule less_e)
show "d fine ?p"
- apply (rule fine_Un)
- apply (rule p)
- apply (rule fine_Union)
- using qq
- apply auto
- done
+ by (metis (mono_tags, hide_lams) qq fine_Un fine_Union imageE p(2))
note * = tagged_partial_division_of_union_self[OF p(1)]
have "p \<union> \<Union>(qq ` r) tagged_division_of \<Union>(snd ` p) \<union> \<Union>r"
using r
@@ -5902,53 +5896,55 @@
lemma henstock_lemma_part2:
fixes f :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space"
- assumes "f integrable_on cbox a b"
- and "e > 0"
- and "gauge d"
- and "\<forall>p. p tagged_division_of (cbox a b) \<and> d fine p \<longrightarrow>
- norm (sum (\<lambda>(x,k). content k *\<^sub>R f x) p - integral (cbox a b) f) < e"
- and "p tagged_partial_division_of (cbox a b)"
+ assumes fed: "f integrable_on cbox a b" "e > 0" "gauge d"
+ and less_e: "\<And>p. \<lbrakk>p tagged_division_of (cbox a b); d fine p\<rbrakk> \<Longrightarrow>
+ norm (sum (\<lambda>(x,k). content k *\<^sub>R f x) p - integral (cbox a b) f) < e"
+ and tag: "p tagged_partial_division_of (cbox a b)"
and "d fine p"
shows "sum (\<lambda>(x,k). norm (content k *\<^sub>R f x - integral k f)) p \<le> 2 * real (DIM('n)) * e"
- unfolding split_def
- apply (rule sum_norm_allsubsets_bound)
- defer
- apply (rule henstock_lemma_part1[unfolded split_def,OF assms(1-3)])
- apply safe
- apply (rule assms[rule_format,unfolded split_def])
- defer
- apply (rule tagged_partial_division_subset)
- apply (rule assms)
- apply assumption
- apply (rule fine_subset)
- apply assumption
- apply (rule assms)
- using assms(5)
- apply auto
- done
+proof -
+ have "finite p"
+ using tag by blast
+ then show ?thesis
+ unfolding split_def
+ proof (rule sum_norm_allsubsets_bound)
+ fix Q
+ assume Q: "Q \<subseteq> p"
+ then have fine: "d fine Q"
+ by (simp add: \<open>d fine p\<close> fine_subset)
+ show "norm (\<Sum>x\<in>Q. content (snd x) *\<^sub>R f (fst x) - integral (snd x) f) \<le> e"
+ apply (rule henstock_lemma_part1[OF fed less_e, unfolded split_def])
+ using Q tag tagged_partial_division_subset apply (force simp add: fine)+
+ done
+ qed
+qed
lemma henstock_lemma:
fixes f :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space"
- assumes "f integrable_on cbox a b"
+ assumes intf: "f integrable_on cbox a b"
and "e > 0"
- obtains d where "gauge d"
- and "\<forall>p. p tagged_partial_division_of (cbox a b) \<and> d fine p \<longrightarrow>
- sum (\<lambda>(x,k). norm(content k *\<^sub>R f x - integral k f)) p < e"
+ obtains \<gamma> where "gauge \<gamma>"
+ and "\<And>p. \<lbrakk>p tagged_partial_division_of (cbox a b); \<gamma> fine p\<rbrakk> \<Longrightarrow>
+ sum (\<lambda>(x,k). norm(content k *\<^sub>R f x - integral k f)) p < e"
proof -
- have *: "e / (2 * (real DIM('n) + 1)) > 0" using assms(2) by simp
- from integrable_integral[OF assms(1),unfolded has_integral[of f],rule_format,OF this]
- guess d..note d = conjunctD2[OF this]
