Real/Real.thy main entry point;
authorwenzelm
Tue, 24 Aug 1999 11:54:13 +0200
changeset 7334 a90fc1e5fb19
parent 7333 6cb15c6f1d9f
child 7335 abba35b98892
Real/Real.thy main entry point;
src/HOL/IsaMakefile
src/HOL/Real/ROOT.ML
src/HOL/Real/Real.ML
src/HOL/Real/Real.thy
src/HOL/Real/RealAbs.thy
src/HOL/Real/RealInt.thy
src/HOL/Real/RealOrd.ML
src/HOL/Real/RealOrd.thy
--- a/src/HOL/IsaMakefile	Tue Aug 24 11:50:58 1999 +0200
+++ b/src/HOL/IsaMakefile	Tue Aug 24 11:54:13 1999 +0200
@@ -72,17 +72,14 @@
 
 HOL-Real: HOL $(OUT)/HOL-Real
 
-$(OUT)/HOL-Real: $(OUT)/HOL \
-  Real/Lubs.ML Real/Lubs.thy Real/PNat.ML Real/PNat.thy \
-  Real/PRat.ML Real/PRat.thy Real/PReal.ML Real/PReal.thy \
-  Real/RComplete.ML Real/RComplete.thy Real/Real.ML Real/Real.thy \
-  Real/RealDef.ML Real/RealDef.thy Real/simproc.ML \
-  Real/RealAbs.ML Real/RealAbs.thy Real/ROOT.ML \
-  Real/RealBin.ML Real/RealBin.thy \
-  Real/RealInt.ML Real/RealInt.thy \
-  Real/RealPow.ML Real/RealPow.thy \
-  Real/Hyperreal/Filter.ML Real/Hyperreal/Filter.thy \
-  Real/Hyperreal/fuf.ML \
+$(OUT)/HOL-Real: $(OUT)/HOL Real/Lubs.ML Real/Lubs.thy Real/PNat.ML \
+  Real/PNat.thy Real/PRat.ML Real/PRat.thy Real/PReal.ML \
+  Real/PReal.thy Real/RComplete.ML Real/RComplete.thy Real/Real.thy \
+  Real/RealDef.ML Real/RealDef.thy Real/RealOrd.ML Real/RealOrd.thy \
+  Real/simproc.ML Real/RealAbs.ML Real/RealAbs.thy Real/ROOT.ML \
+  Real/RealBin.ML Real/RealBin.thy Real/RealInt.ML Real/RealInt.thy \
+  Real/RealPow.ML Real/RealPow.thy Real/Hyperreal/Filter.ML \
+  Real/Hyperreal/Filter.thy Real/Hyperreal/fuf.ML \
   Real/Hyperreal/HyperDef.ML Real/Hyperreal/HyperDef.thy \
   Real/Hyperreal/Zorn.ML Real/Hyperreal/Zorn.thy
 	@cd Real; $(ISATOOL) usedir -b $(OUT)/HOL HOL-Real
--- a/src/HOL/Real/ROOT.ML	Tue Aug 24 11:50:58 1999 +0200
+++ b/src/HOL/Real/ROOT.ML	Tue Aug 24 11:54:13 1999 +0200
@@ -11,6 +11,6 @@
 set proof_timing;
 time_use_thy "RealDef";
 use          "simproc.ML";
-time_use_thy "RComplete";
+time_use_thy "Real";
 time_use_thy "Hyperreal/Filter";
 time_use_thy "Hyperreal/HyperDef";
--- a/src/HOL/Real/Real.ML	Tue Aug 24 11:50:58 1999 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,817 +0,0 @@
-(*  Title:       HOL/Real/Real.ML
-    ID:          $Id$
-    Author:      Lawrence C. Paulson
-                 Jacques D. Fleuriot
-    Copyright:   1998  University of Cambridge
-    Description: Type "real" is a linear order
-*)
-
-Goal "(0r < x) = (? y. x = real_of_preal y)";
-by (auto_tac (claset(), simpset() addsimps [real_of_preal_zero_less]));
-by (cut_inst_tac [("x","x")] real_of_preal_trichotomy 1);
-by (blast_tac (claset() addSEs [real_less_irrefl,
-				real_of_preal_not_minus_gt_zero RS notE]) 1);
-qed "real_gt_zero_preal_Ex";
-
-Goal "real_of_preal z < x ==> ? y. x = real_of_preal y";
-by (blast_tac (claset() addSDs [real_of_preal_zero_less RS real_less_trans]
-               addIs [real_gt_zero_preal_Ex RS iffD1]) 1);
-qed "real_gt_preal_preal_Ex";
-
-Goal "real_of_preal z <= x ==> ? y. x = real_of_preal y";
-by (blast_tac (claset() addDs [real_le_imp_less_or_eq,
-			       real_gt_preal_preal_Ex]) 1);
-qed "real_ge_preal_preal_Ex";
-
-Goal "y <= 0r ==> !x. y < real_of_preal x";
-by (auto_tac (claset() addEs [real_le_imp_less_or_eq RS disjE]
-                       addIs [real_of_preal_zero_less RSN(2,real_less_trans)],
-              simpset() addsimps [real_of_preal_zero_less]));
-qed "real_less_all_preal";
-
-Goal "~ 0r < y ==> !x. y < real_of_preal x";
-by (blast_tac (claset() addSIs [real_less_all_preal,real_leI]) 1);
-qed "real_less_all_real2";
-
-Goal "((x::real) < y) = (-y < -x)";
-by (rtac (real_less_sum_gt_0_iff RS subst) 1);
-by (res_inst_tac [("W1","x")] (real_less_sum_gt_0_iff RS subst) 1);
-by (simp_tac (simpset() addsimps [real_add_commute]) 1);
-qed "real_less_swap_iff";
-
-Goal "[| R + L = S; 0r < L |] ==> R < S";
-by (rtac (real_less_sum_gt_0_iff RS iffD1) 1);
-by (auto_tac (claset(), simpset() addsimps real_add_ac));
-qed "real_lemma_add_positive_imp_less";
-
-Goal "? T. 0r < T & R + T = S ==> R < S";
-by (blast_tac (claset() addIs [real_lemma_add_positive_imp_less]) 1);
-qed "real_ex_add_positive_left_less";
-
-(*Alternative definition for real_less.  NOT for rewriting*)
-Goal "(R < S) = (? T. 0r < T & R + T = S)";
-by (blast_tac (claset() addSIs [real_less_add_positive_left_Ex,
-				real_ex_add_positive_left_less]) 1);
-qed "real_less_iff_add";
-
-Goal "(0r < x) = (-x < x)";
-by Safe_tac;
-by (rtac ccontr 2 THEN forward_tac 
-    [real_leI RS real_le_imp_less_or_eq] 2);
-by (Step_tac 2);
-by (dtac (real_minus_zero_less_iff RS iffD2) 2);
-by (blast_tac (claset() addIs [real_less_trans]) 2);
-by (auto_tac (claset(),
-	      simpset() addsimps 
- 	        [real_gt_zero_preal_Ex,real_of_preal_minus_less_self]));
-qed "real_gt_zero_iff";
-
-Goal "(x < 0r) = (x < -x)";
-by (rtac (real_minus_zero_less_iff RS subst) 1);
-by (stac real_gt_zero_iff 1);
-by (Full_simp_tac 1);
-qed "real_lt_zero_iff";
-
-Goalw [real_le_def] "(0r <= x) = (-x <= x)";
-by (auto_tac (claset(), simpset() addsimps [real_lt_zero_iff RS sym]));
-qed "real_ge_zero_iff";
-
-Goalw [real_le_def] "(x <= 0r) = (x <= -x)";
-by (auto_tac (claset(), simpset() addsimps [real_gt_zero_iff RS sym]));
-qed "real_le_zero_iff";
-
-Goal "(real_of_preal m1 <= real_of_preal m2) = (m1 <= m2)";
-by (auto_tac (claset() addSIs [preal_leI],
-    simpset() addsimps [real_less_le_iff RS sym]));
-by (dtac preal_le_less_trans 1 THEN assume_tac 1);
-by (etac preal_less_irrefl 1);
-qed "real_of_preal_le_iff";
-
-Goal "[| 0r < x; 0r < y |] ==> 0r < x * y";
-by (auto_tac (claset(), simpset() addsimps [real_gt_zero_preal_Ex]));  
-by (res_inst_tac [("x","y*ya")] exI 1);
-by (full_simp_tac (simpset() addsimps [real_of_preal_mult]) 1);
-qed "real_mult_order";
-
-Goal "[| x < 0r; y < 0r |] ==> 0r < x * y";
-by (REPEAT(dtac (real_minus_zero_less_iff RS iffD2) 1));
-by (dtac real_mult_order 1 THEN assume_tac 1);
-by (Asm_full_simp_tac 1);
-qed "real_mult_less_zero1";
-
-Goal "[| 0r <= x; 0r <= y |] ==> 0r <= x * y";
-by (REPEAT(dtac real_le_imp_less_or_eq 1));
-by (auto_tac (claset() addIs [real_mult_order, real_less_imp_le],
-	      simpset()));
-qed "real_le_mult_order";
-
-Goal "[| 0r < x; 0r <= y |] ==> 0r <= x * y";
-by (dtac real_le_imp_less_or_eq 1);
-by (auto_tac (claset() addIs [real_mult_order,
-			      real_less_imp_le],simpset()));
-qed "real_less_le_mult_order";
-
-Goal "[| x <= 0r; y <= 0r |] ==> 0r <= x * y";
-by (rtac real_less_or_eq_imp_le 1);
-by (dtac real_le_imp_less_or_eq 1 THEN etac disjE 1);
-by Auto_tac;
-by (dtac real_le_imp_less_or_eq 1);
-by (auto_tac (claset() addDs [real_mult_less_zero1],simpset()));
-qed "real_mult_le_zero1";
-
-Goal "[| 0r <= x; y < 0r |] ==> x * y <= 0r";
-by (rtac real_less_or_eq_imp_le 1);
-by (dtac real_le_imp_less_or_eq 1 THEN etac disjE 1);
-by Auto_tac;
-by (dtac (real_minus_zero_less_iff RS iffD2) 1);
-by (rtac (real_minus_zero_less_iff RS subst) 1);
-by (blast_tac (claset() addDs [real_mult_order] 
-	                addIs [real_minus_mult_eq2 RS ssubst]) 1);
-qed "real_mult_le_zero";
-
-Goal "[| 0r < x; y < 0r |] ==> x*y < 0r";
-by (dtac (real_minus_zero_less_iff RS iffD2) 1);
-by (dtac real_mult_order 1 THEN assume_tac 1);
-by (rtac (real_minus_zero_less_iff RS iffD1) 1);
-by (asm_full_simp_tac (simpset() addsimps [real_minus_mult_eq2]) 1);
-qed "real_mult_less_zero";
-
-Goalw [real_one_def] "0r < 1r";
-by (auto_tac (claset() addIs [real_gt_zero_preal_Ex RS iffD2],
-	      simpset() addsimps [real_of_preal_def]));
-qed "real_zero_less_one";
-
-(*** Monotonicity results ***)
-
-Goal "(v+z < w+z) = (v < (w::real))";
-by (Simp_tac 1);
-qed "real_add_right_cancel_less";
-
-Goal "(z+v < z+w) = (v < (w::real))";
-by (Simp_tac 1);
-qed "real_add_left_cancel_less";
-
-Addsimps [real_add_right_cancel_less, real_add_left_cancel_less];
-
-Goal "(v+z <= w+z) = (v <= (w::real))";
-by (Simp_tac 1);
-qed "real_add_right_cancel_le";
-
-Goal "(z+v <= z+w) = (v <= (w::real))";
-by (Simp_tac 1);
-qed "real_add_left_cancel_le";
-
