--- a/NEWS Sat Nov 14 09:31:54 2009 +0100
+++ b/NEWS Sat Nov 14 09:40:27 2009 +0100
@@ -241,6 +241,8 @@
sizechange -> size_change
induct_scheme -> induction_schema
+* Lemma name change: replaced "anti_sym" by "antisym" everywhere.
+
*** ML ***
--- a/doc-src/IsarImplementation/Thy/Local_Theory.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/doc-src/IsarImplementation/Thy/Local_Theory.thy Sat Nov 14 09:40:27 2009 +0100
@@ -97,13 +97,12 @@
text %mlref {*
\begin{mldecls}
@{index_ML_type local_theory: Proof.context} \\
- @{index_ML TheoryTarget.init: "string option -> theory -> local_theory"} \\[1ex]
- @{index_ML LocalTheory.define: "string ->
+ @{index_ML Theory_Target.init: "string option -> theory -> local_theory"} \\[1ex]
+ @{index_ML Local_Theory.define: "string ->
(binding * mixfix) * (Attrib.binding * term) -> local_theory ->
(term * (string * thm)) * local_theory"} \\
- @{index_ML LocalTheory.note: "string ->
- Attrib.binding * thm list -> local_theory ->
- (string * thm list) * local_theory"} \\
+ @{index_ML Local_Theory.note: "Attrib.binding * thm list ->
+ local_theory -> (string * thm list) * local_theory"} \\
\end{mldecls}
\begin{description}
@@ -116,7 +115,7 @@
with operations on expecting a regular @{text "ctxt:"}~@{ML_type
Proof.context}.
- \item @{ML TheoryTarget.init}~@{text "NONE thy"} initializes a
+ \item @{ML Theory_Target.init}~@{text "NONE thy"} initializes a
trivial local theory from the given background theory.
Alternatively, @{text "SOME name"} may be given to initialize a
@{command locale} or @{command class} context (a fully-qualified
@@ -124,7 +123,7 @@
--- normally the Isar toplevel already takes care to initialize the
local theory context.
- \item @{ML LocalTheory.define}~@{text "kind ((b, mx), (a, rhs))
+ \item @{ML Local_Theory.define}~@{text "kind ((b, mx), (a, rhs))
lthy"} defines a local entity according to the specification that is
given relatively to the current @{text "lthy"} context. In
particular the term of the RHS may refer to earlier local entities
@@ -145,13 +144,13 @@
@{attribute simplified} are better avoided.
The @{text kind} determines the theorem kind tag of the resulting
- fact. Typical examples are @{ML Thm.definitionK}, @{ML
- Thm.theoremK}, or @{ML Thm.internalK}.
+ fact. Typical examples are @{ML Thm.definitionK} or @{ML
+ Thm.theoremK}.
- \item @{ML LocalTheory.note}~@{text "kind (a, ths) lthy"} is
- analogous to @{ML LocalTheory.define}, but defines facts instead of
+ \item @{ML Local_Theory.note}~@{text "(a, ths) lthy"} is
+ analogous to @{ML Local_Theory.define}, but defines facts instead of
terms. There is also a slightly more general variant @{ML
- LocalTheory.notes} that defines several facts (with attribute
+ Local_Theory.notes} that defines several facts (with attribute
expressions) simultaneously.
This is essentially the internal version of the @{command lemmas}
--- a/doc-src/IsarImplementation/Thy/document/Local_Theory.tex Sat Nov 14 09:31:54 2009 +0100
+++ b/doc-src/IsarImplementation/Thy/document/Local_Theory.tex Sat Nov 14 09:40:27 2009 +0100
@@ -123,13 +123,12 @@
\begin{isamarkuptext}%
\begin{mldecls}
\indexdef{}{ML type}{local\_theory}\verb|type local_theory = Proof.context| \\
- \indexdef{}{ML}{TheoryTarget.init}\verb|TheoryTarget.init: string option -> theory -> local_theory| \\[1ex]
- \indexdef{}{ML}{LocalTheory.define}\verb|LocalTheory.define: string ->|\isasep\isanewline%
+ \indexdef{}{ML}{Theory\_Target.init}\verb|Theory_Target.init: string option -> theory -> local_theory| \\[1ex]
+ \indexdef{}{ML}{Local\_Theory.define}\verb|Local_Theory.define: string ->|\isasep\isanewline%
\verb| (binding * mixfix) * (Attrib.binding * term) -> local_theory ->|\isasep\isanewline%
\verb| (term * (string * thm)) * local_theory| \\
- \indexdef{}{ML}{LocalTheory.note}\verb|LocalTheory.note: string ->|\isasep\isanewline%
-\verb| Attrib.binding * thm list -> local_theory ->|\isasep\isanewline%
-\verb| (string * thm list) * local_theory| \\
+ \indexdef{}{ML}{Local\_Theory.note}\verb|Local_Theory.note: Attrib.binding * thm list ->|\isasep\isanewline%
+\verb| local_theory -> (string * thm list) * local_theory| \\
\end{mldecls}
\begin{description}
@@ -141,7 +140,7 @@
any value \isa{lthy{\isacharcolon}}~\verb|local_theory| can be also used
with operations on expecting a regular \isa{ctxt{\isacharcolon}}~\verb|Proof.context|.
- \item \verb|TheoryTarget.init|~\isa{NONE\ thy} initializes a
+ \item \verb|Theory_Target.init|~\isa{NONE\ thy} initializes a
trivial local theory from the given background theory.
Alternatively, \isa{SOME\ name} may be given to initialize a
\hyperlink{command.locale}{\mbox{\isa{\isacommand{locale}}}} or \hyperlink{command.class}{\mbox{\isa{\isacommand{class}}}} context (a fully-qualified
@@ -149,7 +148,7 @@
--- normally the Isar toplevel already takes care to initialize the
local theory context.
- \item \verb|LocalTheory.define|~\isa{kind\ {\isacharparenleft}{\isacharparenleft}b{\isacharcomma}\ mx{\isacharparenright}{\isacharcomma}\ {\isacharparenleft}a{\isacharcomma}\ rhs{\isacharparenright}{\isacharparenright}\ lthy} defines a local entity according to the specification that is
+ \item \verb|Local_Theory.define|~\isa{kind\ {\isacharparenleft}{\isacharparenleft}b{\isacharcomma}\ mx{\isacharparenright}{\isacharcomma}\ {\isacharparenleft}a{\isacharcomma}\ rhs{\isacharparenright}{\isacharparenright}\ lthy} defines a local entity according to the specification that is
given relatively to the current \isa{lthy} context. In
particular the term of the RHS may refer to earlier local entities
from the auxiliary context, or hypothetical parameters from the
@@ -169,11 +168,11 @@
\hyperlink{attribute.simplified}{\mbox{\isa{simplified}}} are better avoided.
The \isa{kind} determines the theorem kind tag of the resulting
- fact. Typical examples are \verb|Thm.definitionK|, \verb|Thm.theoremK|, or \verb|Thm.internalK|.
+ fact. Typical examples are \verb|Thm.definitionK| or \verb|Thm.theoremK|.
- \item \verb|LocalTheory.note|~\isa{kind\ {\isacharparenleft}a{\isacharcomma}\ ths{\isacharparenright}\ lthy} is
- analogous to \verb|LocalTheory.define|, but defines facts instead of
- terms. There is also a slightly more general variant \verb|LocalTheory.notes| that defines several facts (with attribute
+ \item \verb|Local_Theory.note|~\isa{{\isacharparenleft}a{\isacharcomma}\ ths{\isacharparenright}\ lthy} is
+ analogous to \verb|Local_Theory.define|, but defines facts instead of
+ terms. There is also a slightly more general variant \verb|Local_Theory.notes| that defines several facts (with attribute
expressions) simultaneously.
This is essentially the internal version of the \hyperlink{command.lemmas}{\mbox{\isa{\isacommand{lemmas}}}}
--- a/src/FOL/ex/LocaleTest.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/FOL/ex/LocaleTest.thy Sat Nov 14 09:40:27 2009 +0100
@@ -195,7 +195,7 @@
begin
thm lor_def
-(* Can we get rid the the additional hypothesis, caused by LocalTheory.notes? *)
+(* Can we get rid the the additional hypothesis, caused by Local_Theory.notes? *)
lemma "x || y = --(-- x && --y)"
by (unfold lor_def) (rule refl)
--- a/src/HOL/Algebra/IntRing.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Algebra/IntRing.thy Sat Nov 14 09:40:27 2009 +0100
@@ -12,52 +12,11 @@
subsection {* Some properties of @{typ int} *}
-lemma dvds_imp_abseq:
- "\<lbrakk>l dvd k; k dvd l\<rbrakk> \<Longrightarrow> abs l = abs (k::int)"
-apply (subst abs_split, rule conjI)
- apply (clarsimp, subst abs_split, rule conjI)
- apply (clarsimp)
- apply (cases "k=0", simp)
- apply (cases "l=0", simp)
- apply (simp add: zdvd_anti_sym)
- apply clarsimp
- apply (cases "k=0", simp)
- apply (simp add: zdvd_anti_sym)
-apply (clarsimp, subst abs_split, rule conjI)
- apply (clarsimp)
- apply (cases "l=0", simp)
- apply (simp add: zdvd_anti_sym)
-apply (clarsimp)
-apply (subgoal_tac "-l = -k", simp)
-apply (intro zdvd_anti_sym, simp+)
-done
-
-lemma abseq_imp_dvd:
- assumes a_lk: "abs l = abs (k::int)"
- shows "l dvd k"
-proof -
- from a_lk
- have "nat (abs l) = nat (abs k)" by simp
- hence "nat (abs l) dvd nat (abs k)" by simp
- hence "int (nat (abs l)) dvd k" by (subst int_dvd_iff)
- hence "abs l dvd k" by simp
- thus "l dvd k"
- apply (unfold dvd_def, cases "l<0")
- defer 1 apply clarsimp
- proof (clarsimp)
- fix k
- assume l0: "l < 0"
- have "- (l * k) = l * (-k)" by simp
- thus "\<exists>ka. - (l * k) = l * ka" by fast
- qed
-qed
-
lemma dvds_eq_abseq:
"(l dvd k \<and> k dvd l) = (abs l = abs (k::int))"
apply rule
- apply (simp add: dvds_imp_abseq)
-apply (rule conjI)
- apply (simp add: abseq_imp_dvd)+
+ apply (simp add: zdvd_antisym_abs)
+apply (simp add: dvd_if_abs_eq)
done
--- a/src/HOL/Algebra/Lattice.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Algebra/Lattice.thy Sat Nov 14 09:40:27 2009 +0100
@@ -18,7 +18,7 @@
locale weak_partial_order = equivalence L for L (structure) +
assumes le_refl [intro, simp]:
"x \<in> carrier L ==> x \<sqsubseteq> x"
- and weak_le_anti_sym [intro]:
+ and weak_le_antisym [intro]:
"[| x \<sqsubseteq> y; y \<sqsubseteq> x; x \<in> carrier L; y \<in> carrier L |] ==> x .= y"
and le_trans [trans]:
"[| x \<sqsubseteq> y; y \<sqsubseteq> z; x \<in> carrier L; y \<in> carrier L; z \<in> carrier L |] ==> x \<sqsubseteq> z"
@@ -636,7 +636,7 @@
fix s
assume sup: "least L s (Upper L {x, y, z})"
show "x \<squnion> (y \<squnion> z) .= s"
- proof (rule weak_le_anti_sym)
+ proof (rule weak_le_antisym)
from sup L show "x \<squnion> (y \<squnion> z) \<sqsubseteq> s"
by (fastsimp intro!: join_le elim: least_Upper_above)
next
@@ -877,7 +877,7 @@
fix i
assume inf: "greatest L i (Lower L {x, y, z})"
show "x \<sqinter> (y \<sqinter> z) .= i"
- proof (rule weak_le_anti_sym)
+ proof (rule weak_le_antisym)
from inf L show "i \<sqsubseteq> x \<sqinter> (y \<sqinter> z)"
by (fastsimp intro!: meet_le elim: greatest_Lower_below)
next
@@ -1089,11 +1089,11 @@
assumes eq_is_equal: "op .= = op ="
begin
-declare weak_le_anti_sym [rule del]
+declare weak_le_antisym [rule del]
-lemma le_anti_sym [intro]:
+lemma le_antisym [intro]:
"[| x \<sqsubseteq> y; y \<sqsubseteq> x; x \<in> carrier L; y \<in> carrier L |] ==> x = y"
- using weak_le_anti_sym unfolding eq_is_equal .
+ using weak_le_antisym unfolding eq_is_equal .
lemma lless_eq:
"x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y & x \<noteq> y"
--- a/src/HOL/Algebra/Sylow.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Algebra/Sylow.thy Sat Nov 14 09:40:27 2009 +0100
@@ -344,7 +344,7 @@
done
lemma (in sylow_central) card_H_eq: "card(H) = p^a"
-by (blast intro: le_anti_sym lemma_leq1 lemma_leq2)
+by (blast intro: le_antisym lemma_leq1 lemma_leq2)
lemma (in sylow) sylow_thm: "\<exists>H. subgroup H G & card(H) = p^a"
apply (cut_tac lemma_A1, clarify)
--- a/src/HOL/Algebra/UnivPoly.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Algebra/UnivPoly.thy Sat Nov 14 09:40:27 2009 +0100
@@ -811,7 +811,7 @@
lemma deg_eqI:
"[| !!m. n < m ==> coeff P p m = \<zero>;
!!n. n ~= 0 ==> coeff P p n ~= \<zero>; p \<in> carrier P |] ==> deg R p = n"
-by (fast intro: le_anti_sym deg_aboveI deg_belowI)
+by (fast intro: le_antisym deg_aboveI deg_belowI)
text {* Degree and polynomial operations *}
@@ -826,11 +826,11 @@
lemma deg_monom [simp]:
"[| a ~= \<zero>; a \<in> carrier R |] ==> deg R (monom P a n) = n"
- by (fastsimp intro: le_anti_sym deg_aboveI deg_belowI)
+ by (fastsimp intro: le_antisym deg_aboveI deg_belowI)
lemma deg_const [simp]:
assumes R: "a \<in> carrier R" shows "deg R (monom P a 0) = 0"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg R (monom P a 0) <= 0" by (rule deg_aboveI) (simp_all add: R)
next
show "0 <= deg R (monom P a 0)" by (rule deg_belowI) (simp_all add: R)
@@ -838,7 +838,7 @@
lemma deg_zero [simp]:
"deg R \<zero>\<^bsub>P\<^esub> = 0"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg R \<zero>\<^bsub>P\<^esub> <= 0" by (rule deg_aboveI) simp_all
next
show "0 <= deg R \<zero>\<^bsub>P\<^esub>" by (rule deg_belowI) simp_all
@@ -846,7 +846,7 @@
lemma deg_one [simp]:
"deg R \<one>\<^bsub>P\<^esub> = 0"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg R \<one>\<^bsub>P\<^esub> <= 0" by (rule deg_aboveI) simp_all
next
show "0 <= deg R \<one>\<^bsub>P\<^esub>" by (rule deg_belowI) simp_all
@@ -854,7 +854,7 @@
lemma deg_uminus [simp]:
assumes R: "p \<in> carrier P" shows "deg R (\<ominus>\<^bsub>P\<^esub> p) = deg R p"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg R (\<ominus>\<^bsub>P\<^esub> p) <= deg R p" by (simp add: deg_aboveI deg_aboveD R)
next
show "deg R p <= deg R (\<ominus>\<^bsub>P\<^esub> p)"
@@ -878,7 +878,7 @@
lemma deg_smult [simp]:
assumes R: "a \<in> carrier R" "p \<in> carrier P"
shows "deg R (a \<odot>\<^bsub>P\<^esub> p) = (if a = \<zero> then 0 else deg R p)"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg R (a \<odot>\<^bsub>P\<^esub> p) <= (if a = \<zero> then 0 else deg R p)"
using R by (rule deg_smult_ring)
next
@@ -920,7 +920,7 @@
lemma deg_mult [simp]:
"[| p ~= \<zero>\<^bsub>P\<^esub>; q ~= \<zero>\<^bsub>P\<^esub>; p \<in> carrier P; q \<in> carrier P |] ==>
deg R (p \<otimes>\<^bsub>P\<^esub> q) = deg R p + deg R q"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
assume "p \<in> carrier P" " q \<in> carrier P"
then show "deg R (p \<otimes>\<^bsub>P\<^esub> q) <= deg R p + deg R q" by (rule deg_mult_ring)
next
--- a/src/HOL/Algebra/poly/UnivPoly2.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Algebra/poly/UnivPoly2.thy Sat Nov 14 09:40:27 2009 +0100
@@ -557,7 +557,7 @@
lemma deg_eqI:
"[| !!m. n < m ==> coeff p m = 0;
!!n. n ~= 0 ==> coeff p n ~= 0|] ==> deg p = n"
-by (fast intro: le_anti_sym deg_aboveI deg_belowI)
+by (fast intro: le_antisym deg_aboveI deg_belowI)
(* Degree and polynomial operations *)
@@ -571,11 +571,11 @@
lemma deg_monom [simp]:
"a ~= 0 ==> deg (monom a n::'a::ring up) = n"
-by (fastsimp intro: le_anti_sym deg_aboveI deg_belowI)
+by (fastsimp intro: le_antisym deg_aboveI deg_belowI)
lemma deg_const [simp]:
"deg (monom (a::'a::ring) 0) = 0"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg (monom a 0) <= 0" by (rule deg_aboveI) simp
next
show "0 <= deg (monom a 0)" by (rule deg_belowI) simp
@@ -583,7 +583,7 @@
lemma deg_zero [simp]:
"deg 0 = 0"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg 0 <= 0" by (rule deg_aboveI) simp
next
show "0 <= deg 0" by (rule deg_belowI) simp
@@ -591,7 +591,7 @@
lemma deg_one [simp]:
"deg 1 = 0"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg 1 <= 0" by (rule deg_aboveI) simp
next
show "0 <= deg 1" by (rule deg_belowI) simp
@@ -612,7 +612,7 @@
lemma deg_uminus [simp]:
"deg (-p::('a::ring) up) = deg p"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg (- p) <= deg p" by (simp add: deg_aboveI deg_aboveD)
next
show "deg p <= deg (- p)"
@@ -626,7 +626,7 @@
lemma deg_smult [simp]:
"deg ((a::'a::domain) *s p) = (if a = 0 then 0 else deg p)"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg (a *s p) <= (if a = 0 then 0 else deg p)" by (rule deg_smult_ring)
next
show "(if a = 0 then 0 else deg p) <= deg (a *s p)"
@@ -657,7 +657,7 @@
lemma deg_mult [simp]:
"[| (p::'a::domain up) ~= 0; q ~= 0|] ==> deg (p * q) = deg p + deg q"
-proof (rule le_anti_sym)
+proof (rule le_antisym)
show "deg (p * q) <= deg p + deg q" by (rule deg_mult_ring)
next
let ?s = "(%i. coeff p i * coeff q (deg p + deg q - i))"
--- a/src/HOL/Boogie/Examples/Boogie_Max.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Boogie/Examples/Boogie_Max.thy Sat Nov 14 09:40:27 2009 +0100
@@ -57,14 +57,20 @@
proof (split_vc (verbose) try: fast simp)
print_cases
case L_14_5c
- thus ?case by (metis abs_of_nonneg zabs_less_one_iff zle_linear)
+ thus ?case by (metis less_le_not_le zle_add1_eq_le zless_linear)
next
case L_14_5b
- thus ?case by (metis less_le_not_le linorder_not_le xt1(10) zle_linear
- zless_add1_eq)
+ thus ?case by (metis less_le_not_le xt1(10) zle_linear zless_add1_eq)
next
case L_14_5a
- thus ?case by (metis less_le_not_le zle_add1_eq_le zless_linear)
+ note max0 = `max0 = array 0`
+ {
+ fix i :: int
+ assume "0 \<le> i \<and> i < 1"
+ hence "i = 0" by simp
+ with max0 have "array i \<le> max0" by simp
+ }
+ thus ?case by simp
qed
boogie_end
--- a/src/HOL/Boogie/Examples/cert/Boogie_Dijkstra Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Boogie/Examples/cert/Boogie_Dijkstra Sat Nov 14 09:40:27 2009 +0100
@@ -12,18 +12,18 @@
(uf_10 T1 Int)
(uf_11 T2)
(uf_9 Int)
- (uf_21 T2)
- (uf_16 T2)
- (uf_20 T2)
+ (uf_18 T2)
+ (uf_22 T2)
+ (uf_17 T2)
(uf_12 T2 Int)
(uf_14 T3)
- (uf_18 T2 Int)
- (uf_22 T3)
- (uf_24 T3)
- (uf_23 T3)
+ (uf_24 T2 Int)
+ (uf_19 T3)
+ (uf_21 T3)
+ (uf_20 T3)
(uf_15 T4)
- (uf_17 T4)
- (uf_19 T4)
+ (uf_23 T4)
+ (uf_16 T4)
)
:extrapreds (
(up_13 T2)
@@ -38,6 +38,6 @@
:assumption (< 0 uf_9)
:assumption (forall (?x20 T2) (?x21 T2) (implies (= ?x20 ?x21) (= (uf_10 (uf_1 ?x20 ?x21)) 0)))
:assumption (forall (?x22 T2) (?x23 T2) (implies (not (= ?x22 ?x23)) (< 0 (uf_10 (uf_1 ?x22 ?x23)))))
-:assumption (not (implies true (implies true (implies (forall (?x24 T2) (implies (= ?x24 uf_11) (= (uf_12 ?x24) 0))) (implies (forall (?x25 T2) (implies (not (= ?x25 uf_11)) (= (uf_12 ?x25) uf_9))) (implies (forall (?x26 T2) (not (up_13 ?x26))) (implies true (and (implies (= (uf_12 uf_11) 0) (and (implies (forall (?x27 T2) (<= 0 (uf_12 ?x27))) (and (implies (forall (?x28 T2) (?x29 T2) (implies (and (up_13 ?x28) (not (up_13 ?x29))) (<= (uf_12 ?x28) (uf_12 ?x29)))) (and (implies (forall (?x30 T2) (?x31 T2) (implies (and (< (uf_10 (uf_1 ?x31 ?x30)) uf_9) (up_13 ?x31)) (<= (uf_12 ?x30) (+ (uf_12 ?x31) (uf_10 (uf_1 ?x31 ?x30)))))) (and (implies (forall (?x32 T2) (implies (and (< (uf_12 ?x32) uf_9) (not (= ?x32 uf_11))) (exists (?x33 T2) (and (= (uf_12 ?x32) (+ (uf_12 ?x33) (uf_10 (uf_1 ?x33 ?x32)))) (and (up_13 ?x33) (< (uf_12 ?x33) (uf_12 ?x32))))))) (implies true (implies true (implies (= (uf_4 uf_14 uf_11) 0) (implies (forall (?x34 T2) (<= 0 (uf_4 uf_14 ?x34))) (implies (forall (?x35 T2) (?x36 T2) (implies (and (= (uf_6 uf_15 ?x35) uf_8) (not (= (uf_6 uf_15 ?x36) uf_8))) (<= (uf_4 uf_14 ?x35) (uf_4 uf_14 ?x36)))) (implies (forall (?x37 T2) (?x38 T2) (implies (and (< (uf_10 (uf_1 ?x38 ?x37)) uf_9) (= (uf_6 uf_15 ?x38) uf_8)) (<= (uf_4 uf_14 ?x37) (+ (uf_4 uf_14 ?x38) (uf_10 (uf_1 ?x38 ?x37)))))) (implies (forall (?x39 T2) (implies (and (< (uf_4 uf_14 ?x39) uf_9) (not (= ?x39 uf_11))) (exists (?x40 T2) (and (= (uf_4 uf_14 ?x39) (+ (uf_4 uf_14 ?x40) (uf_10 (uf_1 ?x40 ?x39)))) (and (= (uf_6 uf_15 ?x40) uf_8) (< (uf_4 uf_14 ?x40) (uf_4 uf_14 ?x39))))))) (implies true (and (implies true (implies true (implies (exists (?x41 T2) (and (< (uf_4 uf_14 ?x41) uf_9) (not (= (uf_6 uf_15 ?x41) uf_8)))) (implies (not (= (uf_6 uf_15 uf_16) uf_8)) (implies (< (uf_4 uf_14 uf_16) uf_9) (implies (forall (?x42 T2) (implies (not (= (uf_6 uf_15 ?x42) uf_8)) (<= (uf_4 uf_14 uf_16) (uf_4 uf_14 ?x42)))) (implies (= uf_17 (uf_7 uf_15 uf_16 uf_8)) (implies (forall (?x43 T2) (implies (and (< (+ (uf_4 uf_14 uf_16) (uf_10 (uf_1 uf_16 ?x43))) (uf_4 uf_14 ?x43)) (< (uf_10 (uf_1 uf_16 ?x43)) uf_9)) (= (uf_18 ?x43) (+ (uf_4 uf_14 uf_16) (uf_10 (uf_1 uf_16 ?x43)))))) (implies (forall (?x44 T2) (implies (not (and (< (+ (uf_4 uf_14 uf_16) (uf_10 (uf_1 uf_16 ?x44))) (uf_4 uf_14 ?x44)) (< (uf_10 (uf_1 uf_16 ?x44)) uf_9))) (= (uf_18 ?x44) (uf_4 uf_14 ?x44)))) (and (implies (forall (?x45 T2) (<= (uf_18 ?x45) (uf_4 uf_14 ?x45))) (and (implies (forall (?x46 T2) (implies (= (uf_6 uf_17 ?x46) uf_8) (= (uf_18 ?x46) (uf_4 uf_14 ?x46)))) (implies true (implies true (and (implies (= (uf_18 uf_11) 0) (and (implies (forall (?x47 T2) (<= 0 (uf_18 ?x47))) (and (implies (forall (?x48 T2) (?x49 T2) (implies (and (= (uf_6 uf_17 ?x48) uf_8) (not (= (uf_6 uf_17 ?x49) uf_8))) (<= (uf_18 ?x48) (uf_18 ?x49)))) (and (implies (forall (?x50 T2) (?x51 T2) (implies (and (< (uf_10 (uf_1 ?x51 ?x50)) uf_9) (= (uf_6 uf_17 ?x51) uf_8)) (<= (uf_18 ?x50) (+ (uf_18 ?x51) (uf_10 (uf_1 ?x51 ?x50)))))) (and (implies (forall (?x52 T2) (implies (and (< (uf_18 ?x52) uf_9) (not (= ?x52 uf_11))) (exists (?x53 T2) (and (= (uf_18 ?x52) (+ (uf_18 ?x53) (uf_10 (uf_1 ?x53 ?x52)))) (and (= (uf_6 uf_17 ?x53) uf_8) (< (uf_18 ?x53) (uf_18 ?x52))))))) (implies false true)) (forall (?x54 T2) (implies (and (< (uf_18 ?x54) uf_9) (not (= ?x54 uf_11))) (exists (?x55 T2) (and (= (uf_18 ?x54) (+ (uf_18 ?x55) (uf_10 (uf_1 ?x55 ?x54)))) (and (= (uf_6 uf_17 ?x55) uf_8) (< (uf_18 ?x55) (uf_18 ?x54))))))))) (forall (?x56 T2) (?x57 T2) (implies (and (< (uf_10 (uf_1 ?x57 ?x56)) uf_9) (= (uf_6 uf_17 ?x57) uf_8)) (<= (uf_18 ?x56) (+ (uf_18 ?x57) (uf_10 (uf_1 ?x57 ?x56)))))))) (forall (?x58 T2) (?x59 T2) (implies (and (= (uf_6 uf_17 ?x58) uf_8) (not (= (uf_6 uf_17 ?x59) uf_8))) (<= (uf_18 ?x58) (uf_18 ?x59)))))) (forall (?x60 T2) (<= 0 (uf_18 ?x60))))) (= (uf_18 uf_11) 0))))) (forall (?x61 T2) (implies (= (uf_6 uf_17 ?x61) uf_8) (= (uf_18 ?x61) (uf_4 uf_14 ?x61)))))) (forall (?x62 T2) (<= (uf_18 ?x62) (uf_4 uf_14 ?x62))))))))))))) (implies true (implies true (implies (not (exists (?x63 T2) (and (< (uf_4 uf_14 ?x63) uf_9) (not (= (uf_6 uf_15 ?x63) uf_8))))) (implies true (implies true (implies (= uf_19 uf_15) (implies (= uf_20 uf_21) (implies (= uf_22 uf_14) (implies (= uf_23 uf_24) (implies true (and (implies (forall (?x64 T2) (implies (and (< (uf_4 uf_22 ?x64) uf_9) (not (= ?x64 uf_11))) (exists (?x65 T2) (and (= (uf_4 uf_22 ?x64) (+ (uf_4 uf_22 ?x65) (uf_10 (uf_1 ?x65 ?x64)))) (< (uf_4 uf_22 ?x65) (uf_4 uf_22 ?x64)))))) (and (implies (forall (?x66 T2) (?x67 T2) (implies (and (< (uf_10 (uf_1 ?x67 ?x66)) uf_9) (< (uf_4 uf_22 ?x67) uf_9)) (<= (uf_4 uf_22 ?x66) (+ (uf_4 uf_22 ?x67) (uf_10 (uf_1 ?x67 ?x66)))))) (and (implies (= (uf_4 uf_22 uf_11) 0) true) (= (uf_4 uf_22 uf_11) 0))) (forall (?x68 T2) (?x69 T2) (implies (and (< (uf_10 (uf_1 ?x69 ?x68)) uf_9) (< (uf_4 uf_22 ?x69) uf_9)) (<= (uf_4 uf_22 ?x68) (+ (uf_4 uf_22 ?x69) (uf_10 (uf_1 ?x69 ?x68)))))))) (forall (?x70 T2) (implies (and (< (uf_4 uf_22 ?x70) uf_9) (not (= ?x70 uf_11))) (exists (?x71 T2) (and (= (uf_4 uf_22 ?x70) (+ (uf_4 uf_22 ?x71) (uf_10 (uf_1 ?x71 ?x70)))) (< (uf_4 uf_22 ?x71) (uf_4 uf_22 ?x70))))))))))))))))))))))))))) (forall (?x72 T2) (implies (and (< (uf_12 ?x72) uf_9) (not (= ?x72 uf_11))) (exists (?x73 T2) (and (= (uf_12 ?x72) (+ (uf_12 ?x73) (uf_10 (uf_1 ?x73 ?x72)))) (and (up_13 ?x73) (< (uf_12 ?x73) (uf_12 ?x72))))))))) (forall (?x74 T2) (?x75 T2) (implies (and (< (uf_10 (uf_1 ?x75 ?x74)) uf_9) (up_13 ?x75)) (<= (uf_12 ?x74) (+ (uf_12 ?x75) (uf_10 (uf_1 ?x75 ?x74)))))))) (forall (?x76 T2) (?x77 T2) (implies (and (up_13 ?x76) (not (up_13 ?x77))) (<= (uf_12 ?x76) (uf_12 ?x77)))))) (forall (?x78 T2) (<= 0 (uf_12 ?x78))))) (= (uf_12 uf_11) 0)))))))))
