--- a/src/HOL/Analysis/Infinite_Sum.thy Mon Mar 24 21:24:03 2025 +0000
+++ b/src/HOL/Analysis/Infinite_Sum.thy Tue Mar 25 21:19:26 2025 +0000
@@ -106,9 +106,18 @@
shows \<open>infsum f A = 0\<close>
by (simp add: assms infsum_def)
+lemma has_sum_unique:
+ fixes f :: "_ \<Rightarrow> 'a :: {topological_comm_monoid_add, t2_space}"
+ assumes "(f has_sum x) A" "(f has_sum y) A"
+ shows "x = y"
+ using assms infsumI by blast
+
lemma summable_iff_has_sum_infsum: "f summable_on A \<longleftrightarrow> (f has_sum (infsum f A)) A"
using infsumI summable_on_def by blast
+lemma has_sum_iff: "(f has_sum S) A \<longleftrightarrow> f summable_on A \<and> infsum f A = S"
+ using infsumI summable_iff_has_sum_infsum by blast
+
lemma has_sum_infsum[simp]:
assumes \<open>f summable_on S\<close>
shows \<open>(f has_sum (infsum f S)) S\<close>
@@ -388,6 +397,41 @@
shows "infsum f F = sum f F"
by (simp add: assms infsumI)
+lemma has_sum_finiteI: "finite A \<Longrightarrow> S = sum f A \<Longrightarrow> (f has_sum S) A"
+ by simp
+
+lemma has_sum_strict_mono_neutral:
+ fixes f :: "'a \<Rightarrow> 'b :: {ordered_ab_group_add, topological_ab_group_add, linorder_topology}"
+ assumes \<open>(f has_sum a) A\<close> and "(g has_sum b) B"
+ assumes \<open>\<And>x. x \<in> A\<inter>B \<Longrightarrow> f x \<le> g x\<close>
+ assumes \<open>\<And>x. x \<in> A-B \<Longrightarrow> f x \<le> 0\<close>
+ assumes \<open>\<And>x. x \<in> B-A \<Longrightarrow> g x \<ge> 0\<close>
+ assumes \<open>x \<in> B\<close> \<open>if x \<in> A then f x < g x else 0 < g x\<close>
+ shows "a < b"
+proof -
+ define y where "y = (if x \<in> A then f x else 0)"
+ have "a - y \<le> b - g x"
+ proof (rule has_sum_mono_neutral)
+ show "(f has_sum (a - y)) (A - (if x \<in> A then {x} else {}))"
+ by (intro has_sum_Diff assms has_sum_finiteI) (auto simp: y_def)
+ show "(g has_sum (b - g x)) (B - {x})"
+ by (intro has_sum_Diff assms has_sum_finiteI) (use assms in auto)
+ qed (use assms in \<open>auto split: if_splits\<close>)
+ moreover have "y < g x"
+ using assms(3,4,5)[of x] assms(6-) by (auto simp: y_def split: if_splits)
+ ultimately show ?thesis
+ by (metis diff_strict_left_mono diff_strict_mono leD neqE)
+qed
+
+lemma has_sum_strict_mono:
+ fixes f :: "'a \<Rightarrow> 'b :: {ordered_ab_group_add, topological_ab_group_add, linorder_topology}"
+ assumes \<open>(f has_sum a) A\<close> and "(g has_sum b) A"
+ assumes \<open>\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x\<close>
+ assumes \<open>x \<in> A\<close> \<open>f x < g x\<close>
+ shows "a < b"
+ by (rule has_sum_strict_mono_neutral[OF assms(1,2), where x = x])
+ (use assms(3-) in auto)
+
lemma has_sum_finite_approximation:
fixes f :: "'a \<Rightarrow> 'b::{comm_monoid_add,metric_space}"
assumes "(f has_sum x) A" and "\<epsilon> > 0"
@@ -708,6 +752,39 @@
using norm_summable_imp_has_sum[OF assms, of "suminf f"] assms
by (auto simp: sums_iff summable_on_def dest: summable_norm_cancel)
+lemma sums_nonneg_imp_has_sum_strong:
+ assumes "f sums (S::real)" "eventually (\<lambda>n. f n \<ge> 0) sequentially"
+ shows "(f has_sum S) UNIV"
+proof -
+ from assms(2) obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> f n \<ge> 0"
+ by (auto simp: eventually_at_top_linorder)
+ from assms(1) have "summable f"
+ by (simp add: sums_iff)
+ hence "summable (\<lambda>n. f (n + N))"
+ by (rule summable_ignore_initial_segment)
+ hence "summable (\<lambda>n. norm (f (n + N)))"
+ using N by simp
+ hence "summable (\<lambda>n. norm (f n))"
+ using summable_iff_shift by blast
+ with assms(1) show ?thesis
+ using norm_summable_imp_has_sum by blast
+qed
+
+lemma sums_nonneg_imp_has_sum:
+ assumes "f sums (S::real)" and "\<And>n. f n \<ge> 0"
+ shows "(f has_sum S) UNIV"
+ by (rule sums_nonneg_imp_has_sum_strong) (use assms in auto)
+
+lemma summable_nonneg_imp_summable_on_strong:
+ assumes "summable f" "eventually (\<lambda>n. f n \<ge> (0::real)) sequentially"
+ shows "f summable_on UNIV"
+ using assms has_sum_iff sums_nonneg_imp_has_sum_strong by blast
+
+lemma summable_nonneg_imp_summable_on:
+ assumes "summable f" "\<And>n. f n \<ge> (0::real)"
+ shows "f summable_on UNIV"
+ by (rule summable_nonneg_imp_summable_on_strong) (use assms in auto)
+
text \<open>The following lemma indeed needs a complete space (as formalized by the premise \<^term>\<open>complete UNIV\<close>).