-Addsimps [real_add_right_cancel_le, real_add_left_cancel_le];
-
-(*"v<=w ==> v+z <= w+z"*)
-bind_thm ("real_add_less_mono1", real_add_right_cancel_less RS iffD2);
-
-(*"v<=w ==> v+z <= w+z"*)
-bind_thm ("real_add_le_mono1", real_add_right_cancel_le RS iffD2);
-
-Goal "!!z z'::real. [| w'<w; z'<=z |] ==> w' + z' < w + z";
-by (etac (real_add_less_mono1 RS real_less_le_trans) 1);
-by (Simp_tac 1);
-qed "real_add_less_le_mono";
-
-Goal "!!z z'::real. [| w'<=w; z'<z |] ==> w' + z' < w + z";
-by (etac (real_add_le_mono1 RS real_le_less_trans) 1);
-by (Simp_tac 1);
-qed "real_add_le_less_mono";
-
-Goal "!!(A::real). A < B ==> C + A < C + B";
-by (Simp_tac 1);
-qed "real_add_less_mono2";
-
-Goal "!!(A::real). A + C < B + C ==> A < B";
-by (Full_simp_tac 1);
-qed "real_less_add_right_cancel";
-
-Goal "!!(A::real). C + A < C + B ==> A < B";
-by (Full_simp_tac 1);
-qed "real_less_add_left_cancel";
-
-Goal "!!(A::real). A + C <= B + C ==> A <= B";
-by (Full_simp_tac 1);
-qed "real_le_add_right_cancel";
-
-Goal "!!(A::real). C + A <= C + B ==> A <= B";
-by (Full_simp_tac 1);
-qed "real_le_add_left_cancel";
-
-Goal "[| 0r < x; 0r < y |] ==> 0r < x + y";
-by (etac real_less_trans 1);
-by (dtac real_add_less_mono2 1);
-by (Full_simp_tac 1);
-qed "real_add_order";
-
-Goal "[| 0r <= x; 0r <= y |] ==> 0r <= x + y";
-by (REPEAT(dtac real_le_imp_less_or_eq 1));
-by (auto_tac (claset() addIs [real_add_order, real_less_imp_le],
-	      simpset()));
-qed "real_le_add_order";
-
-Goal "[| R1 < S1; R2 < S2 |] ==> R1 + R2 < S1 + (S2::real)";
-by (dtac real_add_less_mono1 1);
-by (etac real_less_trans 1);
-by (etac real_add_less_mono2 1);
-qed "real_add_less_mono";
-
-Goal "!!(q1::real). q1 <= q2  ==> x + q1 <= x + q2";
-by (Simp_tac 1);
-qed "real_add_left_le_mono1";
-
-Goal "[|i<=j;  k<=l |] ==> i + k <= j + (l::real)";
-by (dtac real_add_le_mono1 1);
-by (etac real_le_trans 1);
-by (Simp_tac 1);
-qed "real_add_le_mono";
-
-Goal "EX (x::real). x < y";
-by (rtac (real_add_zero_right RS subst) 1);
-by (res_inst_tac [("x","y + (-1r)")] exI 1);
-by (auto_tac (claset() addSIs [real_add_less_mono2],
-	  simpset() addsimps [real_minus_zero_less_iff2, real_zero_less_one]));
-qed "real_less_Ex";
-
-Goal "0r < r ==>  u + (-r) < u";
-by (res_inst_tac [("C","r")] real_less_add_right_cancel 1);
-by (simp_tac (simpset() addsimps [real_add_assoc]) 1);
-qed "real_add_minus_positive_less_self";
-
-Goal "((r::real) <= s) = (-s <= -r)";
-by (Step_tac 1);
-by (dres_inst_tac [("x","-s")] real_add_left_le_mono1 1);
-by (dres_inst_tac [("x","r")] real_add_left_le_mono1 2);
-by Auto_tac;
-by (dres_inst_tac [("z","-r")] real_add_le_mono1 1);
-by (dres_inst_tac [("z","s")] real_add_le_mono1 2);
-by (auto_tac (claset(), simpset() addsimps [real_add_assoc]));
-qed "real_le_minus_iff";
-Addsimps [real_le_minus_iff RS sym];
-          
-Goal "0r <= 1r";
-by (rtac (real_zero_less_one RS real_less_imp_le) 1);
-qed "real_zero_le_one";
-Addsimps [real_zero_le_one];
-
-Goal "0r <= x*x";
-by (res_inst_tac [("R2.0","0r"),("R1.0","x")] real_linear_less2 1);
-by (auto_tac (claset() addIs [real_mult_order,
-			      real_mult_less_zero1,real_less_imp_le],
-	      simpset()));
-qed "real_le_square";
-Addsimps [real_le_square];
-
-(*----------------------------------------------------------------------------
-             An embedding of the naturals in the reals
- ----------------------------------------------------------------------------*)
-
-Goalw [real_of_posnat_def] "real_of_posnat 0 = 1r";
-by (full_simp_tac (simpset() addsimps [pnat_one_iff RS sym,real_of_preal_def]) 1);
-by (fold_tac [real_one_def]);
-by (rtac refl 1);
-qed "real_of_posnat_one";
-
-Goalw [real_of_posnat_def] "real_of_posnat 1 = 1r + 1r";
-by (full_simp_tac (simpset() addsimps [real_of_preal_def,real_one_def,
-    pnat_two_eq,real_add,prat_of_pnat_add RS sym,preal_of_prat_add RS sym
-    ] @ pnat_add_ac) 1);
-qed "real_of_posnat_two";
-
-Goalw [real_of_posnat_def]
-    "real_of_posnat n1 + real_of_posnat n2 = real_of_posnat (n1 + n2) + 1r";
-by (full_simp_tac (simpset() addsimps [real_of_posnat_one RS sym,
-    real_of_posnat_def,real_of_preal_add RS sym,preal_of_prat_add RS sym,
-    prat_of_pnat_add RS sym,pnat_of_nat_add]) 1);
-qed "real_of_posnat_add";
-
-Goal "real_of_posnat (n + 1) = real_of_posnat n + 1r";
-by (res_inst_tac [("x1","1r")] (real_add_right_cancel RS iffD1) 1);
-by (rtac (real_of_posnat_add RS subst) 1);
-by (full_simp_tac (simpset() addsimps [real_of_posnat_two,real_add_assoc]) 1);
-qed "real_of_posnat_add_one";
-
-Goal "real_of_posnat (Suc n) = real_of_posnat n + 1r";
-by (stac (real_of_posnat_add_one RS sym) 1);
-by (Simp_tac 1);
-qed "real_of_posnat_Suc";
-
-Goal "inj(real_of_posnat)";
-by (rtac injI 1);
-by (rewtac real_of_posnat_def);
-by (dtac (inj_real_of_preal RS injD) 1);
-by (dtac (inj_preal_of_prat RS injD) 1);
-by (dtac (inj_prat_of_pnat RS injD) 1);
-by (etac (inj_pnat_of_nat RS injD) 1);
-qed "inj_real_of_posnat";
-
-Goalw [real_of_posnat_def] "0r < real_of_posnat n";
-by (rtac (real_gt_zero_preal_Ex RS iffD2) 1);
-by (Blast_tac 1);
-qed "real_of_posnat_less_zero";
-
-Goal "real_of_posnat n ~= 0r";
-by (rtac (real_of_posnat_less_zero RS real_not_refl2 RS not_sym) 1);
-qed "real_of_posnat_not_eq_zero";
-Addsimps[real_of_posnat_not_eq_zero];
-
-Goal "1r <= real_of_posnat n";
-by (simp_tac (simpset() addsimps [real_of_posnat_one RS sym]) 1);
-by (induct_tac "n" 1);
-by (auto_tac (claset(),
-	      simpset () addsimps [real_of_posnat_Suc,real_of_posnat_one,
-			   real_of_posnat_less_zero, real_less_imp_le]));
-qed "real_of_posnat_less_one";
-Addsimps [real_of_posnat_less_one];
-
-Goal "rinv(real_of_posnat n) ~= 0r";
-by (rtac ((real_of_posnat_less_zero RS 
-    real_not_refl2 RS not_sym) RS rinv_not_zero) 1);
-qed "real_of_posnat_rinv_not_zero";
-Addsimps [real_of_posnat_rinv_not_zero];
-
-Goal "rinv(real_of_posnat x) = rinv(real_of_posnat y) ==> x = y";
-by (rtac (inj_real_of_posnat RS injD) 1);
-by (res_inst_tac [("n2","x")] 
-    (real_of_posnat_rinv_not_zero RS real_mult_left_cancel RS iffD1) 1);
-by (full_simp_tac (simpset() addsimps [(real_of_posnat_less_zero RS 
-    real_not_refl2 RS not_sym) RS real_mult_inv_left]) 1);
-by (asm_full_simp_tac (simpset() addsimps [(real_of_posnat_less_zero RS 
-    real_not_refl2 RS not_sym)]) 1);
-qed "real_of_posnat_rinv_inj";
-
-Goal "0r < x ==> 0r < rinv x";
-by (EVERY1[rtac ccontr, dtac real_leI]);
-by (forward_tac [real_minus_zero_less_iff2 RS iffD2] 1);
-by (forward_tac [real_not_refl2 RS not_sym] 1);
-by (dtac (real_not_refl2 RS not_sym RS rinv_not_zero) 1);
-by (EVERY1[dtac real_le_imp_less_or_eq, Step_tac]); 
-by (dtac real_mult_less_zero1 1 THEN assume_tac 1);
-by (auto_tac (claset() addIs [real_zero_less_one RS real_less_asym],
-	      simpset() addsimps [real_minus_mult_eq1 RS sym]));
-qed "real_rinv_gt_zero";
-
-Goal "x < 0r ==> rinv x < 0r";
-by (forward_tac [real_not_refl2] 1);
-by (dtac (real_minus_zero_less_iff RS iffD2) 1);
-by (rtac (real_minus_zero_less_iff RS iffD1) 1);
-by (dtac (real_minus_rinv RS sym) 1);
-by (auto_tac (claset() addIs [real_rinv_gt_zero], simpset()));
-qed "real_rinv_less_zero";
-
-Goal "0r < rinv(real_of_posnat n)";
-by (rtac (real_of_posnat_less_zero RS real_rinv_gt_zero) 1);
-qed "real_of_posnat_rinv_gt_zero";
-Addsimps [real_of_posnat_rinv_gt_zero];
-
-Goal "x+x = x*(1r+1r)";
-by (simp_tac (simpset() addsimps 
-              [real_add_mult_distrib2]) 1);
-qed "real_add_self";
-
-Goal "x < x + 1r";
-by (rtac (real_less_sum_gt_0_iff RS iffD1) 1);
-by (full_simp_tac (simpset() addsimps [real_zero_less_one,
-				real_add_assoc, real_add_left_commute]) 1);
-qed "real_self_less_add_one";
-
-Goal "1r < 1r + 1r";
-by (rtac real_self_less_add_one 1);
-qed "real_one_less_two";
-
-Goal "0r < 1r + 1r";
-by (rtac ([real_zero_less_one,
-	   real_one_less_two] MRS real_less_trans) 1);
-qed "real_zero_less_two";
-
-Goal "1r + 1r ~= 0r";
-by (rtac (real_zero_less_two RS real_not_refl2 RS not_sym) 1);
-qed "real_two_not_zero";
-
-Addsimps [real_two_not_zero];
-
-Goal "x*rinv(1r + 1r) + x*rinv(1r + 1r) = x";