+:assumption (not (implies true (implies true (implies (forall (?x24 T2) (implies (= ?x24 uf_11) (= (uf_12 ?x24) 0))) (implies (forall (?x25 T2) (implies (not (= ?x25 uf_11)) (= (uf_12 ?x25) uf_9))) (implies (forall (?x26 T2) (not (up_13 ?x26))) (implies true (and (= (uf_12 uf_11) 0) (implies (= (uf_12 uf_11) 0) (and (forall (?x27 T2) (<= 0 (uf_12 ?x27))) (implies (forall (?x28 T2) (<= 0 (uf_12 ?x28))) (and (forall (?x29 T2) (?x30 T2) (implies (and (not (up_13 ?x30)) (up_13 ?x29)) (<= (uf_12 ?x29) (uf_12 ?x30)))) (implies (forall (?x31 T2) (?x32 T2) (implies (and (not (up_13 ?x32)) (up_13 ?x31)) (<= (uf_12 ?x31) (uf_12 ?x32)))) (and (forall (?x33 T2) (?x34 T2) (implies (and (up_13 ?x34) (< (uf_10 (uf_1 ?x34 ?x33)) uf_9)) (<= (uf_12 ?x33) (+ (uf_12 ?x34) (uf_10 (uf_1 ?x34 ?x33)))))) (implies (forall (?x35 T2) (?x36 T2) (implies (and (up_13 ?x36) (< (uf_10 (uf_1 ?x36 ?x35)) uf_9)) (<= (uf_12 ?x35) (+ (uf_12 ?x36) (uf_10 (uf_1 ?x36 ?x35)))))) (and (forall (?x37 T2) (implies (and (not (= ?x37 uf_11)) (< (uf_12 ?x37) uf_9)) (exists (?x38 T2) (and (< (uf_12 ?x38) (uf_12 ?x37)) (and (up_13 ?x38) (= (uf_12 ?x37) (+ (uf_12 ?x38) (uf_10 (uf_1 ?x38 ?x37))))))))) (implies (forall (?x39 T2) (implies (and (not (= ?x39 uf_11)) (< (uf_12 ?x39) uf_9)) (exists (?x40 T2) (and (< (uf_12 ?x40) (uf_12 ?x39)) (and (up_13 ?x40) (= (uf_12 ?x39) (+ (uf_12 ?x40) (uf_10 (uf_1 ?x40 ?x39))))))))) (implies true (implies true (implies (= (uf_4 uf_14 uf_11) 0) (implies (forall (?x41 T2) (<= 0 (uf_4 uf_14 ?x41))) (implies (forall (?x42 T2) (?x43 T2) (implies (and (not (= (uf_6 uf_15 ?x43) uf_8)) (= (uf_6 uf_15 ?x42) uf_8)) (<= (uf_4 uf_14 ?x42) (uf_4 uf_14 ?x43)))) (implies (forall (?x44 T2) (?x45 T2) (implies (and (= (uf_6 uf_15 ?x45) uf_8) (< (uf_10 (uf_1 ?x45 ?x44)) uf_9)) (<= (uf_4 uf_14 ?x44) (+ (uf_4 uf_14 ?x45) (uf_10 (uf_1 ?x45 ?x44)))))) (implies (forall (?x46 T2) (implies (and (not (= ?x46 uf_11)) (< (uf_4 uf_14 ?x46) uf_9)) (exists (?x47 T2) (and (< (uf_4 uf_14 ?x47) (uf_4 uf_14 ?x46)) (and (= (uf_6 uf_15 ?x47) uf_8) (= (uf_4 uf_14 ?x46) (+ (uf_4 uf_14 ?x47) (uf_10 (uf_1 ?x47 ?x46))))))))) (implies true (and (implies true (implies true (implies (not (exists (?x48 T2) (and (not (= (uf_6 uf_15 ?x48) uf_8)) (< (uf_4 uf_14 ?x48) uf_9)))) (implies true (implies true (implies (= uf_16 uf_15) (implies (= uf_17 uf_18) (implies (= uf_19 uf_14) (implies (= uf_20 uf_21) (implies true (and (forall (?x49 T2) (implies (and (not (= ?x49 uf_11)) (< (uf_4 uf_19 ?x49) uf_9)) (exists (?x50 T2) (and (< (uf_4 uf_19 ?x50) (uf_4 uf_19 ?x49)) (= (uf_4 uf_19 ?x49) (+ (uf_4 uf_19 ?x50) (uf_10 (uf_1 ?x50 ?x49)))))))) (implies (forall (?x51 T2) (implies (and (not (= ?x51 uf_11)) (< (uf_4 uf_19 ?x51) uf_9)) (exists (?x52 T2) (and (< (uf_4 uf_19 ?x52) (uf_4 uf_19 ?x51)) (= (uf_4 uf_19 ?x51) (+ (uf_4 uf_19 ?x52) (uf_10 (uf_1 ?x52 ?x51)))))))) (and (forall (?x53 T2) (?x54 T2) (implies (and (< (uf_4 uf_19 ?x54) uf_9) (< (uf_10 (uf_1 ?x54 ?x53)) uf_9)) (<= (uf_4 uf_19 ?x53) (+ (uf_4 uf_19 ?x54) (uf_10 (uf_1 ?x54 ?x53)))))) (implies (forall (?x55 T2) (?x56 T2) (implies (and (< (uf_4 uf_19 ?x56) uf_9) (< (uf_10 (uf_1 ?x56 ?x55)) uf_9)) (<= (uf_4 uf_19 ?x55) (+ (uf_4 uf_19 ?x56) (uf_10 (uf_1 ?x56 ?x55)))))) (and (= (uf_4 uf_19 uf_11) 0) (implies (= (uf_4 uf_19 uf_11) 0) true)))))))))))))))) (implies true (implies true (implies (exists (?x57 T2) (and (not (= (uf_6 uf_15 ?x57) uf_8)) (< (uf_4 uf_14 ?x57) uf_9))) (implies (not (= (uf_6 uf_15 uf_22) uf_8)) (implies (< (uf_4 uf_14 uf_22) uf_9) (implies (forall (?x58 T2) (implies (not (= (uf_6 uf_15 ?x58) uf_8)) (<= (uf_4 uf_14 uf_22) (uf_4 uf_14 ?x58)))) (implies (= uf_23 (uf_7 uf_15 uf_22 uf_8)) (implies (forall (?x59 T2) (implies (and (< (uf_10 (uf_1 uf_22 ?x59)) uf_9) (< (+ (uf_4 uf_14 uf_22) (uf_10 (uf_1 uf_22 ?x59))) (uf_4 uf_14 ?x59))) (= (uf_24 ?x59) (+ (uf_4 uf_14 uf_22) (uf_10 (uf_1 uf_22 ?x59)))))) (implies (forall (?x60 T2) (implies (not (and (< (uf_10 (uf_1 uf_22 ?x60)) uf_9) (< (+ (uf_4 uf_14 uf_22) (uf_10 (uf_1 uf_22 ?x60))) (uf_4 uf_14 ?x60)))) (= (uf_24 ?x60) (uf_4 uf_14 ?x60)))) (and (forall (?x61 T2) (<= (uf_24 ?x61) (uf_4 uf_14 ?x61))) (implies (forall (?x62 T2) (<= (uf_24 ?x62) (uf_4 uf_14 ?x62))) (and (forall (?x63 T2) (implies (= (uf_6 uf_23 ?x63) uf_8) (= (uf_24 ?x63) (uf_4 uf_14 ?x63)))) (implies (forall (?x64 T2) (implies (= (uf_6 uf_23 ?x64) uf_8) (= (uf_24 ?x64) (uf_4 uf_14 ?x64)))) (implies true (implies true (and (= (uf_24 uf_11) 0) (implies (= (uf_24 uf_11) 0) (and (forall (?x65 T2) (<= 0 (uf_24 ?x65))) (implies (forall (?x66 T2) (<= 0 (uf_24 ?x66))) (and (forall (?x67 T2) (?x68 T2) (implies (and (not (= (uf_6 uf_23 ?x68) uf_8)) (= (uf_6 uf_23 ?x67) uf_8)) (<= (uf_24 ?x67) (uf_24 ?x68)))) (implies (forall (?x69 T2) (?x70 T2) (implies (and (not (= (uf_6 uf_23 ?x70) uf_8)) (= (uf_6 uf_23 ?x69) uf_8)) (<= (uf_24 ?x69) (uf_24 ?x70)))) (and (forall (?x71 T2) (?x72 T2) (implies (and (= (uf_6 uf_23 ?x72) uf_8) (< (uf_10 (uf_1 ?x72 ?x71)) uf_9)) (<= (uf_24 ?x71) (+ (uf_24 ?x72) (uf_10 (uf_1 ?x72 ?x71)))))) (implies (forall (?x73 T2) (?x74 T2) (implies (and (= (uf_6 uf_23 ?x74) uf_8) (< (uf_10 (uf_1 ?x74 ?x73)) uf_9)) (<= (uf_24 ?x73) (+ (uf_24 ?x74) (uf_10 (uf_1 ?x74 ?x73)))))) (and (forall (?x75 T2) (implies (and (not (= ?x75 uf_11)) (< (uf_24 ?x75) uf_9)) (exists (?x76 T2) (and (< (uf_24 ?x76) (uf_24 ?x75)) (and (= (uf_6 uf_23 ?x76) uf_8) (= (uf_24 ?x75) (+ (uf_24 ?x76) (uf_10 (uf_1 ?x76 ?x75))))))))) (implies (forall (?x77 T2) (implies (and (not (= ?x77 uf_11)) (< (uf_24 ?x77) uf_9)) (exists (?x78 T2) (and (< (uf_24 ?x78) (uf_24 ?x77)) (and (= (uf_6 uf_23 ?x78) uf_8) (= (uf_24 ?x77) (+ (uf_24 ?x78) (uf_10 (uf_1 ?x78 ?x77))))))))) (implies false true))))))))))))))))))))))))))))))))))))))))))))))))))))
:formula true
)
--- a/src/HOL/Boogie/Examples/cert/Boogie_Dijkstra.proof Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Boogie/Examples/cert/Boogie_Dijkstra.proof Sat Nov 14 09:40:27 2009 +0100
@@ -1,4237 +1,239 @@
#2 := false
#55 := 0::int
-decl uf_4 :: (-> T3 T2 int)
-decl ?x40!7 :: (-> T2 T2)
-decl ?x52!15 :: T2
-#2305 := ?x52!15
-#15992 := (?x40!7 ?x52!15)
-decl uf_14 :: T3
-#107 := uf_14
-#15996 := (uf_4 uf_14 #15992)
-#20405 := (>= #15996 0::int)
-#11 := (:var 0 T2)
-#110 := (uf_4 uf_14 #11)
-#4403 := (pattern #110)
-#1843 := (>= #110 0::int)
-#4404 := (forall (vars (?x34 T2)) (:pat #4403) #1843)
-decl uf_10 :: (-> T1 int)
+decl uf_24 :: (-> T2 int)
+decl ?x68!16 :: T2
+#2296 := ?x68!16
+#2300 := (uf_24 ?x68!16)
+#1220 := -1::int
+#2894 := (* -1::int #2300)
+decl ?x67!17 :: T2
+#2297 := ?x67!17
+#2298 := (uf_24 ?x67!17)
+#2895 := (+ #2298 #2894)
+#2896 := (<= #2895 0::int)
+#4133 := (not #2896)
+decl uf_6 :: (-> T4 T2 T5)
+decl uf_23 :: T4
+#193 := uf_23
+#2305 := (uf_6 uf_23 ?x68!16)
+decl uf_8 :: T5
+#33 := uf_8
+#2306 := (= uf_8 #2305)
+#2303 := (uf_6 uf_23 ?x67!17)
+#2304 := (= uf_8 #2303)
+#3433 := (not #2304)
+#3448 := (or #3433 #2306 #2896)
+#3453 := (not #3448)
decl uf_1 :: (-> T2 T2 T1)
-decl ?x66!20 :: T2
-#2511 := ?x66!20
-decl ?x67!19 :: T2
-#2510 := ?x67!19
-#2516 := (uf_1 ?x67!19 ?x66!20)
-#2517 := (uf_10 #2516)
-#1320 := -1::int
-#2524 := (* -1::int #2517)
-decl uf_22 :: T3
-#230 := uf_22
-#2514 := (uf_4 uf_22 ?x67!19)
-#2520 := (* -1::int #2514)
-#3094 := (+ #2520 #2524)
-#2512 := (uf_4 uf_22 ?x66!20)
-#3095 := (+ #2512 #3094)
-#3096 := (<= #3095 0::int)
-decl uf_9 :: int
-#56 := uf_9
-#2525 := (+ uf_9 #2524)
-#2526 := (<= #2525 0::int)
-#2521 := (+ uf_9 #2520)
-#2522 := (<= #2521 0::int)
-#3693 := (or #2522 #2526 #3096)
-#3698 := (not #3693)
+decl ?x75!20 :: T2
+#2354 := ?x75!20
+#11 := (:var 0 T2)
+#2358 := (uf_1 #11 ?x75!20)
+#4486 := (pattern #2358)
+#202 := (uf_24 #11)
+#4426 := (pattern #202)
+#212 := (uf_6 uf_23 #11)
+#4452 := (pattern #212)
+decl uf_10 :: (-> T1 int)
+#2359 := (uf_10 #2358)
+#2355 := (uf_24 ?x75!20)
+#2356 := (* -1::int #2355)
+#2958 := (+ #2356 #2359)
+#2959 := (+ #202 #2958)
+#2962 := (= #2959 0::int)
+#3524 := (not #2962)
+#2357 := (+ #202 #2356)
+#2362 := (>= #2357 0::int)
+#773 := (= uf_8 #212)
+#779 := (not #773)
+#3525 := (or #779 #2362 #3524)
+#4487 := (forall (vars (?x76 T2)) (:pat #4452 #4426 #4486) #3525)
+#4492 := (not #4487)
#10 := (:var 1 T2)
#90 := (uf_1 #11 #10)
-#4379 := (pattern #90)
-#238 := (uf_4 uf_22 #10)
-#1720 := (* -1::int #238)
-#235 := (uf_4 uf_22 #11)
-#1721 := (+ #235 #1720)
+#4281 := (pattern #90)
+#224 := (uf_24 #10)
+#1505 := (* -1::int #224)
+#1506 := (+ #202 #1505)
#91 := (uf_10 #90)
-#1727 := (+ #91 #1721)
-#1750 := (>= #1727 0::int)
-#1707 := (* -1::int #235)
-#1708 := (+ uf_9 #1707)
-#1709 := (<= #1708 0::int)
-#1343 := (* -1::int #91)
-#1346 := (+ uf_9 #1343)
-#1347 := (<= #1346 0::int)
-#3661 := (or #1347 #1709 #1750)
-#4633 := (forall (vars (?x66 T2) (?x67 T2)) (:pat #4379) #3661)
-#4638 := (not #4633)
-decl uf_11 :: T2
-#67 := uf_11
-#250 := (uf_4 uf_22 uf_11)
-#251 := (= #250 0::int)
-#4641 := (or #251 #4638)
-#4644 := (not #4641)
-#4647 := (or #4644 #3698)
-#4650 := (not #4647)
-#4609 := (pattern #235)
-decl ?x65!18 :: (-> T2 T2)
-#2487 := (?x65!18 #11)
-#2490 := (uf_1 #2487 #11)
-#2491 := (uf_10 #2490)
-#3064 := (* -1::int #2491)
-#2488 := (uf_4 uf_22 #2487)
-#3047 := (* -1::int #2488)
-#3065 := (+ #3047 #3064)
-#3066 := (+ #235 #3065)
-#3067 := (= #3066 0::int)
-#3631 := (not #3067)
-#3048 := (+ #235 #3047)
-#3049 := (<= #3048 0::int)
-#3632 := (or #3049 #3631)
-#3633 := (not #3632)
-#68 := (= #11 uf_11)
-#3639 := (or #68 #1709 #3633)
-#4625 := (forall (vars (?x64 T2)) (:pat #4609) #3639)
-#4630 := (not #4625)
-#4653 := (or #4630 #4650)
-#4656 := (not #4653)
-decl ?x64!17 :: T2
-#2447 := ?x64!17
-#2451 := (uf_1 #11 ?x64!17)
-#4610 := (pattern #2451)
-#2452 := (uf_10 #2451)
-#2448 := (uf_4 uf_22 ?x64!17)
-#2449 := (* -1::int #2448)
-#3017 := (+ #2449 #2452)
-#3018 := (+ #235 #3017)
-#3021 := (= #3018 0::int)
-#3595 := (not #3021)
-#2450 := (+ #235 #2449)
-#2455 := (>= #2450 0::int)
-#3596 := (or #2455 #3595)
-#4611 := (forall (vars (?x65 T2)) (:pat #4609 #4610) #3596)
-#4616 := (not #4611)
-#2993 := (= uf_11 ?x64!17)
-#2459 := (+ uf_9 #2449)
-#2460 := (<= #2459 0::int)
-#4619 := (or #2460 #2993 #4616)
-#4622 := (not #4619)
-#4659 := (or #4622 #4656)
-#4662 := (not #4659)
-decl uf_6 :: (-> T4 T2 T5)
-decl uf_15 :: T4
-#113 := uf_15
-#116 := (uf_6 uf_15 #11)
-#4445 := (pattern #116)
-#1404 := (* -1::int #110)
-#1405 := (+ uf_9 #1404)
-#1406 := (<= #1405 0::int)
-decl uf_8 :: T5
-#33 := uf_8
-#505 := (= uf_8 #116)
-#3581 := (or #505 #1406)
-#4601 := (forall (vars (?x41 T2)) (:pat #4445 #4403) #3581)
-#4606 := (not #4601)
-#933 := (= uf_14 uf_22)
-#1053 := (not #933)
-decl uf_19 :: T4
-#225 := uf_19
-#930 := (= uf_15 uf_19)
-#1071 := (not #930)
-decl uf_24 :: T3
-#233 := uf_24
-decl uf_23 :: T3
-#232 := uf_23
-#234 := (= uf_23 uf_24)
-#1044 := (not #234)
-decl uf_21 :: T2
-#228 := uf_21
-decl uf_20 :: T2
-#227 := uf_20
-#229 := (= uf_20 uf_21)
-#1062 := (not #229)
-#4665 := (or #1062 #1044 #1071 #1053 #4606 #4662)
-#4668 := (not #4665)
-#2309 := (uf_1 #11 ?x52!15)
-#4514 := (pattern #2309)
-decl uf_18 :: (-> T2 int)
-#158 := (uf_18 #11)
-#4454 := (pattern #158)
-decl uf_17 :: T4
-#149 := uf_17
-#168 := (uf_6 uf_17 #11)
-#4480 := (pattern #168)
-#2310 := (uf_10 #2309)
-#2306 := (uf_18 ?x52!15)
-#2307 := (* -1::int #2306)
-#2917 := (+ #2307 #2310)
-#2918 := (+ #158 #2917)
-#2921 := (= #2918 0::int)
-#3474 := (not #2921)
-#2308 := (+ #158 #2307)
-#2313 := (>= #2308 0::int)
-#630 := (= uf_8 #168)
-#636 := (not #630)
-#3475 := (or #636 #2313 #3474)
-#4515 := (forall (vars (?x53 T2)) (:pat #4480 #4454 #4514) #3475)
-#4520 := (not #4515)
-#180 := (uf_18 #10)
-#1505 := (* -1::int #180)
-#1506 := (+ #158 #1505)
#1536 := (+ #91 #1506)
#1534 := (>= #1536 0::int)
-#3466 := (or #636 #1347 #1534)
-#4506 := (forall (vars (?x50 T2) (?x51 T2)) (:pat #4379) #3466)
-#4511 := (not #4506)
-#2893 := (= uf_11 ?x52!15)
-#2317 := (+ uf_9 #2307)
-#2318 := (<= #2317 0::int)
-#4523 := (or #2318 #2893 #4511 #4520)
-#4526 := (not #4523)
-decl ?x50!14 :: T2
-#2275 := ?x50!14
-decl ?x51!13 :: T2
-#2274 := ?x51!13
-#2280 := (uf_1 ?x51!13 ?x50!14)
-#2281 := (uf_10 #2280)
-#2284 := (* -1::int #2281)
-#2278 := (uf_18 ?x51!13)
-#2879 := (* -1::int #2278)
-#2880 := (+ #2879 #2284)
-#2276 := (uf_18 ?x50!14)
-#2881 := (+ #2276 #2880)
-#2882 := (<= #2881 0::int)
-#2288 := (uf_6 uf_17 ?x51!13)
-#2289 := (= uf_8 #2288)
-#3429 := (not #2289)
-#2285 := (+ uf_9 #2284)
-#2286 := (<= #2285 0::int)
-#3444 := (or #2286 #3429 #2882)
-#3449 := (not #3444)
-#4529 := (or #3449 #4526)
-#4532 := (not #4529)
-#4497 := (pattern #158 #180)
+#1235 := (* -1::int #91)
+decl uf_9 :: int
+#56 := uf_9
+#1236 := (+ uf_9 #1235)
+#1237 := (<= #1236 0::int)
+#3516 := (or #779 #1237 #1534)
+#4478 := (forall (vars (?x71 T2) (?x72 T2)) (:pat #4281) #3516)
+#4483 := (not #4478)
+decl uf_11 :: T2
+#67 := uf_11
+#2934 := (= uf_11 ?x75!20)
+#2366 := (+ uf_9 #2356)
+#2367 := (<= #2366 0::int)
+#4495 := (or #2367 #2934 #4483 #4492)
+#4498 := (not #4495)
+decl ?x71!19 :: T2
+#2324 := ?x71!19
+decl ?x72!18 :: T2
+#2323 := ?x72!18
+#2329 := (uf_1 ?x72!18 ?x71!19)
+#2330 := (uf_10 #2329)
+#2333 := (* -1::int #2330)
+#2327 := (uf_24 ?x72!18)
+#2920 := (* -1::int #2327)
+#2921 := (+ #2920 #2333)
+#2325 := (uf_24 ?x71!19)
+#2922 := (+ #2325 #2921)
+#2923 := (<= #2922 0::int)
+#2337 := (uf_6 uf_23 ?x72!18)
+#2338 := (= uf_8 #2337)
+#3479 := (not #2338)
+#2334 := (+ uf_9 #2333)
+#2335 := (<= #2334 0::int)
+#3494 := (or #2335 #3479 #2923)
+#3499 := (not #3494)
+#4501 := (or #3499 #4498)
+#4504 := (not #4501)
+#4469 := (pattern #202 #224)
#1504 := (>= #1506 0::int)
-#176 := (uf_6 uf_17 #10)
-#648 := (= uf_8 #176)
-#3406 := (not #648)
-#3421 := (or #630 #3406 #1504)
-#4498 := (forall (vars (?x48 T2) (?x49 T2)) (:pat #4497) #3421)
-#4503 := (not #4498)
-#4535 := (or #4503 #4532)
-#4538 := (not #4535)
-decl ?x49!11 :: T2
-#2247 := ?x49!11
-#2251 := (uf_18 ?x49!11)
-#2853 := (* -1::int #2251)
-decl ?x48!12 :: T2
-#2248 := ?x48!12
-#2249 := (uf_18 ?x48!12)
-#2854 := (+ #2249 #2853)
-#2855 := (<= #2854 0::int)
-#2256 := (uf_6 uf_17 ?x49!11)
-#2257 := (= uf_8 #2256)
-#2254 := (uf_6 uf_17 ?x48!12)
-#2255 := (= uf_8 #2254)
-#3383 := (not #2255)
-#3398 := (or #3383 #2257 #2855)
-#3403 := (not #3398)
-#4541 := (or #3403 #4538)
-#4544 := (not #4541)
-#1495 := (>= #158 0::int)
-#4489 := (forall (vars (?x47 T2)) (:pat #4454) #1495)
-#4494 := (not #4489)
-#4547 := (or #4494 #4544)
-#4550 := (not #4547)
-decl ?x47!10 :: T2
-#2232 := ?x47!10
-#2233 := (uf_18 ?x47!10)
-#2234 := (>= #2233 0::int)
-#2235 := (not #2234)
-#4553 := (or #2235 #4550)
-#4556 := (not #4553)
-#172 := (uf_18 uf_11)
-#173 := (= #172 0::int)
-#1492 := (not #173)
-#4559 := (or #1492 #4556)
-#4562 := (not #4559)
-#4565 := (or #1492 #4562)
-#4568 := (not #4565)
-#616 := (= #110 #158)
-#637 := (or #616 #636)
-#4481 := (forall (vars (?x46 T2)) (:pat #4403 #4454 #4480) #637)
-#4486 := (not #4481)
-#4571 := (or #4486 #4568)
-#4574 := (not #4571)
-decl ?x46!9 :: T2
-#2207 := ?x46!9
-#2212 := (uf_4 uf_14 ?x46!9)
-#2211 := (uf_18 ?x46!9)
-#2825 := (= #2211 #2212)
-#2208 := (uf_6 uf_17 ?x46!9)
-#2209 := (= uf_8 #2208)
-#2210 := (not #2209)
-#2831 := (or #2210 #2825)
-#2836 := (not #2831)
-#4577 := (or #2836 #4574)
-#4580 := (not #4577)
-#1480 := (* -1::int #158)
-#1481 := (+ #110 #1480)
-#1479 := (>= #1481 0::int)
-#4472 := (forall (vars (?x45 T2)) (:pat #4403 #4454) #1479)
-#4477 := (not #4472)
-#4583 := (or #4477 #4580)
-#4586 := (not #4583)
-decl ?x45!8 :: T2
-#2189 := ?x45!8
-#2192 := (uf_4 uf_14 ?x45!8)
-#2815 := (* -1::int #2192)
-#2190 := (uf_18 ?x45!8)
-#2816 := (+ #2190 #2815)
-#2817 := (<= #2816 0::int)
-#2822 := (not #2817)
-#4589 := (or #2822 #4586)
-#4592 := (not #4589)
-decl uf_16 :: T2
-#140 := uf_16
-#152 := (uf_1 uf_16 #11)
-#4455 := (pattern #152)
-#153 := (uf_10 #152)
-#1623 := (+ #153 #1480)
-#144 := (uf_4 uf_14 uf_16)
-#1624 := (+ #144 #1623)
-#1625 := (= #1624 0::int)
-#1450 := (* -1::int #153)
-#1457 := (+ uf_9 #1450)
-#1458 := (<= #1457 0::int)
-#1449 := (* -1::int #144)
-#1451 := (+ #1449 #1450)
-#1452 := (+ #110 #1451)
-#1453 := (<= #1452 0::int)
-#3375 := (or #1453 #1458 #1625)
-#4464 := (forall (vars (?x43 T2)) (:pat #4403 #4455 #4454) #3375)
-#4469 := (not #4464)
-#3355 := (or #1453 #1458)
-#3356 := (not #3355)
-#3359 := (or #616 #3356)
-#4456 := (forall (vars (?x44 T2)) (:pat #4403 #4454 #4455) #3359)
-#4461 := (not #4456)
-decl ?x41!16 :: T2
-#2408 := ?x41!16
-#2414 := (uf_6 uf_15 ?x41!16)
-#2415 := (= uf_8 #2414)
-#2409 := (uf_4 uf_14 ?x41!16)
-#2410 := (* -1::int #2409)
-#2411 := (+ uf_9 #2410)
-#2412 := (<= #2411 0::int)
-#1655 := (+ uf_9 #1449)
-#1656 := (<= #1655 0::int)
-#1638 := (+ #110 #1449)
-#1637 := (>= #1638 0::int)
-#1644 := (or #505 #1637)
-#4446 := (forall (vars (?x42 T2)) (:pat #4445 #4403) #1644)
-#4451 := (not #4446)
-#141 := (uf_6 uf_15 uf_16)
-#585 := (= uf_8 #141)
+#221 := (uf_6 uf_23 #10)
+#793 := (= uf_8 #221)
+#3456 := (not #793)
+#3471 := (or #773 #3456 #1504)
+#4470 := (forall (vars (?x67 T2) (?x68 T2)) (:pat #4469) #3471)
+#4475 := (not #4470)
+#4507 := (or #4475 #4504)
+#7658 := [hypothesis]: #3499
+#2336 := (not #2335)
+#4131 := (or #3494 #2336)
+#4137 := [def-axiom]: #4131
+#17052 := [unit-resolution #4137 #7658]: #2336
+#17077 := (or #3494 #2335)