The following two counterexamples show this:
\begin{itemize}
@@ -2759,6 +2836,15 @@
shows "(g has_sum s) S = (h has_sum s') T"
by (smt (verit, del_insts) assms bij_betwI' has_sum_cong has_sum_reindex_bij_betw)
+lemma summable_on_reindex_bij_witness:
+ assumes "\<And>a. a \<in> S \<Longrightarrow> i (j a) = a"
+ assumes "\<And>a. a \<in> S \<Longrightarrow> j a \<in> T"
+ assumes "\<And>b. b \<in> T \<Longrightarrow> j (i b) = b"
+ assumes "\<And>b. b \<in> T \<Longrightarrow> i b \<in> S"
+ assumes "\<And>a. a \<in> S \<Longrightarrow> h (j a) = g a"
+ shows "g summable_on S \<longleftrightarrow> h summable_on T"
+ using has_sum_reindex_bij_witness[of S i j T h g, OF assms]
+ by (simp add: summable_on_def)
lemma has_sum_homomorphism:
assumes "(f has_sum S) A" "h 0 = 0" "\<And>a b. h (a + b) = h a + h b" "continuous_on UNIV h"
@@ -2835,6 +2921,19 @@
shows "infsum (\<lambda>x. mult c (f x)) A = mult c (infsum f A)"
by (metis assms infsum_0 infsum_bounded_linear_strong)
+lemma has_sum_scaleR:
+ fixes f :: "'a \<Rightarrow> 'b :: real_normed_vector"
+ assumes "(f has_sum S) A"
+ shows "((\<lambda>x. c *\<^sub>R f x) has_sum (c *\<^sub>R S)) A"
+ using has_sum_bounded_linear[OF bounded_linear_scaleR_right[of c], of f A S] assms by simp
+
+lemma has_sum_scaleR_iff:
+ fixes f :: "'a \<Rightarrow> 'b :: real_normed_vector"
+ assumes "c \<noteq> 0"
+ shows "((\<lambda>x. c *\<^sub>R f x) has_sum S) A \<longleftrightarrow> (f has_sum (S /\<^sub>R c)) A"
+ using has_sum_scaleR[of f A "S /\<^sub>R c" c] has_sum_scaleR[of "\<lambda>x. c *\<^sub>R f x" A S "inverse c"] assms
+ by auto
+
lemma has_sum_of_nat: "(f has_sum S) A \<Longrightarrow> ((\<lambda>x. of_nat (f x)) has_sum of_nat S) A"
by (erule has_sum_homomorphism) (auto intro!: continuous_intros)
@@ -2847,6 +2946,31 @@
lemma summable_on_of_int: "f summable_on A \<Longrightarrow> (\<lambda>x. of_int (f x)) summable_on A"
by (erule summable_on_homomorphism) (auto intro!: continuous_intros)
+lemma summable_on_of_real:
+ "f summable_on A \<Longrightarrow> (\<lambda>x. of_real (f x) :: 'a :: real_normed_algebra_1) summable_on A"
+ using summable_on_bounded_linear[of "of_real :: real \<Rightarrow> 'a", OF bounded_linear_of_real, of f A]
+ by simp
+
+lemma has_sum_of_real_iff:
+ "((\<lambda>x. of_real (f x) :: 'a :: real_normed_div_algebra) has_sum (of_real c)) A \<longleftrightarrow>
+ (f has_sum c) A"
+proof -
+ have "((\<lambda>x. of_real (f x) :: 'a) has_sum (of_real c)) A \<longleftrightarrow>
+ (sum (\<lambda>x. of_real (f x) :: 'a) \<longlongrightarrow> of_real c) (finite_subsets_at_top A)"
+ by (simp add: has_sum_def)
+ also have "sum (\<lambda>x. of_real (f x) :: 'a) = (\<lambda>X. of_real (sum f X))"
+ by simp
+ also have "((\<lambda>X. of_real (sum f X) :: 'a) \<longlongrightarrow> of_real c) (finite_subsets_at_top A) \<longleftrightarrow>
+ (f has_sum c) A"
+ unfolding has_sum_def tendsto_of_real_iff ..