-by (stac real_add_self 1);
-by (full_simp_tac (simpset() addsimps [real_mult_assoc]) 1);
-qed "real_sum_of_halves";
-
-Goal "[| 0r<z; x<y |] ==> x*z<y*z";       
-by (rotate_tac 1 1);
-by (dtac real_less_sum_gt_zero 1);
-by (rtac real_sum_gt_zero_less 1);
-by (dtac real_mult_order 1 THEN assume_tac 1);
-by (asm_full_simp_tac (simpset() addsimps [real_add_mult_distrib2,
-    real_minus_mult_eq2 RS sym, real_mult_commute ]) 1);
-qed "real_mult_less_mono1";
-
-Goal "[| 0r<z; x<y |] ==> z*x<z*y";       
-by (asm_simp_tac (simpset() addsimps [real_mult_commute,real_mult_less_mono1]) 1);
-qed "real_mult_less_mono2";
-
-Goal "[| 0r<z; x*z<y*z |] ==> x<y";
-by (forw_inst_tac [("x","x*z")] (real_rinv_gt_zero 
-                       RS real_mult_less_mono1) 1);
-by (auto_tac (claset(),
-	      simpset() addsimps 
-     [real_mult_assoc,real_not_refl2 RS not_sym]));
-qed "real_mult_less_cancel1";
-
-Goal "[| 0r<z; z*x<z*y |] ==> x<y";
-by (etac real_mult_less_cancel1 1);
-by (asm_full_simp_tac (simpset() addsimps [real_mult_commute]) 1);
-qed "real_mult_less_cancel2";
-
-Goal "0r < z ==> (x*z < y*z) = (x < y)";
-by (blast_tac (claset() addIs [real_mult_less_mono1,
-    real_mult_less_cancel1]) 1);
-qed "real_mult_less_iff1";
-
-Goal "0r < z ==> (z*x < z*y) = (x < y)";
-by (blast_tac (claset() addIs [real_mult_less_mono2,
-    real_mult_less_cancel2]) 1);
-qed "real_mult_less_iff2";
-
-Addsimps [real_mult_less_iff1,real_mult_less_iff2];
-
-Goal "[| 0r<=z; x<y |] ==> x*z<=y*z";
-by (EVERY1 [rtac real_less_or_eq_imp_le, dtac real_le_imp_less_or_eq]);
-by (auto_tac (claset() addIs [real_mult_less_mono1],simpset()));
-qed "real_mult_le_less_mono1";
-
-Goal "[| 0r<=z; x<y |] ==> z*x<=z*y";
-by (asm_simp_tac (simpset() addsimps [real_mult_commute,real_mult_le_less_mono1]) 1);
-qed "real_mult_le_less_mono2";
-
-Goal "[| 0r<=z; x<=y |] ==> z*x<=z*y";
-by (dres_inst_tac [("x","x")] real_le_imp_less_or_eq 1);
-by (auto_tac (claset() addIs [real_mult_le_less_mono2], simpset()));
-qed "real_mult_le_le_mono1";
-
-Goal "[| 0r < r1; r1 <r2; 0r < x; x < y|] ==> r1 * x < r2 * y";
-by (dres_inst_tac [("x","x")] real_mult_less_mono2 1);
-by (dres_inst_tac [("R1.0","0r")] real_less_trans 2);
-by (dres_inst_tac [("x","r1")] real_mult_less_mono1 3);
-by Auto_tac;
-by (blast_tac (claset() addIs [real_less_trans]) 1);
-qed "real_mult_less_mono";
-
-Goal "[| 0r < r1; r1 <r2; 0r < y|] ==> 0r < r2 * y";
-by (dres_inst_tac [("R1.0","0r")] real_less_trans 1);
-by (assume_tac 1);
-by (blast_tac (claset() addIs [real_mult_order]) 1);
-qed "real_mult_order_trans";
-
-Goal "[| 0r < r1; r1 <r2; 0r <= x; x < y|] ==> r1 * x < r2 * y";
-by (auto_tac (claset() addSDs [real_le_imp_less_or_eq] 
-	               addIs [real_mult_less_mono,real_mult_order_trans],
-              simpset()));
-qed "real_mult_less_mono3";
-
-Goal "[| 0r <= r1; r1 <r2; 0r <= x; x < y|] ==> r1 * x < r2 * y";
-by (auto_tac (claset() addSDs [real_le_imp_less_or_eq] 
-	               addIs [real_mult_less_mono,real_mult_order_trans,
-			      real_mult_order],
-	      simpset()));
-by (dres_inst_tac [("R2.0","x")] real_less_trans 1);
-by (assume_tac 1);
-by (blast_tac (claset() addIs [real_mult_order]) 1);
-qed "real_mult_less_mono4";
-
-Goal "[| 0r < r1; r1 <= r2; 0r <= x; x <= y |] ==> r1 * x <= r2 * y";
-by (rtac real_less_or_eq_imp_le 1);
-by (REPEAT(dtac real_le_imp_less_or_eq 1));
-by (auto_tac (claset() addIs [real_mult_less_mono,
-			      real_mult_order_trans,real_mult_order],
-	      simpset()));
-qed "real_mult_le_mono";
-
-Goal "[| 0r < r1; r1 < r2; 0r <= x; x <= y |] ==> r1 * x <= r2 * y";
-by (rtac real_less_or_eq_imp_le 1);
-by (REPEAT(dtac real_le_imp_less_or_eq 1));
-by (auto_tac (claset() addIs [real_mult_less_mono, real_mult_order_trans,
-			      real_mult_order],
-	      simpset()));
-qed "real_mult_le_mono2";
-
-Goal "[| 0r <= r1; r1 < r2; 0r <= x; x <= y |] ==> r1 * x <= r2 * y";
-by (dtac real_le_imp_less_or_eq 1);
-by (auto_tac (claset() addIs [real_mult_le_mono2],simpset()));
-by (dtac real_le_trans 1 THEN assume_tac 1);
-by (auto_tac (claset() addIs [real_less_le_mult_order], simpset()));
-qed "real_mult_le_mono3";
-
-Goal "[| 0r <= r1; r1 <= r2; 0r <= x; x <= y |] ==> r1 * x <= r2 * y";
-by (dres_inst_tac [("x","r1")] real_le_imp_less_or_eq 1);
-by (auto_tac (claset() addIs [real_mult_le_mono3, real_mult_le_le_mono1],
-	      simpset()));
-qed "real_mult_le_mono4";
-
-Goal "1r <= x ==> 0r < x";
-by (rtac ccontr 1 THEN dtac real_leI 1);
-by (dtac real_le_trans 1 THEN assume_tac 1);
-by (auto_tac (claset() addDs [real_zero_less_one RSN (2,real_le_less_trans)],
-	      simpset() addsimps [real_less_not_refl]));
-qed "real_gt_zero";
-
-Goal "[| 1r < r; 1r <= x |]  ==> x <= r * x";
-by (dtac (real_gt_zero RS real_less_imp_le) 1);
-by (auto_tac (claset() addSDs [real_mult_le_less_mono1],
-    simpset()));
-qed "real_mult_self_le";
-
-Goal "[| 1r <= r; 1r <= x |]  ==> x <= r * x";
-by (dtac real_le_imp_less_or_eq 1);
-by (auto_tac (claset() addIs [real_mult_self_le],
-	      simpset() addsimps [real_le_refl]));
-qed "real_mult_self_le2";
-
-Goal "x < y ==> x < (x + y)*rinv(1r + 1r)";
-by (dres_inst_tac [("C","x")] real_add_less_mono2 1);
-by (dtac (real_add_self RS subst) 1);
-by (dtac (real_zero_less_two RS real_rinv_gt_zero RS 
-          real_mult_less_mono1) 1);
-by (asm_full_simp_tac (simpset() addsimps [real_mult_assoc]) 1);
-qed "real_less_half_sum";
-
-Goal "x < y ==> (x + y)*rinv(1r + 1r) < y";
-by (dtac real_add_less_mono1 1);
-by (dtac (real_add_self RS subst) 1);
-by (dtac (real_zero_less_two RS real_rinv_gt_zero RS 
-          real_mult_less_mono1) 1);
-by (asm_full_simp_tac (simpset() addsimps [real_mult_assoc]) 1);
-qed "real_gt_half_sum";
-
-Goal "x < y ==> EX r::real. x < r & r < y";
-by (blast_tac (claset() addSIs [real_less_half_sum,
-				real_gt_half_sum]) 1);
-qed "real_dense";
-
-Goal "(EX n. rinv(real_of_posnat n) < r) = (EX n. 1r < r * real_of_posnat n)";
-by (Step_tac 1);
-by (dres_inst_tac [("n1","n")] (real_of_posnat_less_zero 
-				RS real_mult_less_mono1) 1);
-by (dres_inst_tac [("n2","n")] (real_of_posnat_less_zero RS 
-				real_rinv_gt_zero RS real_mult_less_mono1) 2);
-by (auto_tac (claset(),
-	      simpset() addsimps [(real_of_posnat_less_zero RS 
-				   real_not_refl2 RS not_sym),
-				  real_mult_assoc]));
-qed "real_of_posnat_rinv_Ex_iff";
-
-Goal "(rinv(real_of_posnat n) < r) = (1r < r * real_of_posnat n)";
-by (Step_tac 1);
-by (dres_inst_tac [("n1","n")] (real_of_posnat_less_zero 
-                       RS real_mult_less_mono1) 1);
-by (dres_inst_tac [("n2","n")] (real_of_posnat_less_zero RS 
-				real_rinv_gt_zero RS real_mult_less_mono1) 2);
-by (auto_tac (claset(), simpset() addsimps [real_mult_assoc]));
-qed "real_of_posnat_rinv_iff";
-
-Goal "(rinv(real_of_posnat n) <= r) = (1r <= r * real_of_posnat n)";
-by (Step_tac 1);
-by (dres_inst_tac [("n2","n")] (real_of_posnat_less_zero RS 
-    real_less_imp_le RS real_mult_le_le_mono1) 1);
-by (dres_inst_tac [("n3","n")] (real_of_posnat_less_zero RS 
-        real_rinv_gt_zero RS real_less_imp_le RS 
-        real_mult_le_le_mono1) 2);
-by (auto_tac (claset(), simpset() addsimps real_mult_ac));
-qed "real_of_posnat_rinv_le_iff";
-
-Goalw [real_of_posnat_def] "(real_of_posnat n < real_of_posnat m) = (n < m)";
-by Auto_tac;
-qed "real_of_posnat_less_iff";
-
-Addsimps [real_of_posnat_less_iff];
-
-Goal "0r < u  ==> (u < rinv (real_of_posnat n)) = (real_of_posnat n < rinv(u))";
-by (Step_tac 1);
-by (res_inst_tac [("n2","n")] (real_of_posnat_less_zero RS 
-    real_rinv_gt_zero RS real_mult_less_cancel1) 1);
-by (res_inst_tac [("x1","u")] ( real_rinv_gt_zero
-   RS real_mult_less_cancel1) 2);
-by (auto_tac (claset(),
-	      simpset() addsimps [real_of_posnat_less_zero, 
-    real_not_refl2 RS not_sym]));
-by (res_inst_tac [("z","u")] real_mult_less_cancel2 1);
-by (res_inst_tac [("n1","n")] (real_of_posnat_less_zero RS 
-    real_mult_less_cancel2) 3);
-by (auto_tac (claset(),
-	      simpset() addsimps [real_of_posnat_less_zero, 