+decl uf_4 :: (-> T3 T2 int)
+decl uf_14 :: T3
+#107 := uf_14
+#110 := (uf_4 uf_14 #11)
+#4305 := (pattern #110)
+#759 := (= #110 #202)
+#780 := (or #759 #779)
+#4453 := (forall (vars (?x63 T2)) (:pat #4305 #4426 #4452) #780)
+#4510 := (not #4507)
+#4513 := (or #3453 #4510)
+#4516 := (not #4513)
+#1495 := (>= #202 0::int)
+#4461 := (forall (vars (?x65 T2)) (:pat #4426) #1495)
+#4466 := (not #4461)
+#4519 := (or #4466 #4516)
+#4522 := (not #4519)
+decl ?x65!15 :: T2
+#2281 := ?x65!15
+#2282 := (uf_24 ?x65!15)
+#2283 := (>= #2282 0::int)
+#2284 := (not #2283)
+#4525 := (or #2284 #4522)
+#4528 := (not #4525)
+#216 := (uf_24 uf_11)
+#217 := (= #216 0::int)
+#1492 := (not #217)
+#4531 := (or #1492 #4528)
+#4534 := (not #4531)
+#4537 := (or #1492 #4534)
+#4540 := (not #4537)
+#4458 := (not #4453)
+#4543 := (or #4458 #4540)
+#4546 := (not #4543)
+decl ?x63!14 :: T2
+#2256 := ?x63!14
+#2261 := (uf_4 uf_14 ?x63!14)
+#2260 := (uf_24 ?x63!14)
+#2866 := (= #2260 #2261)
+#2257 := (uf_6 uf_23 ?x63!14)
+#2258 := (= uf_8 #2257)
+#2259 := (not #2258)
+#2872 := (or #2259 #2866)
+#2877 := (not #2872)
+#10222 := [hypothesis]: #2877
+#4144 := (or #2872 #2258)
+#4145 := [def-axiom]: #4144
+#10559 := [unit-resolution #4145 #10222]: #2258
+#4140 := (not #2866)
+#4141 := (or #2872 #4140)
+#4146 := [def-axiom]: #4141
+#10294 := [unit-resolution #4146 #10222]: #4140
+decl uf_3 :: (-> T1 T2)
+decl uf_22 :: T2
+#184 := uf_22
+#4728 := (uf_1 uf_22 uf_22)
+#9695 := (uf_3 #4728)
+#10367 := (uf_1 #9695 ?x63!14)
+#10448 := (uf_3 #10367)
+#11132 := (uf_4 uf_14 #10448)
+#13212 := (= #11132 #2261)
+#12385 := (= #2261 #11132)
+#10449 := (= ?x63!14 #10448)
+#12 := (uf_1 #10 #11)
+#4196 := (pattern #12)
+#13 := (uf_3 #12)
+#317 := (= #11 #13)
+#4197 := (forall (vars (?x2 T2) (?x3 T2)) (:pat #4196) #317)
+#321 := (forall (vars (?x2 T2) (?x3 T2)) #317)
+#4200 := (iff #321 #4197)
+#4198 := (iff #317 #317)
+#4199 := [refl]: #4198
+#4201 := [quant-intro #4199]: #4200
+#1843 := (~ #321 #321)
+#1875 := (~ #317 #317)
+#1876 := [refl]: #1875
+#1841 := [nnf-pos #1876]: #1843
+#14 := (= #13 #11)
+#15 := (forall (vars (?x2 T2) (?x3 T2)) #14)
+#322 := (iff #15 #321)
+#319 := (iff #14 #317)
+#320 := [rewrite]: #319
+#323 := [quant-intro #320]: #322
+#316 := [asserted]: #15
+#326 := [mp #316 #323]: #321
+#1877 := [mp~ #326 #1841]: #321
+#4202 := [mp #1877 #4201]: #4197
+#8139 := (not #4197)
+#12947 := (or #8139 #10449)
+#12948 := [quant-inst]: #12947
+#13195 := [unit-resolution #12948 #4202]: #10449
+#13203 := [monotonicity #13195]: #12385
+#13213 := [symm #13203]: #13212
+#13222 := (= #2260 #11132)
+#188 := (uf_4 uf_14 uf_22)
+#13623 := (= #188 #11132)
+#13621 := (= #11132 #188)
+#13610 := (= #10448 uf_22)
+#10707 := (= #9695 uf_22)
+#9696 := (= uf_22 #9695)
+#9727 := (or #8139 #9696)
+#9731 := [quant-inst]: #9727
+#10706 := [unit-resolution #9731 #4202]: #9696
+#10708 := [symm #10706]: #10707
+#13609 := (= #10448 #9695)
+#10319 := (= ?x63!14 #9695)
+decl uf_15 :: T4
+#113 := uf_15
+#9518 := (uf_6 uf_15 ?x63!14)
+#9519 := (= uf_8 #9518)
decl uf_7 :: (-> T4 T2 T5 T4)
-#150 := (uf_7 uf_15 uf_16 uf_8)
-#151 := (= uf_17 #150)
-#876 := (not #151)
-#4595 := (or #876 #585 #4451 #1656 #2412 #2415 #4461 #4469 #4592)
-#4598 := (not #4595)
-#4671 := (or #4598 #4668)
-#4674 := (not #4671)
-#2152 := (?x40!7 #11)
-#2155 := (uf_1 #2152 #11)
-#2156 := (uf_10 #2155)
-#2790 := (* -1::int #2156)
-#2153 := (uf_4 uf_14 #2152)
-#2773 := (* -1::int #2153)
-#2791 := (+ #2773 #2790)
-#2792 := (+ #110 #2791)
-#2793 := (= #2792 0::int)
-#3339 := (not #2793)
-#2774 := (+ #110 #2773)
-#2775 := (<= #2774 0::int)
-#2161 := (uf_6 uf_15 #2152)
-#2162 := (= uf_8 #2161)
-#3338 := (not #2162)
-#3340 := (or #3338 #2775 #3339)
-#3341 := (not #3340)
-#3347 := (or #68 #1406 #3341)
-#4437 := (forall (vars (?x39 T2)) (:pat #4403) #3347)
-#4442 := (not #4437)
-decl uf_12 :: (-> T2 int)
-#69 := (uf_12 #11)
-#4355 := (pattern #69)
-decl ?x33!6 :: (-> T2 T2)
-#2123 := (?x33!6 #11)
-#2127 := (uf_12 #2123)
-#2728 := (* -1::int #2127)
-#2124 := (uf_1 #2123 #11)
-#2125 := (uf_10 #2124)
-#2745 := (* -1::int #2125)
-#2746 := (+ #2745 #2728)
-#2747 := (+ #69 #2746)
-#2748 := (= #2747 0::int)
-#3311 := (not #2748)
-#2729 := (+ #69 #2728)
-#2730 := (<= #2729 0::int)
-decl up_13 :: (-> T2 bool)
-#2133 := (up_13 #2123)
-#3310 := (not #2133)
-#3312 := (or #3310 #2730 #3311)
-#3313 := (not #3312)
-#1386 := (* -1::int #69)
-#1387 := (+ uf_9 #1386)
-#1388 := (<= #1387 0::int)
-#3319 := (or #68 #1388 #3313)
-#4429 := (forall (vars (?x32 T2)) (:pat #4355) #3319)
-#4434 := (not #4429)
-#114 := (uf_6 uf_15 #10)
-#4420 := (pattern #114 #116)
-#120 := (uf_4 uf_14 #10)
-#1417 := (* -1::int #120)
-#1418 := (+ #110 #1417)
-#1416 := (>= #1418 0::int)
-#502 := (= uf_8 #114)
-#3276 := (not #502)
-#3291 := (or #3276 #505 #1416)
-#4421 := (forall (vars (?x35 T2) (?x36 T2)) (:pat #4420) #3291)
-#4426 := (not #4421)
-#1424 := (+ #91 #1418)
-#1815 := (>= #1424 0::int)
-#508 := (not #505)
-#3268 := (or #508 #1347 #1815)
-#4412 := (forall (vars (?x37 T2) (?x38 T2)) (:pat #4379) #3268)
-#4417 := (not #4412)
-#4409 := (not #4404)
-#108 := (uf_4 uf_14 uf_11)
-#109 := (= #108 0::int)
-#1854 := (not #109)
-#4677 := (or #1854 #4409 #4417 #4426 #4434 #4442 #4674)
-#4680 := (not #4677)
-decl ?x32!5 :: T2
-#2081 := ?x32!5
-#2091 := (uf_1 #11 ?x32!5)
-#4388 := (pattern #2091)
-#77 := (up_13 #11)
-#4348 := (pattern #77)
-#2082 := (uf_12 ?x32!5)
-#2083 := (* -1::int #2082)
-#2096 := (+ #69 #2083)
-#2097 := (>= #2096 0::int)
-#2092 := (uf_10 #2091)
-#2093 := (+ #2083 #2092)
-#2094 := (+ #69 #2093)
-#2095 := (= #2094 0::int)
-#3229 := (not #2095)
-#78 := (not #77)
-#3230 := (or #78 #3229 #2097)
-#4389 := (forall (vars (?x33 T2)) (:pat #4348 #4355 #4388) #3230)
-#4394 := (not #4389)
-#2688 := (= uf_11 ?x32!5)
-#2084 := (+ uf_9 #2083)
-#2085 := (<= #2084 0::int)
-#4397 := (or #2085 #2688 #4394)
-#4400 := (not #4397)
-#4683 := (or #4400 #4680)
-#4686 := (not #4683)
-#86 := (uf_12 #10)
-#1323 := (* -1::int #86)
-#1344 := (+ #1323 #91)
-#1345 := (+ #69 #1344)
-#1342 := (>= #1345 0::int)
-#3221 := (or #78 #1342 #1347)
-#4380 := (forall (vars (?x30 T2) (?x31 T2)) (:pat #4379) #3221)
-#4385 := (not #4380)
-#4689 := (or #4385 #4686)
-#4692 := (not #4689)
-decl ?x31!3 :: T2
-#2051 := ?x31!3
-#2065 := (uf_12 ?x31!3)
-decl ?x30!4 :: T2
-#2052 := ?x30!4
-#2062 := (uf_12 ?x30!4)
-#2063 := (* -1::int #2062)
-#2660 := (+ #2063 #2065)
-#2053 := (uf_1 ?x31!3 ?x30!4)
-#2054 := (uf_10 #2053)
-#2661 := (+ #2054 #2660)
-#2664 := (>= #2661 0::int)
-#2059 := (up_13 ?x31!3)
-#3184 := (not #2059)
-#2055 := (* -1::int #2054)
-#2056 := (+ uf_9 #2055)
-#2057 := (<= #2056 0::int)
-#3199 := (or #2057 #3184 #2664)
-#3204 := (not #3199)
-#4695 := (or #3204 #4692)
-#4698 := (not #4695)
-#84 := (up_13 #10)
-#4370 := (pattern #77 #84)
-#1324 := (+ #69 #1323)
-#1322 := (>= #1324 0::int)
-#2632 := (not #84)
-#3176 := (or #77 #2632 #1322)
-#4371 := (forall (vars (?x28 T2) (?x29 T2)) (:pat #4370) #3176)
-#4376 := (not #4371)
-#4701 := (or #4376 #4698)
-#4704 := (not #4701)
-decl ?x29!1 :: T2
-#2026 := ?x29!1
-#2030 := (uf_12 ?x29!1)
-#2647 := (* -1::int #2030)
-decl ?x28!2 :: T2
-#2027 := ?x28!2
-#2028 := (uf_12 ?x28!2)
-#2648 := (+ #2028 #2647)
-#2649 := (<= #2648 0::int)
-#2034 := (up_13 ?x29!1)
-#2033 := (up_13 ?x28!2)
-#2266 := (not #2033)
-#2166 := (or #2266 #2034 #2649)
-#6004 := [hypothesis]: #2033
-#4349 := (forall (vars (?x26 T2)) (:pat #4348) #78)
-#79 := (forall (vars (?x26 T2)) #78)
-#4352 := (iff #79 #4349)
-#4350 := (iff #78 #78)
-#4351 := [refl]: #4350
-#4353 := [quant-intro #4351]: #4352
-#1965 := (~ #79 #79)
-#2002 := (~ #78 #78)
-#2003 := [refl]: #2002
-#1966 := [nnf-pos #2003]: #1965
-#70 := (= #69 0::int)
-#73 := (not #68)
-#1912 := (or #73 #70)
-#1915 := (forall (vars (?x24 T2)) #1912)
-#1918 := (not #1915)
-#1846 := (forall (vars (?x34 T2)) #1843)
-#1849 := (not #1846)
-#511 := (and #502 #508)
-#517 := (not #511)
-#1832 := (or #517 #1416)
-#1837 := (forall (vars (?x35 T2) (?x36 T2)) #1832)
-#1840 := (not #1837)
-#1348 := (not #1347)
-#1807 := (and #505 #1348)
-#1812 := (not #1807)
-#1818 := (or #1812 #1815)
-#1821 := (forall (vars (?x37 T2) (?x38 T2)) #1818)
-#1824 := (not #1821)
-#1710 := (not #1709)
-#1744 := (and #1348 #1710)
-#1747 := (not #1744)
-#1753 := (or #1747 #1750)
-#1756 := (forall (vars (?x66 T2) (?x67 T2)) #1753)
-#1759 := (not #1756)
-#1767 := (or #251 #1759)
-#1772 := (and #1756 #1767)
-#1725 := (= #1727 0::int)
-#1719 := (>= #1721 0::int)
-#1722 := (not #1719)
-#1729 := (and #1722 #1725)
-#1732 := (exists (vars (?x65 T2)) #1729)
-#1713 := (and #73 #1710)
-#1716 := (not #1713)
-#1735 := (or #1716 #1732)
-#1738 := (forall (vars (?x64 T2)) #1735)
-#1741 := (not #1738)
-#1775 := (or #1741 #1772)
-#1778 := (and #1738 #1775)
-#1407 := (not #1406)
-#1670 := (and #508 #1407)
-#1675 := (exists (vars (?x41 T2)) #1670)
-#1796 := (or #1062 #1044 #1071 #1053 #1675 #1778)
-#1678 := (not #1675)
-#1649 := (forall (vars (?x42 T2)) #1644)
-#1652 := (not #1649)
-#1459 := (not #1458)
-#1454 := (not #1453)
-#1462 := (and #1454 #1459)
-#1620 := (not #1462)
-#1628 := (or #1620 #1625)
-#1631 := (forall (vars (?x43 T2)) #1628)
-#1634 := (not #1631)
-#1561 := (= #1536 0::int)
-#1558 := (not #1504)
-#1570 := (and #630 #1558 #1561)
-#1575 := (exists (vars (?x53 T2)) #1570)
-#1547 := (+ uf_9 #1480)
-#1548 := (<= #1547 0::int)
-#1549 := (not #1548)
-#1552 := (and #73 #1549)
-#1555 := (not #1552)
-#1578 := (or #1555 #1575)
-#1581 := (forall (vars (?x52 T2)) #1578)
-#1526 := (and #630 #1348)
-#1531 := (not #1526)
-#1538 := (or #1531 #1534)
-#1541 := (forall (vars (?x50 T2) (?x51 T2)) #1538)
-#1544 := (not #1541)
-#1584 := (or #1544 #1581)
-#1587 := (and #1541 #1584)
-#656 := (and #636 #648)
-#664 := (not #656)
-#1512 := (or #664 #1504)
-#1517 := (forall (vars (?x48 T2) (?x49 T2)) #1512)
-#1520 := (not #1517)
-#1590 := (or #1520 #1587)
-#1593 := (and #1517 #1590)
-#1498 := (forall (vars (?x47 T2)) #1495)
-#1501 := (not #1498)
-#1596 := (or #1501 #1593)
-#1599 := (and #1498 #1596)
-#1602 := (or #1492 #1599)
-#1605 := (and #173 #1602)
-#642 := (forall (vars (?x46 T2)) #637)
-#824 := (not #642)
-#1608 := (or #824 #1605)
-#1611 := (and #642 #1608)
-#1484 := (forall (vars (?x45 T2)) #1479)
-#1487 := (not #1484)
-#1614 := (or #1487 #1611)
-#1617 := (and #1484 #1614)
-#1468 := (or #616 #1462)
-#1473 := (forall (vars (?x44 T2)) #1468)
-#1476 := (not #1473)
-#1702 := (or #876 #585 #1476 #1617 #1634 #1652 #1656 #1678)
-#1801 := (and #1702 #1796)
-#1422 := (= #1424 0::int)
-#1419 := (not #1416)
-#1432 := (and #505 #1419 #1422)
-#1437 := (exists (vars (?x40 T2)) #1432)
-#1410 := (and #73 #1407)
-#1413 := (not #1410)
-#1440 := (or #1413 #1437)
-#1443 := (forall (vars (?x39 T2)) #1440)
-#1446 := (not #1443)
-#1389 := (not #1388)
-#1392 := (and #73 #1389)
-#1395 := (not #1392)
-#1370 := (= #1345 0::int)
-#1366 := (not #1322)
-#1378 := (and #77 #1366 #1370)
-#1383 := (exists (vars (?x33 T2)) #1378)
-#1398 := (or #1383 #1395)
-#1401 := (forall (vars (?x32 T2)) #1398)
-#1857 := (not #1401)
-#1878 := (or #1854 #1857 #1446 #1801 #1824 #1840 #1849)
-#1883 := (and #1401 #1878)
-#1351 := (and #77 #1348)
-#1354 := (not #1351)
-#1357 := (or #1342 #1354)
-#1360 := (forall (vars (?x30 T2) (?x31 T2)) #1357)
-#1363 := (not #1360)
-#1886 := (or #1363 #1883)
-#1889 := (and #1360 #1886)
-#454 := (and #78 #84)
-#460 := (not #454)
-#1329 := (or #460 #1322)
-#1334 := (forall (vars (?x28 T2) (?x29 T2)) #1329)
-#1337 := (not #1334)
-#1892 := (or #1337 #1889)
-#1895 := (and #1334 #1892)
-#1313 := (>= #69 0::int)
-#1314 := (forall (vars (?x27 T2)) #1313)
-#1317 := (not #1314)
-#1898 := (or #1317 #1895)
-#1901 := (and #1314 #1898)
-#80 := (uf_12 uf_11)
-#81 := (= #80 0::int)
-#1308 := (not #81)
-#1904 := (or #1308 #1901)
-#1907 := (and #81 #1904)
-#437 := (= uf_9 #69)
-#443 := (or #68 #437)
-#448 := (forall (vars (?x25 T2)) #443)
-#1277 := (not #448)
-#1268 := (not #79)
-#1930 := (or #1268 #1277 #1907 #1918)
-#1935 := (not #1930)
-#82 := (<= 0::int #69)
-#83 := (forall (vars (?x27 T2)) #82)
-#87 := (<= #86 #69)
-#85 := (and #84 #78)
-#88 := (implies #85 #87)
-#89 := (forall (vars (?x28 T2) (?x29 T2)) #88)
-#94 := (+ #69 #91)
-#95 := (<= #86 #94)
-#92 := (< #91 uf_9)
-#93 := (and #92 #77)
-#96 := (implies #93 #95)
-#97 := (forall (vars (?x30 T2) (?x31 T2)) #96)
-#101 := (< #69 #86)
-#102 := (and #77 #101)
-#100 := (= #86 #94)
-#103 := (and #100 #102)
-#104 := (exists (vars (?x33 T2)) #103)
-#98 := (< #69 uf_9)
-#99 := (and #98 #73)
-#105 := (implies #99 #104)
-#106 := (forall (vars (?x32 T2)) #105)
-#241 := (< #235 #238)
-#239 := (+ #235 #91)
-#240 := (= #238 #239)
-#242 := (and #240 #241)
-#243 := (exists (vars (?x65 T2)) #242)
-#236 := (< #235 uf_9)
-#237 := (and #236 #73)
-#244 := (implies #237 #243)
-#245 := (forall (vars (?x64 T2)) #244)
-#247 := (<= #238 #239)
-#246 := (and #92 #236)
-#248 := (implies #246 #247)
-#249 := (forall (vars (?x66 T2) (?x67 T2)) #248)
-#1 := true
-#252 := (implies #251 true)
-#253 := (and #252 #251)
-#254 := (implies #249 #253)
-#255 := (and #254 #249)
-#256 := (implies #245 #255)
-#257 := (and #256 #245)
-#258 := (implies true #257)
-#259 := (implies #234 #258)
-#231 := (= uf_22 uf_14)
-#260 := (implies #231 #259)
-#261 := (implies #229 #260)
-#226 := (= uf_19 uf_15)
-#262 := (implies #226 #261)
-#263 := (implies true #262)
-#264 := (implies true #263)
-#117 := (= #116 uf_8)
-#118 := (not #117)
-#129 := (< #110 uf_9)
-#138 := (and #129 #118)
-#139 := (exists (vars (?x41 T2)) #138)
-#224 := (not #139)
-#265 := (implies #224 #264)
-#266 := (implies true #265)
-#267 := (implies true #266)
-#166 := (<= #158 #110)
-#167 := (forall (vars (?x45 T2)) #166)
-#163 := (= #158 #110)
-#169 := (= #168 uf_8)
-#170 := (implies #169 #163)
-#171 := (forall (vars (?x46 T2)) #170)
-#174 := (<= 0::int #158)
-#175 := (forall (vars (?x47 T2)) #174)
-#181 := (<= #180 #158)
-#178 := (not #169)
-#177 := (= #176 uf_8)
-#179 := (and #177 #178)
-#182 := (implies #179 #181)
-#183 := (forall (vars (?x48 T2) (?x49 T2)) #182)
-#185 := (+ #158 #91)
-#186 := (<= #180 #185)
-#184 := (and #92 #169)
-#187 := (implies #184 #186)
-#188 := (forall (vars (?x50 T2) (?x51 T2)) #187)
-#192 := (< #158 #180)
-#193 := (and #169 #192)
-#191 := (= #180 #185)
-#194 := (and #191 #193)
-#195 := (exists (vars (?x53 T2)) #194)
-#189 := (< #158 uf_9)
-#190 := (and #189 #73)
-#196 := (implies #190 #195)
-#197 := (forall (vars (?x52 T2)) #196)
-#198 := (implies false true)
-#199 := (implies #197 #198)
-#200 := (and #199 #197)
-#201 := (implies #188 #200)
-#202 := (and #201 #188)
-#203 := (implies #183 #202)
-#204 := (and #203 #183)
-#205 := (implies #175 #204)
-#206 := (and #205 #175)
-#207 := (implies #173 #206)
-#208 := (and #207 #173)
-#209 := (implies true #208)
-#210 := (implies true #209)
-#211 := (implies #171 #210)
-#212 := (and #211 #171)
-#213 := (implies #167 #212)
-#214 := (and #213 #167)
-#156 := (< #153 uf_9)
-#154 := (+ #144 #153)
-#155 := (< #154 #110)
-#157 := (and #155 #156)
-#162 := (not #157)
-#164 := (implies #162 #163)
-#165 := (forall (vars (?x44 T2)) #164)
-#215 := (implies #165 #214)
-#159 := (= #158 #154)
-#160 := (implies #157 #159)
-#161 := (forall (vars (?x43 T2)) #160)
-#216 := (implies #161 #215)
-#217 := (implies #151 #216)
-#146 := (<= #144 #110)
-#147 := (implies #118 #146)
-#148 := (forall (vars (?x42 T2)) #147)
-#218 := (implies #148 #217)
-#145 := (< #144 uf_9)
-#219 := (implies #145 #218)
-#142 := (= #141 uf_8)
-#143 := (not #142)
-#220 := (implies #143 #219)
-#221 := (implies #139 #220)
-#222 := (implies true #221)
-#223 := (implies true #222)
-#268 := (and #223 #267)
-#269 := (implies true #268)
-#132 := (< #110 #120)
-#133 := (and #117 #132)
-#125 := (+ #110 #91)
-#131 := (= #120 #125)
-#134 := (and #131 #133)
-#135 := (exists (vars (?x40 T2)) #134)
-#130 := (and #129 #73)
-#136 := (implies #130 #135)
-#137 := (forall (vars (?x39 T2)) #136)
-#270 := (implies #137 #269)
-#126 := (<= #120 #125)
-#124 := (and #92 #117)
-#127 := (implies #124 #126)
-#128 := (forall (vars (?x37 T2) (?x38 T2)) #127)
-#271 := (implies #128 #270)
-#121 := (<= #120 #110)
-#115 := (= #114 uf_8)
-#119 := (and #115 #118)
-#122 := (implies #119 #121)
-#123 := (forall (vars (?x35 T2) (?x36 T2)) #122)
-#272 := (implies #123 #271)
-#111 := (<= 0::int #110)
-#112 := (forall (vars (?x34 T2)) #111)
-#273 := (implies #112 #272)
-#274 := (implies #109 #273)
-#275 := (implies true #274)
-#276 := (implies true #275)
-#277 := (implies #106 #276)
-#278 := (and #277 #106)
-#279 := (implies #97 #278)
-#280 := (and #279 #97)
-#281 := (implies #89 #280)
-#282 := (and #281 #89)
-#283 := (implies #83 #282)
-#284 := (and #283 #83)
-#285 := (implies #81 #284)
-#286 := (and #285 #81)
-#287 := (implies true #286)
-#288 := (implies #79 #287)
-#74 := (= #69 uf_9)
-#75 := (implies #73 #74)
-#76 := (forall (vars (?x25 T2)) #75)
-#289 := (implies #76 #288)
-#71 := (implies #68 #70)
-#72 := (forall (vars (?x24 T2)) #71)
-#290 := (implies #72 #289)
-#291 := (implies true #290)
-#292 := (implies true #291)
-#293 := (not #292)
-#1938 := (iff #293 #1935)
-#983 := (= 0::int #250)
-#939 := (+ #91 #235)
-#968 := (<= #238 #939)
-#974 := (not #246)
-#975 := (or #974 #968)
-#980 := (forall (vars (?x66 T2) (?x67 T2)) #975)
-#1003 := (not #980)
-#1004 := (or #1003 #983)
-#1012 := (and #980 #1004)
-#942 := (= #238 #939)
-#948 := (and #241 #942)
-#953 := (exists (vars (?x65 T2)) #948)
-#936 := (and #73 #236)
-#959 := (not #936)
-#960 := (or #959 #953)
-#965 := (forall (vars (?x64 T2)) #960)
-#1020 := (not #965)
-#1021 := (or #1020 #1012)
-#1029 := (and #965 #1021)
-#1045 := (or #1044 #1029)
-#1054 := (or #1053 #1045)
-#1063 := (or #1062 #1054)
-#1072 := (or #1071 #1063)
-#579 := (and #129 #508)
-#582 := (exists (vars (?x41 T2)) #579)
-#1091 := (or #582 #1072)
-#703 := (and #192 #630)
-#676 := (+ #91 #158)
-#697 := (= #180 #676)
-#708 := (and #697 #703)
-#711 := (exists (vars (?x53 T2)) #708)
-#694 := (and #73 #189)
-#717 := (not #694)
-#718 := (or #717 #711)
-#723 := (forall (vars (?x52 T2)) #718)
-#679 := (<= #180 #676)
-#673 := (and #92 #630)
-#685 := (not #673)
-#686 := (or #685 #679)
-#691 := (forall (vars (?x50 T2) (?x51 T2)) #686)
-#745 := (not #691)
-#746 := (or #745 #723)
-#754 := (and #691 #746)
-#665 := (or #181 #664)
-#670 := (forall (vars (?x48 T2) (?x49 T2)) #665)
-#762 := (not #670)
-#763 := (or #762 #754)
-#771 := (and #670 #763)
-#779 := (not #175)
-#780 := (or #779 #771)
-#788 := (and #175 #780)
-#645 := (= 0::int #172)
-#796 := (not #645)
-#797 := (or #796 #788)
-#805 := (and #645 #797)
-#825 := (or #824 #805)
-#833 := (and #642 #825)
-#841 := (not #167)
-#842 := (or #841 #833)
-#850 := (and #167 #842)
-#622 := (or #157 #616)
-#627 := (forall (vars (?x44 T2)) #622)
-#858 := (not #627)
-#859 := (or #858 #850)
-#602 := (= #154 #158)
-#608 := (or #162 #602)
-#613 := (forall (vars (?x43 T2)) #608)
-#867 := (not #613)
-#868 := (or #867 #859)
-#877 := (or #876 #868)
-#594 := (or #146 #505)
-#599 := (forall (vars (?x42 T2)) #594)
-#885 := (not #599)
-#886 := (or #885 #877)
-#894 := (not #145)
-#895 := (or #894 #886)
-#903 := (or #585 #895)
-#911 := (not #582)
-#912 := (or #911 #903)
-#1107 := (and #912 #1091)
-#556 := (and #132 #505)
-#529 := (+ #91 #110)
-#550 := (= #120 #529)
-#561 := (and #550 #556)
-#564 := (exists (vars (?x40 T2)) #561)
-#547 := (and #73 #129)
-#570 := (not #547)
-#571 := (or #570 #564)
-#576 := (forall (vars (?x39 T2)) #571)
-#1120 := (not #576)
-#1121 := (or #1120 #1107)
-#532 := (<= #120 #529)
-#526 := (and #92 #505)
-#538 := (not #526)
-#539 := (or #538 #532)
-#544 := (forall (vars (?x37 T2) (?x38 T2)) #539)
-#1129 := (not #544)
-#1130 := (or #1129 #1121)
-#518 := (or #121 #517)
-#523 := (forall (vars (?x35 T2) (?x36 T2)) #518)
-#1138 := (not #523)
-#1139 := (or #1138 #1130)
-#1147 := (not #112)
-#1148 := (or #1147 #1139)
-#499 := (= 0::int #108)
-#1156 := (not #499)
-#1157 := (or #1156 #1148)
-#484 := (and #73 #98)
-#490 := (not #484)
-#491 := (or #104 #490)
