example using restoring Transfer/Lifting context
authorkuncar
Mon, 16 Sep 2013 15:30:20 +0200
changeset 53653 a792a504ff22
parent 53652 18fbca265e2e
child 53655 aeb3cf02c678
example using restoring Transfer/Lifting context
src/HOL/Quotient_Examples/Int_Pow.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Quotient_Examples/Int_Pow.thy	Mon Sep 16 15:30:20 2013 +0200
@@ -0,0 +1,146 @@
+(*  Title:      HOL/Quotient_Examples/Int_Pow.thy
+    Author:     Ondrej Kuncar
+    Author:     Lars Noschinski
+*)
+
+theory Int_Pow
+imports Main "~~/src/HOL/Algebra/Group"
+begin                          
+
+(*
+  This file demonstrates how to restore Lifting/Transfer enviromenent.
+
+  We want to define int_pow (a power with an integer exponent) by directly accessing 
+  the representation type "nat * nat" that was used to define integers.
+*)
+
+context monoid
+begin
+
+(* first some additional lemmas that are missing in monoid *)
+
+lemma Units_nat_pow_Units [intro, simp]: 
+  "a \<in> Units G \<Longrightarrow> a (^) (c :: nat) \<in> Units G" by (induct c) auto
+
+lemma Units_r_cancel [simp]:
+  "[| z \<in> Units G; x \<in> carrier G; y \<in> carrier G |] ==>
+   (x \<otimes> z = y \<otimes> z) = (x = y)"
+proof
+  assume eq: "x \<otimes> z = y \<otimes> z"
+    and G: "z \<in> Units G"  "x \<in> carrier G"  "y \<in> carrier G"
+  then have "x \<otimes> (z \<otimes> inv z) = y \<otimes> (z \<otimes> inv z)"
+    by (simp add: m_assoc[symmetric] Units_closed del: Units_r_inv)
+  with G show "x = y" by simp
+next
+  assume eq: "x = y"
+    and G: "z \<in> Units G"  "x \<in> carrier G"  "y \<in> carrier G"
+  then show "x \<otimes> z = y \<otimes> z" by simp
+qed
+
+lemma inv_mult_units:
+  "[| x \<in> Units G; y \<in> Units G |] ==> inv (x \<otimes> y) = inv y \<otimes> inv x"
+proof -
+  assume G: "x \<in> Units G"  "y \<in> Units G"
+  moreover then have "x \<in> carrier G"  "y \<in> carrier G" by auto
+  ultimately have "inv (x \<otimes> y) \<otimes> (x \<otimes> y) = (inv y \<otimes> inv x) \<otimes> (x \<otimes> y)"
+    by (simp add: m_assoc) (simp add: m_assoc [symmetric])
+  with G show ?thesis by (simp del: Units_l_inv)
+qed
+
+lemma mult_same_comm: 
+  assumes [simp, intro]: "a \<in> Units G" 
+  shows "a (^) (m::nat) \<otimes> inv (a (^) (n::nat)) = inv (a (^) n) \<otimes> a (^) m"
+proof (cases "m\<ge>n")
+  have [simp]: "a \<in> carrier G" using `a \<in> _` by (rule Units_closed)
+  case True
+    then obtain k where *:"m = k + n" and **:"m = n + k" by (metis Nat.le_iff_add nat_add_commute)
+    have "a (^) (m::nat) \<otimes> inv (a (^) (n::nat)) = a (^) k"
+      using * by (auto simp add: nat_pow_mult[symmetric] m_assoc)
+    also have "\<dots> = inv (a (^) n) \<otimes> a (^) m"
+      using ** by (auto simp add: nat_pow_mult[symmetric] m_assoc[symmetric])
+    finally show ?thesis .
+next
+  have [simp]: "a \<in> carrier G" using `a \<in> _` by (rule Units_closed)
+  case False
+    then obtain k where *:"n = k + m" and **:"n = m + k" 
+      by (metis Nat.le_iff_add nat_add_commute nat_le_linear)
+    have "a (^) (m::nat) \<otimes> inv (a (^) (n::nat)) = inv(a (^) k)"
+      using * by (auto simp add: nat_pow_mult[symmetric] m_assoc[symmetric] inv_mult_units)
+    also have "\<dots> = inv (a (^) n) \<otimes> a (^) m"
+      using ** by (auto simp add: nat_pow_mult[symmetric] m_assoc inv_mult_units)
+    finally show ?thesis .