-    real_not_refl2 RS not_sym,real_mult_assoc RS sym]));
-qed "real_of_posnat_less_rinv_iff";
-
-Goal "0r < u ==> (u = rinv(real_of_posnat n)) = (real_of_posnat n = rinv u)";
-by (auto_tac (claset(),
-	      simpset() addsimps [real_rinv_rinv,
-    real_of_posnat_less_zero,real_not_refl2 RS not_sym]));
-qed "real_of_posnat_rinv_eq_iff";
-
-Goal "[| 0r < r; r < x |] ==> rinv x < rinv r";
-by (forward_tac [real_less_trans] 1 THEN assume_tac 1);
-by (forward_tac [real_rinv_gt_zero] 1);
-by (forw_inst_tac [("x","x")] real_rinv_gt_zero 1);
-by (forw_inst_tac [("x","r"),("z","rinv r")] real_mult_less_mono1 1);
-by (assume_tac 1);
-by (asm_full_simp_tac (simpset() addsimps [real_not_refl2 RS 
-					   not_sym RS real_mult_inv_right]) 1);
-by (forward_tac [real_rinv_gt_zero] 1);
-by (forw_inst_tac [("x","1r"),("z","rinv x")] real_mult_less_mono2 1);
-by (assume_tac 1);
-by (asm_full_simp_tac (simpset() addsimps [real_not_refl2 RS 
-         not_sym RS real_mult_inv_left,real_mult_assoc RS sym]) 1);
-qed "real_rinv_less_swap";
-
-Goal "[| 0r < r; 0r < x|] ==> (r < x) = (rinv x < rinv r)";
-by (auto_tac (claset() addIs [real_rinv_less_swap],simpset()));
-by (res_inst_tac [("t","r")] (real_rinv_rinv RS subst) 1);
-by (etac (real_not_refl2 RS not_sym) 1);
-by (res_inst_tac [("t","x")] (real_rinv_rinv RS subst) 1);
-by (etac (real_not_refl2 RS not_sym) 1);
-by (auto_tac (claset() addIs [real_rinv_less_swap],
-	      simpset() addsimps [real_rinv_gt_zero]));
-qed "real_rinv_less_iff";
-
-Goal "r < r + rinv(real_of_posnat n)";
-by (res_inst_tac [("C","-r")] real_less_add_left_cancel 1);
-by (full_simp_tac (simpset() addsimps [real_add_assoc RS sym]) 1);
-qed "real_add_rinv_real_of_posnat_less";
-Addsimps [real_add_rinv_real_of_posnat_less];
-
-Goal "r <= r + rinv(real_of_posnat n)";
-by (rtac real_less_imp_le 1);
-by (Simp_tac 1);
-qed "real_add_rinv_real_of_posnat_le";
-Addsimps [real_add_rinv_real_of_posnat_le];
-
-Goal "r + (-rinv(real_of_posnat n)) < r";
-by (res_inst_tac [("C","-r")] real_less_add_left_cancel 1);
-by (full_simp_tac (simpset() addsimps [real_add_assoc RS sym,
-				       real_minus_zero_less_iff2]) 1);
-qed "real_add_minus_rinv_real_of_posnat_less";
-Addsimps [real_add_minus_rinv_real_of_posnat_less];
-
-Goal "r + (-rinv(real_of_posnat n)) <= r";
-by (rtac real_less_imp_le 1);
-by (Simp_tac 1);
-qed "real_add_minus_rinv_real_of_posnat_le";
-Addsimps [real_add_minus_rinv_real_of_posnat_le];
-
-Goal "0r < r ==> r*(1r + (-rinv(real_of_posnat n))) < r";
-by (simp_tac (simpset() addsimps [real_add_mult_distrib2]) 1);
-by (res_inst_tac [("C","-r")] real_less_add_left_cancel 1);
-by (auto_tac (claset() addIs [real_mult_order],
-	      simpset() addsimps [real_add_assoc RS sym,
-				  real_minus_mult_eq2 RS sym,
-				  real_minus_zero_less_iff2]));
-qed "real_mult_less_self";
-
-Goal "0r <= 1r + (-rinv(real_of_posnat n))";
-by (res_inst_tac [("C","rinv(real_of_posnat n)")] real_le_add_right_cancel 1);
-by (simp_tac (simpset() addsimps [real_add_assoc,
-				  real_of_posnat_rinv_le_iff]) 1);
-qed "real_add_one_minus_rinv_ge_zero";
-
-Goal "0r < r ==> 0r <= r*(1r + (-rinv(real_of_posnat n)))";
-by (dtac (real_add_one_minus_rinv_ge_zero RS real_mult_le_less_mono1) 1);
-by Auto_tac;
-qed "real_mult_add_one_minus_ge_zero";
-
-Goal "x*y = 0r ==> x = 0r | y = 0r";
-by (auto_tac (claset() addIs [ccontr] addDs [real_mult_not_zero],
-	      simpset()));
-qed "real_mult_zero_disj";
- 
-Goal "x + x*y = x*(1r + y)";
-by (simp_tac (simpset() addsimps [real_add_mult_distrib2]) 1);
-qed "real_add_mult_distrib_one";
-
-Goal "[| x ~= 1r; y * x = y |] ==> y = 0r";
-by (dtac (sym RS (real_eq_minus_iff RS iffD1)) 1);
-by (dtac sym 1);
-by (asm_full_simp_tac (simpset() addsimps [real_minus_mult_eq2,
-    real_add_mult_distrib_one]) 1);
-by (dtac real_mult_zero_disj 1);
-by (auto_tac (claset(),
-	      simpset() addsimps [real_eq_minus_iff2 RS sym]));
-qed "real_mult_eq_self_zero";
-Addsimps [real_mult_eq_self_zero];
-
-Goal "[| x ~= 1r; y = y * x |] ==> y = 0r";
-by (dtac sym 1);
-by (Asm_full_simp_tac 1);
-qed "real_mult_eq_self_zero2";
-Addsimps [real_mult_eq_self_zero2];
-
-Goal "[| 0r <= x*y; 0r < x |] ==> 0r <= y";
-by (forward_tac [real_rinv_gt_zero] 1);
-by (dres_inst_tac [("x","rinv x")] real_less_le_mult_order 1);
-by (dtac (real_not_refl2 RS not_sym RS real_mult_inv_left) 2);
-by (auto_tac (claset(),
-	      simpset() addsimps [real_mult_assoc RS sym]));
-qed "real_mult_ge_zero_cancel";
-
-Goal "[|x ~= 0r; y ~= 0r |] ==> rinv(x) + rinv(y) = (x + y)*rinv(x*y)";
-by (asm_full_simp_tac (simpset() addsimps 
-		       [real_rinv_distrib,real_add_mult_distrib,
-			real_mult_assoc RS sym]) 1);
-by (stac real_mult_assoc 1);
-by (rtac (real_mult_left_commute RS subst) 1);
-by (asm_full_simp_tac (simpset() addsimps [real_add_commute]) 1);
-qed "real_rinv_add";
-
-(*----------------------------------------------------------------------------
-     Another embedding of the naturals in the reals (see real_of_posnat)
- ----------------------------------------------------------------------------*)
-Goalw [real_of_nat_def] "real_of_nat 0 = 0r";
-by (full_simp_tac (simpset() addsimps [real_of_posnat_one]) 1);
-qed "real_of_nat_zero";
-
-Goalw [real_of_nat_def] "real_of_nat 1 = 1r";
-by (full_simp_tac (simpset() addsimps [real_of_posnat_two,
-    real_add_assoc]) 1);
-qed "real_of_nat_one";
-
-Goalw [real_of_nat_def]
-          "real_of_nat n1 + real_of_nat n2 = real_of_nat (n1 + n2)";
-by (simp_tac (simpset() addsimps 
-    [real_of_posnat_add,real_add_assoc RS sym]) 1);
-qed "real_of_nat_add";
-
-Goalw [real_of_nat_def] "real_of_nat (Suc n) = real_of_nat n + 1r";
-by (simp_tac (simpset() addsimps [real_of_posnat_Suc] @ real_add_ac) 1);
-qed "real_of_nat_Suc";
-    
-Goalw [real_of_nat_def] "(n < m) = (real_of_nat n < real_of_nat m)";
-by Auto_tac;
-qed "real_of_nat_less_iff";
-
-Addsimps [real_of_nat_less_iff RS sym];
-
-Goal "inj real_of_nat";
-by (rtac injI 1);
-by (auto_tac (claset() addSIs [inj_real_of_posnat RS injD],
-	      simpset() addsimps [real_of_nat_def,real_add_right_cancel]));
-qed "inj_real_of_nat";
-
-Goalw [real_of_nat_def] "0r <= real_of_nat n";
-by (res_inst_tac [("C","1r")] real_le_add_right_cancel 1);
-by (asm_full_simp_tac (simpset() addsimps [real_add_assoc]) 1);
-qed "real_of_nat_ge_zero";
-Addsimps [real_of_nat_ge_zero];
-
-Goal "real_of_nat n1 * real_of_nat n2 = real_of_nat (n1 * n2)";
-by (induct_tac "n1" 1);
-by (dtac sym 2);
-by (auto_tac (claset(),
-	      simpset() addsimps [real_of_nat_zero,
-				  real_of_nat_add RS sym,real_of_nat_Suc,
-				  real_add_mult_distrib, real_add_commute]));
-qed "real_of_nat_mult";
-
-Goal "(real_of_nat n = real_of_nat m) = (n = m)";
-by (auto_tac (claset() addDs [inj_real_of_nat RS injD],
-              simpset()));
-qed "real_of_nat_eq_cancel";
-
-(*------- lemmas -------*)
-goal NatDef.thy "!!m. [| m < Suc n; n <= m |] ==> m = n";
-by (auto_tac (claset() addSDs [le_imp_less_or_eq] addIs [less_asym],
-	      simpset() addsimps [less_Suc_eq]));
-qed "lemma_nat_not_dense";
-
-goal NatDef.thy "!!m. [| m <= Suc n; n < m |] ==> m = Suc n";
-by (auto_tac (claset() addSDs [le_imp_less_or_eq] addIs [less_asym],
-	      simpset() addsimps [le_Suc_eq]));
-qed "lemma_nat_not_dense2";
-
-goal NatDef.thy "!!m. m < Suc n ==> ~ Suc n <= m";
-by (blast_tac (claset() addDs [less_le_trans] addIs [less_asym]) 1);
-qed "lemma_not_leI";
-
-goalw NatDef.thy [le_def] "!!m. ~ Suc n <= m ==> ~ Suc (Suc n) <= m";
-by Auto_tac;
-qed "lemma_not_leI2";
-
-(*------- lemmas -------*)
-val [prem] = goal Arith.thy "n < Suc(m) ==> Suc(m)-n = Suc(m-n)";
-by (rtac (prem RS rev_mp) 1);
-by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
-by (ALLGOALS Asm_simp_tac);
-qed "Suc_diff_n";
-
-(* Goalw  [real_of_nat_def] 
-   "real_of_nat (n1 - n2) = real_of_nat n1 + -real_of_nat n2";*)
-
-Goal "n2 < n1 --> real_of_nat (n1 - n2) = real_of_nat n1 + (-real_of_nat n2)";
-by (induct_tac "n1" 1);
-by (Step_tac 1 THEN dtac leI 1 THEN dtac sym 2);
-by (dtac lemma_nat_not_dense 1);
-by (auto_tac (claset(),