-#496 := (forall (vars (?x32 T2)) #491)
-#1176 := (not #496)
-#1177 := (or #1176 #1157)
-#1185 := (and #496 #1177)
-#469 := (and #77 #92)
-#475 := (not #469)
-#476 := (or #95 #475)
-#481 := (forall (vars (?x30 T2) (?x31 T2)) #476)
-#1193 := (not #481)
-#1194 := (or #1193 #1185)
-#1202 := (and #481 #1194)
-#461 := (or #87 #460)
-#466 := (forall (vars (?x28 T2) (?x29 T2)) #461)
-#1210 := (not #466)
-#1211 := (or #1210 #1202)
-#1219 := (and #466 #1211)
-#1227 := (not #83)
-#1228 := (or #1227 #1219)
-#1236 := (and #83 #1228)
-#451 := (= 0::int #80)
-#1244 := (not #451)
-#1245 := (or #1244 #1236)
-#1253 := (and #451 #1245)
-#1269 := (or #1268 #1253)
-#1278 := (or #1277 #1269)
-#423 := (= 0::int #69)
-#429 := (or #73 #423)
-#434 := (forall (vars (?x24 T2)) #429)
-#1286 := (not #434)
-#1287 := (or #1286 #1278)
-#1303 := (not #1287)
-#1936 := (iff #1303 #1935)
-#1933 := (iff #1287 #1930)
-#1921 := (or #1268 #1907)
-#1924 := (or #1277 #1921)
-#1927 := (or #1918 #1924)
-#1931 := (iff #1927 #1930)
-#1932 := [rewrite]: #1931
-#1928 := (iff #1287 #1927)
-#1925 := (iff #1278 #1924)
-#1922 := (iff #1269 #1921)
-#1908 := (iff #1253 #1907)
-#1905 := (iff #1245 #1904)
-#1902 := (iff #1236 #1901)
-#1899 := (iff #1228 #1898)
-#1896 := (iff #1219 #1895)
-#1893 := (iff #1211 #1892)
-#1890 := (iff #1202 #1889)
-#1887 := (iff #1194 #1886)
-#1884 := (iff #1185 #1883)
-#1881 := (iff #1177 #1878)
-#1860 := (or #1446 #1801)
-#1863 := (or #1824 #1860)
-#1866 := (or #1840 #1863)
-#1869 := (or #1849 #1866)
-#1872 := (or #1854 #1869)
-#1875 := (or #1857 #1872)
-#1879 := (iff #1875 #1878)
-#1880 := [rewrite]: #1879
-#1876 := (iff #1177 #1875)
-#1873 := (iff #1157 #1872)
-#1870 := (iff #1148 #1869)
-#1867 := (iff #1139 #1866)
-#1864 := (iff #1130 #1863)
-#1861 := (iff #1121 #1860)
-#1802 := (iff #1107 #1801)
-#1799 := (iff #1091 #1796)
-#1781 := (or #1044 #1778)
-#1784 := (or #1053 #1781)
-#1787 := (or #1062 #1784)
-#1790 := (or #1071 #1787)
-#1793 := (or #1675 #1790)
-#1797 := (iff #1793 #1796)
-#1798 := [rewrite]: #1797
-#1794 := (iff #1091 #1793)
-#1791 := (iff #1072 #1790)
-#1788 := (iff #1063 #1787)
-#1785 := (iff #1054 #1784)
-#1782 := (iff #1045 #1781)
-#1779 := (iff #1029 #1778)
-#1776 := (iff #1021 #1775)
-#1773 := (iff #1012 #1772)
-#1770 := (iff #1004 #1767)
-#1764 := (or #1759 #251)
-#1768 := (iff #1764 #1767)
-#1769 := [rewrite]: #1768
-#1765 := (iff #1004 #1764)
-#1762 := (iff #983 #251)
-#1763 := [rewrite]: #1762
-#1760 := (iff #1003 #1759)
-#1757 := (iff #980 #1756)
-#1754 := (iff #975 #1753)
-#1751 := (iff #968 #1750)
-#1752 := [rewrite]: #1751
-#1748 := (iff #974 #1747)
-#1745 := (iff #246 #1744)
-#1711 := (iff #236 #1710)
-#1712 := [rewrite]: #1711
-#1349 := (iff #92 #1348)
-#1350 := [rewrite]: #1349
-#1746 := [monotonicity #1350 #1712]: #1745
-#1749 := [monotonicity #1746]: #1748
-#1755 := [monotonicity #1749 #1752]: #1754
-#1758 := [quant-intro #1755]: #1757
-#1761 := [monotonicity #1758]: #1760
-#1766 := [monotonicity #1761 #1763]: #1765
-#1771 := [trans #1766 #1769]: #1770
-#1774 := [monotonicity #1758 #1771]: #1773
-#1742 := (iff #1020 #1741)
-#1739 := (iff #965 #1738)
-#1736 := (iff #960 #1735)
-#1733 := (iff #953 #1732)
-#1730 := (iff #948 #1729)
-#1726 := (iff #942 #1725)
-#1728 := [rewrite]: #1726
-#1723 := (iff #241 #1722)
-#1724 := [rewrite]: #1723
-#1731 := [monotonicity #1724 #1728]: #1730
-#1734 := [quant-intro #1731]: #1733
-#1717 := (iff #959 #1716)
-#1714 := (iff #936 #1713)
-#1715 := [monotonicity #1712]: #1714
-#1718 := [monotonicity #1715]: #1717
-#1737 := [monotonicity #1718 #1734]: #1736
-#1740 := [quant-intro #1737]: #1739
-#1743 := [monotonicity #1740]: #1742
-#1777 := [monotonicity #1743 #1774]: #1776
-#1780 := [monotonicity #1740 #1777]: #1779
-#1783 := [monotonicity #1780]: #1782
-#1786 := [monotonicity #1783]: #1785
-#1789 := [monotonicity #1786]: #1788
-#1792 := [monotonicity #1789]: #1791
-#1676 := (iff #582 #1675)
-#1673 := (iff #579 #1670)
-#1667 := (and #1407 #508)
-#1671 := (iff #1667 #1670)
-#1672 := [rewrite]: #1671
-#1668 := (iff #579 #1667)
-#1408 := (iff #129 #1407)
-#1409 := [rewrite]: #1408
-#1669 := [monotonicity #1409]: #1668
-#1674 := [trans #1669 #1672]: #1673
-#1677 := [quant-intro #1674]: #1676
-#1795 := [monotonicity #1677 #1792]: #1794
-#1800 := [trans #1795 #1798]: #1799
-#1705 := (iff #912 #1702)
-#1681 := (or #1476 #1617)
-#1684 := (or #1634 #1681)
-#1687 := (or #876 #1684)
-#1690 := (or #1652 #1687)
-#1693 := (or #1656 #1690)
-#1696 := (or #585 #1693)
-#1699 := (or #1678 #1696)
-#1703 := (iff #1699 #1702)
-#1704 := [rewrite]: #1703
-#1700 := (iff #912 #1699)
-#1697 := (iff #903 #1696)
-#1694 := (iff #895 #1693)
-#1691 := (iff #886 #1690)
-#1688 := (iff #877 #1687)
-#1685 := (iff #868 #1684)
-#1682 := (iff #859 #1681)
-#1618 := (iff #850 #1617)
-#1615 := (iff #842 #1614)
-#1612 := (iff #833 #1611)
-#1609 := (iff #825 #1608)
-#1606 := (iff #805 #1605)
-#1603 := (iff #797 #1602)
-#1600 := (iff #788 #1599)
-#1597 := (iff #780 #1596)
-#1594 := (iff #771 #1593)
-#1591 := (iff #763 #1590)
-#1588 := (iff #754 #1587)
-#1585 := (iff #746 #1584)
-#1582 := (iff #723 #1581)
-#1579 := (iff #718 #1578)
-#1576 := (iff #711 #1575)
-#1573 := (iff #708 #1570)
-#1564 := (and #1558 #630)
-#1567 := (and #1561 #1564)
-#1571 := (iff #1567 #1570)
-#1572 := [rewrite]: #1571
-#1568 := (iff #708 #1567)
-#1565 := (iff #703 #1564)
-#1559 := (iff #192 #1558)
-#1560 := [rewrite]: #1559
-#1566 := [monotonicity #1560]: #1565
-#1562 := (iff #697 #1561)
-#1563 := [rewrite]: #1562
-#1569 := [monotonicity #1563 #1566]: #1568
-#1574 := [trans #1569 #1572]: #1573
-#1577 := [quant-intro #1574]: #1576
-#1556 := (iff #717 #1555)
-#1553 := (iff #694 #1552)
-#1550 := (iff #189 #1549)
-#1551 := [rewrite]: #1550
-#1554 := [monotonicity #1551]: #1553
-#1557 := [monotonicity #1554]: #1556
-#1580 := [monotonicity #1557 #1577]: #1579
-#1583 := [quant-intro #1580]: #1582
-#1545 := (iff #745 #1544)
-#1542 := (iff #691 #1541)
-#1539 := (iff #686 #1538)
-#1535 := (iff #679 #1534)
-#1537 := [rewrite]: #1535
-#1532 := (iff #685 #1531)
-#1529 := (iff #673 #1526)
-#1523 := (and #1348 #630)
-#1527 := (iff #1523 #1526)
-#1528 := [rewrite]: #1527
-#1524 := (iff #673 #1523)
-#1525 := [monotonicity #1350]: #1524
-#1530 := [trans #1525 #1528]: #1529
-#1533 := [monotonicity #1530]: #1532
-#1540 := [monotonicity #1533 #1537]: #1539
-#1543 := [quant-intro #1540]: #1542
-#1546 := [monotonicity #1543]: #1545
-#1586 := [monotonicity #1546 #1583]: #1585
-#1589 := [monotonicity #1543 #1586]: #1588
-#1521 := (iff #762 #1520)
-#1518 := (iff #670 #1517)
-#1515 := (iff #665 #1512)
-#1509 := (or #1504 #664)
-#1513 := (iff #1509 #1512)
-#1514 := [rewrite]: #1513
-#1510 := (iff #665 #1509)
-#1507 := (iff #181 #1504)
-#1508 := [rewrite]: #1507
-#1511 := [monotonicity #1508]: #1510
-#1516 := [trans #1511 #1514]: #1515
-#1519 := [quant-intro #1516]: #1518
-#1522 := [monotonicity #1519]: #1521
-#1592 := [monotonicity #1522 #1589]: #1591
-#1595 := [monotonicity #1519 #1592]: #1594
-#1502 := (iff #779 #1501)
-#1499 := (iff #175 #1498)
-#1496 := (iff #174 #1495)
-#1497 := [rewrite]: #1496
-#1500 := [quant-intro #1497]: #1499
-#1503 := [monotonicity #1500]: #1502
-#1598 := [monotonicity #1503 #1595]: #1597
-#1601 := [monotonicity #1500 #1598]: #1600
-#1493 := (iff #796 #1492)
-#1490 := (iff #645 #173)
-#1491 := [rewrite]: #1490
-#1494 := [monotonicity #1491]: #1493
-#1604 := [monotonicity #1494 #1601]: #1603
-#1607 := [monotonicity #1491 #1604]: #1606
-#1610 := [monotonicity #1607]: #1609
-#1613 := [monotonicity #1610]: #1612
-#1488 := (iff #841 #1487)
-#1485 := (iff #167 #1484)
-#1482 := (iff #166 #1479)
-#1483 := [rewrite]: #1482
-#1486 := [quant-intro #1483]: #1485
-#1489 := [monotonicity #1486]: #1488
-#1616 := [monotonicity #1489 #1613]: #1615
-#1619 := [monotonicity #1486 #1616]: #1618
-#1477 := (iff #858 #1476)
-#1474 := (iff #627 #1473)
-#1471 := (iff #622 #1468)
-#1465 := (or #1462 #616)
-#1469 := (iff #1465 #1468)
-#1470 := [rewrite]: #1469
-#1466 := (iff #622 #1465)
-#1463 := (iff #157 #1462)
-#1460 := (iff #156 #1459)
-#1461 := [rewrite]: #1460
-#1455 := (iff #155 #1454)
-#1456 := [rewrite]: #1455
-#1464 := [monotonicity #1456 #1461]: #1463
-#1467 := [monotonicity #1464]: #1466
-#1472 := [trans #1467 #1470]: #1471
-#1475 := [quant-intro #1472]: #1474
-#1478 := [monotonicity #1475]: #1477
-#1683 := [monotonicity #1478 #1619]: #1682
-#1635 := (iff #867 #1634)
-#1632 := (iff #613 #1631)
-#1629 := (iff #608 #1628)
-#1626 := (iff #602 #1625)
-#1627 := [rewrite]: #1626
-#1621 := (iff #162 #1620)
-#1622 := [monotonicity #1464]: #1621
-#1630 := [monotonicity #1622 #1627]: #1629
-#1633 := [quant-intro #1630]: #1632
-#1636 := [monotonicity #1633]: #1635
-#1686 := [monotonicity #1636 #1683]: #1685
-#1689 := [monotonicity #1686]: #1688
-#1653 := (iff #885 #1652)
-#1650 := (iff #599 #1649)
-#1647 := (iff #594 #1644)
-#1641 := (or #1637 #505)
-#1645 := (iff #1641 #1644)
-#1646 := [rewrite]: #1645
-#1642 := (iff #594 #1641)
-#1639 := (iff #146 #1637)
-#1640 := [rewrite]: #1639
-#1643 := [monotonicity #1640]: #1642
-#1648 := [trans #1643 #1646]: #1647
-#1651 := [quant-intro #1648]: #1650
-#1654 := [monotonicity #1651]: #1653
-#1692 := [monotonicity #1654 #1689]: #1691
-#1665 := (iff #894 #1656)
-#1657 := (not #1656)
-#1660 := (not #1657)
-#1663 := (iff #1660 #1656)
-#1664 := [rewrite]: #1663
-#1661 := (iff #894 #1660)
-#1658 := (iff #145 #1657)
-#1659 := [rewrite]: #1658
-#1662 := [monotonicity #1659]: #1661
-#1666 := [trans #1662 #1664]: #1665
-#1695 := [monotonicity #1666 #1692]: #1694
-#1698 := [monotonicity #1695]: #1697
-#1679 := (iff #911 #1678)
-#1680 := [monotonicity #1677]: #1679
-#1701 := [monotonicity #1680 #1698]: #1700
-#1706 := [trans #1701 #1704]: #1705
-#1803 := [monotonicity #1706 #1800]: #1802
-#1447 := (iff #1120 #1446)
-#1444 := (iff #576 #1443)
-#1441 := (iff #571 #1440)
-#1438 := (iff #564 #1437)
-#1435 := (iff #561 #1432)
-#1426 := (and #1419 #505)
-#1429 := (and #1422 #1426)
-#1433 := (iff #1429 #1432)
-#1434 := [rewrite]: #1433
-#1430 := (iff #561 #1429)
-#1427 := (iff #556 #1426)
-#1420 := (iff #132 #1419)
-#1421 := [rewrite]: #1420
-#1428 := [monotonicity #1421]: #1427
-#1423 := (iff #550 #1422)
-#1425 := [rewrite]: #1423
-#1431 := [monotonicity #1425 #1428]: #1430
-#1436 := [trans #1431 #1434]: #1435
-#1439 := [quant-intro #1436]: #1438
-#1414 := (iff #570 #1413)
-#1411 := (iff #547 #1410)
-#1412 := [monotonicity #1409]: #1411
-#1415 := [monotonicity #1412]: #1414
-#1442 := [monotonicity #1415 #1439]: #1441
-#1445 := [quant-intro #1442]: #1444
-#1448 := [monotonicity #1445]: #1447
-#1862 := [monotonicity #1448 #1803]: #1861
-#1825 := (iff #1129 #1824)
-#1822 := (iff #544 #1821)
-#1819 := (iff #539 #1818)
-#1816 := (iff #532 #1815)
-#1817 := [rewrite]: #1816
-#1813 := (iff #538 #1812)
-#1810 := (iff #526 #1807)
-#1804 := (and #1348 #505)
-#1808 := (iff #1804 #1807)
-#1809 := [rewrite]: #1808
-#1805 := (iff #526 #1804)
-#1806 := [monotonicity #1350]: #1805
-#1811 := [trans #1806 #1809]: #1810
-#1814 := [monotonicity #1811]: #1813
-#1820 := [monotonicity #1814 #1817]: #1819
-#1823 := [quant-intro #1820]: #1822
-#1826 := [monotonicity #1823]: #1825
-#1865 := [monotonicity #1826 #1862]: #1864
-#1841 := (iff #1138 #1840)
-#1838 := (iff #523 #1837)
-#1835 := (iff #518 #1832)
-#1829 := (or #1416 #517)
-#1833 := (iff #1829 #1832)
-#1834 := [rewrite]: #1833
-#1830 := (iff #518 #1829)
-#1827 := (iff #121 #1416)
-#1828 := [rewrite]: #1827
-#1831 := [monotonicity #1828]: #1830
-#1836 := [trans #1831 #1834]: #1835
-#1839 := [quant-intro #1836]: #1838
-#1842 := [monotonicity #1839]: #1841
-#1868 := [monotonicity #1842 #1865]: #1867
-#1850 := (iff #1147 #1849)
-#1847 := (iff #112 #1846)
-#1844 := (iff #111 #1843)
-#1845 := [rewrite]: #1844
-#1848 := [quant-intro #1845]: #1847
-#1851 := [monotonicity #1848]: #1850
-#1871 := [monotonicity #1851 #1868]: #1870
-#1855 := (iff #1156 #1854)
-#1852 := (iff #499 #109)
-#1853 := [rewrite]: #1852
-#1856 := [monotonicity #1853]: #1855
-#1874 := [monotonicity #1856 #1871]: #1873
-#1858 := (iff #1176 #1857)
-#1402 := (iff #496 #1401)
-#1399 := (iff #491 #1398)
-#1396 := (iff #490 #1395)
-#1393 := (iff #484 #1392)
-#1390 := (iff #98 #1389)
-#1391 := [rewrite]: #1390
-#1394 := [monotonicity #1391]: #1393
-#1397 := [monotonicity #1394]: #1396
-#1384 := (iff #104 #1383)
-#1381 := (iff #103 #1378)
-#1372 := (and #77 #1366)
-#1375 := (and #1370 #1372)
-#1379 := (iff #1375 #1378)
-#1380 := [rewrite]: #1379
-#1376 := (iff #103 #1375)
-#1373 := (iff #102 #1372)
-#1367 := (iff #101 #1366)
-#1368 := [rewrite]: #1367
-#1374 := [monotonicity #1368]: #1373
-#1369 := (iff #100 #1370)
-#1371 := [rewrite]: #1369
-#1377 := [monotonicity #1371 #1374]: #1376
-#1382 := [trans #1377 #1380]: #1381
-#1385 := [quant-intro #1382]: #1384
-#1400 := [monotonicity #1385 #1397]: #1399
-#1403 := [quant-intro #1400]: #1402
-#1859 := [monotonicity #1403]: #1858
-#1877 := [monotonicity #1859 #1874]: #1876
-#1882 := [trans #1877 #1880]: #1881
-#1885 := [monotonicity #1403 #1882]: #1884
-#1364 := (iff #1193 #1363)
-#1361 := (iff #481 #1360)
-#1358 := (iff #476 #1357)
-#1355 := (iff #475 #1354)
-#1352 := (iff #469 #1351)
-#1353 := [monotonicity #1350]: #1352
-#1356 := [monotonicity #1353]: #1355
-#1341 := (iff #95 #1342)
-#1340 := [rewrite]: #1341
-#1359 := [monotonicity #1340 #1356]: #1358
-#1362 := [quant-intro #1359]: #1361
-#1365 := [monotonicity #1362]: #1364
-#1888 := [monotonicity #1365 #1885]: #1887
-#1891 := [monotonicity #1362 #1888]: #1890
-#1338 := (iff #1210 #1337)
-#1335 := (iff #466 #1334)
-#1332 := (iff #461 #1329)
-#1326 := (or #1322 #460)
-#1330 := (iff #1326 #1329)
-#1331 := [rewrite]: #1330
-#1327 := (iff #461 #1326)
-#1321 := (iff #87 #1322)
-#1325 := [rewrite]: #1321
-#1328 := [monotonicity #1325]: #1327
-#1333 := [trans #1328 #1331]: #1332
-#1336 := [quant-intro #1333]: #1335
-#1339 := [monotonicity #1336]: #1338
-#1894 := [monotonicity #1339 #1891]: #1893
-#1897 := [monotonicity #1336 #1894]: #1896
-#1318 := (iff #1227 #1317)
-#1315 := (iff #83 #1314)
-#1311 := (iff #82 #1313)
-#1312 := [rewrite]: #1311
-#1316 := [quant-intro #1312]: #1315
-#1319 := [monotonicity #1316]: #1318
-#1900 := [monotonicity #1319 #1897]: #1899
-#1903 := [monotonicity #1316 #1900]: #1902
-#1309 := (iff #1244 #1308)
-#1306 := (iff #451 #81)
-#1307 := [rewrite]: #1306
-#1310 := [monotonicity #1307]: #1309
-#1906 := [monotonicity #1310 #1903]: #1905
-#1909 := [monotonicity #1307 #1906]: #1908
-#1923 := [monotonicity #1909]: #1922
-#1926 := [monotonicity #1923]: #1925
-#1919 := (iff #1286 #1918)
-#1916 := (iff #434 #1915)
-#1913 := (iff #429 #1912)
-#1910 := (iff #423 #70)
-#1911 := [rewrite]: #1910
-#1914 := [monotonicity #1911]: #1913
-#1917 := [quant-intro #1914]: #1916
-#1920 := [monotonicity #1917]: #1919
-#1929 := [monotonicity #1920 #1926]: #1928
-#1934 := [trans #1929 #1932]: #1933
-#1937 := [monotonicity #1934]: #1936
-#1304 := (iff #293 #1303)
-#1301 := (iff #292 #1287)
-#1292 := (implies true #1287)
-#1295 := (iff #1292 #1287)
-#1296 := [rewrite]: #1295
-#1299 := (iff #292 #1292)
-#1297 := (iff #291 #1287)
-#1293 := (iff #291 #1292)
-#1290 := (iff #290 #1287)
-#1283 := (implies #434 #1278)
-#1288 := (iff #1283 #1287)
-#1289 := [rewrite]: #1288
-#1284 := (iff #290 #1283)
-#1281 := (iff #289 #1278)
-#1274 := (implies #448 #1269)
-#1279 := (iff #1274 #1278)
-#1280 := [rewrite]: #1279
-#1275 := (iff #289 #1274)
-#1272 := (iff #288 #1269)
-#1265 := (implies #79 #1253)
-#1270 := (iff #1265 #1269)
-#1271 := [rewrite]: #1270
-#1266 := (iff #288 #1265)
-#1263 := (iff #287 #1253)
-#1258 := (implies true #1253)
-#1261 := (iff #1258 #1253)
-#1262 := [rewrite]: #1261
-#1259 := (iff #287 #1258)
-#1256 := (iff #286 #1253)
-#1250 := (and #1245 #451)
-#1254 := (iff #1250 #1253)
-#1255 := [rewrite]: #1254
-#1251 := (iff #286 #1250)
-#452 := (iff #81 #451)
-#453 := [rewrite]: #452
-#1248 := (iff #285 #1245)
-#1241 := (implies #451 #1236)
-#1246 := (iff #1241 #1245)
-#1247 := [rewrite]: #1246
-#1242 := (iff #285 #1241)
-#1239 := (iff #284 #1236)
-#1233 := (and #1228 #83)
-#1237 := (iff #1233 #1236)
-#1238 := [rewrite]: #1237
-#1234 := (iff #284 #1233)
-#1231 := (iff #283 #1228)
-#1224 := (implies #83 #1219)
-#1229 := (iff #1224 #1228)
-#1230 := [rewrite]: #1229
-#1225 := (iff #283 #1224)
-#1222 := (iff #282 #1219)
-#1216 := (and #1211 #466)
-#1220 := (iff #1216 #1219)
-#1221 := [rewrite]: #1220
-#1217 := (iff #282 #1216)
-#467 := (iff #89 #466)
-#464 := (iff #88 #461)
-#457 := (implies #454 #87)
-#462 := (iff #457 #461)
-#463 := [rewrite]: #462
-#458 := (iff #88 #457)
-#455 := (iff #85 #454)
-#456 := [rewrite]: #455
-#459 := [monotonicity #456]: #458
-#465 := [trans #459 #463]: #464
-#468 := [quant-intro #465]: #467
-#1214 := (iff #281 #1211)
-#1207 := (implies #466 #1202)
-#1212 := (iff #1207 #1211)
-#1213 := [rewrite]: #1212
-#1208 := (iff #281 #1207)
-#1205 := (iff #280 #1202)
-#1199 := (and #1194 #481)
-#1203 := (iff #1199 #1202)
-#1204 := [rewrite]: #1203
-#1200 := (iff #280 #1199)
-#482 := (iff #97 #481)
-#479 := (iff #96 #476)
-#472 := (implies #469 #95)
-#477 := (iff #472 #476)
-#478 := [rewrite]: #477
-#473 := (iff #96 #472)
-#470 := (iff #93 #469)
-#471 := [rewrite]: #470
-#474 := [monotonicity #471]: #473
-#480 := [trans #474 #478]: #479
-#483 := [quant-intro #480]: #482
-#1197 := (iff #279 #1194)
-#1190 := (implies #481 #1185)
-#1195 := (iff #1190 #1194)
-#1196 := [rewrite]: #1195
-#1191 := (iff #279 #1190)
-#1188 := (iff #278 #1185)
-#1182 := (and #1177 #496)
-#1186 := (iff #1182 #1185)
-#1187 := [rewrite]: #1186
-#1183 := (iff #278 #1182)
-#497 := (iff #106 #496)
-#494 := (iff #105 #491)
-#487 := (implies #484 #104)
-#492 := (iff #487 #491)
-#493 := [rewrite]: #492
-#488 := (iff #105 #487)
-#485 := (iff #99 #484)
-#486 := [rewrite]: #485
-#489 := [monotonicity #486]: #488
-#495 := [trans #489 #493]: #494
-#498 := [quant-intro #495]: #497
-#1180 := (iff #277 #1177)
-#1173 := (implies #496 #1157)
-#1178 := (iff #1173 #1177)
-#1179 := [rewrite]: #1178
-#1174 := (iff #277 #1173)
-#1171 := (iff #276 #1157)
-#1162 := (implies true #1157)
-#1165 := (iff #1162 #1157)
-#1166 := [rewrite]: #1165
-#1169 := (iff #276 #1162)
-#1167 := (iff #275 #1157)
-#1163 := (iff #275 #1162)
-#1160 := (iff #274 #1157)
-#1153 := (implies #499 #1148)
-#1158 := (iff #1153 #1157)
-#1159 := [rewrite]: #1158
-#1154 := (iff #274 #1153)
-#1151 := (iff #273 #1148)
-#1144 := (implies #112 #1139)
-#1149 := (iff #1144 #1148)
-#1150 := [rewrite]: #1149
-#1145 := (iff #273 #1144)
-#1142 := (iff #272 #1139)
-#1135 := (implies #523 #1130)
-#1140 := (iff #1135 #1139)
-#1141 := [rewrite]: #1140
-#1136 := (iff #272 #1135)
-#1133 := (iff #271 #1130)
-#1126 := (implies #544 #1121)
-#1131 := (iff #1126 #1130)
-#1132 := [rewrite]: #1131
-#1127 := (iff #271 #1126)
-#1124 := (iff #270 #1121)
-#1117 := (implies #576 #1107)
-#1122 := (iff #1117 #1121)
-#1123 := [rewrite]: #1122
-#1118 := (iff #270 #1117)
-#1115 := (iff #269 #1107)
-#1110 := (implies true #1107)
-#1113 := (iff #1110 #1107)
-#1114 := [rewrite]: #1113
-#1111 := (iff #269 #1110)
-#1108 := (iff #268 #1107)
-#1105 := (iff #267 #1091)
-#1096 := (implies true #1091)
-#1099 := (iff #1096 #1091)
-#1100 := [rewrite]: #1099
-#1103 := (iff #267 #1096)
-#1101 := (iff #266 #1091)
-#1097 := (iff #266 #1096)
-#1094 := (iff #265 #1091)
-#1088 := (implies #911 #1072)
-#1092 := (iff #1088 #1091)
-#1093 := [rewrite]: #1092
-#1089 := (iff #265 #1088)
-#1086 := (iff #264 #1072)
-#1077 := (implies true #1072)
-#1080 := (iff #1077 #1072)
-#1081 := [rewrite]: #1080
-#1084 := (iff #264 #1077)
-#1082 := (iff #263 #1072)
-#1078 := (iff #263 #1077)
-#1075 := (iff #262 #1072)
-#1068 := (implies #930 #1063)
-#1073 := (iff #1068 #1072)
-#1074 := [rewrite]: #1073
-#1069 := (iff #262 #1068)
-#1066 := (iff #261 #1063)
-#1059 := (implies #229 #1054)
-#1064 := (iff #1059 #1063)
-#1065 := [rewrite]: #1064
-#1060 := (iff #261 #1059)
-#1057 := (iff #260 #1054)
-#1050 := (implies #933 #1045)
-#1055 := (iff #1050 #1054)