+ have *: "e / (2 * (real DIM('n) + 1)) > 0" using \<open>e > 0\<close> by simp
+ with integrable_integral[OF intf, unfolded has_integral]
+ obtain \<gamma> where "gauge \<gamma>"
+ and \<gamma>: "\<And>p. \<lbrakk>p tagged_division_of cbox a b; \<gamma> fine p\<rbrakk> \<Longrightarrow>
+ norm ((\<Sum>(x,K)\<in>p. content K *\<^sub>R f x) - integral (cbox a b) f)
+ < e / (2 * (real DIM('n) + 1))"
+ by metis
show thesis
- apply (rule that)
- apply (rule d)
- proof (safe, goal_cases)
- case (1 p)
- note * = henstock_lemma_part2[OF assms(1) * d this]
- show ?case
- apply (rule le_less_trans[OF *])
- using \<open>e > 0\<close>
- apply (auto simp add: field_simps)
- done
+ proof (rule that [OF \<open>gauge \<gamma>\<close>])
+ fix p
+ assume p: "p tagged_partial_division_of cbox a b" "\<gamma> fine p"
+ have "(\<Sum>(x,K)\<in>p. norm (content K *\<^sub>R f x - integral K f))
+ \<le> 2 * real DIM('n) * (e / (2 * (real DIM('n) + 1)))"
+ using henstock_lemma_part2[OF intf * \<open>gauge \<gamma>\<close> \<gamma> p] by metis
+ also have "... < e"
+ using \<open>e > 0\<close> by (auto simp add: field_simps)
+ finally
+ show "(\<Sum>(x,K)\<in>p. norm (content K *\<^sub>R f x - integral K f)) < e" .
qed
qed
@@ -6118,30 +6114,19 @@
done
fix t
assume "t \<in> {0..s}"
- show "norm (\<Sum>(x, k)\<in>{xk \<in> p. m (fst xk) = t}. content k *\<^sub>R f (m x) x -
- integral k (f (m x))) \<le> e/2 ^ (t + 2)"
- apply (rule order_trans
- [of _ "norm (sum (\<lambda>(x,k). content k *\<^sub>R f t x - integral k (f t)) {xk \<in> p. m (fst xk) = t})"])
- apply (rule eq_refl)
- apply (rule arg_cong[where f=norm])
- apply (rule sum.cong)
- apply (rule refl)
- defer
- apply (rule henstock_lemma_part1)
- apply (rule assms(1)[rule_format])
- apply (simp add: e)
- apply safe
- apply (rule c)+
- apply assumption+
- apply (rule tagged_partial_division_subset[of p])
- apply (rule p(1)[unfolded tagged_division_of_def,THEN conjunct1])
- defer
- unfolding fine_def
- apply safe
- apply (drule p(2)[unfolded fine_def,rule_format])
- unfolding d_def
- apply auto
- done
+ have "norm (\<Sum>(x,k)\<in>{xk \<in> p. m (fst xk) = t}. content k *\<^sub>R f (m x) x - integral k (f (m x))) =
+ norm (\<Sum>(x,k)\<in>{xk \<in> p. m (fst xk) = t}. content k *\<^sub>R f t x - integral k (f t))"
+ by (force intro!: sum.cong arg_cong[where f=norm])
+ also have "... \<le> e/2 ^ (t + 2)"
+ proof (rule henstock_lemma_part1 [OF intf _ c])
+ show "{xk \<in> p. m (fst xk) = t} tagged_partial_division_of cbox a b"
+ apply (rule tagged_partial_division_subset[of p])
+ using p by (auto simp: tagged_division_of_def)
+ show "c t fine {xk \<in> p. m (fst xk) = t}"
+ using p(2) by (auto simp: fine_def d_def)
+ qed (auto simp: e)
+ finally show "norm (\<Sum>(x, k)\<in>{xk \<in> p. m (fst xk) = t}. content k *\<^sub>R f (m x) x -
+ integral k (f (m x))) \<le> e/2 ^ (t + 2)" .
qed
qed (insert s, auto)
next