-	      simpset() addsimps [real_of_nat_Suc, real_of_nat_zero] @ 
-	                         real_add_ac));
-by (asm_full_simp_tac (simpset() addsimps [real_of_nat_one RS sym,
-					   real_of_nat_add,Suc_diff_n]) 1);
-qed "real_of_nat_minus";
-
-
--- a/src/HOL/Real/Real.thy	Tue Aug 24 11:50:58 1999 +0200
+++ b/src/HOL/Real/Real.thy	Tue Aug 24 11:54:13 1999 +0200
@@ -1,14 +1,2 @@
-(*  Title:       Real/Real.thy
-    ID          : $Id$
-    Author:      Lawrence C. Paulson
-                 Jacques D. Fleuriot
-    Copyright:   1998  University of Cambridge
-    Description: Type "real" is a linear order
-*)
 
-Real = RealDef +
-
-instance real :: order (real_le_refl,real_le_trans,real_le_anti_sym,real_less_le)
-instance real :: linorder (real_le_linear)
-
-end
+Real = RComplete
--- a/src/HOL/Real/RealAbs.thy	Tue Aug 24 11:50:58 1999 +0200
+++ b/src/HOL/Real/RealAbs.thy	Tue Aug 24 11:54:13 1999 +0200
@@ -5,7 +5,7 @@
     Description : Absolute value function for the reals
 *) 
 
-RealAbs = Real +
+RealAbs = RealOrd +
 
 constdefs
    rabs   :: real => real
--- a/src/HOL/Real/RealInt.thy	Tue Aug 24 11:50:58 1999 +0200
+++ b/src/HOL/Real/RealInt.thy	Tue Aug 24 11:54:13 1999 +0200
@@ -5,7 +5,7 @@
     Description: Embedding the integers in the reals
 *)
 
-RealInt = Real + Int + 
+RealInt = RealOrd + Int + 
 
 constdefs 
    real_of_int :: int => real
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Real/RealOrd.ML	Tue Aug 24 11:54:13 1999 +0200
@@ -0,0 +1,817 @@
+(*  Title:       HOL/Real/Real.ML
+    ID:          $Id$
+    Author:      Lawrence C. Paulson
+                 Jacques D. Fleuriot
+    Copyright:   1998  University of Cambridge
+    Description: Type "real" is a linear order
+*)
+
+Goal "(0r < x) = (? y. x = real_of_preal y)";
+by (auto_tac (claset(), simpset() addsimps [real_of_preal_zero_less]));
+by (cut_inst_tac [("x","x")] real_of_preal_trichotomy 1);
+by (blast_tac (claset() addSEs [real_less_irrefl,
+				real_of_preal_not_minus_gt_zero RS notE]) 1);
+qed "real_gt_zero_preal_Ex";
+
+Goal "real_of_preal z < x ==> ? y. x = real_of_preal y";
+by (blast_tac (claset() addSDs [real_of_preal_zero_less RS real_less_trans]
+               addIs [real_gt_zero_preal_Ex RS iffD1]) 1);
+qed "real_gt_preal_preal_Ex";
+
+Goal "real_of_preal z <= x ==> ? y. x = real_of_preal y";
+by (blast_tac (claset() addDs [real_le_imp_less_or_eq,
+			       real_gt_preal_preal_Ex]) 1);
+qed "real_ge_preal_preal_Ex";
+
+Goal "y <= 0r ==> !x. y < real_of_preal x";
+by (auto_tac (claset() addEs [real_le_imp_less_or_eq RS disjE]
+                       addIs [real_of_preal_zero_less RSN(2,real_less_trans)],
+              simpset() addsimps [real_of_preal_zero_less]));
+qed "real_less_all_preal";
+
+Goal "~ 0r < y ==> !x. y < real_of_preal x";
+by (blast_tac (claset() addSIs [real_less_all_preal,real_leI]) 1);
+qed "real_less_all_real2";
+
+Goal "((x::real) < y) = (-y < -x)";
+by (rtac (real_less_sum_gt_0_iff RS subst) 1);
+by (res_inst_tac [("W1","x")] (real_less_sum_gt_0_iff RS subst) 1);
+by (simp_tac (simpset() addsimps [real_add_commute]) 1);
+qed "real_less_swap_iff";
+
+Goal "[| R + L = S; 0r < L |] ==> R < S";
+by (rtac (real_less_sum_gt_0_iff RS iffD1) 1);
+by (auto_tac (claset(), simpset() addsimps real_add_ac));
+qed "real_lemma_add_positive_imp_less";
+
+Goal "? T. 0r < T & R + T = S ==> R < S";
+by (blast_tac (claset() addIs [real_lemma_add_positive_imp_less]) 1);
+qed "real_ex_add_positive_left_less";
+
+(*Alternative definition for real_less.  NOT for rewriting*)
+Goal "(R < S) = (? T. 0r < T & R + T = S)";
+by (blast_tac (claset() addSIs [real_less_add_positive_left_Ex,
+				real_ex_add_positive_left_less]) 1);
+qed "real_less_iff_add";
+
+Goal "(0r < x) = (-x < x)";
+by Safe_tac;
+by (rtac ccontr 2 THEN forward_tac 
+    [real_leI RS real_le_imp_less_or_eq] 2);
+by (Step_tac 2);
+by (dtac (real_minus_zero_less_iff RS iffD2) 2);
+by (blast_tac (claset() addIs [real_less_trans]) 2);
+by (auto_tac (claset(),
+	      simpset() addsimps 
+ 	        [real_gt_zero_preal_Ex,real_of_preal_minus_less_self]));
+qed "real_gt_zero_iff";
+
+Goal "(x < 0r) = (x < -x)";
+by (rtac (real_minus_zero_less_iff RS subst) 1);
+by (stac real_gt_zero_iff 1);
+by (Full_simp_tac 1);
+qed "real_lt_zero_iff";
+
+Goalw [real_le_def] "(0r <= x) = (-x <= x)";
+by (auto_tac (claset(), simpset() addsimps [real_lt_zero_iff RS sym]));
+qed "real_ge_zero_iff";
+
+Goalw [real_le_def] "(x <= 0r) = (x <= -x)";
+by (auto_tac (claset(), simpset() addsimps [real_gt_zero_iff RS sym]));
+qed "real_le_zero_iff";
+
+Goal "(real_of_preal m1 <= real_of_preal m2) = (m1 <= m2)";
+by (auto_tac (claset() addSIs [preal_leI],
+    simpset() addsimps [real_less_le_iff RS sym]));
+by (dtac preal_le_less_trans 1 THEN assume_tac 1);
+by (etac preal_less_irrefl 1);
+qed "real_of_preal_le_iff";
+
+Goal "[| 0r < x; 0r < y |] ==> 0r < x * y";
+by (auto_tac (claset(), simpset() addsimps [real_gt_zero_preal_Ex]));  
+by (res_inst_tac [("x","y*ya")] exI 1);
+by (full_simp_tac (simpset() addsimps [real_of_preal_mult]) 1);
+qed "real_mult_order";
+
+Goal "[| x < 0r; y < 0r |] ==> 0r < x * y";
+by (REPEAT(dtac (real_minus_zero_less_iff RS iffD2) 1));
+by (dtac real_mult_order 1 THEN assume_tac 1);
+by (Asm_full_simp_tac 1);
+qed "real_mult_less_zero1";
+
+Goal "[| 0r <= x; 0r <= y |] ==> 0r <= x * y";
+by (REPEAT(dtac real_le_imp_less_or_eq 1));
+by (auto_tac (claset() addIs [real_mult_order, real_less_imp_le],
+	      simpset()));
+qed "real_le_mult_order";
+
+Goal "[| 0r < x; 0r <= y |] ==> 0r <= x * y";
+by (dtac real_le_imp_less_or_eq 1);
+by (auto_tac (claset() addIs [real_mult_order,
+			      real_less_imp_le],simpset()));
+qed "real_less_le_mult_order";
+
+Goal "[| x <= 0r; y <= 0r |] ==> 0r <= x * y";
+by (rtac real_less_or_eq_imp_le 1);
+by (dtac real_le_imp_less_or_eq 1 THEN etac disjE 1);
+by Auto_tac;
+by (dtac real_le_imp_less_or_eq 1);
+by (auto_tac (claset() addDs [real_mult_less_zero1],simpset()));
+qed "real_mult_le_zero1";
+
+Goal "[| 0r <= x; y < 0r |] ==> x * y <= 0r";
+by (rtac real_less_or_eq_imp_le 1);
+by (dtac real_le_imp_less_or_eq 1 THEN etac disjE 1);
+by Auto_tac;
+by (dtac (real_minus_zero_less_iff RS iffD2) 1);
+by (rtac (real_minus_zero_less_iff RS subst) 1);
+by (blast_tac (claset() addDs [real_mult_order] 
+	                addIs [real_minus_mult_eq2 RS ssubst]) 1);
+qed "real_mult_le_zero";
+
+Goal "[| 0r < x; y < 0r |] ==> x*y < 0r";
+by (dtac (real_minus_zero_less_iff RS iffD2) 1);
+by (dtac real_mult_order 1 THEN assume_tac 1);
+by (rtac (real_minus_zero_less_iff RS iffD1) 1);
+by (asm_full_simp_tac (simpset() addsimps [real_minus_mult_eq2]) 1);
+qed "real_mult_less_zero";
+
+Goalw [real_one_def] "0r < 1r";
+by (auto_tac (claset() addIs [real_gt_zero_preal_Ex RS iffD2],
+	      simpset() addsimps [real_of_preal_def]));
+qed "real_zero_less_one";
+
+(*** Monotonicity results ***)
+
+Goal "(v+z < w+z) = (v < (w::real))";
+by (Simp_tac 1);
+qed "real_add_right_cancel_less";
+
+Goal "(z+v < z+w) = (v < (w::real))";
+by (Simp_tac 1);
+qed "real_add_left_cancel_less";
+
+Addsimps [real_add_right_cancel_less, real_add_left_cancel_less];
+
+Goal "(v+z <= w+z) = (v <= (w::real))";
+by (Simp_tac 1);
+qed "real_add_right_cancel_le";
+
+Goal "(z+v <= z+w) = (v <= (w::real))";
+by (Simp_tac 1);
+qed "real_add_left_cancel_le";
+
+Addsimps [real_add_right_cancel_le, real_add_left_cancel_le];
+
+(*"v<=w ==> v+z <= w+z"*)
+bind_thm ("real_add_less_mono1", real_add_right_cancel_less RS iffD2);
+
+(*"v<=w ==> v+z <= w+z"*)
+bind_thm ("real_add_le_mono1", real_add_right_cancel_le RS iffD2);
+
+Goal "!!z z'::real. [| w'<w; z'<=z |] ==> w' + z' < w + z";
+by (etac (real_add_less_mono1 RS real_less_le_trans) 1);
+by (Simp_tac 1);
+qed "real_add_less_le_mono";
+
+Goal "!!z z'::real. [| w'<=w; z'<z |] ==> w' + z' < w + z";
+by (etac (real_add_le_mono1 RS real_le_less_trans) 1);
+by (Simp_tac 1);
+qed "real_add_le_less_mono";
+
+Goal "!!(A::real). A < B ==> C + A < C + B";
+by (Simp_tac 1);
+qed "real_add_less_mono2";
+
+Goal "!!(A::real). A + C < B + C ==> A < B";