+qed
+
+lemma mult_inv_same_comm: 
+  "a \<in> Units G \<Longrightarrow> inv (a (^) (m::nat)) \<otimes> inv (a (^) (n::nat)) = inv (a (^) n) \<otimes> inv (a (^) m)"
+by (simp add: inv_mult_units[symmetric] nat_pow_mult ac_simps Units_closed)
+
+context
+includes int.lifting (* restores Lifting/Transfer for integers *)
+begin
+
+lemma int_pow_rsp:
+  assumes eq: "(b::nat) + e = d + c"
+  assumes a_in_G [simp, intro]: "a \<in> Units G"
+  shows "a (^) b \<otimes> inv (a (^) c) = a (^) d \<otimes> inv (a (^) e)"
+proof(cases "b\<ge>c")
+  have [simp]: "a \<in> carrier G" using `a \<in> _` by (rule Units_closed)
+  case True
+    then obtain n where "b = n + c" by (metis Nat.le_iff_add nat_add_commute)
+    then have "d = n + e" using eq by arith
+    from `b = _` have "a (^) b \<otimes> inv (a (^) c) = a (^) n" 
+      by (auto simp add: nat_pow_mult[symmetric] m_assoc)
+    also from `d = _`  have "\<dots> = a (^) d \<otimes> inv (a (^) e)"   
+      by (auto simp add: nat_pow_mult[symmetric] m_assoc)
+    finally show ?thesis .
+next
+  have [simp]: "a \<in> carrier G" using `a \<in> _` by (rule Units_closed)
+  case False
+    then obtain n where "c = n + b" by (metis Nat.le_iff_add nat_add_commute nat_le_linear)
+    then have "e = n + d" using eq by arith
+    from `c = _` have "a (^) b \<otimes> inv (a (^) c) = inv (a (^) n)" 
+      by (auto simp add: nat_pow_mult[symmetric] m_assoc[symmetric] inv_mult_units)
+    also from `e = _` have "\<dots> = a (^) d \<otimes> inv (a (^) e)"   
+      by (auto simp add: nat_pow_mult[symmetric] m_assoc[symmetric] inv_mult_units)
+    finally show ?thesis .
+qed
+
+(*
+  This definition is more convinient than the definition in HOL/Algebra/Group because
+  it doesn't contain a test z < 0 when a (^) z is being defined.
+*)
+
+lift_definition int_pow :: "('a, 'm) monoid_scheme \<Rightarrow> 'a \<Rightarrow> int \<Rightarrow> 'a" is 
+  "\<lambda>G a (n1, n2). if a \<in> Units G \<and> monoid G then (a (^)\<^bsub>G\<^esub> n1) \<otimes>\<^bsub>G\<^esub> (inv\<^bsub>G\<^esub> (a (^)\<^bsub>G\<^esub> n2)) else \<one>\<^bsub>G\<^esub>" 
+unfolding intrel_def by (auto intro: monoid.int_pow_rsp)
+
+(*
+  Thus, for example, the proof of distributivity of int_pow and addition 
+  doesn't require a substantial number of case distinctions.
+*)
+
+lemma int_pow_dist:
+  assumes [simp]: "a \<in> Units G"
+  shows "int_pow G a ((n::int) + m) = int_pow G a n \<otimes>\<^bsub>G\<^esub> int_pow G a m"
+proof -
+  {
+    fix k l m :: nat
+    have "a (^) l \<otimes> (inv (a (^) m) \<otimes> inv (a (^) k)) = (a (^) l \<otimes> inv (a (^) k)) \<otimes> inv (a (^) m)" 
+      (is "?lhs = _")
+      by (simp add: mult_inv_same_comm m_assoc Units_closed)
+    also have "\<dots> = (inv (a (^) k) \<otimes> a (^) l) \<otimes> inv (a (^) m)"
+      by (simp add: mult_same_comm)
+    also have "\<dots> = inv (a (^) k) \<otimes> (a (^) l \<otimes> inv (a (^) m))" (is "_ = ?rhs")
+      by (simp add: m_assoc Units_closed)
+    finally have "?lhs = ?rhs" .
+  }
+  then show ?thesis
+    by (transfer fixing: G) (auto simp add: nat_pow_mult[symmetric] inv_mult_units m_assoc Units_closed)
+qed
+
+end
+
+lifting_update int.lifting
+lifting_forget int.lifting
+
+end