-#1056 := [rewrite]: #1055
-#1051 := (iff #260 #1050)
-#1048 := (iff #259 #1045)
-#1041 := (implies #234 #1029)
-#1046 := (iff #1041 #1045)
-#1047 := [rewrite]: #1046
-#1042 := (iff #259 #1041)
-#1039 := (iff #258 #1029)
-#1034 := (implies true #1029)
-#1037 := (iff #1034 #1029)
-#1038 := [rewrite]: #1037
-#1035 := (iff #258 #1034)
-#1032 := (iff #257 #1029)
-#1026 := (and #1021 #965)
-#1030 := (iff #1026 #1029)
-#1031 := [rewrite]: #1030
-#1027 := (iff #257 #1026)
-#966 := (iff #245 #965)
-#963 := (iff #244 #960)
-#956 := (implies #936 #953)
-#961 := (iff #956 #960)
-#962 := [rewrite]: #961
-#957 := (iff #244 #956)
-#954 := (iff #243 #953)
-#951 := (iff #242 #948)
-#945 := (and #942 #241)
-#949 := (iff #945 #948)
-#950 := [rewrite]: #949
-#946 := (iff #242 #945)
-#943 := (iff #240 #942)
-#940 := (= #239 #939)
-#941 := [rewrite]: #940
-#944 := [monotonicity #941]: #943
-#947 := [monotonicity #944]: #946
-#952 := [trans #947 #950]: #951
-#955 := [quant-intro #952]: #954
-#937 := (iff #237 #936)
-#938 := [rewrite]: #937
-#958 := [monotonicity #938 #955]: #957
-#964 := [trans #958 #962]: #963
-#967 := [quant-intro #964]: #966
-#1024 := (iff #256 #1021)
-#1017 := (implies #965 #1012)
-#1022 := (iff #1017 #1021)
-#1023 := [rewrite]: #1022
-#1018 := (iff #256 #1017)
-#1015 := (iff #255 #1012)
-#1009 := (and #1004 #980)
-#1013 := (iff #1009 #1012)
-#1014 := [rewrite]: #1013
-#1010 := (iff #255 #1009)
-#981 := (iff #249 #980)
-#978 := (iff #248 #975)
-#971 := (implies #246 #968)
-#976 := (iff #971 #975)
-#977 := [rewrite]: #976
-#972 := (iff #248 #971)
-#969 := (iff #247 #968)
-#970 := [monotonicity #941]: #969
-#973 := [monotonicity #970]: #972
-#979 := [trans #973 #977]: #978
-#982 := [quant-intro #979]: #981
-#1007 := (iff #254 #1004)
-#1000 := (implies #980 #983)
-#1005 := (iff #1000 #1004)
-#1006 := [rewrite]: #1005
-#1001 := (iff #254 #1000)
-#998 := (iff #253 #983)
-#993 := (and true #983)
-#996 := (iff #993 #983)
-#997 := [rewrite]: #996
-#994 := (iff #253 #993)
-#984 := (iff #251 #983)
-#985 := [rewrite]: #984
-#991 := (iff #252 true)
-#986 := (implies #983 true)
-#989 := (iff #986 true)
-#990 := [rewrite]: #989
-#987 := (iff #252 #986)
-#988 := [monotonicity #985]: #987
-#992 := [trans #988 #990]: #991
-#995 := [monotonicity #992 #985]: #994
-#999 := [trans #995 #997]: #998
-#1002 := [monotonicity #982 #999]: #1001
-#1008 := [trans #1002 #1006]: #1007
-#1011 := [monotonicity #1008 #982]: #1010
-#1016 := [trans #1011 #1014]: #1015
-#1019 := [monotonicity #967 #1016]: #1018
-#1025 := [trans #1019 #1023]: #1024
-#1028 := [monotonicity #1025 #967]: #1027
-#1033 := [trans #1028 #1031]: #1032
-#1036 := [monotonicity #1033]: #1035
-#1040 := [trans #1036 #1038]: #1039
-#1043 := [monotonicity #1040]: #1042
-#1049 := [trans #1043 #1047]: #1048
-#934 := (iff #231 #933)
-#935 := [rewrite]: #934
-#1052 := [monotonicity #935 #1049]: #1051
-#1058 := [trans #1052 #1056]: #1057
-#1061 := [monotonicity #1058]: #1060
-#1067 := [trans #1061 #1065]: #1066
-#931 := (iff #226 #930)
-#932 := [rewrite]: #931
-#1070 := [monotonicity #932 #1067]: #1069
-#1076 := [trans #1070 #1074]: #1075
-#1079 := [monotonicity #1076]: #1078
-#1083 := [trans #1079 #1081]: #1082
-#1085 := [monotonicity #1083]: #1084
-#1087 := [trans #1085 #1081]: #1086
-#928 := (iff #224 #911)
-#583 := (iff #139 #582)
-#580 := (iff #138 #579)
-#509 := (iff #118 #508)
-#506 := (iff #117 #505)
-#507 := [rewrite]: #506
-#510 := [monotonicity #507]: #509
-#581 := [monotonicity #510]: #580
-#584 := [quant-intro #581]: #583
-#929 := [monotonicity #584]: #928
-#1090 := [monotonicity #929 #1087]: #1089
-#1095 := [trans #1090 #1093]: #1094
-#1098 := [monotonicity #1095]: #1097
-#1102 := [trans #1098 #1100]: #1101
-#1104 := [monotonicity #1102]: #1103
-#1106 := [trans #1104 #1100]: #1105
-#926 := (iff #223 #912)
-#917 := (implies true #912)
-#920 := (iff #917 #912)
-#921 := [rewrite]: #920
-#924 := (iff #223 #917)
-#922 := (iff #222 #912)
-#918 := (iff #222 #917)
-#915 := (iff #221 #912)
-#908 := (implies #582 #903)
-#913 := (iff #908 #912)
-#914 := [rewrite]: #913
-#909 := (iff #221 #908)
-#906 := (iff #220 #903)
-#588 := (not #585)
-#900 := (implies #588 #895)
-#904 := (iff #900 #903)
-#905 := [rewrite]: #904
-#901 := (iff #220 #900)
-#898 := (iff #219 #895)
-#891 := (implies #145 #886)
-#896 := (iff #891 #895)
-#897 := [rewrite]: #896
-#892 := (iff #219 #891)
-#889 := (iff #218 #886)
-#882 := (implies #599 #877)
-#887 := (iff #882 #886)
-#888 := [rewrite]: #887
-#883 := (iff #218 #882)
-#880 := (iff #217 #877)
-#873 := (implies #151 #868)
-#878 := (iff #873 #877)
-#879 := [rewrite]: #878
-#874 := (iff #217 #873)
-#871 := (iff #216 #868)
-#864 := (implies #613 #859)
-#869 := (iff #864 #868)
-#870 := [rewrite]: #869
-#865 := (iff #216 #864)
-#862 := (iff #215 #859)
-#855 := (implies #627 #850)
-#860 := (iff #855 #859)
-#861 := [rewrite]: #860
-#856 := (iff #215 #855)
-#853 := (iff #214 #850)
-#847 := (and #842 #167)
-#851 := (iff #847 #850)
-#852 := [rewrite]: #851
-#848 := (iff #214 #847)
-#845 := (iff #213 #842)
-#838 := (implies #167 #833)
-#843 := (iff #838 #842)
-#844 := [rewrite]: #843
-#839 := (iff #213 #838)
-#836 := (iff #212 #833)
-#830 := (and #825 #642)
-#834 := (iff #830 #833)
-#835 := [rewrite]: #834
-#831 := (iff #212 #830)
-#643 := (iff #171 #642)
-#640 := (iff #170 #637)
-#633 := (implies #630 #616)
-#638 := (iff #633 #637)
-#639 := [rewrite]: #638
-#634 := (iff #170 #633)
-#617 := (iff #163 #616)
-#618 := [rewrite]: #617
-#631 := (iff #169 #630)
-#632 := [rewrite]: #631
-#635 := [monotonicity #632 #618]: #634
-#641 := [trans #635 #639]: #640
-#644 := [quant-intro #641]: #643
-#828 := (iff #211 #825)
-#821 := (implies #642 #805)
-#826 := (iff #821 #825)
-#827 := [rewrite]: #826
-#822 := (iff #211 #821)
-#819 := (iff #210 #805)
-#810 := (implies true #805)
-#813 := (iff #810 #805)
-#814 := [rewrite]: #813
-#817 := (iff #210 #810)
-#815 := (iff #209 #805)
-#811 := (iff #209 #810)
-#808 := (iff #208 #805)
-#802 := (and #797 #645)
-#806 := (iff #802 #805)
-#807 := [rewrite]: #806
-#803 := (iff #208 #802)
-#646 := (iff #173 #645)
-#647 := [rewrite]: #646
-#800 := (iff #207 #797)
-#793 := (implies #645 #788)
-#798 := (iff #793 #797)
-#799 := [rewrite]: #798
-#794 := (iff #207 #793)
-#791 := (iff #206 #788)
-#785 := (and #780 #175)
-#789 := (iff #785 #788)
-#790 := [rewrite]: #789
-#786 := (iff #206 #785)
-#783 := (iff #205 #780)
-#776 := (implies #175 #771)
-#781 := (iff #776 #780)
-#782 := [rewrite]: #781
-#777 := (iff #205 #776)
-#774 := (iff #204 #771)
-#768 := (and #763 #670)
-#772 := (iff #768 #771)
-#773 := [rewrite]: #772
-#769 := (iff #204 #768)
-#671 := (iff #183 #670)
-#668 := (iff #182 #665)
-#661 := (implies #656 #181)
-#666 := (iff #661 #665)
-#667 := [rewrite]: #666
-#662 := (iff #182 #661)
-#659 := (iff #179 #656)
-#653 := (and #648 #636)
-#657 := (iff #653 #656)
-#658 := [rewrite]: #657
-#654 := (iff #179 #653)
-#651 := (iff #178 #636)
-#652 := [monotonicity #632]: #651
-#649 := (iff #177 #648)
-#650 := [rewrite]: #649
-#655 := [monotonicity #650 #652]: #654
-#660 := [trans #655 #658]: #659
-#663 := [monotonicity #660]: #662
-#669 := [trans #663 #667]: #668
-#672 := [quant-intro #669]: #671
-#766 := (iff #203 #763)
-#759 := (implies #670 #754)
-#764 := (iff #759 #763)
-#765 := [rewrite]: #764
-#760 := (iff #203 #759)
-#757 := (iff #202 #754)
-#751 := (and #746 #691)
-#755 := (iff #751 #754)
-#756 := [rewrite]: #755
-#752 := (iff #202 #751)
-#692 := (iff #188 #691)
-#689 := (iff #187 #686)
-#682 := (implies #673 #679)
-#687 := (iff #682 #686)
-#688 := [rewrite]: #687
-#683 := (iff #187 #682)
-#680 := (iff #186 #679)
-#677 := (= #185 #676)
-#678 := [rewrite]: #677
-#681 := [monotonicity #678]: #680
-#674 := (iff #184 #673)
-#675 := [monotonicity #632]: #674
-#684 := [monotonicity #675 #681]: #683
-#690 := [trans #684 #688]: #689
-#693 := [quant-intro #690]: #692
-#749 := (iff #201 #746)
-#742 := (implies #691 #723)
-#747 := (iff #742 #746)
-#748 := [rewrite]: #747
-#743 := (iff #201 #742)
-#740 := (iff #200 #723)
-#735 := (and true #723)
-#738 := (iff #735 #723)
-#739 := [rewrite]: #738
-#736 := (iff #200 #735)
-#724 := (iff #197 #723)
-#721 := (iff #196 #718)
-#714 := (implies #694 #711)
-#719 := (iff #714 #718)
-#720 := [rewrite]: #719
-#715 := (iff #196 #714)
-#712 := (iff #195 #711)
-#709 := (iff #194 #708)
-#706 := (iff #193 #703)
-#700 := (and #630 #192)
-#704 := (iff #700 #703)
-#705 := [rewrite]: #704
-#701 := (iff #193 #700)
-#702 := [monotonicity #632]: #701
-#707 := [trans #702 #705]: #706
-#698 := (iff #191 #697)
-#699 := [monotonicity #678]: #698
-#710 := [monotonicity #699 #707]: #709
-#713 := [quant-intro #710]: #712
-#695 := (iff #190 #694)
-#696 := [rewrite]: #695
-#716 := [monotonicity #696 #713]: #715
-#722 := [trans #716 #720]: #721
-#725 := [quant-intro #722]: #724
-#733 := (iff #199 true)
-#728 := (implies #723 true)
-#731 := (iff #728 true)
-#732 := [rewrite]: #731
-#729 := (iff #199 #728)
-#726 := (iff #198 true)
-#727 := [rewrite]: #726
-#730 := [monotonicity #725 #727]: #729
-#734 := [trans #730 #732]: #733
-#737 := [monotonicity #734 #725]: #736
-#741 := [trans #737 #739]: #740
-#744 := [monotonicity #693 #741]: #743
-#750 := [trans #744 #748]: #749
-#753 := [monotonicity #750 #693]: #752
-#758 := [trans #753 #756]: #757
-#761 := [monotonicity #672 #758]: #760
-#767 := [trans #761 #765]: #766
-#770 := [monotonicity #767 #672]: #769
-#775 := [trans #770 #773]: #774
-#778 := [monotonicity #775]: #777
-#784 := [trans #778 #782]: #783
-#787 := [monotonicity #784]: #786
-#792 := [trans #787 #790]: #791
-#795 := [monotonicity #647 #792]: #794
-#801 := [trans #795 #799]: #800
-#804 := [monotonicity #801 #647]: #803
-#809 := [trans #804 #807]: #808
-#812 := [monotonicity #809]: #811
-#816 := [trans #812 #814]: #815
-#818 := [monotonicity #816]: #817
-#820 := [trans #818 #814]: #819
-#823 := [monotonicity #644 #820]: #822
-#829 := [trans #823 #827]: #828
-#832 := [monotonicity #829 #644]: #831
-#837 := [trans #832 #835]: #836
-#840 := [monotonicity #837]: #839
-#846 := [trans #840 #844]: #845
-#849 := [monotonicity #846]: #848
-#854 := [trans #849 #852]: #853
-#628 := (iff #165 #627)
-#625 := (iff #164 #622)
-#619 := (implies #162 #616)
-#623 := (iff #619 #622)
-#624 := [rewrite]: #623
-#620 := (iff #164 #619)
-#621 := [monotonicity #618]: #620
-#626 := [trans #621 #624]: #625
-#629 := [quant-intro #626]: #628
-#857 := [monotonicity #629 #854]: #856
-#863 := [trans #857 #861]: #862
-#614 := (iff #161 #613)
-#611 := (iff #160 #608)
-#605 := (implies #157 #602)
-#609 := (iff #605 #608)
-#610 := [rewrite]: #609
-#606 := (iff #160 #605)
-#603 := (iff #159 #602)
-#604 := [rewrite]: #603
-#607 := [monotonicity #604]: #606
-#612 := [trans #607 #610]: #611
-#615 := [quant-intro #612]: #614
-#866 := [monotonicity #615 #863]: #865
-#872 := [trans #866 #870]: #871
-#875 := [monotonicity #872]: #874
-#881 := [trans #875 #879]: #880
-#600 := (iff #148 #599)
-#597 := (iff #147 #594)
-#591 := (implies #508 #146)
-#595 := (iff #591 #594)
-#596 := [rewrite]: #595
-#592 := (iff #147 #591)
-#593 := [monotonicity #510]: #592
-#598 := [trans #593 #596]: #597
-#601 := [quant-intro #598]: #600
-#884 := [monotonicity #601 #881]: #883
-#890 := [trans #884 #888]: #889
-#893 := [monotonicity #890]: #892
-#899 := [trans #893 #897]: #898
-#589 := (iff #143 #588)
-#586 := (iff #142 #585)
-#587 := [rewrite]: #586
-#590 := [monotonicity #587]: #589
-#902 := [monotonicity #590 #899]: #901
-#907 := [trans #902 #905]: #906
-#910 := [monotonicity #584 #907]: #909
-#916 := [trans #910 #914]: #915
-#919 := [monotonicity #916]: #918
-#923 := [trans #919 #921]: #922
-#925 := [monotonicity #923]: #924
-#927 := [trans #925 #921]: #926
-#1109 := [monotonicity #927 #1106]: #1108
-#1112 := [monotonicity #1109]: #1111
-#1116 := [trans #1112 #1114]: #1115
-#577 := (iff #137 #576)
-#574 := (iff #136 #571)
-#567 := (implies #547 #564)
-#572 := (iff #567 #571)
-#573 := [rewrite]: #572
-#568 := (iff #136 #567)
-#565 := (iff #135 #564)
-#562 := (iff #134 #561)
-#559 := (iff #133 #556)
-#553 := (and #505 #132)
-#557 := (iff #553 #556)
-#558 := [rewrite]: #557
-#554 := (iff #133 #553)
-#555 := [monotonicity #507]: #554
-#560 := [trans #555 #558]: #559
-#551 := (iff #131 #550)
-#530 := (= #125 #529)
-#531 := [rewrite]: #530
-#552 := [monotonicity #531]: #551
-#563 := [monotonicity #552 #560]: #562
-#566 := [quant-intro #563]: #565
-#548 := (iff #130 #547)
-#549 := [rewrite]: #548
-#569 := [monotonicity #549 #566]: #568
-#575 := [trans #569 #573]: #574
-#578 := [quant-intro #575]: #577
-#1119 := [monotonicity #578 #1116]: #1118
-#1125 := [trans #1119 #1123]: #1124
-#545 := (iff #128 #544)
-#542 := (iff #127 #539)
-#535 := (implies #526 #532)
-#540 := (iff #535 #539)
-#541 := [rewrite]: #540
-#536 := (iff #127 #535)
-#533 := (iff #126 #532)
-#534 := [monotonicity #531]: #533
-#527 := (iff #124 #526)
-#528 := [monotonicity #507]: #527
-#537 := [monotonicity #528 #534]: #536
-#543 := [trans #537 #541]: #542
-#546 := [quant-intro #543]: #545
-#1128 := [monotonicity #546 #1125]: #1127
-#1134 := [trans #1128 #1132]: #1133
-#524 := (iff #123 #523)
-#521 := (iff #122 #518)
-#514 := (implies #511 #121)
-#519 := (iff #514 #518)
-#520 := [rewrite]: #519
-#515 := (iff #122 #514)
-#512 := (iff #119 #511)
-#503 := (iff #115 #502)
-#504 := [rewrite]: #503
-#513 := [monotonicity #504 #510]: #512
-#516 := [monotonicity #513]: #515
-#522 := [trans #516 #520]: #521
-#525 := [quant-intro #522]: #524
-#1137 := [monotonicity #525 #1134]: #1136
-#1143 := [trans #1137 #1141]: #1142
-#1146 := [monotonicity #1143]: #1145
-#1152 := [trans #1146 #1150]: #1151
-#500 := (iff #109 #499)
-#501 := [rewrite]: #500
-#1155 := [monotonicity #501 #1152]: #1154
-#1161 := [trans #1155 #1159]: #1160
-#1164 := [monotonicity #1161]: #1163
-#1168 := [trans #1164 #1166]: #1167
-#1170 := [monotonicity #1168]: #1169
-#1172 := [trans #1170 #1166]: #1171
-#1175 := [monotonicity #498 #1172]: #1174
-#1181 := [trans #1175 #1179]: #1180
-#1184 := [monotonicity #1181 #498]: #1183
-#1189 := [trans #1184 #1187]: #1188
-#1192 := [monotonicity #483 #1189]: #1191
-#1198 := [trans #1192 #1196]: #1197
-#1201 := [monotonicity #1198 #483]: #1200
-#1206 := [trans #1201 #1204]: #1205
-#1209 := [monotonicity #468 #1206]: #1208
-#1215 := [trans #1209 #1213]: #1214
-#1218 := [monotonicity #1215 #468]: #1217
-#1223 := [trans #1218 #1221]: #1222
-#1226 := [monotonicity #1223]: #1225
-#1232 := [trans #1226 #1230]: #1231
-#1235 := [monotonicity #1232]: #1234
-#1240 := [trans #1235 #1238]: #1239
-#1243 := [monotonicity #453 #1240]: #1242
-#1249 := [trans #1243 #1247]: #1248
-#1252 := [monotonicity #1249 #453]: #1251
-#1257 := [trans #1252 #1255]: #1256
-#1260 := [monotonicity #1257]: #1259
-#1264 := [trans #1260 #1262]: #1263
-#1267 := [monotonicity #1264]: #1266
-#1273 := [trans #1267 #1271]: #1272
-#449 := (iff #76 #448)
-#446 := (iff #75 #443)
-#440 := (implies #73 #437)
-#444 := (iff #440 #443)
-#445 := [rewrite]: #444
-#441 := (iff #75 #440)
-#438 := (iff #74 #437)
-#439 := [rewrite]: #438
-#442 := [monotonicity #439]: #441
-#447 := [trans #442 #445]: #446
-#450 := [quant-intro #447]: #449
-#1276 := [monotonicity #450 #1273]: #1275
-#1282 := [trans #1276 #1280]: #1281
-#435 := (iff #72 #434)
-#432 := (iff #71 #429)
-#426 := (implies #68 #423)
-#430 := (iff #426 #429)
-#431 := [rewrite]: #430
-#427 := (iff #71 #426)
-#424 := (iff #70 #423)
-#425 := [rewrite]: #424
-#428 := [monotonicity #425]: #427
-#433 := [trans #428 #431]: #432
-#436 := [quant-intro #433]: #435
-#1285 := [monotonicity #436 #1282]: #1284
-#1291 := [trans #1285 #1289]: #1290
-#1294 := [monotonicity #1291]: #1293
-#1298 := [trans #1294 #1296]: #1297
-#1300 := [monotonicity #1298]: #1299
-#1302 := [trans #1300 #1296]: #1301
-#1305 := [monotonicity #1302]: #1304
-#1939 := [trans #1305 #1937]: #1938
-#422 := [asserted]: #293
-#1940 := [mp #422 #1939]: #1935
-#1941 := [not-or-elim #1940]: #79
-#2004 := [mp~ #1941 #1966]: #79
-#4354 := [mp #2004 #4353]: #4349
-#5709 := (not #4349)
-#5715 := (or #5709 #2266)
-#5470 := [quant-inst]: #5715
-#6005 := [unit-resolution #5470 #4354 #6004]: false
-#6009 := [lemma #6005]: #2266
-#3870 := (or #2166 #2033)
-#3957 := [def-axiom]: #3870
-#7294 := [unit-resolution #3957 #6009]: #2166
-#2421 := (not #2166)
-#4707 := (or #2421 #4704)
-#4710 := (not #4707)
-#4362 := (forall (vars (?x27 T2)) (:pat #4355) #1313)
-#4367 := (not #4362)
-#4713 := (or #4367 #4710)
-#4716 := (not #4713)
-decl ?x27!0 :: T2
-#2011 := ?x27!0
-#2012 := (uf_12 ?x27!0)
-#2013 := (>= #2012 0::int)
-#2014 := (not #2013)
-#4719 := (or #2014 #4716)
-#4722 := (not #4719)
-#4725 := (or #1308 #4722)
-#4728 := (not #4725)
-#4735 := (forall (vars (?x24 T2)) (:pat #4355) #1912)
-#4738 := (iff #1915 #4735)
-#4736 := (iff #1912 #1912)
-#4737 := [refl]: #4736
-#4739 := [quant-intro #4737]: #4738
-#2238 := (~ #1915 #1915)
-#2072 := (~ #1912 #1912)
-#2073 := [refl]: #2072
-#2239 := [nnf-pos #2073]: #2238
-#1945 := [not-or-elim #1940]: #1915
-#2265 := [mp~ #1945 #2239]: #1915
-#4740 := [mp #2265 #4739]: #4735
-#5485 := [hypothesis]: #1308
-#5347 := (not #4735)
-#5348 := (or #5347 #81)
-#4030 := (= uf_11 uf_11)
-#4033 := (not #4030)
-#4034 := (or #4033 #81)
-#5341 := (or #5347 #4034)
-#5350 := (iff #5341 #5348)
-#5361 := (iff #5348 #5348)
-#5363 := [rewrite]: #5361
-#5108 := (iff #4034 #81)
-#5046 := (or false #81)
-#5106 := (iff #5046 #81)
-#5107 := [rewrite]: #5106
-#5104 := (iff #4034 #5046)
-#3956 := (iff #4033 false)
-#6849 := (not true)
-#6852 := (iff #6849 false)
-#6853 := [rewrite]: #6852
-#5051 := (iff #4033 #6849)
-#4038 := (iff #4030 true)
-#5050 := [rewrite]: #4038
-#5052 := [monotonicity #5050]: #5051
-#3939 := [trans #5052 #6853]: #3956
-#5105 := [monotonicity #3939]: #5104
-#5346 := [trans #5105 #5107]: #5108
-#5351 := [monotonicity #5346]: #5350
-#5364 := [trans #5351 #5363]: #5350
-#5349 := [quant-inst]: #5341
-#5484 := [mp #5349 #5364]: #5348
-#5486 := [unit-resolution #5484 #5485 #4740]: false
-#5487 := [lemma #5486]: #81
-#4731 := (or #1308 #4728)
-#3666 := (forall (vars (?x66 T2) (?x67 T2)) #3661)
-#3672 := (not #3666)
-#3673 := (or #251 #3672)
-#3674 := (not #3673)
-#3701 := (or #3674 #3698)
-#3708 := (not #3701)
-#3644 := (forall (vars (?x64 T2)) #3639)
-#3707 := (not #3644)
-#3709 := (or #3707 #3708)
-#3710 := (not #3709)
-#3607 := (forall (vars (?x65 T2)) #3596)
-#3613 := (not #3607)
-#3614 := (or #2460 #2993 #3613)
-#3615 := (not #3614)
-#3715 := (or #3615 #3710)
-#3722 := (not #3715)
-#3592 := (forall (vars (?x41 T2)) #3581)
-#3721 := (not #3592)
-#3723 := (or #1062 #1044 #1071 #1053 #3721 #3722)
-#3724 := (not #3723)
-#3486 := (forall (vars (?x53 T2)) #3475)
-#3493 := (not #3486)
-#3471 := (forall (vars (?x50 T2) (?x51 T2)) #3466)
-#3492 := (not #3471)
-#3494 := (or #2318 #2893 #3492 #3493)
-#3495 := (not #3494)
-#3500 := (or #3449 #3495)
-#3507 := (not #3500)
-#3426 := (forall (vars (?x48 T2) (?x49 T2)) #3421)
-#3506 := (not #3426)
-#3508 := (or #3506 #3507)
-#3509 := (not #3508)
-#3514 := (or #3403 #3509)
-#3520 := (not #3514)
-#3521 := (or #1501 #3520)
-#3522 := (not #3521)
-#3527 := (or #2235 #3522)
-#3533 := (not #3527)
-#3534 := (or #1492 #3533)
-#3535 := (not #3534)
-#3540 := (or #1492 #3535)
-#3546 := (not #3540)
-#3547 := (or #824 #3546)
-#3548 := (not #3547)
-#3553 := (or #2836 #3548)
-#3559 := (not #3553)
-#3560 := (or #1487 #3559)
-#3561 := (not #3560)
-#3566 := (or #2822 #3561)
-#3574 := (not #3566)
-#3380 := (forall (vars (?x43 T2)) #3375)
-#3573 := (not #3380)
-#3362 := (forall (vars (?x44 T2)) #3359)
-#3572 := (not #3362)
-#3575 := (or #876 #585 #1652 #1656 #2412 #2415 #3572 #3573 #3574)
-#3576 := (not #3575)
-#3729 := (or #3576 #3724)
-#3739 := (not #3729)
-#3352 := (forall (vars (?x39 T2)) #3347)
-#3738 := (not #3352)
-#3324 := (forall (vars (?x32 T2)) #3319)
-#3737 := (not #3324)
-#3296 := (forall (vars (?x35 T2) (?x36 T2)) #3291)
-#3736 := (not #3296)
-#3273 := (forall (vars (?x37 T2) (?x38 T2)) #3268)