+by (Full_simp_tac 1);
+qed "real_less_add_right_cancel";
+
+Goal "!!(A::real). C + A < C + B ==> A < B";
+by (Full_simp_tac 1);
+qed "real_less_add_left_cancel";
+
+Goal "!!(A::real). A + C <= B + C ==> A <= B";
+by (Full_simp_tac 1);
+qed "real_le_add_right_cancel";
+
+Goal "!!(A::real). C + A <= C + B ==> A <= B";
+by (Full_simp_tac 1);
+qed "real_le_add_left_cancel";
+
+Goal "[| 0r < x; 0r < y |] ==> 0r < x + y";
+by (etac real_less_trans 1);
+by (dtac real_add_less_mono2 1);
+by (Full_simp_tac 1);
+qed "real_add_order";
+
+Goal "[| 0r <= x; 0r <= y |] ==> 0r <= x + y";
+by (REPEAT(dtac real_le_imp_less_or_eq 1));
+by (auto_tac (claset() addIs [real_add_order, real_less_imp_le],
+	      simpset()));
+qed "real_le_add_order";
+
+Goal "[| R1 < S1; R2 < S2 |] ==> R1 + R2 < S1 + (S2::real)";
+by (dtac real_add_less_mono1 1);
+by (etac real_less_trans 1);
+by (etac real_add_less_mono2 1);
+qed "real_add_less_mono";
+
+Goal "!!(q1::real). q1 <= q2  ==> x + q1 <= x + q2";
+by (Simp_tac 1);
+qed "real_add_left_le_mono1";
+
+Goal "[|i<=j;  k<=l |] ==> i + k <= j + (l::real)";
+by (dtac real_add_le_mono1 1);
+by (etac real_le_trans 1);
+by (Simp_tac 1);
+qed "real_add_le_mono";
+
+Goal "EX (x::real). x < y";
+by (rtac (real_add_zero_right RS subst) 1);
+by (res_inst_tac [("x","y + (-1r)")] exI 1);
+by (auto_tac (claset() addSIs [real_add_less_mono2],
+	  simpset() addsimps [real_minus_zero_less_iff2, real_zero_less_one]));
+qed "real_less_Ex";
+
+Goal "0r < r ==>  u + (-r) < u";
+by (res_inst_tac [("C","r")] real_less_add_right_cancel 1);
+by (simp_tac (simpset() addsimps [real_add_assoc]) 1);
+qed "real_add_minus_positive_less_self";
+
+Goal "((r::real) <= s) = (-s <= -r)";
+by (Step_tac 1);
+by (dres_inst_tac [("x","-s")] real_add_left_le_mono1 1);
+by (dres_inst_tac [("x","r")] real_add_left_le_mono1 2);
+by Auto_tac;
+by (dres_inst_tac [("z","-r")] real_add_le_mono1 1);
+by (dres_inst_tac [("z","s")] real_add_le_mono1 2);
+by (auto_tac (claset(), simpset() addsimps [real_add_assoc]));
+qed "real_le_minus_iff";
+Addsimps [real_le_minus_iff RS sym];
+          
+Goal "0r <= 1r";
+by (rtac (real_zero_less_one RS real_less_imp_le) 1);
+qed "real_zero_le_one";
+Addsimps [real_zero_le_one];
+
+Goal "0r <= x*x";
+by (res_inst_tac [("R2.0","0r"),("R1.0","x")] real_linear_less2 1);
+by (auto_tac (claset() addIs [real_mult_order,
+			      real_mult_less_zero1,real_less_imp_le],
+	      simpset()));
+qed "real_le_square";
+Addsimps [real_le_square];
+
+(*----------------------------------------------------------------------------
+             An embedding of the naturals in the reals
+ ----------------------------------------------------------------------------*)
+
+Goalw [real_of_posnat_def] "real_of_posnat 0 = 1r";
+by (full_simp_tac (simpset() addsimps [pnat_one_iff RS sym,real_of_preal_def]) 1);
+by (fold_tac [real_one_def]);
+by (rtac refl 1);
+qed "real_of_posnat_one";
+
+Goalw [real_of_posnat_def] "real_of_posnat 1 = 1r + 1r";
+by (full_simp_tac (simpset() addsimps [real_of_preal_def,real_one_def,
+    pnat_two_eq,real_add,prat_of_pnat_add RS sym,preal_of_prat_add RS sym
+    ] @ pnat_add_ac) 1);
+qed "real_of_posnat_two";
+
+Goalw [real_of_posnat_def]
+    "real_of_posnat n1 + real_of_posnat n2 = real_of_posnat (n1 + n2) + 1r";
+by (full_simp_tac (simpset() addsimps [real_of_posnat_one RS sym,
+    real_of_posnat_def,real_of_preal_add RS sym,preal_of_prat_add RS sym,
+    prat_of_pnat_add RS sym,pnat_of_nat_add]) 1);
+qed "real_of_posnat_add";
+
+Goal "real_of_posnat (n + 1) = real_of_posnat n + 1r";
+by (res_inst_tac [("x1","1r")] (real_add_right_cancel RS iffD1) 1);
+by (rtac (real_of_posnat_add RS subst) 1);
+by (full_simp_tac (simpset() addsimps [real_of_posnat_two,real_add_assoc]) 1);
+qed "real_of_posnat_add_one";
+
+Goal "real_of_posnat (Suc n) = real_of_posnat n + 1r";
+by (stac (real_of_posnat_add_one RS sym) 1);
+by (Simp_tac 1);
+qed "real_of_posnat_Suc";
+
+Goal "inj(real_of_posnat)";
+by (rtac injI 1);
+by (rewtac real_of_posnat_def);
+by (dtac (inj_real_of_preal RS injD) 1);
+by (dtac (inj_preal_of_prat RS injD) 1);
+by (dtac (inj_prat_of_pnat RS injD) 1);
+by (etac (inj_pnat_of_nat RS injD) 1);
+qed "inj_real_of_posnat";
+
+Goalw [real_of_posnat_def] "0r < real_of_posnat n";
+by (rtac (real_gt_zero_preal_Ex RS iffD2) 1);
+by (Blast_tac 1);
+qed "real_of_posnat_less_zero";
+
+Goal "real_of_posnat n ~= 0r";
+by (rtac (real_of_posnat_less_zero RS real_not_refl2 RS not_sym) 1);
+qed "real_of_posnat_not_eq_zero";
+Addsimps[real_of_posnat_not_eq_zero];
+
+Goal "1r <= real_of_posnat n";
+by (simp_tac (simpset() addsimps [real_of_posnat_one RS sym]) 1);
+by (induct_tac "n" 1);
+by (auto_tac (claset(),
+	      simpset () addsimps [real_of_posnat_Suc,real_of_posnat_one,
+			   real_of_posnat_less_zero, real_less_imp_le]));
+qed "real_of_posnat_less_one";
+Addsimps [real_of_posnat_less_one];
+
+Goal "rinv(real_of_posnat n) ~= 0r";
+by (rtac ((real_of_posnat_less_zero RS 
+    real_not_refl2 RS not_sym) RS rinv_not_zero) 1);
+qed "real_of_posnat_rinv_not_zero";
+Addsimps [real_of_posnat_rinv_not_zero];
+
+Goal "rinv(real_of_posnat x) = rinv(real_of_posnat y) ==> x = y";
+by (rtac (inj_real_of_posnat RS injD) 1);
+by (res_inst_tac [("n2","x")] 
+    (real_of_posnat_rinv_not_zero RS real_mult_left_cancel RS iffD1) 1);
+by (full_simp_tac (simpset() addsimps [(real_of_posnat_less_zero RS 
+    real_not_refl2 RS not_sym) RS real_mult_inv_left]) 1);
+by (asm_full_simp_tac (simpset() addsimps [(real_of_posnat_less_zero RS 
+    real_not_refl2 RS not_sym)]) 1);
+qed "real_of_posnat_rinv_inj";
+
+Goal "0r < x ==> 0r < rinv x";
+by (EVERY1[rtac ccontr, dtac real_leI]);
+by (forward_tac [real_minus_zero_less_iff2 RS iffD2] 1);
+by (forward_tac [real_not_refl2 RS not_sym] 1);
+by (dtac (real_not_refl2 RS not_sym RS rinv_not_zero) 1);
+by (EVERY1[dtac real_le_imp_less_or_eq, Step_tac]); 
+by (dtac real_mult_less_zero1 1 THEN assume_tac 1);
+by (auto_tac (claset() addIs [real_zero_less_one RS real_less_asym],
+	      simpset() addsimps [real_minus_mult_eq1 RS sym]));
+qed "real_rinv_gt_zero";
+
+Goal "x < 0r ==> rinv x < 0r";
+by (forward_tac [real_not_refl2] 1);
+by (dtac (real_minus_zero_less_iff RS iffD2) 1);
+by (rtac (real_minus_zero_less_iff RS iffD1) 1);
+by (dtac (real_minus_rinv RS sym) 1);
+by (auto_tac (claset() addIs [real_rinv_gt_zero], simpset()));
+qed "real_rinv_less_zero";
+
+Goal "0r < rinv(real_of_posnat n)";
+by (rtac (real_of_posnat_less_zero RS real_rinv_gt_zero) 1);
+qed "real_of_posnat_rinv_gt_zero";
+Addsimps [real_of_posnat_rinv_gt_zero];
+
+Goal "x+x = x*(1r+1r)";
+by (simp_tac (simpset() addsimps 
+              [real_add_mult_distrib2]) 1);
+qed "real_add_self";
+
+Goal "x < x + 1r";
+by (rtac (real_less_sum_gt_0_iff RS iffD1) 1);
+by (full_simp_tac (simpset() addsimps [real_zero_less_one,
+				real_add_assoc, real_add_left_commute]) 1);
+qed "real_self_less_add_one";
+
+Goal "1r < 1r + 1r";
+by (rtac real_self_less_add_one 1);
+qed "real_one_less_two";
+
+Goal "0r < 1r + 1r";
+by (rtac ([real_zero_less_one,
+	   real_one_less_two] MRS real_less_trans) 1);
+qed "real_zero_less_two";
+
+Goal "1r + 1r ~= 0r";
+by (rtac (real_zero_less_two RS real_not_refl2 RS not_sym) 1);
+qed "real_two_not_zero";
+
+Addsimps [real_two_not_zero];
+
+Goal "x*rinv(1r + 1r) + x*rinv(1r + 1r) = x";
+by (stac real_add_self 1);
+by (full_simp_tac (simpset() addsimps [real_mult_assoc]) 1);
+qed "real_sum_of_halves";
+
+Goal "[| 0r<z; x<y |] ==> x*z<y*z";       
+by (rotate_tac 1 1);
+by (dtac real_less_sum_gt_zero 1);
+by (rtac real_sum_gt_zero_less 1);
+by (dtac real_mult_order 1 THEN assume_tac 1);
+by (asm_full_simp_tac (simpset() addsimps [real_add_mult_distrib2,
+    real_minus_mult_eq2 RS sym, real_mult_commute ]) 1);
+qed "real_mult_less_mono1";
+
+Goal "[| 0r<z; x<y |] ==> z*x<z*y";       
+by (asm_simp_tac (simpset() addsimps [real_mult_commute,real_mult_less_mono1]) 1);
+qed "real_mult_less_mono2";
+
+Goal "[| 0r<z; x*z<y*z |] ==> x<y";
+by (forw_inst_tac [("x","x*z")] (real_rinv_gt_zero 