+ finally show ?thesis .
+qed
+
+lemma has_sum_of_real:
+ "(f has_sum S) A \<Longrightarrow> ((\<lambda>x. of_real (f x) :: 'a :: real_normed_algebra_1) has_sum of_real S) A"
+ using has_sum_bounded_linear[of "of_real :: real \<Rightarrow> 'a", OF bounded_linear_of_real, of f A S]
+ by simp
+
lemma summable_on_discrete_iff:
fixes f :: "'a \<Rightarrow> 'b :: {discrete_topology, topological_comm_monoid_add, cancel_comm_monoid_add}"
shows "f summable_on A \<longleftrightarrow> finite {x\<in>A. f x \<noteq> 0}"
@@ -3027,9 +3151,6 @@
shows "f summable_on insert x A \<longleftrightarrow> f summable_on A"
using summable_on_union[of f A "{x}"] by (auto intro: summable_on_subset)
-lemma has_sum_finiteI: "finite A \<Longrightarrow> S = sum f A \<Longrightarrow> (f has_sum S) A"
- by simp
-
lemma has_sum_insert:
fixes f :: "'a \<Rightarrow> 'b :: topological_comm_monoid_add"
assumes "x \<notin> A" and "(f has_sum S) A"
@@ -3131,11 +3252,32 @@
qed (insert Y(1,2), auto simp: Y1_def)
qed
-lemma has_sum_unique:
- fixes f :: "_ \<Rightarrow> 'a :: {topological_comm_monoid_add, t2_space}"
- assumes "(f has_sum x) A" "(f has_sum y) A"
- shows "x = y"
- using assms unfolding has_sum_def using tendsto_unique finite_subsets_at_top_neq_bot by blast
+lemma has_sum_finite_iff:
+ fixes S :: "'a :: {topological_comm_monoid_add,t2_space}"
+ assumes "finite A"
+ shows "(f has_sum S) A \<longleftrightarrow> S = (\<Sum>x\<in>A. f x)"
+proof
+ assume "S = (\<Sum>x\<in>A. f x)"
+ thus "(f has_sum S) A"
+ by (intro has_sum_finiteI assms)
+next
+ assume "(f has_sum S) A"
+ moreover have "(f has_sum (\<Sum>x\<in>A. f x)) A"
+ by (intro has_sum_finiteI assms) auto
+ ultimately show "S = (\<Sum>x\<in>A. f x)"
+ using has_sum_unique by blast
+qed
+
+lemma has_sum_finite_neutralI:
+ assumes "finite B" "B \<subseteq> A" "\<And>x. x \<in> A - B \<Longrightarrow> f x = 0" "c = (\<Sum>x\<in>B. f x)"
+ shows "(f has_sum c) A"
+proof -
+ have "(f has_sum c) B"
+ by (rule has_sum_finiteI) (use assms in auto)
+ also have "?this \<longleftrightarrow> (f has_sum c) A"
+ by (intro has_sum_cong_neutral) (use assms in auto)
+ finally show ?thesis .
+qed
lemma has_sum_SigmaI:
fixes f :: "_ \<Rightarrow> 'a :: {topological_comm_monoid_add, t3_space}"
--- a/src/HOL/Analysis/Uniform_Limit.thy Mon Mar 24 21:24:03 2025 +0000
+++ b/src/HOL/Analysis/Uniform_Limit.thy Tue Mar 25 21:19:26 2025 +0000
@@ -631,6 +631,22 @@
qed
qed
+lemma Weierstrass_m_test_general':
+ fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c :: banach"
+ fixes M :: "'a \<Rightarrow> real"
+ assumes norm_le: "\<And>x y. x \<in> X \<Longrightarrow> y \<in> Y \<Longrightarrow> norm (f x y) \<le> M x"
+ assumes has_sum: "\<And>y. y \<in> Y \<Longrightarrow> ((\<lambda>x. f x y) has_sum S y) X"
+ assumes summable: "M summable_on X"
+ shows "uniform_limit Y (\<lambda>X y. \<Sum>x\<in>X. f x y) S (finite_subsets_at_top X)"
+proof -
+ have "uniform_limit Y (\<lambda>X y. \<Sum>x\<in>X. f x y) (\<lambda>y. \<Sum>\<^sub>\<infinity>x\<in>X. f x y) (finite_subsets_at_top X)"
+ using norm_le summable by (rule Weierstrass_m_test_general)
+ also have "?this \<longleftrightarrow> ?thesis"
+ by (intro uniform_limit_cong refl always_eventually allI ballI)
+ (use has_sum in \<open>auto simp: has_sum_iff\<close>)
+ finally show ?thesis .