-#3735 := (not #3273)
-#3740 := (or #1854 #1849 #3735 #3736 #3737 #3738 #3739)
-#3741 := (not #3740)
-#3241 := (forall (vars (?x33 T2)) #3230)
-#3247 := (not #3241)
-#3248 := (or #2085 #2688 #3247)
-#3249 := (not #3248)
-#3746 := (or #3249 #3741)
-#3753 := (not #3746)
-#3226 := (forall (vars (?x30 T2) (?x31 T2)) #3221)
-#3752 := (not #3226)
-#3754 := (or #3752 #3753)
-#3755 := (not #3754)
-#3760 := (or #3204 #3755)
-#3767 := (not #3760)
-#3181 := (forall (vars (?x28 T2) (?x29 T2)) #3176)
-#3766 := (not #3181)
-#3768 := (or #3766 #3767)
-#3769 := (not #3768)
-#3774 := (or #2421 #3769)
-#3780 := (not #3774)
-#3781 := (or #1317 #3780)
-#3782 := (not #3781)
-#3787 := (or #2014 #3782)
-#3793 := (not #3787)
-#3794 := (or #1308 #3793)
-#3795 := (not #3794)
-#3800 := (or #1308 #3795)
-#4732 := (iff #3800 #4731)
-#4729 := (iff #3795 #4728)
-#4726 := (iff #3794 #4725)
-#4723 := (iff #3793 #4722)
-#4720 := (iff #3787 #4719)
-#4717 := (iff #3782 #4716)
-#4714 := (iff #3781 #4713)
-#4711 := (iff #3780 #4710)
-#4708 := (iff #3774 #4707)
-#4705 := (iff #3769 #4704)
-#4702 := (iff #3768 #4701)
-#4699 := (iff #3767 #4698)
-#4696 := (iff #3760 #4695)
-#4693 := (iff #3755 #4692)
-#4690 := (iff #3754 #4689)
-#4687 := (iff #3753 #4686)
-#4684 := (iff #3746 #4683)
-#4681 := (iff #3741 #4680)
-#4678 := (iff #3740 #4677)
-#4675 := (iff #3739 #4674)
-#4672 := (iff #3729 #4671)
-#4669 := (iff #3724 #4668)
-#4666 := (iff #3723 #4665)
-#4663 := (iff #3722 #4662)
-#4660 := (iff #3715 #4659)
-#4657 := (iff #3710 #4656)
-#4654 := (iff #3709 #4653)
-#4651 := (iff #3708 #4650)
-#4648 := (iff #3701 #4647)
-#4645 := (iff #3674 #4644)
-#4642 := (iff #3673 #4641)
-#4639 := (iff #3672 #4638)
-#4636 := (iff #3666 #4633)
-#4634 := (iff #3661 #3661)
-#4635 := [refl]: #4634
-#4637 := [quant-intro #4635]: #4636
-#4640 := [monotonicity #4637]: #4639
-#4643 := [monotonicity #4640]: #4642
-#4646 := [monotonicity #4643]: #4645
-#4649 := [monotonicity #4646]: #4648
-#4652 := [monotonicity #4649]: #4651
-#4631 := (iff #3707 #4630)
-#4628 := (iff #3644 #4625)
-#4626 := (iff #3639 #3639)
-#4627 := [refl]: #4626
-#4629 := [quant-intro #4627]: #4628
-#4632 := [monotonicity #4629]: #4631
-#4655 := [monotonicity #4632 #4652]: #4654
-#4658 := [monotonicity #4655]: #4657
-#4623 := (iff #3615 #4622)
-#4620 := (iff #3614 #4619)
-#4617 := (iff #3613 #4616)
-#4614 := (iff #3607 #4611)
-#4612 := (iff #3596 #3596)
-#4613 := [refl]: #4612
-#4615 := [quant-intro #4613]: #4614
-#4618 := [monotonicity #4615]: #4617
-#4621 := [monotonicity #4618]: #4620
-#4624 := [monotonicity #4621]: #4623
-#4661 := [monotonicity #4624 #4658]: #4660
-#4664 := [monotonicity #4661]: #4663
-#4607 := (iff #3721 #4606)
-#4604 := (iff #3592 #4601)
-#4602 := (iff #3581 #3581)
-#4603 := [refl]: #4602
-#4605 := [quant-intro #4603]: #4604
-#4608 := [monotonicity #4605]: #4607
-#4667 := [monotonicity #4608 #4664]: #4666
-#4670 := [monotonicity #4667]: #4669
-#4599 := (iff #3576 #4598)
-#4596 := (iff #3575 #4595)
-#4593 := (iff #3574 #4592)
-#4590 := (iff #3566 #4589)
-#4587 := (iff #3561 #4586)
-#4584 := (iff #3560 #4583)
-#4581 := (iff #3559 #4580)
-#4578 := (iff #3553 #4577)
-#4575 := (iff #3548 #4574)
-#4572 := (iff #3547 #4571)
-#4569 := (iff #3546 #4568)
-#4566 := (iff #3540 #4565)
-#4563 := (iff #3535 #4562)
-#4560 := (iff #3534 #4559)
-#4557 := (iff #3533 #4556)
-#4554 := (iff #3527 #4553)
-#4551 := (iff #3522 #4550)
-#4548 := (iff #3521 #4547)
-#4545 := (iff #3520 #4544)
-#4542 := (iff #3514 #4541)
-#4539 := (iff #3509 #4538)
-#4536 := (iff #3508 #4535)
-#4533 := (iff #3507 #4532)
-#4530 := (iff #3500 #4529)
-#4527 := (iff #3495 #4526)
-#4524 := (iff #3494 #4523)
-#4521 := (iff #3493 #4520)
-#4518 := (iff #3486 #4515)
-#4516 := (iff #3475 #3475)
-#4517 := [refl]: #4516
-#4519 := [quant-intro #4517]: #4518
-#4522 := [monotonicity #4519]: #4521
-#4512 := (iff #3492 #4511)
-#4509 := (iff #3471 #4506)
-#4507 := (iff #3466 #3466)
-#4508 := [refl]: #4507
-#4510 := [quant-intro #4508]: #4509
-#4513 := [monotonicity #4510]: #4512
-#4525 := [monotonicity #4513 #4522]: #4524
-#4528 := [monotonicity #4525]: #4527
-#4531 := [monotonicity #4528]: #4530
-#4534 := [monotonicity #4531]: #4533
-#4504 := (iff #3506 #4503)
-#4501 := (iff #3426 #4498)
-#4499 := (iff #3421 #3421)
-#4500 := [refl]: #4499
-#4502 := [quant-intro #4500]: #4501
-#4505 := [monotonicity #4502]: #4504
-#4537 := [monotonicity #4505 #4534]: #4536
-#4540 := [monotonicity #4537]: #4539
-#4543 := [monotonicity #4540]: #4542
-#4546 := [monotonicity #4543]: #4545
-#4495 := (iff #1501 #4494)
-#4492 := (iff #1498 #4489)
-#4490 := (iff #1495 #1495)
-#4491 := [refl]: #4490
-#4493 := [quant-intro #4491]: #4492
-#4496 := [monotonicity #4493]: #4495
-#4549 := [monotonicity #4496 #4546]: #4548
-#4552 := [monotonicity #4549]: #4551
-#4555 := [monotonicity #4552]: #4554
-#4558 := [monotonicity #4555]: #4557
-#4561 := [monotonicity #4558]: #4560
-#4564 := [monotonicity #4561]: #4563
-#4567 := [monotonicity #4564]: #4566
-#4570 := [monotonicity #4567]: #4569
-#4487 := (iff #824 #4486)
-#4484 := (iff #642 #4481)
-#4482 := (iff #637 #637)
-#4483 := [refl]: #4482
-#4485 := [quant-intro #4483]: #4484
-#4488 := [monotonicity #4485]: #4487
-#4573 := [monotonicity #4488 #4570]: #4572
-#4576 := [monotonicity #4573]: #4575
-#4579 := [monotonicity #4576]: #4578
-#4582 := [monotonicity #4579]: #4581
-#4478 := (iff #1487 #4477)
-#4475 := (iff #1484 #4472)
-#4473 := (iff #1479 #1479)
-#4474 := [refl]: #4473
-#4476 := [quant-intro #4474]: #4475
-#4479 := [monotonicity #4476]: #4478
-#4585 := [monotonicity #4479 #4582]: #4584
-#4588 := [monotonicity #4585]: #4587
-#4591 := [monotonicity #4588]: #4590
-#4594 := [monotonicity #4591]: #4593
-#4470 := (iff #3573 #4469)
-#4467 := (iff #3380 #4464)
-#4465 := (iff #3375 #3375)
-#4466 := [refl]: #4465
-#4468 := [quant-intro #4466]: #4467
-#4471 := [monotonicity #4468]: #4470
-#4462 := (iff #3572 #4461)
-#4459 := (iff #3362 #4456)
-#4457 := (iff #3359 #3359)
-#4458 := [refl]: #4457
-#4460 := [quant-intro #4458]: #4459
-#4463 := [monotonicity #4460]: #4462
-#4452 := (iff #1652 #4451)
-#4449 := (iff #1649 #4446)
-#4447 := (iff #1644 #1644)
-#4448 := [refl]: #4447
-#4450 := [quant-intro #4448]: #4449
-#4453 := [monotonicity #4450]: #4452
-#4597 := [monotonicity #4453 #4463 #4471 #4594]: #4596
-#4600 := [monotonicity #4597]: #4599
-#4673 := [monotonicity #4600 #4670]: #4672
-#4676 := [monotonicity #4673]: #4675
-#4443 := (iff #3738 #4442)
-#4440 := (iff #3352 #4437)
-#4438 := (iff #3347 #3347)
-#4439 := [refl]: #4438
-#4441 := [quant-intro #4439]: #4440
-#4444 := [monotonicity #4441]: #4443
-#4435 := (iff #3737 #4434)
-#4432 := (iff #3324 #4429)
-#4430 := (iff #3319 #3319)
-#4431 := [refl]: #4430
-#4433 := [quant-intro #4431]: #4432
-#4436 := [monotonicity #4433]: #4435
-#4427 := (iff #3736 #4426)
-#4424 := (iff #3296 #4421)
-#4422 := (iff #3291 #3291)
-#4423 := [refl]: #4422
-#4425 := [quant-intro #4423]: #4424
-#4428 := [monotonicity #4425]: #4427
-#4418 := (iff #3735 #4417)
-#4415 := (iff #3273 #4412)
-#4413 := (iff #3268 #3268)
-#4414 := [refl]: #4413
-#4416 := [quant-intro #4414]: #4415
-#4419 := [monotonicity #4416]: #4418
-#4410 := (iff #1849 #4409)
-#4407 := (iff #1846 #4404)
-#4405 := (iff #1843 #1843)
-#4406 := [refl]: #4405
-#4408 := [quant-intro #4406]: #4407
-#4411 := [monotonicity #4408]: #4410
-#4679 := [monotonicity #4411 #4419 #4428 #4436 #4444 #4676]: #4678
-#4682 := [monotonicity #4679]: #4681
-#4401 := (iff #3249 #4400)
-#4398 := (iff #3248 #4397)
-#4395 := (iff #3247 #4394)
-#4392 := (iff #3241 #4389)
-#4390 := (iff #3230 #3230)
-#4391 := [refl]: #4390
-#4393 := [quant-intro #4391]: #4392
-#4396 := [monotonicity #4393]: #4395
-#4399 := [monotonicity #4396]: #4398
-#4402 := [monotonicity #4399]: #4401
-#4685 := [monotonicity #4402 #4682]: #4684
-#4688 := [monotonicity #4685]: #4687
-#4386 := (iff #3752 #4385)
-#4383 := (iff #3226 #4380)
-#4381 := (iff #3221 #3221)
-#4382 := [refl]: #4381
-#4384 := [quant-intro #4382]: #4383
-#4387 := [monotonicity #4384]: #4386
-#4691 := [monotonicity #4387 #4688]: #4690
-#4694 := [monotonicity #4691]: #4693
-#4697 := [monotonicity #4694]: #4696
-#4700 := [monotonicity #4697]: #4699
-#4377 := (iff #3766 #4376)
-#4374 := (iff #3181 #4371)
-#4372 := (iff #3176 #3176)
-#4373 := [refl]: #4372
-#4375 := [quant-intro #4373]: #4374
-#4378 := [monotonicity #4375]: #4377
-#4703 := [monotonicity #4378 #4700]: #4702
-#4706 := [monotonicity #4703]: #4705
-#4709 := [monotonicity #4706]: #4708
-#4712 := [monotonicity #4709]: #4711
-#4368 := (iff #1317 #4367)
-#4365 := (iff #1314 #4362)
-#4363 := (iff #1313 #1313)
-#4364 := [refl]: #4363
-#4366 := [quant-intro #4364]: #4365
-#4369 := [monotonicity #4366]: #4368
-#4715 := [monotonicity #4369 #4712]: #4714
-#4718 := [monotonicity #4715]: #4717
-#4721 := [monotonicity #4718]: #4720
-#4724 := [monotonicity #4721]: #4723
-#4727 := [monotonicity #4724]: #4726
-#4730 := [monotonicity #4727]: #4729
-#4733 := [monotonicity #4730]: #4732
-#2527 := (not #2526)
-#2523 := (not #2522)
-#3081 := (and #2523 #2527)
-#3084 := (not #3081)
-#3101 := (or #3084 #3096)
-#3104 := (not #3101)
-#2536 := (not #251)
-#2546 := (and #2536 #1756)
-#3110 := (or #2546 #3104)
-#3054 := (not #3049)
-#3072 := (and #3054 #3067)
-#3075 := (or #1716 #3072)
-#3078 := (forall (vars (?x64 T2)) #3075)
-#3115 := (and #3078 #3110)
-#2456 := (not #2455)
-#3024 := (and #2456 #3021)
-#3027 := (not #3024)
-#3030 := (forall (vars (?x65 T2)) #3027)
-#2996 := (not #2993)
-#2461 := (not #2460)
-#3036 := (and #2461 #2996 #3030)
-#3118 := (or #3036 #3115)
-#2441 := (not #1670)
-#2444 := (forall (vars (?x41 T2)) #2441)
-#3121 := (and #229 #234 #930 #933 #2444 #3118)
-#2314 := (not #2313)
-#2924 := (and #630 #2314 #2921)
-#2927 := (not #2924)
-#2930 := (forall (vars (?x53 T2)) #2927)
-#2896 := (not #2893)
-#2319 := (not #2318)
-#2939 := (and #1541 #2319 #2896 #2930)
-#2287 := (not #2286)
-#2866 := (and #2287 #2289)
-#2869 := (not #2866)
-#2887 := (or #2869 #2882)
-#2890 := (not #2887)
-#2944 := (or #2890 #2939)
-#2947 := (and #1517 #2944)
-#2258 := (not #2257)
-#2841 := (and #2255 #2258)
-#2844 := (not #2841)
-#2860 := (or #2844 #2855)
-#2863 := (not #2860)
-#2950 := (or #2863 #2947)
-#2953 := (and #1498 #2950)
-#2956 := (or #2235 #2953)
-#2959 := (and #173 #2956)
-#2962 := (or #1492 #2959)
-#2965 := (and #642 #2962)
-#2968 := (or #2836 #2965)
-#2971 := (and #1484 #2968)
-#2974 := (or #2822 #2971)
-#2416 := (not #2415)
-#2413 := (not #2412)
-#2980 := (and #151 #588 #1473 #1631 #1649 #1657 #2413 #2416 #2974)
-#3124 := (or #2980 #3121)
-#2780 := (not #2775)
-#2798 := (and #2162 #2780 #2793)
-#2801 := (or #1413 #2798)
-#2804 := (forall (vars (?x39 T2)) #2801)
-#2735 := (not #2730)
-#2753 := (and #2133 #2735 #2748)
-#2759 := (or #1395 #2753)
-#2764 := (forall (vars (?x32 T2)) #2759)
-#3130 := (and #109 #1821 #1837 #1846 #2764 #2804 #3124)
-#2691 := (not #2688)
-#2098 := (not #2097)
-#2679 := (and #77 #2095 #2098)
-#2682 := (not #2679)
-#2685 := (forall (vars (?x33 T2)) #2682)
-#2086 := (not #2085)
-#2715 := (and #2086 #2685 #2691)
-#3135 := (or #2715 #3130)
-#3138 := (and #1360 #3135)
-#2058 := (not #2057)
-#2667 := (and #2058 #2059)
-#2670 := (not #2667)
-#2673 := (or #2664 #2670)
-#2676 := (not #2673)
-#3141 := (or #2676 #3138)
-#3144 := (and #1334 #3141)
-#2035 := (not #2034)
-#2635 := (and #2033 #2035)
-#2638 := (not #2635)
-#2654 := (or #2638 #2649)
-#2657 := (not #2654)
-#3147 := (or #2657 #3144)
-#3150 := (and #1314 #3147)
-#3153 := (or #2014 #3150)
-#3156 := (and #81 #3153)
-#3159 := (or #1308 #3156)
-#3801 := (iff #3159 #3800)
-#3798 := (iff #3156 #3795)
-#3790 := (and #81 #3787)
-#3796 := (iff #3790 #3795)
-#3797 := [rewrite]: #3796
-#3791 := (iff #3156 #3790)
-#3788 := (iff #3153 #3787)
-#3785 := (iff #3150 #3782)
-#3777 := (and #1314 #3774)
-#3783 := (iff #3777 #3782)
-#3784 := [rewrite]: #3783
-#3778 := (iff #3150 #3777)
-#3775 := (iff #3147 #3774)
-#3772 := (iff #3144 #3769)
-#3763 := (and #3181 #3760)
-#3770 := (iff #3763 #3769)
-#3771 := [rewrite]: #3770
-#3764 := (iff #3144 #3763)
-#3761 := (iff #3141 #3760)
-#3758 := (iff #3138 #3755)
-#3749 := (and #3226 #3746)
-#3756 := (iff #3749 #3755)
-#3757 := [rewrite]: #3756
-#3750 := (iff #3138 #3749)
-#3747 := (iff #3135 #3746)
-#3744 := (iff #3130 #3741)
-#3732 := (and #109 #3273 #3296 #1846 #3324 #3352 #3729)
-#3742 := (iff #3732 #3741)
-#3743 := [rewrite]: #3742
-#3733 := (iff #3130 #3732)
-#3730 := (iff #3124 #3729)
-#3727 := (iff #3121 #3724)
-#3718 := (and #229 #234 #930 #933 #3592 #3715)
-#3725 := (iff #3718 #3724)
-#3726 := [rewrite]: #3725
-#3719 := (iff #3121 #3718)
-#3716 := (iff #3118 #3715)
-#3713 := (iff #3115 #3710)
-#3704 := (and #3644 #3701)
-#3711 := (iff #3704 #3710)
-#3712 := [rewrite]: #3711
-#3705 := (iff #3115 #3704)
-#3702 := (iff #3110 #3701)
-#3699 := (iff #3104 #3698)
-#3696 := (iff #3101 #3693)
-#3679 := (or #2522 #2526)
-#3690 := (or #3679 #3096)
-#3694 := (iff #3690 #3693)
-#3695 := [rewrite]: #3694
-#3691 := (iff #3101 #3690)
-#3688 := (iff #3084 #3679)
-#3680 := (not #3679)
-#3683 := (not #3680)
-#3686 := (iff #3683 #3679)
-#3687 := [rewrite]: #3686
-#3684 := (iff #3084 #3683)
-#3681 := (iff #3081 #3680)
-#3682 := [rewrite]: #3681
-#3685 := [monotonicity #3682]: #3684
-#3689 := [trans #3685 #3687]: #3688
-#3692 := [monotonicity #3689]: #3691
-#3697 := [trans #3692 #3695]: #3696
-#3700 := [monotonicity #3697]: #3699
-#3677 := (iff #2546 #3674)
-#3669 := (and #2536 #3666)
-#3675 := (iff #3669 #3674)
-#3676 := [rewrite]: #3675
-#3670 := (iff #2546 #3669)
-#3667 := (iff #1756 #3666)
-#3664 := (iff #1753 #3661)
-#3647 := (or #1347 #1709)
-#3658 := (or #3647 #1750)
-#3662 := (iff #3658 #3661)
-#3663 := [rewrite]: #3662
-#3659 := (iff #1753 #3658)
-#3656 := (iff #1747 #3647)
-#3648 := (not #3647)
-#3651 := (not #3648)
-#3654 := (iff #3651 #3647)
-#3655 := [rewrite]: #3654
-#3652 := (iff #1747 #3651)
-#3649 := (iff #1744 #3648)
-#3650 := [rewrite]: #3649
-#3653 := [monotonicity #3650]: #3652
-#3657 := [trans #3653 #3655]: #3656
-#3660 := [monotonicity #3657]: #3659
-#3665 := [trans #3660 #3663]: #3664
-#3668 := [quant-intro #3665]: #3667
-#3671 := [monotonicity #3668]: #3670
-#3678 := [trans #3671 #3676]: #3677
-#3703 := [monotonicity #3678 #3700]: #3702
-#3645 := (iff #3078 #3644)
-#3642 := (iff #3075 #3639)
-#3620 := (or #68 #1709)
-#3636 := (or #3620 #3633)
-#3640 := (iff #3636 #3639)
-#3641 := [rewrite]: #3640
-#3637 := (iff #3075 #3636)
-#3634 := (iff #3072 #3633)
-#3635 := [rewrite]: #3634
-#3629 := (iff #1716 #3620)
-#3621 := (not #3620)
-#3624 := (not #3621)
-#3627 := (iff #3624 #3620)
-#3628 := [rewrite]: #3627
-#3625 := (iff #1716 #3624)
-#3622 := (iff #1713 #3621)
-#3623 := [rewrite]: #3622
-#3626 := [monotonicity #3623]: #3625
-#3630 := [trans #3626 #3628]: #3629
-#3638 := [monotonicity #3630 #3635]: #3637
-#3643 := [trans #3638 #3641]: #3642
-#3646 := [quant-intro #3643]: #3645
-#3706 := [monotonicity #3646 #3703]: #3705
-#3714 := [trans #3706 #3712]: #3713
-#3618 := (iff #3036 #3615)
-#3610 := (and #2461 #2996 #3607)
-#3616 := (iff #3610 #3615)
-#3617 := [rewrite]: #3616
-#3611 := (iff #3036 #3610)
-#3608 := (iff #3030 #3607)
-#3605 := (iff #3027 #3596)
-#3597 := (not #3596)
-#3600 := (not #3597)
-#3603 := (iff #3600 #3596)
-#3604 := [rewrite]: #3603
-#3601 := (iff #3027 #3600)
-#3598 := (iff #3024 #3597)
-#3599 := [rewrite]: #3598
-#3602 := [monotonicity #3599]: #3601
-#3606 := [trans #3602 #3604]: #3605
-#3609 := [quant-intro #3606]: #3608
-#3612 := [monotonicity #3609]: #3611
-#3619 := [trans #3612 #3617]: #3618
-#3717 := [monotonicity #3619 #3714]: #3716
-#3593 := (iff #2444 #3592)
-#3590 := (iff #2441 #3581)
-#3582 := (not #3581)
-#3585 := (not #3582)
-#3588 := (iff #3585 #3581)
-#3589 := [rewrite]: #3588
-#3586 := (iff #2441 #3585)
-#3583 := (iff #1670 #3582)
-#3584 := [rewrite]: #3583
-#3587 := [monotonicity #3584]: #3586
-#3591 := [trans #3587 #3589]: #3590
-#3594 := [quant-intro #3591]: #3593
-#3720 := [monotonicity #3594 #3717]: #3719
-#3728 := [trans #3720 #3726]: #3727
-#3579 := (iff #2980 #3576)
-#3569 := (and #151 #588 #3362 #3380 #1649 #1657 #2413 #2416 #3566)
-#3577 := (iff #3569 #3576)
-#3578 := [rewrite]: #3577
-#3570 := (iff #2980 #3569)
-#3567 := (iff #2974 #3566)
-#3564 := (iff #2971 #3561)
-#3556 := (and #1484 #3553)
-#3562 := (iff #3556 #3561)
-#3563 := [rewrite]: #3562
-#3557 := (iff #2971 #3556)
-#3554 := (iff #2968 #3553)
-#3551 := (iff #2965 #3548)
-#3543 := (and #642 #3540)
-#3549 := (iff #3543 #3548)
-#3550 := [rewrite]: #3549
-#3544 := (iff #2965 #3543)
-#3541 := (iff #2962 #3540)
-#3538 := (iff #2959 #3535)
-#3530 := (and #173 #3527)
-#3536 := (iff #3530 #3535)
-#3537 := [rewrite]: #3536
-#3531 := (iff #2959 #3530)
-#3528 := (iff #2956 #3527)
-#3525 := (iff #2953 #3522)
-#3517 := (and #1498 #3514)
-#3523 := (iff #3517 #3522)
-#3524 := [rewrite]: #3523
-#3518 := (iff #2953 #3517)
-#3515 := (iff #2950 #3514)
-#3512 := (iff #2947 #3509)
-#3503 := (and #3426 #3500)
-#3510 := (iff #3503 #3509)
-#3511 := [rewrite]: #3510
-#3504 := (iff #2947 #3503)
-#3501 := (iff #2944 #3500)
-#3498 := (iff #2939 #3495)
-#3489 := (and #3471 #2319 #2896 #3486)
-#3496 := (iff #3489 #3495)
-#3497 := [rewrite]: #3496
-#3490 := (iff #2939 #3489)
-#3487 := (iff #2930 #3486)
-#3484 := (iff #2927 #3475)
-#3476 := (not #3475)
-#3479 := (not #3476)
-#3482 := (iff #3479 #3475)
-#3483 := [rewrite]: #3482
-#3480 := (iff #2927 #3479)
-#3477 := (iff #2924 #3476)
-#3478 := [rewrite]: #3477
-#3481 := [monotonicity #3478]: #3480
-#3485 := [trans #3481 #3483]: #3484
-#3488 := [quant-intro #3485]: #3487
-#3472 := (iff #1541 #3471)
-#3469 := (iff #1538 #3466)
-#3452 := (or #636 #1347)
-#3463 := (or #3452 #1534)
-#3467 := (iff #3463 #3466)
-#3468 := [rewrite]: #3467
-#3464 := (iff #1538 #3463)
-#3461 := (iff #1531 #3452)
-#3453 := (not #3452)
-#3456 := (not #3453)
-#3459 := (iff #3456 #3452)
-#3460 := [rewrite]: #3459
-#3457 := (iff #1531 #3456)
-#3454 := (iff #1526 #3453)
-#3455 := [rewrite]: #3454
-#3458 := [monotonicity #3455]: #3457
-#3462 := [trans #3458 #3460]: #3461
-#3465 := [monotonicity #3462]: #3464
-#3470 := [trans #3465 #3468]: #3469
-#3473 := [quant-intro #3470]: #3472
-#3491 := [monotonicity #3473 #3488]: #3490
-#3499 := [trans #3491 #3497]: #3498
-#3450 := (iff #2890 #3449)
-#3447 := (iff #2887 #3444)
-#3430 := (or #2286 #3429)
-#3441 := (or #3430 #2882)
-#3445 := (iff #3441 #3444)
-#3446 := [rewrite]: #3445
-#3442 := (iff #2887 #3441)
-#3439 := (iff #2869 #3430)
-#3431 := (not #3430)
-#3434 := (not #3431)
-#3437 := (iff #3434 #3430)
-#3438 := [rewrite]: #3437
-#3435 := (iff #2869 #3434)
-#3432 := (iff #2866 #3431)
-#3433 := [rewrite]: #3432
-#3436 := [monotonicity #3433]: #3435
-#3440 := [trans #3436 #3438]: #3439
-#3443 := [monotonicity #3440]: #3442
-#3448 := [trans #3443 #3446]: #3447
-#3451 := [monotonicity #3448]: #3450
-#3502 := [monotonicity #3451 #3499]: #3501
-#3427 := (iff #1517 #3426)
-#3424 := (iff #1512 #3421)
-#3407 := (or #630 #3406)
-#3418 := (or #3407 #1504)
-#3422 := (iff #3418 #3421)
-#3423 := [rewrite]: #3422
-#3419 := (iff #1512 #3418)
-#3416 := (iff #664 #3407)
-#3408 := (not #3407)
-#3411 := (not #3408)
-#3414 := (iff #3411 #3407)
-#3415 := [rewrite]: #3414
-#3412 := (iff #664 #3411)
-#3409 := (iff #656 #3408)
-#3410 := [rewrite]: #3409
-#3413 := [monotonicity #3410]: #3412
-#3417 := [trans #3413 #3415]: #3416
-#3420 := [monotonicity #3417]: #3419
-#3425 := [trans #3420 #3423]: #3424
-#3428 := [quant-intro #3425]: #3427
-#3505 := [monotonicity #3428 #3502]: #3504
-#3513 := [trans #3505 #3511]: #3512
-#3404 := (iff #2863 #3403)
-#3401 := (iff #2860 #3398)
-#3384 := (or #3383 #2257)
-#3395 := (or #3384 #2855)
-#3399 := (iff #3395 #3398)
-#3400 := [rewrite]: #3399
-#3396 := (iff #2860 #3395)
-#3393 := (iff #2844 #3384)
-#3385 := (not #3384)
-#3388 := (not #3385)
-#3391 := (iff #3388 #3384)
-#3392 := [rewrite]: #3391
-#3389 := (iff #2844 #3388)
-#3386 := (iff #2841 #3385)
-#3387 := [rewrite]: #3386