+                       RS real_mult_less_mono1) 1);
+by (auto_tac (claset(),
+	      simpset() addsimps 
+     [real_mult_assoc,real_not_refl2 RS not_sym]));
+qed "real_mult_less_cancel1";
+
+Goal "[| 0r<z; z*x<z*y |] ==> x<y";
+by (etac real_mult_less_cancel1 1);
+by (asm_full_simp_tac (simpset() addsimps [real_mult_commute]) 1);
+qed "real_mult_less_cancel2";
+
+Goal "0r < z ==> (x*z < y*z) = (x < y)";
+by (blast_tac (claset() addIs [real_mult_less_mono1,
+    real_mult_less_cancel1]) 1);
+qed "real_mult_less_iff1";
+
+Goal "0r < z ==> (z*x < z*y) = (x < y)";
+by (blast_tac (claset() addIs [real_mult_less_mono2,
+    real_mult_less_cancel2]) 1);
+qed "real_mult_less_iff2";
+
+Addsimps [real_mult_less_iff1,real_mult_less_iff2];
+
+Goal "[| 0r<=z; x<y |] ==> x*z<=y*z";
+by (EVERY1 [rtac real_less_or_eq_imp_le, dtac real_le_imp_less_or_eq]);
+by (auto_tac (claset() addIs [real_mult_less_mono1],simpset()));
+qed "real_mult_le_less_mono1";
+
+Goal "[| 0r<=z; x<y |] ==> z*x<=z*y";
+by (asm_simp_tac (simpset() addsimps [real_mult_commute,real_mult_le_less_mono1]) 1);
+qed "real_mult_le_less_mono2";
+
+Goal "[| 0r<=z; x<=y |] ==> z*x<=z*y";
+by (dres_inst_tac [("x","x")] real_le_imp_less_or_eq 1);
+by (auto_tac (claset() addIs [real_mult_le_less_mono2], simpset()));
+qed "real_mult_le_le_mono1";
+
+Goal "[| 0r < r1; r1 <r2; 0r < x; x < y|] ==> r1 * x < r2 * y";
+by (dres_inst_tac [("x","x")] real_mult_less_mono2 1);
+by (dres_inst_tac [("R1.0","0r")] real_less_trans 2);
+by (dres_inst_tac [("x","r1")] real_mult_less_mono1 3);
+by Auto_tac;
+by (blast_tac (claset() addIs [real_less_trans]) 1);
+qed "real_mult_less_mono";
+
+Goal "[| 0r < r1; r1 <r2; 0r < y|] ==> 0r < r2 * y";
+by (dres_inst_tac [("R1.0","0r")] real_less_trans 1);
+by (assume_tac 1);
+by (blast_tac (claset() addIs [real_mult_order]) 1);
+qed "real_mult_order_trans";
+
+Goal "[| 0r < r1; r1 <r2; 0r <= x; x < y|] ==> r1 * x < r2 * y";
+by (auto_tac (claset() addSDs [real_le_imp_less_or_eq] 
+	               addIs [real_mult_less_mono,real_mult_order_trans],
+              simpset()));
+qed "real_mult_less_mono3";
+
+Goal "[| 0r <= r1; r1 <r2; 0r <= x; x < y|] ==> r1 * x < r2 * y";
+by (auto_tac (claset() addSDs [real_le_imp_less_or_eq] 
+	               addIs [real_mult_less_mono,real_mult_order_trans,
+			      real_mult_order],
+	      simpset()));
+by (dres_inst_tac [("R2.0","x")] real_less_trans 1);
+by (assume_tac 1);
+by (blast_tac (claset() addIs [real_mult_order]) 1);
+qed "real_mult_less_mono4";
+
+Goal "[| 0r < r1; r1 <= r2; 0r <= x; x <= y |] ==> r1 * x <= r2 * y";
+by (rtac real_less_or_eq_imp_le 1);
+by (REPEAT(dtac real_le_imp_less_or_eq 1));
+by (auto_tac (claset() addIs [real_mult_less_mono,
+			      real_mult_order_trans,real_mult_order],
+	      simpset()));
+qed "real_mult_le_mono";
+
+Goal "[| 0r < r1; r1 < r2; 0r <= x; x <= y |] ==> r1 * x <= r2 * y";
+by (rtac real_less_or_eq_imp_le 1);
+by (REPEAT(dtac real_le_imp_less_or_eq 1));
+by (auto_tac (claset() addIs [real_mult_less_mono, real_mult_order_trans,
+			      real_mult_order],
+	      simpset()));
+qed "real_mult_le_mono2";
+
+Goal "[| 0r <= r1; r1 < r2; 0r <= x; x <= y |] ==> r1 * x <= r2 * y";
+by (dtac real_le_imp_less_or_eq 1);
+by (auto_tac (claset() addIs [real_mult_le_mono2],simpset()));
+by (dtac real_le_trans 1 THEN assume_tac 1);
+by (auto_tac (claset() addIs [real_less_le_mult_order], simpset()));
+qed "real_mult_le_mono3";
+
+Goal "[| 0r <= r1; r1 <= r2; 0r <= x; x <= y |] ==> r1 * x <= r2 * y";
+by (dres_inst_tac [("x","r1")] real_le_imp_less_or_eq 1);
+by (auto_tac (claset() addIs [real_mult_le_mono3, real_mult_le_le_mono1],
+	      simpset()));
+qed "real_mult_le_mono4";
+
+Goal "1r <= x ==> 0r < x";
+by (rtac ccontr 1 THEN dtac real_leI 1);
+by (dtac real_le_trans 1 THEN assume_tac 1);
+by (auto_tac (claset() addDs [real_zero_less_one RSN (2,real_le_less_trans)],
+	      simpset() addsimps [real_less_not_refl]));
+qed "real_gt_zero";
+
+Goal "[| 1r < r; 1r <= x |]  ==> x <= r * x";
+by (dtac (real_gt_zero RS real_less_imp_le) 1);
+by (auto_tac (claset() addSDs [real_mult_le_less_mono1],
+    simpset()));
+qed "real_mult_self_le";
+
+Goal "[| 1r <= r; 1r <= x |]  ==> x <= r * x";
+by (dtac real_le_imp_less_or_eq 1);
+by (auto_tac (claset() addIs [real_mult_self_le],
+	      simpset() addsimps [real_le_refl]));
+qed "real_mult_self_le2";
+
+Goal "x < y ==> x < (x + y)*rinv(1r + 1r)";
+by (dres_inst_tac [("C","x")] real_add_less_mono2 1);
+by (dtac (real_add_self RS subst) 1);
+by (dtac (real_zero_less_two RS real_rinv_gt_zero RS 
+          real_mult_less_mono1) 1);
+by (asm_full_simp_tac (simpset() addsimps [real_mult_assoc]) 1);
+qed "real_less_half_sum";
+
+Goal "x < y ==> (x + y)*rinv(1r + 1r) < y";
+by (dtac real_add_less_mono1 1);
+by (dtac (real_add_self RS subst) 1);
+by (dtac (real_zero_less_two RS real_rinv_gt_zero RS 
+          real_mult_less_mono1) 1);
+by (asm_full_simp_tac (simpset() addsimps [real_mult_assoc]) 1);
+qed "real_gt_half_sum";
+
+Goal "x < y ==> EX r::real. x < r & r < y";
+by (blast_tac (claset() addSIs [real_less_half_sum,
+				real_gt_half_sum]) 1);
+qed "real_dense";
+
+Goal "(EX n. rinv(real_of_posnat n) < r) = (EX n. 1r < r * real_of_posnat n)";
+by (Step_tac 1);
+by (dres_inst_tac [("n1","n")] (real_of_posnat_less_zero 
+				RS real_mult_less_mono1) 1);
+by (dres_inst_tac [("n2","n")] (real_of_posnat_less_zero RS 
+				real_rinv_gt_zero RS real_mult_less_mono1) 2);
+by (auto_tac (claset(),
+	      simpset() addsimps [(real_of_posnat_less_zero RS 
+				   real_not_refl2 RS not_sym),
+				  real_mult_assoc]));
+qed "real_of_posnat_rinv_Ex_iff";
+
+Goal "(rinv(real_of_posnat n) < r) = (1r < r * real_of_posnat n)";
+by (Step_tac 1);
+by (dres_inst_tac [("n1","n")] (real_of_posnat_less_zero 
+                       RS real_mult_less_mono1) 1);
+by (dres_inst_tac [("n2","n")] (real_of_posnat_less_zero RS 
+				real_rinv_gt_zero RS real_mult_less_mono1) 2);
+by (auto_tac (claset(), simpset() addsimps [real_mult_assoc]));
+qed "real_of_posnat_rinv_iff";
+
+Goal "(rinv(real_of_posnat n) <= r) = (1r <= r * real_of_posnat n)";
+by (Step_tac 1);
+by (dres_inst_tac [("n2","n")] (real_of_posnat_less_zero RS 
+    real_less_imp_le RS real_mult_le_le_mono1) 1);
+by (dres_inst_tac [("n3","n")] (real_of_posnat_less_zero RS 
+        real_rinv_gt_zero RS real_less_imp_le RS 
+        real_mult_le_le_mono1) 2);
+by (auto_tac (claset(), simpset() addsimps real_mult_ac));
+qed "real_of_posnat_rinv_le_iff";
+
+Goalw [real_of_posnat_def] "(real_of_posnat n < real_of_posnat m) = (n < m)";
+by Auto_tac;
+qed "real_of_posnat_less_iff";
+
+Addsimps [real_of_posnat_less_iff];
+
+Goal "0r < u  ==> (u < rinv (real_of_posnat n)) = (real_of_posnat n < rinv(u))";
+by (Step_tac 1);
+by (res_inst_tac [("n2","n")] (real_of_posnat_less_zero RS 
+    real_rinv_gt_zero RS real_mult_less_cancel1) 1);
+by (res_inst_tac [("x1","u")] ( real_rinv_gt_zero
+   RS real_mult_less_cancel1) 2);
+by (auto_tac (claset(),
+	      simpset() addsimps [real_of_posnat_less_zero, 
+    real_not_refl2 RS not_sym]));
+by (res_inst_tac [("z","u")] real_mult_less_cancel2 1);
+by (res_inst_tac [("n1","n")] (real_of_posnat_less_zero RS 
+    real_mult_less_cancel2) 3);
+by (auto_tac (claset(),
+	      simpset() addsimps [real_of_posnat_less_zero, 
+    real_not_refl2 RS not_sym,real_mult_assoc RS sym]));
+qed "real_of_posnat_less_rinv_iff";
+
+Goal "0r < u ==> (u = rinv(real_of_posnat n)) = (real_of_posnat n = rinv u)";
+by (auto_tac (claset(),
+	      simpset() addsimps [real_rinv_rinv,
+    real_of_posnat_less_zero,real_not_refl2 RS not_sym]));
+qed "real_of_posnat_rinv_eq_iff";
+
+Goal "[| 0r < r; r < x |] ==> rinv x < rinv r";
+by (forward_tac [real_less_trans] 1 THEN assume_tac 1);
+by (forward_tac [real_rinv_gt_zero] 1);
+by (forw_inst_tac [("x","x")] real_rinv_gt_zero 1);
+by (forw_inst_tac [("x","r"),("z","rinv r")] real_mult_less_mono1 1);
+by (assume_tac 1);
+by (asm_full_simp_tac (simpset() addsimps [real_not_refl2 RS 
+					   not_sym RS real_mult_inv_right]) 1);
