--- a/NEWS Mon Jan 29 20:37:28 2018 +0100
+++ b/NEWS Mon Jan 29 21:14:42 2018 +0100
@@ -169,6 +169,13 @@
*** HOL ***
+* Clarifed theorem names:
+
+ Min.antimono ~> Min.subset_imp
+ Max.antimono ~> Max.subset_imp
+
+Minor INCOMPATIBILITY.
+
* A new command parametric_constant for proving parametricity of
non-recursive definitions. For constants that are not fully parametric
the command will infer conditions on relations (e.g., bi_unique,
--- a/src/Doc/Codegen/Computations.thy Mon Jan 29 20:37:28 2018 +0100
+++ b/src/Doc/Codegen/Computations.thy Mon Jan 29 21:14:42 2018 +0100
@@ -1,7 +1,6 @@
theory Computations
imports Codegen_Basics.Setup
"HOL-Library.Code_Target_Int"
- "HOL-Library.Code_Char"
begin
section \<open>Computations \label{sec:computations}\<close>
--- a/src/HOL/Lattices_Big.thy Mon Jan 29 20:37:28 2018 +0100
+++ b/src/HOL/Lattices_Big.thy Mon Jan 29 21:14:42 2018 +0100
@@ -132,7 +132,7 @@
lemma bounded_iff:
assumes "finite A" and "A \<noteq> {}"
shows "x \<^bold>\<le> F A \<longleftrightarrow> (\<forall>a\<in>A. x \<^bold>\<le> a)"
- using assms by (induct rule: finite_ne_induct) (simp_all add: bounded_iff)
+ using assms by (induct rule: finite_ne_induct) simp_all
lemma boundedI:
assumes "finite A"
@@ -162,7 +162,7 @@
qed
qed
-lemma antimono:
+lemma subset_imp:
assumes "A \<subseteq> B" and "A \<noteq> {}" and "finite B"
shows "F B \<^bold>\<le> F A"
proof (cases "A = B")
@@ -256,7 +256,7 @@
lemma bounded_iff:
assumes "finite A"
shows "x \<^bold>\<le> F A \<longleftrightarrow> (\<forall>a\<in>A. x \<^bold>\<le> a)"
- using assms by (induct A) (simp_all add: bounded_iff)
+ using assms by (induct A) simp_all
lemma boundedI:
assumes "finite A"
@@ -285,7 +285,7 @@
qed
qed
-lemma antimono:
+lemma subset_imp:
assumes "A \<subseteq> B" and "finite B"
shows "F B \<^bold>\<le> F A"
proof (cases "A = B")
@@ -648,12 +648,12 @@
lemma Min_antimono:
assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
shows "Min N \<le> Min M"
- using assms by (fact Min.antimono)
+ using assms by (fact Min.subset_imp)
lemma Max_mono:
assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
shows "Max M \<le> Max N"
- using assms by (fact Max.antimono)
+ using assms by (fact Max.subset_imp)
end