-#3390 := [monotonicity #3387]: #3389
-#3394 := [trans #3390 #3392]: #3393
-#3397 := [monotonicity #3394]: #3396
-#3402 := [trans #3397 #3400]: #3401
-#3405 := [monotonicity #3402]: #3404
-#3516 := [monotonicity #3405 #3513]: #3515
-#3519 := [monotonicity #3516]: #3518
-#3526 := [trans #3519 #3524]: #3525
-#3529 := [monotonicity #3526]: #3528
-#3532 := [monotonicity #3529]: #3531
-#3539 := [trans #3532 #3537]: #3538
-#3542 := [monotonicity #3539]: #3541
-#3545 := [monotonicity #3542]: #3544
-#3552 := [trans #3545 #3550]: #3551
-#3555 := [monotonicity #3552]: #3554
-#3558 := [monotonicity #3555]: #3557
-#3565 := [trans #3558 #3563]: #3564
-#3568 := [monotonicity #3565]: #3567
-#3381 := (iff #1631 #3380)
-#3378 := (iff #1628 #3375)
-#3372 := (or #3355 #1625)
-#3376 := (iff #3372 #3375)
-#3377 := [rewrite]: #3376
-#3373 := (iff #1628 #3372)
-#3370 := (iff #1620 #3355)
-#3365 := (not #3356)
-#3368 := (iff #3365 #3355)
-#3369 := [rewrite]: #3368
-#3366 := (iff #1620 #3365)
-#3357 := (iff #1462 #3356)
-#3358 := [rewrite]: #3357
-#3367 := [monotonicity #3358]: #3366
-#3371 := [trans #3367 #3369]: #3370
-#3374 := [monotonicity #3371]: #3373
-#3379 := [trans #3374 #3377]: #3378
-#3382 := [quant-intro #3379]: #3381
-#3363 := (iff #1473 #3362)
-#3360 := (iff #1468 #3359)
-#3361 := [monotonicity #3358]: #3360
-#3364 := [quant-intro #3361]: #3363
-#3571 := [monotonicity #3364 #3382 #3568]: #3570
-#3580 := [trans #3571 #3578]: #3579
-#3731 := [monotonicity #3580 #3728]: #3730
-#3353 := (iff #2804 #3352)
-#3350 := (iff #2801 #3347)
-#3327 := (or #68 #1406)
-#3344 := (or #3327 #3341)
-#3348 := (iff #3344 #3347)
-#3349 := [rewrite]: #3348
-#3345 := (iff #2801 #3344)
-#3342 := (iff #2798 #3341)
-#3343 := [rewrite]: #3342
-#3336 := (iff #1413 #3327)
-#3328 := (not #3327)
-#3331 := (not #3328)
-#3334 := (iff #3331 #3327)
-#3335 := [rewrite]: #3334
-#3332 := (iff #1413 #3331)
-#3329 := (iff #1410 #3328)
-#3330 := [rewrite]: #3329
-#3333 := [monotonicity #3330]: #3332
-#3337 := [trans #3333 #3335]: #3336
-#3346 := [monotonicity #3337 #3343]: #3345
-#3351 := [trans #3346 #3349]: #3350
-#3354 := [quant-intro #3351]: #3353
-#3325 := (iff #2764 #3324)
-#3322 := (iff #2759 #3319)
-#3299 := (or #68 #1388)
-#3316 := (or #3299 #3313)
-#3320 := (iff #3316 #3319)
-#3321 := [rewrite]: #3320
-#3317 := (iff #2759 #3316)
-#3314 := (iff #2753 #3313)
-#3315 := [rewrite]: #3314
-#3308 := (iff #1395 #3299)
-#3300 := (not #3299)
-#3303 := (not #3300)
-#3306 := (iff #3303 #3299)
-#3307 := [rewrite]: #3306
-#3304 := (iff #1395 #3303)
-#3301 := (iff #1392 #3300)
-#3302 := [rewrite]: #3301
-#3305 := [monotonicity #3302]: #3304
-#3309 := [trans #3305 #3307]: #3308
-#3318 := [monotonicity #3309 #3315]: #3317
-#3323 := [trans #3318 #3321]: #3322
-#3326 := [quant-intro #3323]: #3325
-#3297 := (iff #1837 #3296)
-#3294 := (iff #1832 #3291)
-#3277 := (or #3276 #505)
-#3288 := (or #3277 #1416)
-#3292 := (iff #3288 #3291)
-#3293 := [rewrite]: #3292
-#3289 := (iff #1832 #3288)
-#3286 := (iff #517 #3277)
-#3278 := (not #3277)
-#3281 := (not #3278)
-#3284 := (iff #3281 #3277)
-#3285 := [rewrite]: #3284
-#3282 := (iff #517 #3281)
-#3279 := (iff #511 #3278)
-#3280 := [rewrite]: #3279
-#3283 := [monotonicity #3280]: #3282
-#3287 := [trans #3283 #3285]: #3286
-#3290 := [monotonicity #3287]: #3289
-#3295 := [trans #3290 #3293]: #3294
-#3298 := [quant-intro #3295]: #3297
-#3274 := (iff #1821 #3273)
-#3271 := (iff #1818 #3268)
-#3254 := (or #508 #1347)
-#3265 := (or #3254 #1815)
-#3269 := (iff #3265 #3268)
-#3270 := [rewrite]: #3269
-#3266 := (iff #1818 #3265)
-#3263 := (iff #1812 #3254)
-#3255 := (not #3254)
-#3258 := (not #3255)
-#3261 := (iff #3258 #3254)
-#3262 := [rewrite]: #3261
-#3259 := (iff #1812 #3258)
-#3256 := (iff #1807 #3255)
-#3257 := [rewrite]: #3256
-#3260 := [monotonicity #3257]: #3259
-#3264 := [trans #3260 #3262]: #3263
-#3267 := [monotonicity #3264]: #3266
-#3272 := [trans #3267 #3270]: #3271
-#3275 := [quant-intro #3272]: #3274
-#3734 := [monotonicity #3275 #3298 #3326 #3354 #3731]: #3733
-#3745 := [trans #3734 #3743]: #3744
-#3252 := (iff #2715 #3249)
-#3244 := (and #2086 #3241 #2691)
-#3250 := (iff #3244 #3249)
-#3251 := [rewrite]: #3250
-#3245 := (iff #2715 #3244)
-#3242 := (iff #2685 #3241)
-#3239 := (iff #2682 #3230)
-#3231 := (not #3230)
-#3234 := (not #3231)
-#3237 := (iff #3234 #3230)
-#3238 := [rewrite]: #3237
-#3235 := (iff #2682 #3234)
-#3232 := (iff #2679 #3231)
-#3233 := [rewrite]: #3232
-#3236 := [monotonicity #3233]: #3235
-#3240 := [trans #3236 #3238]: #3239
-#3243 := [quant-intro #3240]: #3242
-#3246 := [monotonicity #3243]: #3245
-#3253 := [trans #3246 #3251]: #3252
-#3748 := [monotonicity #3253 #3745]: #3747
-#3227 := (iff #1360 #3226)
-#3224 := (iff #1357 #3221)
-#3207 := (or #78 #1347)
-#3218 := (or #1342 #3207)
-#3222 := (iff #3218 #3221)
-#3223 := [rewrite]: #3222
-#3219 := (iff #1357 #3218)
-#3216 := (iff #1354 #3207)
-#3208 := (not #3207)
-#3211 := (not #3208)
-#3214 := (iff #3211 #3207)
-#3215 := [rewrite]: #3214
-#3212 := (iff #1354 #3211)
-#3209 := (iff #1351 #3208)
-#3210 := [rewrite]: #3209
-#3213 := [monotonicity #3210]: #3212
-#3217 := [trans #3213 #3215]: #3216
-#3220 := [monotonicity #3217]: #3219
-#3225 := [trans #3220 #3223]: #3224
-#3228 := [quant-intro #3225]: #3227
-#3751 := [monotonicity #3228 #3748]: #3750
-#3759 := [trans #3751 #3757]: #3758
-#3205 := (iff #2676 #3204)
-#3202 := (iff #2673 #3199)
-#3185 := (or #2057 #3184)
-#3196 := (or #2664 #3185)
-#3200 := (iff #3196 #3199)
-#3201 := [rewrite]: #3200
-#3197 := (iff #2673 #3196)
-#3194 := (iff #2670 #3185)
-#3186 := (not #3185)
-#3189 := (not #3186)
-#3192 := (iff #3189 #3185)
-#3193 := [rewrite]: #3192
-#3190 := (iff #2670 #3189)
-#3187 := (iff #2667 #3186)
-#3188 := [rewrite]: #3187
-#3191 := [monotonicity #3188]: #3190
-#3195 := [trans #3191 #3193]: #3194
-#3198 := [monotonicity #3195]: #3197
-#3203 := [trans #3198 #3201]: #3202
-#3206 := [monotonicity #3203]: #3205
-#3762 := [monotonicity #3206 #3759]: #3761
-#3182 := (iff #1334 #3181)
-#3179 := (iff #1329 #3176)
-#3162 := (or #77 #2632)
-#3173 := (or #3162 #1322)
-#3177 := (iff #3173 #3176)
-#3178 := [rewrite]: #3177
-#3174 := (iff #1329 #3173)
-#3171 := (iff #460 #3162)
-#3163 := (not #3162)
-#3166 := (not #3163)
-#3169 := (iff #3166 #3162)
-#3170 := [rewrite]: #3169
-#3167 := (iff #460 #3166)
-#3164 := (iff #454 #3163)
-#3165 := [rewrite]: #3164
-#3168 := [monotonicity #3165]: #3167
-#3172 := [trans #3168 #3170]: #3171
-#3175 := [monotonicity #3172]: #3174
-#3180 := [trans #3175 #3178]: #3179
-#3183 := [quant-intro #3180]: #3182
-#3765 := [monotonicity #3183 #3762]: #3764
-#3773 := [trans #3765 #3771]: #3772
-#2534 := (iff #2657 #2421)
-#2199 := (iff #2654 #2166)
-#2042 := (or #2266 #2034)
-#2297 := (or #2042 #2649)
-#2167 := (iff #2297 #2166)
-#2198 := [rewrite]: #2167
-#2499 := (iff #2654 #2297)
-#2138 := (iff #2638 #2042)
-#1973 := (not #2042)
-#2218 := (not #1973)
-#2018 := (iff #2218 #2042)
-#2137 := [rewrite]: #2018
-#2219 := (iff #2638 #2218)
-#1974 := (iff #2635 #1973)
-#2043 := [rewrite]: #1974
-#2017 := [monotonicity #2043]: #2219
-#2296 := [trans #2017 #2137]: #2138
-#2500 := [monotonicity #2296]: #2499
-#2420 := [trans #2500 #2198]: #2199
-#2535 := [monotonicity #2420]: #2534
-#3776 := [monotonicity #2535 #3773]: #3775
-#3779 := [monotonicity #3776]: #3778
-#3786 := [trans #3779 #3784]: #3785
-#3789 := [monotonicity #3786]: #3788
-#3792 := [monotonicity #3789]: #3791
-#3799 := [trans #3792 #3797]: #3798
-#3802 := [monotonicity #3799]: #3801
-#2513 := (* -1::int #2512)
-#2515 := (+ #2514 #2513)
-#2518 := (+ #2517 #2515)
-#2519 := (>= #2518 0::int)
-#2528 := (and #2527 #2523)
-#2529 := (not #2528)
-#2530 := (or #2529 #2519)
-#2531 := (not #2530)
-#2550 := (or #2531 #2546)
-#2489 := (+ #2488 #1707)
-#2492 := (+ #2491 #2489)
-#2493 := (= #2492 0::int)
-#2494 := (>= #2489 0::int)
-#2495 := (not #2494)
-#2496 := (and #2495 #2493)
-#2501 := (or #1716 #2496)
-#2504 := (forall (vars (?x64 T2)) #2501)
-#2554 := (and #2504 #2550)
-#2453 := (+ #2452 #2450)
-#2454 := (= #2453 0::int)
-#2457 := (and #2456 #2454)
-#2473 := (not #2457)
-#2476 := (forall (vars (?x65 T2)) #2473)
-#2462 := (= ?x64!17 uf_11)
-#2463 := (not #2462)
-#2464 := (and #2463 #2461)
-#2465 := (not #2464)
-#2470 := (not #2465)
-#2480 := (and #2470 #2476)
-#2558 := (or #2480 #2554)
-#2438 := (not #1053)
-#2435 := (not #1071)
-#2432 := (not #1044)
-#2429 := (not #1062)
-#2562 := (and #2429 #2432 #2435 #2438 #2444 #2558)
-#2417 := (and #2416 #2413)
-#2311 := (+ #2310 #2308)
-#2312 := (= #2311 0::int)
-#2315 := (and #630 #2314 #2312)
-#2332 := (not #2315)
-#2335 := (forall (vars (?x53 T2)) #2332)
-#2320 := (= ?x52!15 uf_11)
-#2321 := (not #2320)
-#2322 := (and #2321 #2319)
-#2323 := (not #2322)
-#2329 := (not #2323)
-#2339 := (and #2329 #2335)
-#2344 := (and #1541 #2339)
-#2277 := (* -1::int #2276)
-#2279 := (+ #2278 #2277)
-#2282 := (+ #2281 #2279)
-#2283 := (>= #2282 0::int)
-#2290 := (and #2289 #2287)
-#2291 := (not #2290)
-#2292 := (or #2291 #2283)
-#2293 := (not #2292)
-#2348 := (or #2293 #2344)
-#2352 := (and #1517 #2348)
-#2250 := (* -1::int #2249)
-#2252 := (+ #2251 #2250)
-#2253 := (>= #2252 0::int)
-#2259 := (and #2258 #2255)
-#2260 := (not #2259)
-#2261 := (or #2260 #2253)
-#2262 := (not #2261)
-#2356 := (or #2262 #2352)
-#2360 := (and #1498 #2356)
-#2364 := (or #2235 #2360)
-#2229 := (not #1492)
-#2368 := (and #2229 #2364)
-#2372 := (or #1492 #2368)
-#2376 := (and #642 #2372)
-#2213 := (= #2212 #2211)
-#2214 := (or #2213 #2210)
-#2215 := (not #2214)
-#2380 := (or #2215 #2376)
-#2384 := (and #1484 #2380)
-#2191 := (* -1::int #2190)
-#2193 := (+ #2192 #2191)
-#2194 := (>= #2193 0::int)
-#2195 := (not #2194)
-#2388 := (or #2195 #2384)
-#2177 := (not #876)
-#2425 := (and #2177 #588 #1473 #2388 #1631 #1649 #1657 #2417)
-#2566 := (or #2425 #2562)
-#2154 := (+ #2153 #1404)
-#2157 := (+ #2156 #2154)
-#2158 := (= #2157 0::int)
-#2159 := (>= #2154 0::int)
-#2160 := (not #2159)
-#2163 := (and #2162 #2160 #2158)
-#2168 := (or #1413 #2163)
-#2171 := (forall (vars (?x39 T2)) #2168)
-#2126 := (+ #1386 #2125)
-#2128 := (+ #2127 #2126)
-#2129 := (= #2128 0::int)
-#2130 := (+ #2127 #1386)
-#2131 := (>= #2130 0::int)
-#2132 := (not #2131)
-#2134 := (and #2133 #2132 #2129)
-#2141 := (or #2134 #1395)
-#2144 := (forall (vars (?x32 T2)) #2141)
-#2120 := (not #1854)
-#2591 := (and #2120 #2144 #2171 #2566 #1821 #1837 #1846)
-#2087 := (= ?x32!5 uf_11)
-#2088 := (not #2087)
-#2089 := (and #2088 #2086)
-#2090 := (not #2089)
-#2112 := (not #2090)
-#2099 := (and #77 #2098 #2095)
-#2105 := (not #2099)
-#2108 := (forall (vars (?x33 T2)) #2105)
-#2115 := (and #2108 #2112)
-#2595 := (or #2115 #2591)
-#2599 := (and #1360 #2595)
-#2060 := (and #2059 #2058)
-#2061 := (not #2060)
-#2064 := (+ #2063 #2054)
-#2066 := (+ #2065 #2064)
-#2067 := (>= #2066 0::int)
-#2068 := (or #2067 #2061)
-#2069 := (not #2068)
-#2603 := (or #2069 #2599)
-#2607 := (and #1334 #2603)
-#2029 := (* -1::int #2028)
-#2031 := (+ #2030 #2029)
-#2032 := (>= #2031 0::int)
-#2036 := (and #2035 #2033)
-#2037 := (not #2036)
-#2038 := (or #2037 #2032)
-#2039 := (not #2038)
-#2611 := (or #2039 #2607)
-#2615 := (and #1314 #2611)
-#2619 := (or #2014 #2615)
-#1969 := (not #1308)
-#2623 := (and #1969 #2619)
-#2627 := (or #1308 #2623)
-#3160 := (iff #2627 #3159)
-#3157 := (iff #2623 #3156)
-#3154 := (iff #2619 #3153)
-#3151 := (iff #2615 #3150)
-#3148 := (iff #2611 #3147)
-#3145 := (iff #2607 #3144)
-#3142 := (iff #2603 #3141)
-#3139 := (iff #2599 #3138)
-#3136 := (iff #2595 #3135)
-#3133 := (iff #2591 #3130)
-#3127 := (and #109 #2764 #2804 #3124 #1821 #1837 #1846)
-#3131 := (iff #3127 #3130)
-#3132 := [rewrite]: #3131
-#3128 := (iff #2591 #3127)
-#3125 := (iff #2566 #3124)
-#3122 := (iff #2562 #3121)
-#3119 := (iff #2558 #3118)
-#3116 := (iff #2554 #3115)
-#3113 := (iff #2550 #3110)
-#3107 := (or #3104 #2546)
-#3111 := (iff #3107 #3110)
-#3112 := [rewrite]: #3111
-#3108 := (iff #2550 #3107)
-#3105 := (iff #2531 #3104)
-#3102 := (iff #2530 #3101)
-#3099 := (iff #2519 #3096)
-#3087 := (+ #2514 #2517)
-#3088 := (+ #2513 #3087)
-#3091 := (>= #3088 0::int)
-#3097 := (iff #3091 #3096)
-#3098 := [rewrite]: #3097
-#3092 := (iff #2519 #3091)
-#3089 := (= #2518 #3088)
-#3090 := [rewrite]: #3089
-#3093 := [monotonicity #3090]: #3092
-#3100 := [trans #3093 #3098]: #3099
-#3085 := (iff #2529 #3084)
-#3082 := (iff #2528 #3081)
-#3083 := [rewrite]: #3082
-#3086 := [monotonicity #3083]: #3085
-#3103 := [monotonicity #3086 #3100]: #3102
-#3106 := [monotonicity #3103]: #3105
-#3109 := [monotonicity #3106]: #3108
-#3114 := [trans #3109 #3112]: #3113
-#3079 := (iff #2504 #3078)
-#3076 := (iff #2501 #3075)
-#3073 := (iff #2496 #3072)
-#3070 := (iff #2493 #3067)
-#3057 := (+ #2488 #2491)
-#3058 := (+ #1707 #3057)
-#3061 := (= #3058 0::int)
-#3068 := (iff #3061 #3067)
-#3069 := [rewrite]: #3068
-#3062 := (iff #2493 #3061)
-#3059 := (= #2492 #3058)
-#3060 := [rewrite]: #3059
-#3063 := [monotonicity #3060]: #3062
-#3071 := [trans #3063 #3069]: #3070
-#3055 := (iff #2495 #3054)
-#3052 := (iff #2494 #3049)
-#3041 := (+ #1707 #2488)
-#3044 := (>= #3041 0::int)
-#3050 := (iff #3044 #3049)
-#3051 := [rewrite]: #3050
-#3045 := (iff #2494 #3044)
-#3042 := (= #2489 #3041)
-#3043 := [rewrite]: #3042
-#3046 := [monotonicity #3043]: #3045
-#3053 := [trans #3046 #3051]: #3052
-#3056 := [monotonicity #3053]: #3055
-#3074 := [monotonicity #3056 #3071]: #3073
-#3077 := [monotonicity #3074]: #3076
-#3080 := [quant-intro #3077]: #3079
-#3117 := [monotonicity #3080 #3114]: #3116
-#3039 := (iff #2480 #3036)
-#3002 := (and #2461 #2996)
-#3033 := (and #3002 #3030)
-#3037 := (iff #3033 #3036)
-#3038 := [rewrite]: #3037
-#3034 := (iff #2480 #3033)
-#3031 := (iff #2476 #3030)
-#3028 := (iff #2473 #3027)
-#3025 := (iff #2457 #3024)
-#3022 := (iff #2454 #3021)
-#3019 := (= #2453 #3018)
-#3020 := [rewrite]: #3019
-#3023 := [monotonicity #3020]: #3022
-#3026 := [monotonicity #3023]: #3025
-#3029 := [monotonicity #3026]: #3028
-#3032 := [quant-intro #3029]: #3031
-#3015 := (iff #2470 #3002)
-#3007 := (not #3002)
-#3010 := (not #3007)
-#3013 := (iff #3010 #3002)
-#3014 := [rewrite]: #3013
-#3011 := (iff #2470 #3010)
-#3008 := (iff #2465 #3007)
-#3005 := (iff #2464 #3002)
-#2999 := (and #2996 #2461)
-#3003 := (iff #2999 #3002)
-#3004 := [rewrite]: #3003
-#3000 := (iff #2464 #2999)
-#2997 := (iff #2463 #2996)
-#2994 := (iff #2462 #2993)
-#2995 := [rewrite]: #2994
-#2998 := [monotonicity #2995]: #2997
-#3001 := [monotonicity #2998]: #3000
-#3006 := [trans #3001 #3004]: #3005
-#3009 := [monotonicity #3006]: #3008
-#3012 := [monotonicity #3009]: #3011
-#3016 := [trans #3012 #3014]: #3015
-#3035 := [monotonicity #3016 #3032]: #3034
-#3040 := [trans #3035 #3038]: #3039
-#3120 := [monotonicity #3040 #3117]: #3119
-#2991 := (iff #2438 #933)
-#2992 := [rewrite]: #2991
-#2989 := (iff #2435 #930)
-#2990 := [rewrite]: #2989
-#2987 := (iff #2432 #234)
-#2988 := [rewrite]: #2987
-#2985 := (iff #2429 #229)
-#2986 := [rewrite]: #2985
-#3123 := [monotonicity #2986 #2988 #2990 #2992 #3120]: #3122
-#2983 := (iff #2425 #2980)
-#2977 := (and #151 #588 #1473 #2974 #1631 #1649 #1657 #2417)
-#2981 := (iff #2977 #2980)
-#2982 := [rewrite]: #2981
-#2978 := (iff #2425 #2977)
-#2975 := (iff #2388 #2974)
-#2972 := (iff #2384 #2971)
-#2969 := (iff #2380 #2968)
-#2966 := (iff #2376 #2965)
-#2963 := (iff #2372 #2962)
-#2960 := (iff #2368 #2959)
-#2957 := (iff #2364 #2956)
-#2954 := (iff #2360 #2953)
-#2951 := (iff #2356 #2950)
-#2948 := (iff #2352 #2947)
-#2945 := (iff #2348 #2944)
-#2942 := (iff #2344 #2939)
-#2902 := (and #2319 #2896)
-#2933 := (and #2902 #2930)
-#2936 := (and #1541 #2933)
-#2940 := (iff #2936 #2939)
-#2941 := [rewrite]: #2940
-#2937 := (iff #2344 #2936)
-#2934 := (iff #2339 #2933)
-#2931 := (iff #2335 #2930)
-#2928 := (iff #2332 #2927)
-#2925 := (iff #2315 #2924)
-#2922 := (iff #2312 #2921)
-#2919 := (= #2311 #2918)
-#2920 := [rewrite]: #2919
-#2923 := [monotonicity #2920]: #2922
-#2926 := [monotonicity #2923]: #2925
-#2929 := [monotonicity #2926]: #2928
-#2932 := [quant-intro #2929]: #2931
-#2915 := (iff #2329 #2902)
-#2907 := (not #2902)
-#2910 := (not #2907)
-#2913 := (iff #2910 #2902)
-#2914 := [rewrite]: #2913
-#2911 := (iff #2329 #2910)
-#2908 := (iff #2323 #2907)
-#2905 := (iff #2322 #2902)
-#2899 := (and #2896 #2319)
-#2903 := (iff #2899 #2902)
-#2904 := [rewrite]: #2903
-#2900 := (iff #2322 #2899)
-#2897 := (iff #2321 #2896)
-#2894 := (iff #2320 #2893)
-#2895 := [rewrite]: #2894
-#2898 := [monotonicity #2895]: #2897
-#2901 := [monotonicity #2898]: #2900
-#2906 := [trans #2901 #2904]: #2905
-#2909 := [monotonicity #2906]: #2908
-#2912 := [monotonicity #2909]: #2911
-#2916 := [trans #2912 #2914]: #2915
-#2935 := [monotonicity #2916 #2932]: #2934
-#2938 := [monotonicity #2935]: #2937
-#2943 := [trans #2938 #2941]: #2942
-#2891 := (iff #2293 #2890)
-#2888 := (iff #2292 #2887)
-#2885 := (iff #2283 #2882)
-#2872 := (+ #2278 #2281)
-#2873 := (+ #2277 #2872)
-#2876 := (>= #2873 0::int)
-#2883 := (iff #2876 #2882)
-#2884 := [rewrite]: #2883
-#2877 := (iff #2283 #2876)
-#2874 := (= #2282 #2873)
-#2875 := [rewrite]: #2874
-#2878 := [monotonicity #2875]: #2877
-#2886 := [trans #2878 #2884]: #2885
-#2870 := (iff #2291 #2869)
-#2867 := (iff #2290 #2866)
-#2868 := [rewrite]: #2867
-#2871 := [monotonicity #2868]: #2870
-#2889 := [monotonicity #2871 #2886]: #2888
-#2892 := [monotonicity #2889]: #2891
-#2946 := [monotonicity #2892 #2943]: #2945
-#2949 := [monotonicity #2946]: #2948
-#2864 := (iff #2262 #2863)
-#2861 := (iff #2261 #2860)
-#2858 := (iff #2253 #2855)
-#2847 := (+ #2250 #2251)
-#2850 := (>= #2847 0::int)
-#2856 := (iff #2850 #2855)
-#2857 := [rewrite]: #2856
-#2851 := (iff #2253 #2850)
-#2848 := (= #2252 #2847)
-#2849 := [rewrite]: #2848
-#2852 := [monotonicity #2849]: #2851
-#2859 := [trans #2852 #2857]: #2858
-#2845 := (iff #2260 #2844)
-#2842 := (iff #2259 #2841)
-#2843 := [rewrite]: #2842
-#2846 := [monotonicity #2843]: #2845
-#2862 := [monotonicity #2846 #2859]: #2861
-#2865 := [monotonicity #2862]: #2864
-#2952 := [monotonicity #2865 #2949]: #2951
-#2955 := [monotonicity #2952]: #2954
-#2958 := [monotonicity #2955]: #2957
-#2839 := (iff #2229 #173)
-#2840 := [rewrite]: #2839
-#2961 := [monotonicity #2840 #2958]: #2960
-#2964 := [monotonicity #2961]: #2963
-#2967 := [monotonicity #2964]: #2966
-#2837 := (iff #2215 #2836)
-#2834 := (iff #2214 #2831)
-#2828 := (or #2825 #2210)
-#2832 := (iff #2828 #2831)
-#2833 := [rewrite]: #2832
-#2829 := (iff #2214 #2828)
-#2826 := (iff #2213 #2825)
-#2827 := [rewrite]: #2826
-#2830 := [monotonicity #2827]: #2829
-#2835 := [trans #2830 #2833]: #2834
-#2838 := [monotonicity #2835]: #2837
-#2970 := [monotonicity #2838 #2967]: #2969
-#2973 := [monotonicity #2970]: #2972
-#2823 := (iff #2195 #2822)
-#2820 := (iff #2194 #2817)
-#2809 := (+ #2191 #2192)
-#2812 := (>= #2809 0::int)
-#2818 := (iff #2812 #2817)
-#2819 := [rewrite]: #2818
-#2813 := (iff #2194 #2812)
-#2810 := (= #2193 #2809)
-#2811 := [rewrite]: #2810
-#2814 := [monotonicity #2811]: #2813
-#2821 := [trans #2814 #2819]: #2820
-#2824 := [monotonicity #2821]: #2823
-#2976 := [monotonicity #2824 #2973]: #2975
-#2807 := (iff #2177 #151)
-#2808 := [rewrite]: #2807
-#2979 := [monotonicity #2808 #2976]: #2978
-#2984 := [trans #2979 #2982]: #2983
-#3126 := [monotonicity #2984 #3123]: #3125
-#2805 := (iff #2171 #2804)
-#2802 := (iff #2168 #2801)
-#2799 := (iff #2163 #2798)
-#2796 := (iff #2158 #2793)
-#2783 := (+ #2153 #2156)
-#2784 := (+ #1404 #2783)
-#2787 := (= #2784 0::int)
-#2794 := (iff #2787 #2793)
-#2795 := [rewrite]: #2794
-#2788 := (iff #2158 #2787)
-#2785 := (= #2157 #2784)
-#2786 := [rewrite]: #2785
-#2789 := [monotonicity #2786]: #2788
-#2797 := [trans #2789 #2795]: #2796
-#2781 := (iff #2160 #2780)
-#2778 := (iff #2159 #2775)
-#2767 := (+ #1404 #2153)
-#2770 := (>= #2767 0::int)
-#2776 := (iff #2770 #2775)
-#2777 := [rewrite]: #2776
-#2771 := (iff #2159 #2770)
-#2768 := (= #2154 #2767)