+by (forward_tac [real_rinv_gt_zero] 1);
+by (forw_inst_tac [("x","1r"),("z","rinv x")] real_mult_less_mono2 1);
+by (assume_tac 1);
+by (asm_full_simp_tac (simpset() addsimps [real_not_refl2 RS 
+         not_sym RS real_mult_inv_left,real_mult_assoc RS sym]) 1);
+qed "real_rinv_less_swap";
+
+Goal "[| 0r < r; 0r < x|] ==> (r < x) = (rinv x < rinv r)";
+by (auto_tac (claset() addIs [real_rinv_less_swap],simpset()));
+by (res_inst_tac [("t","r")] (real_rinv_rinv RS subst) 1);
+by (etac (real_not_refl2 RS not_sym) 1);
+by (res_inst_tac [("t","x")] (real_rinv_rinv RS subst) 1);
+by (etac (real_not_refl2 RS not_sym) 1);
+by (auto_tac (claset() addIs [real_rinv_less_swap],
+	      simpset() addsimps [real_rinv_gt_zero]));
+qed "real_rinv_less_iff";
+
+Goal "r < r + rinv(real_of_posnat n)";
+by (res_inst_tac [("C","-r")] real_less_add_left_cancel 1);
+by (full_simp_tac (simpset() addsimps [real_add_assoc RS sym]) 1);
+qed "real_add_rinv_real_of_posnat_less";
+Addsimps [real_add_rinv_real_of_posnat_less];
+
+Goal "r <= r + rinv(real_of_posnat n)";
+by (rtac real_less_imp_le 1);
+by (Simp_tac 1);
+qed "real_add_rinv_real_of_posnat_le";
+Addsimps [real_add_rinv_real_of_posnat_le];
+
+Goal "r + (-rinv(real_of_posnat n)) < r";
+by (res_inst_tac [("C","-r")] real_less_add_left_cancel 1);
+by (full_simp_tac (simpset() addsimps [real_add_assoc RS sym,
+				       real_minus_zero_less_iff2]) 1);
+qed "real_add_minus_rinv_real_of_posnat_less";
+Addsimps [real_add_minus_rinv_real_of_posnat_less];
+
+Goal "r + (-rinv(real_of_posnat n)) <= r";
+by (rtac real_less_imp_le 1);
+by (Simp_tac 1);
+qed "real_add_minus_rinv_real_of_posnat_le";
+Addsimps [real_add_minus_rinv_real_of_posnat_le];
+
+Goal "0r < r ==> r*(1r + (-rinv(real_of_posnat n))) < r";
+by (simp_tac (simpset() addsimps [real_add_mult_distrib2]) 1);
+by (res_inst_tac [("C","-r")] real_less_add_left_cancel 1);
+by (auto_tac (claset() addIs [real_mult_order],
+	      simpset() addsimps [real_add_assoc RS sym,
+				  real_minus_mult_eq2 RS sym,
+				  real_minus_zero_less_iff2]));
+qed "real_mult_less_self";
+
+Goal "0r <= 1r + (-rinv(real_of_posnat n))";
+by (res_inst_tac [("C","rinv(real_of_posnat n)")] real_le_add_right_cancel 1);
+by (simp_tac (simpset() addsimps [real_add_assoc,
+				  real_of_posnat_rinv_le_iff]) 1);
+qed "real_add_one_minus_rinv_ge_zero";
+
+Goal "0r < r ==> 0r <= r*(1r + (-rinv(real_of_posnat n)))";
+by (dtac (real_add_one_minus_rinv_ge_zero RS real_mult_le_less_mono1) 1);
+by Auto_tac;
+qed "real_mult_add_one_minus_ge_zero";
+
+Goal "x*y = 0r ==> x = 0r | y = 0r";
+by (auto_tac (claset() addIs [ccontr] addDs [real_mult_not_zero],
+	      simpset()));
+qed "real_mult_zero_disj";
+ 
+Goal "x + x*y = x*(1r + y)";
+by (simp_tac (simpset() addsimps [real_add_mult_distrib2]) 1);
+qed "real_add_mult_distrib_one";
+
+Goal "[| x ~= 1r; y * x = y |] ==> y = 0r";
+by (dtac (sym RS (real_eq_minus_iff RS iffD1)) 1);
+by (dtac sym 1);
+by (asm_full_simp_tac (simpset() addsimps [real_minus_mult_eq2,
+    real_add_mult_distrib_one]) 1);
+by (dtac real_mult_zero_disj 1);
+by (auto_tac (claset(),
+	      simpset() addsimps [real_eq_minus_iff2 RS sym]));
+qed "real_mult_eq_self_zero";
+Addsimps [real_mult_eq_self_zero];
+
+Goal "[| x ~= 1r; y = y * x |] ==> y = 0r";
+by (dtac sym 1);
+by (Asm_full_simp_tac 1);
+qed "real_mult_eq_self_zero2";
+Addsimps [real_mult_eq_self_zero2];
+
+Goal "[| 0r <= x*y; 0r < x |] ==> 0r <= y";
+by (forward_tac [real_rinv_gt_zero] 1);
+by (dres_inst_tac [("x","rinv x")] real_less_le_mult_order 1);
+by (dtac (real_not_refl2 RS not_sym RS real_mult_inv_left) 2);
+by (auto_tac (claset(),
+	      simpset() addsimps [real_mult_assoc RS sym]));
+qed "real_mult_ge_zero_cancel";
+
+Goal "[|x ~= 0r; y ~= 0r |] ==> rinv(x) + rinv(y) = (x + y)*rinv(x*y)";
+by (asm_full_simp_tac (simpset() addsimps 
+		       [real_rinv_distrib,real_add_mult_distrib,
+			real_mult_assoc RS sym]) 1);
+by (stac real_mult_assoc 1);
+by (rtac (real_mult_left_commute RS subst) 1);
+by (asm_full_simp_tac (simpset() addsimps [real_add_commute]) 1);
+qed "real_rinv_add";
+
+(*----------------------------------------------------------------------------
+     Another embedding of the naturals in the reals (see real_of_posnat)
+ ----------------------------------------------------------------------------*)
+Goalw [real_of_nat_def] "real_of_nat 0 = 0r";
+by (full_simp_tac (simpset() addsimps [real_of_posnat_one]) 1);
+qed "real_of_nat_zero";
+
+Goalw [real_of_nat_def] "real_of_nat 1 = 1r";
+by (full_simp_tac (simpset() addsimps [real_of_posnat_two,
+    real_add_assoc]) 1);
+qed "real_of_nat_one";
+
+Goalw [real_of_nat_def]
+          "real_of_nat n1 + real_of_nat n2 = real_of_nat (n1 + n2)";
+by (simp_tac (simpset() addsimps 
+    [real_of_posnat_add,real_add_assoc RS sym]) 1);
+qed "real_of_nat_add";
+
+Goalw [real_of_nat_def] "real_of_nat (Suc n) = real_of_nat n + 1r";
+by (simp_tac (simpset() addsimps [real_of_posnat_Suc] @ real_add_ac) 1);
+qed "real_of_nat_Suc";
+    
+Goalw [real_of_nat_def] "(n < m) = (real_of_nat n < real_of_nat m)";
+by Auto_tac;
+qed "real_of_nat_less_iff";
+
+Addsimps [real_of_nat_less_iff RS sym];
+
+Goal "inj real_of_nat";
+by (rtac injI 1);
+by (auto_tac (claset() addSIs [inj_real_of_posnat RS injD],
+	      simpset() addsimps [real_of_nat_def,real_add_right_cancel]));
+qed "inj_real_of_nat";
+
+Goalw [real_of_nat_def] "0r <= real_of_nat n";
+by (res_inst_tac [("C","1r")] real_le_add_right_cancel 1);
+by (asm_full_simp_tac (simpset() addsimps [real_add_assoc]) 1);
+qed "real_of_nat_ge_zero";
+Addsimps [real_of_nat_ge_zero];
+
+Goal "real_of_nat n1 * real_of_nat n2 = real_of_nat (n1 * n2)";
+by (induct_tac "n1" 1);
+by (dtac sym 2);
+by (auto_tac (claset(),
+	      simpset() addsimps [real_of_nat_zero,
+				  real_of_nat_add RS sym,real_of_nat_Suc,
+				  real_add_mult_distrib, real_add_commute]));
+qed "real_of_nat_mult";
+
+Goal "(real_of_nat n = real_of_nat m) = (n = m)";
+by (auto_tac (claset() addDs [inj_real_of_nat RS injD],
+              simpset()));
+qed "real_of_nat_eq_cancel";
+
+(*------- lemmas -------*)
+goal NatDef.thy "!!m. [| m < Suc n; n <= m |] ==> m = n";
+by (auto_tac (claset() addSDs [le_imp_less_or_eq] addIs [less_asym],
+	      simpset() addsimps [less_Suc_eq]));
+qed "lemma_nat_not_dense";
+
+goal NatDef.thy "!!m. [| m <= Suc n; n < m |] ==> m = Suc n";
+by (auto_tac (claset() addSDs [le_imp_less_or_eq] addIs [less_asym],
+	      simpset() addsimps [le_Suc_eq]));
+qed "lemma_nat_not_dense2";
+
+goal NatDef.thy "!!m. m < Suc n ==> ~ Suc n <= m";
+by (blast_tac (claset() addDs [less_le_trans] addIs [less_asym]) 1);
+qed "lemma_not_leI";
+
+goalw NatDef.thy [le_def] "!!m. ~ Suc n <= m ==> ~ Suc (Suc n) <= m";
+by Auto_tac;
+qed "lemma_not_leI2";
+
+(*------- lemmas -------*)
+val [prem] = goal Arith.thy "n < Suc(m) ==> Suc(m)-n = Suc(m-n)";
+by (rtac (prem RS rev_mp) 1);
+by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
+by (ALLGOALS Asm_simp_tac);
+qed "Suc_diff_n";
+
+(* Goalw  [real_of_nat_def] 
+   "real_of_nat (n1 - n2) = real_of_nat n1 + -real_of_nat n2";*)
+
+Goal "n2 < n1 --> real_of_nat (n1 - n2) = real_of_nat n1 + (-real_of_nat n2)";
+by (induct_tac "n1" 1);
+by (Step_tac 1 THEN dtac leI 1 THEN dtac sym 2);
+by (dtac lemma_nat_not_dense 1);
+by (auto_tac (claset(),
+	      simpset() addsimps [real_of_nat_Suc, real_of_nat_zero] @ 
+	                         real_add_ac));
+by (asm_full_simp_tac (simpset() addsimps [real_of_nat_one RS sym,
+					   real_of_nat_add,Suc_diff_n]) 1);
+qed "real_of_nat_minus";
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Real/RealOrd.thy	Tue Aug 24 11:54:13 1999 +0200
@@ -0,0 +1,14 @@
+(*  Title:	Real/RealOrd.thy
+    ID: 	$Id$
+    Author:     Lawrence C. Paulson
+                Jacques D. Fleuriot
+    Copyright:   1998  University of Cambridge
+    Description: Type "real" is a linear order
+*)
+
+RealOrd = RealDef +
+
+instance real :: order (real_le_refl,real_le_trans,real_le_anti_sym,real_less_le)
+instance real :: linorder (real_le_linear)
+
+end