+qed
+
subsection\<^marker>\<open>tag unimportant\<close> \<open>Structural introduction rules\<close>
--- a/src/HOL/Complex.thy Mon Mar 24 21:24:03 2025 +0000
+++ b/src/HOL/Complex.thy Tue Mar 25 21:19:26 2025 +0000
@@ -878,6 +878,12 @@
lemma cis_divide: "cis a / cis b = cis (a - b)"
by (simp add: divide_complex_def cis_mult)
+lemma cis_power_int: "cis x powi n = cis (of_int n * x)"
+ by (auto simp: power_int_def DeMoivre)
+
+lemma complex_cnj_power_int [simp]: "cnj (x powi n) = cnj x powi n"
+ by (auto simp: power_int_def)
+
lemma divide_conv_cnj: "norm z = 1 \<Longrightarrow> x / z = x * cnj z"
by (metis complex_div_cnj div_by_1 mult_1 of_real_1 power2_eq_square)
--- a/src/HOL/Int.thy Mon Mar 24 21:24:03 2025 +0000
+++ b/src/HOL/Int.thy Tue Mar 25 21:19:26 2025 +0000
@@ -1881,6 +1881,15 @@
lemma power_int_mult: "power_int (x :: 'a) (m * n) = power_int (power_int x m) n"
by (auto simp: power_int_def zero_le_mult_iff simp flip: power_mult power_inverse nat_mult_distrib)
+lemma power_int_power: "(a ^ b :: 'a :: division_ring) powi c = a powi (int b * c)"
+ by (subst power_int_mult) simp
+
+lemma power_int_power': "(a powi b :: 'a :: division_ring) ^ c = a powi (b * int c)"
+ by (simp add: power_int_mult)
+
+lemma power_int_nonneg_exp: "n \<ge> 0 \<Longrightarrow> x powi n = x ^ nat n"
+ by (simp add: power_int_def)
+
end
context
--- a/src/HOL/NthRoot.thy Mon Mar 24 21:24:03 2025 +0000
+++ b/src/HOL/NthRoot.thy Tue Mar 25 21:19:26 2025 +0000
@@ -548,16 +548,14 @@
lemma not_real_square_gt_zero [simp]: "\<not> 0 < x * x \<longleftrightarrow> x = 0"
for x :: real
- apply auto
- using linorder_less_linear [where x = x and y = 0]
- apply (simp add: zero_less_mult_iff)
- done
+ by (metis linorder_neq_iff zero_less_mult_iff)
lemma real_sqrt_abs2 [simp]: "sqrt (x * x) = \<bar>x\<bar>"
- apply (subst power2_eq_square [symmetric])
- apply (rule real_sqrt_abs)
- done
+ by (simp add: real_sqrt_mult)
+lemma real_sqrt_abs': "sqrt \<bar>x\<bar> = \<bar>sqrt x\<bar>"
+ by (metis real_sqrt_abs2 real_sqrt_mult)
+
lemma real_inv_sqrt_pow2: "0 < x \<Longrightarrow> (inverse (sqrt x))\<^sup>2 = inverse x"
by (simp add: power_inverse)
--- a/src/HOL/Transcendental.thy Mon Mar 24 21:24:03 2025 +0000
+++ b/src/HOL/Transcendental.thy Tue Mar 25 21:19:26 2025 +0000
@@ -3978,12 +3978,24 @@
lemma sin_npi2_numeral [simp]: "sin (pi * Num.numeral n) = 0"
by (metis of_nat_numeral sin_npi2)
+lemma sin_npi_complex' [simp]: "sin (of_nat n * of_real pi) = 0"
+ by (metis of_real_0 of_real_mult of_real_of_nat_eq sin_npi sin_of_real)
+
lemma cos_npi_numeral [simp]: "cos (Num.numeral n * pi) = (- 1) ^ Num.numeral n"
by (metis cos_npi of_nat_numeral)
lemma cos_npi2_numeral [simp]: "cos (pi * Num.numeral n) = (- 1) ^ Num.numeral n"
by (metis cos_npi2 of_nat_numeral)
+lemma cos_npi_complex' [simp]: "cos (of_nat n * of_real pi) = (-1) ^ n" for n
+proof -
+ have "cos (of_nat n * of_real pi :: 'a) = of_real (cos (real n * pi))"
+ by (subst cos_of_real [symmetric]) simp
+ also have "cos (real n * pi) = (-1) ^ n"
+ by simp
+ finally show ?thesis by simp
+qed
+
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
by (simp add: cos_double)