-#2769 := [rewrite]: #2768
-#2772 := [monotonicity #2769]: #2771
-#2779 := [trans #2772 #2777]: #2778
-#2782 := [monotonicity #2779]: #2781
-#2800 := [monotonicity #2782 #2797]: #2799
-#2803 := [monotonicity #2800]: #2802
-#2806 := [quant-intro #2803]: #2805
-#2765 := (iff #2144 #2764)
-#2762 := (iff #2141 #2759)
-#2756 := (or #2753 #1395)
-#2760 := (iff #2756 #2759)
-#2761 := [rewrite]: #2760
-#2757 := (iff #2141 #2756)
-#2754 := (iff #2134 #2753)
-#2751 := (iff #2129 #2748)
-#2738 := (+ #2125 #2127)
-#2739 := (+ #1386 #2738)
-#2742 := (= #2739 0::int)
-#2749 := (iff #2742 #2748)
-#2750 := [rewrite]: #2749
-#2743 := (iff #2129 #2742)
-#2740 := (= #2128 #2739)
-#2741 := [rewrite]: #2740
-#2744 := [monotonicity #2741]: #2743
-#2752 := [trans #2744 #2750]: #2751
-#2736 := (iff #2132 #2735)
-#2733 := (iff #2131 #2730)
-#2722 := (+ #1386 #2127)
-#2725 := (>= #2722 0::int)
-#2731 := (iff #2725 #2730)
-#2732 := [rewrite]: #2731
-#2726 := (iff #2131 #2725)
-#2723 := (= #2130 #2722)
-#2724 := [rewrite]: #2723
-#2727 := [monotonicity #2724]: #2726
-#2734 := [trans #2727 #2732]: #2733
-#2737 := [monotonicity #2734]: #2736
-#2755 := [monotonicity #2737 #2752]: #2754
-#2758 := [monotonicity #2755]: #2757
-#2763 := [trans #2758 #2761]: #2762
-#2766 := [quant-intro #2763]: #2765
-#2720 := (iff #2120 #109)
-#2721 := [rewrite]: #2720
-#3129 := [monotonicity #2721 #2766 #2806 #3126]: #3128
-#3134 := [trans #3129 #3132]: #3133
-#2718 := (iff #2115 #2715)
-#2697 := (and #2086 #2691)
-#2712 := (and #2685 #2697)
-#2716 := (iff #2712 #2715)
-#2717 := [rewrite]: #2716
-#2713 := (iff #2115 #2712)
-#2710 := (iff #2112 #2697)
-#2702 := (not #2697)
-#2705 := (not #2702)
-#2708 := (iff #2705 #2697)
-#2709 := [rewrite]: #2708
-#2706 := (iff #2112 #2705)
-#2703 := (iff #2090 #2702)
-#2700 := (iff #2089 #2697)
-#2694 := (and #2691 #2086)
-#2698 := (iff #2694 #2697)
-#2699 := [rewrite]: #2698
-#2695 := (iff #2089 #2694)
-#2692 := (iff #2088 #2691)
-#2689 := (iff #2087 #2688)
-#2690 := [rewrite]: #2689
-#2693 := [monotonicity #2690]: #2692
-#2696 := [monotonicity #2693]: #2695
-#2701 := [trans #2696 #2699]: #2700
-#2704 := [monotonicity #2701]: #2703
-#2707 := [monotonicity #2704]: #2706
-#2711 := [trans #2707 #2709]: #2710
-#2686 := (iff #2108 #2685)
-#2683 := (iff #2105 #2682)
-#2680 := (iff #2099 #2679)
-#2681 := [rewrite]: #2680
-#2684 := [monotonicity #2681]: #2683
-#2687 := [quant-intro #2684]: #2686
-#2714 := [monotonicity #2687 #2711]: #2713
-#2719 := [trans #2714 #2717]: #2718
-#3137 := [monotonicity #2719 #3134]: #3136
-#3140 := [monotonicity #3137]: #3139
-#2677 := (iff #2069 #2676)
-#2674 := (iff #2068 #2673)
-#2671 := (iff #2061 #2670)
-#2668 := (iff #2060 #2667)
-#2669 := [rewrite]: #2668
-#2672 := [monotonicity #2669]: #2671
-#2665 := (iff #2067 #2664)
-#2662 := (= #2066 #2661)
-#2663 := [rewrite]: #2662
-#2666 := [monotonicity #2663]: #2665
-#2675 := [monotonicity #2666 #2672]: #2674
-#2678 := [monotonicity #2675]: #2677
-#3143 := [monotonicity #2678 #3140]: #3142
-#3146 := [monotonicity #3143]: #3145
-#2658 := (iff #2039 #2657)
-#2655 := (iff #2038 #2654)
-#2652 := (iff #2032 #2649)
-#2641 := (+ #2029 #2030)
-#2644 := (>= #2641 0::int)
-#2650 := (iff #2644 #2649)
-#2651 := [rewrite]: #2650
-#2645 := (iff #2032 #2644)
-#2642 := (= #2031 #2641)
-#2643 := [rewrite]: #2642
-#2646 := [monotonicity #2643]: #2645
-#2653 := [trans #2646 #2651]: #2652
-#2639 := (iff #2037 #2638)
-#2636 := (iff #2036 #2635)
-#2637 := [rewrite]: #2636
-#2640 := [monotonicity #2637]: #2639
-#2656 := [monotonicity #2640 #2653]: #2655
-#2659 := [monotonicity #2656]: #2658
-#3149 := [monotonicity #2659 #3146]: #3148
-#3152 := [monotonicity #3149]: #3151
-#3155 := [monotonicity #3152]: #3154
-#2633 := (iff #1969 #81)
-#2634 := [rewrite]: #2633
-#3158 := [monotonicity #2634 #3155]: #3157
-#3161 := [monotonicity #3158]: #3160
-#1943 := (not #1907)
-#2628 := (~ #1943 #2627)
-#2624 := (not #1904)
-#2625 := (~ #2624 #2623)
-#2620 := (not #1901)
-#2621 := (~ #2620 #2619)
-#2616 := (not #1898)
-#2617 := (~ #2616 #2615)
-#2612 := (not #1895)
-#2613 := (~ #2612 #2611)
-#2608 := (not #1892)
-#2609 := (~ #2608 #2607)
-#2604 := (not #1889)
-#2605 := (~ #2604 #2603)
-#2600 := (not #1886)
-#2601 := (~ #2600 #2599)
-#2596 := (not #1883)
-#2597 := (~ #2596 #2595)
-#2592 := (not #1878)
-#2593 := (~ #2592 #2591)
-#2588 := (not #1849)
-#2589 := (~ #2588 #1846)
-#2586 := (~ #1846 #1846)
-#2584 := (~ #1843 #1843)
-#2585 := [refl]: #2584
-#2587 := [nnf-pos #2585]: #2586
-#2590 := [nnf-neg #2587]: #2589
-#2581 := (not #1840)
-#2582 := (~ #2581 #1837)
-#2579 := (~ #1837 #1837)
-#2577 := (~ #1832 #1832)
-#2578 := [refl]: #2577
-#2580 := [nnf-pos #2578]: #2579
-#2583 := [nnf-neg #2580]: #2582
-#2574 := (not #1824)
-#2575 := (~ #2574 #1821)
-#2572 := (~ #1821 #1821)
-#2570 := (~ #1818 #1818)
-#2571 := [refl]: #2570
-#2573 := [nnf-pos #2571]: #2572
-#2576 := [nnf-neg #2573]: #2575
-#2567 := (not #1801)
-#2568 := (~ #2567 #2566)
-#2563 := (not #1796)
-#2564 := (~ #2563 #2562)
-#2559 := (not #1778)
-#2560 := (~ #2559 #2558)
-#2555 := (not #1775)
-#2556 := (~ #2555 #2554)
-#2551 := (not #1772)
-#2552 := (~ #2551 #2550)
-#2547 := (not #1767)
-#2548 := (~ #2547 #2546)
-#2543 := (not #1759)
-#2544 := (~ #2543 #1756)
-#2541 := (~ #1756 #1756)
-#2539 := (~ #1753 #1753)
-#2540 := [refl]: #2539
-#2542 := [nnf-pos #2540]: #2541
-#2545 := [nnf-neg #2542]: #2544
-#2537 := (~ #2536 #2536)
-#2538 := [refl]: #2537
-#2549 := [nnf-neg #2538 #2545]: #2548
-#2532 := (~ #1759 #2531)
-#2533 := [sk]: #2532
-#2553 := [nnf-neg #2533 #2549]: #2552
-#2507 := (not #1741)
-#2508 := (~ #2507 #2504)
-#2505 := (~ #1738 #2504)
-#2502 := (~ #1735 #2501)
-#2497 := (~ #1732 #2496)
-#2498 := [sk]: #2497
-#2485 := (~ #1716 #1716)
-#2486 := [refl]: #2485
-#2503 := [monotonicity #2486 #2498]: #2502
-#2506 := [nnf-pos #2503]: #2505
-#2509 := [nnf-neg #2506]: #2508
-#2557 := [nnf-neg #2509 #2553]: #2556
-#2483 := (~ #1741 #2480)
-#2458 := (exists (vars (?x65 T2)) #2457)
-#2466 := (or #2465 #2458)
-#2467 := (not #2466)
-#2481 := (~ #2467 #2480)
-#2477 := (not #2458)
-#2478 := (~ #2477 #2476)
-#2474 := (~ #2473 #2473)
-#2475 := [refl]: #2474
-#2479 := [nnf-neg #2475]: #2478
-#2471 := (~ #2470 #2470)
-#2472 := [refl]: #2471
-#2482 := [nnf-neg #2472 #2479]: #2481
-#2468 := (~ #1741 #2467)
-#2469 := [sk]: #2468
-#2484 := [trans #2469 #2482]: #2483
-#2561 := [nnf-neg #2484 #2557]: #2560
-#2445 := (~ #1678 #2444)
-#2442 := (~ #2441 #2441)
-#2443 := [refl]: #2442
-#2446 := [nnf-neg #2443]: #2445
-#2439 := (~ #2438 #2438)
-#2440 := [refl]: #2439
-#2436 := (~ #2435 #2435)
-#2437 := [refl]: #2436
-#2433 := (~ #2432 #2432)
-#2434 := [refl]: #2433
-#2430 := (~ #2429 #2429)
-#2431 := [refl]: #2430
-#2565 := [nnf-neg #2431 #2434 #2437 #2440 #2446 #2561]: #2564
-#2426 := (not #1702)
-#2427 := (~ #2426 #2425)
-#2422 := (not #1678)
-#2423 := (~ #2422 #2417)
-#2418 := (~ #1675 #2417)
-#2419 := [sk]: #2418
-#2424 := [nnf-neg #2419]: #2423
-#2406 := (~ #1657 #1657)
-#2407 := [refl]: #2406
-#2403 := (not #1652)
-#2404 := (~ #2403 #1649)
-#2401 := (~ #1649 #1649)
-#2399 := (~ #1644 #1644)
-#2400 := [refl]: #2399
-#2402 := [nnf-pos #2400]: #2401
-#2405 := [nnf-neg #2402]: #2404
-#2396 := (not #1634)
-#2397 := (~ #2396 #1631)
-#2394 := (~ #1631 #1631)
-#2392 := (~ #1628 #1628)
-#2393 := [refl]: #2392
-#2395 := [nnf-pos #2393]: #2394
-#2398 := [nnf-neg #2395]: #2397
-#2389 := (not #1617)
-#2390 := (~ #2389 #2388)
-#2385 := (not #1614)
-#2386 := (~ #2385 #2384)
-#2381 := (not #1611)
-#2382 := (~ #2381 #2380)
-#2377 := (not #1608)
-#2378 := (~ #2377 #2376)
-#2373 := (not #1605)
-#2374 := (~ #2373 #2372)
-#2369 := (not #1602)
-#2370 := (~ #2369 #2368)
-#2365 := (not #1599)
-#2366 := (~ #2365 #2364)
-#2361 := (not #1596)
-#2362 := (~ #2361 #2360)
-#2357 := (not #1593)
-#2358 := (~ #2357 #2356)
-#2353 := (not #1590)
-#2354 := (~ #2353 #2352)
-#2349 := (not #1587)
-#2350 := (~ #2349 #2348)
-#2345 := (not #1584)
-#2346 := (~ #2345 #2344)
-#2326 := (not #1581)
-#2342 := (~ #2326 #2339)
-#2316 := (exists (vars (?x53 T2)) #2315)
-#2324 := (or #2323 #2316)
-#2325 := (not #2324)
-#2340 := (~ #2325 #2339)
-#2336 := (not #2316)
-#2337 := (~ #2336 #2335)
-#2333 := (~ #2332 #2332)
-#2334 := [refl]: #2333
-#2338 := [nnf-neg #2334]: #2337
-#2330 := (~ #2329 #2329)
-#2331 := [refl]: #2330
-#2341 := [nnf-neg #2331 #2338]: #2340
-#2327 := (~ #2326 #2325)
-#2328 := [sk]: #2327
-#2343 := [trans #2328 #2341]: #2342
-#2302 := (not #1544)
-#2303 := (~ #2302 #1541)
-#2300 := (~ #1541 #1541)
-#2298 := (~ #1538 #1538)
-#2299 := [refl]: #2298
-#2301 := [nnf-pos #2299]: #2300
-#2304 := [nnf-neg #2301]: #2303
-#2347 := [nnf-neg #2304 #2343]: #2346
-#2294 := (~ #1544 #2293)
-#2295 := [sk]: #2294
-#2351 := [nnf-neg #2295 #2347]: #2350
-#2271 := (not #1520)
-#2272 := (~ #2271 #1517)
-#2269 := (~ #1517 #1517)
-#2267 := (~ #1512 #1512)
-#2268 := [refl]: #2267
-#2270 := [nnf-pos #2268]: #2269
-#2273 := [nnf-neg #2270]: #2272
-#2355 := [nnf-neg #2273 #2351]: #2354
-#2263 := (~ #1520 #2262)
-#2264 := [sk]: #2263
-#2359 := [nnf-neg #2264 #2355]: #2358
-#2244 := (not #1501)
-#2245 := (~ #2244 #1498)
-#2242 := (~ #1498 #1498)
-#2240 := (~ #1495 #1495)
-#2241 := [refl]: #2240
-#2243 := [nnf-pos #2241]: #2242
-#2246 := [nnf-neg #2243]: #2245
-#2363 := [nnf-neg #2246 #2359]: #2362
-#2236 := (~ #1501 #2235)
-#2237 := [sk]: #2236
-#2367 := [nnf-neg #2237 #2363]: #2366
-#2230 := (~ #2229 #2229)
-#2231 := [refl]: #2230
-#2371 := [nnf-neg #2231 #2367]: #2370
-#2227 := (~ #1492 #1492)
-#2228 := [refl]: #2227
-#2375 := [nnf-neg #2228 #2371]: #2374
-#2224 := (not #824)
-#2225 := (~ #2224 #642)
-#2222 := (~ #642 #642)
-#2220 := (~ #637 #637)
-#2221 := [refl]: #2220
-#2223 := [nnf-pos #2221]: #2222
-#2226 := [nnf-neg #2223]: #2225
-#2379 := [nnf-neg #2226 #2375]: #2378
-#2216 := (~ #824 #2215)
-#2217 := [sk]: #2216
-#2383 := [nnf-neg #2217 #2379]: #2382
-#2204 := (not #1487)
-#2205 := (~ #2204 #1484)
-#2202 := (~ #1484 #1484)
-#2200 := (~ #1479 #1479)
-#2201 := [refl]: #2200
-#2203 := [nnf-pos #2201]: #2202
-#2206 := [nnf-neg #2203]: #2205
-#2387 := [nnf-neg #2206 #2383]: #2386
-#2196 := (~ #1487 #2195)
-#2197 := [sk]: #2196
-#2391 := [nnf-neg #2197 #2387]: #2390
-#2186 := (not #1476)
-#2187 := (~ #2186 #1473)
-#2184 := (~ #1473 #1473)
-#2182 := (~ #1468 #1468)
-#2183 := [refl]: #2182
-#2185 := [nnf-pos #2183]: #2184
-#2188 := [nnf-neg #2185]: #2187
-#2180 := (~ #588 #588)
-#2181 := [refl]: #2180
-#2178 := (~ #2177 #2177)
-#2179 := [refl]: #2178
-#2428 := [nnf-neg #2179 #2181 #2188 #2391 #2398 #2405 #2407 #2424]: #2427
-#2569 := [nnf-neg #2428 #2565]: #2568
-#2174 := (not #1446)
-#2175 := (~ #2174 #2171)
-#2172 := (~ #1443 #2171)
-#2169 := (~ #1440 #2168)
-#2164 := (~ #1437 #2163)
-#2165 := [sk]: #2164
-#2150 := (~ #1413 #1413)
-#2151 := [refl]: #2150
-#2170 := [monotonicity #2151 #2165]: #2169
-#2173 := [nnf-pos #2170]: #2172
-#2176 := [nnf-neg #2173]: #2175
-#2147 := (not #1857)
-#2148 := (~ #2147 #2144)
-#2145 := (~ #1401 #2144)
-#2142 := (~ #1398 #2141)
-#2139 := (~ #1395 #1395)
-#2140 := [refl]: #2139
-#2135 := (~ #1383 #2134)
-#2136 := [sk]: #2135
-#2143 := [monotonicity #2136 #2140]: #2142
-#2146 := [nnf-pos #2143]: #2145
-#2149 := [nnf-neg #2146]: #2148
-#2121 := (~ #2120 #2120)
-#2122 := [refl]: #2121
-#2594 := [nnf-neg #2122 #2149 #2176 #2569 #2576 #2583 #2590]: #2593
-#2118 := (~ #1857 #2115)
-#2100 := (exists (vars (?x33 T2)) #2099)
-#2101 := (or #2100 #2090)
-#2102 := (not #2101)
-#2116 := (~ #2102 #2115)
-#2113 := (~ #2112 #2112)
-#2114 := [refl]: #2113
-#2109 := (not #2100)
-#2110 := (~ #2109 #2108)
-#2106 := (~ #2105 #2105)
-#2107 := [refl]: #2106
-#2111 := [nnf-neg #2107]: #2110
-#2117 := [nnf-neg #2111 #2114]: #2116
-#2103 := (~ #1857 #2102)
-#2104 := [sk]: #2103
-#2119 := [trans #2104 #2117]: #2118
-#2598 := [nnf-neg #2119 #2594]: #2597
-#2078 := (not #1363)
-#2079 := (~ #2078 #1360)
-#2076 := (~ #1360 #1360)
-#2074 := (~ #1357 #1357)
-#2075 := [refl]: #2074
-#2077 := [nnf-pos #2075]: #2076
-#2080 := [nnf-neg #2077]: #2079
-#2602 := [nnf-neg #2080 #2598]: #2601
-#2070 := (~ #1363 #2069)
-#2071 := [sk]: #2070
-#2606 := [nnf-neg #2071 #2602]: #2605
-#2048 := (not #1337)
-#2049 := (~ #2048 #1334)
-#2046 := (~ #1334 #1334)
-#2044 := (~ #1329 #1329)
-#2045 := [refl]: #2044
-#2047 := [nnf-pos #2045]: #2046
-#2050 := [nnf-neg #2047]: #2049
-#2610 := [nnf-neg #2050 #2606]: #2609
-#2040 := (~ #1337 #2039)
-#2041 := [sk]: #2040
-#2614 := [nnf-neg #2041 #2610]: #2613
-#2023 := (not #1317)
-#2024 := (~ #2023 #1314)
-#2021 := (~ #1314 #1314)
-#2019 := (~ #1313 #1313)
-#2020 := [refl]: #2019
-#2022 := [nnf-pos #2020]: #2021
-#2025 := [nnf-neg #2022]: #2024
-#2618 := [nnf-neg #2025 #2614]: #2617
-#2015 := (~ #1317 #2014)
-#2016 := [sk]: #2015
-#2622 := [nnf-neg #2016 #2618]: #2621
-#1970 := (~ #1969 #1969)
-#2010 := [refl]: #1970
-#2626 := [nnf-neg #2010 #2622]: #2625
-#2008 := (~ #1308 #1308)
-#2009 := [refl]: #2008
-#2629 := [nnf-neg #2009 #2626]: #2628
-#1944 := [not-or-elim #1940]: #1943
-#2630 := [mp~ #1944 #2629]: #2627
-#2631 := [mp #2630 #3161]: #3159
-#3803 := [mp #2631 #3802]: #3800
-#4734 := [mp #3803 #4733]: #4731
-#7295 := [unit-resolution #4734 #5487]: #4728
-#4058 := (or #4725 #4719)
-#4059 := [def-axiom]: #4058
-#7296 := [unit-resolution #4059 #7295]: #4719
-#373 := (<= uf_9 0::int)
-#374 := (not #373)
-#57 := (< 0::int uf_9)
-#375 := (iff #57 #374)
-#376 := [rewrite]: #375
-#369 := [asserted]: #57
-#377 := [mp #369 #376]: #374
-#5901 := (* -1::int #2012)
-#5891 := (+ uf_9 #5901)
-#5892 := (<= #5891 0::int)
-#5472 := (= uf_9 #2012)
-#5745 := (= uf_11 ?x27!0)
-#5918 := (not #5745)
-#5916 := (= #2012 0::int)
-#5836 := (not #5916)
-#5835 := [hypothesis]: #2014
-#5837 := (or #5836 #2013)
-#5896 := [th-lemma]: #5837
-#5922 := [unit-resolution #5896 #5835]: #5836
-#5981 := (or #5347 #5918 #5916)
-#5477 := (= ?x27!0 uf_11)
-#5917 := (not #5477)
-#5890 := (or #5917 #5916)
-#5982 := (or #5347 #5890)
-#5987 := (iff #5982 #5981)
-#5915 := (or #5918 #5916)
-#5984 := (or #5347 #5915)
-#5985 := (iff #5984 #5981)
-#5986 := [rewrite]: #5985
-#6000 := (iff #5982 #5984)
-#5921 := (iff #5890 #5915)
-#5919 := (iff #5917 #5918)
-#5743 := (iff #5477 #5745)
-#5746 := [rewrite]: #5743
-#5920 := [monotonicity #5746]: #5919
-#5980 := [monotonicity #5920]: #5921
-#5979 := [monotonicity #5980]: #6000
-#5988 := [trans #5979 #5986]: #5987
-#5983 := [quant-inst]: #5982
-#6010 := [mp #5983 #5988]: #5981
-#5923 := [unit-resolution #6010 #4740 #5922]: #5918
-#5748 := (or #5472 #5745)
-#4356 := (forall (vars (?x25 T2)) (:pat #4355) #443)
-#4359 := (iff #448 #4356)
-#4357 := (iff #443 #443)
-#4358 := [refl]: #4357
-#4360 := [quant-intro #4358]: #4359
-#1967 := (~ #448 #448)
-#2005 := (~ #443 #443)
-#2006 := [refl]: #2005
-#1968 := [nnf-pos #2006]: #1967
-#1942 := [not-or-elim #1940]: #448
-#2007 := [mp~ #1942 #1968]: #448
-#4361 := [mp #2007 #4360]: #4356
-#5821 := (not #4356)
-#5827 := (or #5821 #5472 #5745)
-#5737 := (or #5477 #5472)
-#5828 := (or #5821 #5737)
-#5894 := (iff #5828 #5827)
-#5830 := (or #5821 #5748)
-#5846 := (iff #5830 #5827)
-#5847 := [rewrite]: #5846
-#5826 := (iff #5828 #5830)
-#5756 := (iff #5737 #5748)
-#5736 := (or #5745 #5472)
-#5752 := (iff #5736 #5748)
-#5753 := [rewrite]: #5752
-#5747 := (iff #5737 #5736)
-#5744 := [monotonicity #5746]: #5747
-#5834 := [trans #5744 #5753]: #5756
-#5831 := [monotonicity #5834]: #5826
-#5895 := [trans #5831 #5847]: #5894
-#5829 := [quant-inst]: #5828
-#5900 := [mp #5829 #5895]: #5827
-#5924 := [unit-resolution #5900 #4361]: #5748
-#5989 := [unit-resolution #5924 #5923]: #5472
-#6012 := (not #5472)
-#6013 := (or #6012 #5892)
-#6014 := [th-lemma]: #6013
-#6042 := [unit-resolution #6014 #5989]: #5892
-#6011 := (<= #2012 0::int)
-#6043 := (or #6011 #2013)
-#6044 := [th-lemma]: #6043
-#6045 := [unit-resolution #6044 #5835]: #6011
-#6046 := [th-lemma #6045 #6042 #377]: false
-#6041 := [lemma #6046]: #2013
-#4053 := (or #4722 #2014 #4716)
-#4054 := [def-axiom]: #4053
-#7297 := [unit-resolution #4054 #6041 #7296]: #4716
-#4077 := (or #4713 #4707)
-#4078 := [def-axiom]: #4077
-#7298 := [unit-resolution #4078 #7297]: #4707
-#4071 := (or #4710 #2421 #4704)
-#4073 := [def-axiom]: #4071
-#7299 := [unit-resolution #4073 #7298 #7294]: #4704
-#4098 := (or #4701 #4695)
-#4099 := [def-axiom]: #4098
-#7300 := [unit-resolution #4099 #7299]: #4695
-#6817 := [hypothesis]: #2059
-#6051 := (or #5709 #3184)
-#6081 := [quant-inst]: #6051
-#6818 := [unit-resolution #6081 #4354 #6817]: false
-#6839 := [lemma #6818]: #3184
-#3960 := (or #3199 #2059)
-#3964 := [def-axiom]: #3960
-#7301 := [unit-resolution #3964 #6839]: #3199
-#4094 := (or #4698 #3204 #4692)
-#4095 := [def-axiom]: #4094
-#7302 := [unit-resolution #4095 #7301 #7300]: #4692
-#4108 := (or #4689 #4683)
-#4129 := [def-axiom]: #4108
-#7303 := [unit-resolution #4129 #7302]: #4683
-#6633 := (= uf_9 #2082)
-#6706 := (not #6633)
-#6684 := [hypothesis]: #4400
-#4274 := (or #4397 #2086)
-#3948 := [def-axiom]: #4274
-#6685 := [unit-resolution #3948 #6684]: #2086
-#6798 := (or #6706 #2085)
-#6840 := [th-lemma]: #6798
-#6835 := [unit-resolution #6840 #6685]: #6706
-#3949 := (or #4397 #2691)
-#4281 := [def-axiom]: #3949
-#6841 := [unit-resolution #4281 #6684]: #2691
-#6695 := (or #5821 #2688 #6633)
-#6680 := (or #2087 #6633)
-#6696 := (or #5821 #6680)
-#6732 := (iff #6696 #6695)
-#6548 := (or #2688 #6633)
-#6694 := (or #5821 #6548)
-#6699 := (iff #6694 #6695)
-#6705 := [rewrite]: #6699
-#6697 := (iff #6696 #6694)
-#6608 := (iff #6680 #6548)
-#6665 := [monotonicity #2690]: #6608
-#6698 := [monotonicity #6665]: #6697
-#6728 := [trans #6698 #6705]: #6732
-#6547 := [quant-inst]: #6696
-#6734 := [mp #6547 #6728]: #6695
-#6842 := [unit-resolution #6734 #4361 #6841 #6835]: false
-#6843 := [lemma #6842]: #4397
-#4116 := (or #4686 #4400 #4680)
-#4117 := [def-axiom]: #4116
-#7304 := [unit-resolution #4117 #6843 #7303]: #4680
-#4149 := (or #4677 #4404)
-#4145 := [def-axiom]: #4149
-#7305 := [unit-resolution #4145 #7304]: #4404
-#24124 := (or #4409 #20405)
-#25438 := [quant-inst]: #24124
-#29563 := [unit-resolution #25438 #7305]: #20405
-#15997 := (* -1::int #15996)
-#15993 := (uf_1 #15992 ?x52!15)
-#15994 := (uf_10 #15993)
-#15995 := (* -1::int #15994)
-#16012 := (+ #15995 #15997)
-#15362 := (uf_4 uf_14 ?x52!15)
-#16013 := (+ #15362 #16012)
-#22006 := (>= #16013 0::int)
-#16016 := (= #16013 0::int)
-#16019 := (not #16016)
-#16004 := (uf_6 uf_15 #15992)
-#16005 := (= uf_8 #16004)
-#16006 := (not #16005)
-#16002 := (+ #15362 #15997)
-#16003 := (<= #16002 0::int)
-#16025 := (or #16003 #16006 #16019)
-#16030 := (not #16025)
-#15397 := (* -1::int #15362)
-#16009 := (+ uf_9 #15397)
-#16010 := (<= #16009 0::int)
-#34324 := (not #16010)
-#15398 := (+ #2306 #15397)
-#14218 := (>= #15398 0::int)
-#15367 := (= #2306 #15362)
-decl uf_3 :: (-> T1 T2)
-#20604 := (uf_3 #15993)
-#32578 := (uf_6 uf_15 #20604)
-#32576 := (= uf_8 #32578)
-#5319 := (uf_6 #150 uf_16)
-#5314 := (= uf_8 #5319)
-decl uf_2 :: (-> T1 T2)
-#6008 := (uf_1 uf_16 uf_11)
-#7128 := (uf_2 #6008)
-#32602 := (= #7128 #20604)
-#32591 := (ite #32602 #5314 #32576)
-#7203 := (uf_7 uf_15 #7128 #5319)
-#32554 := (uf_6 #7203 #20604)
-#32538 := (= uf_8 #32554)
-#32564 := (iff #32538 #32591)
+#194 := (uf_7 uf_15 uf_22 uf_8)
+#3894 := (uf_6 #194 uf_22)
+#3895 := (= uf_8 #3894)
+#10330 := (ite #10319 #3895 #9519)
+#10323 := (uf_7 uf_15 #9695 #3894)
+#10324 := (uf_6 #10323 ?x63!14)
+#10327 := (= uf_8 #10324)
+#10333 := (iff #10327 #10330)
#30 := (:var 1 T5)
#20 := (:var 2 T2)
#29 := (:var 3 T4)
#31 := (uf_7 #29 #20 #30)
#32 := (uf_6 #31 #11)
-#4314 := (pattern #32)
+#4216 := (pattern #32)
#36 := (uf_6 #29 #11)
#335 := (= uf_8 #36)
#35 := (= #30 uf_8)
@@ -4239,16 +241,16 @@
#338 := (ite #24 #35 #335)
#34 := (= #32 uf_8)
#341 := (iff #34 #338)
-#4315 := (forall (vars (?x10 T4) (?x11 T2) (?x12 T5) (?x13 T2)) (:pat #4314) #341)
+#4217 := (forall (vars (?x10 T4) (?x11 T2) (?x12 T5) (?x13 T2)) (:pat #4216) #341)
#344 := (forall (vars (?x10 T4) (?x11 T2) (?x12 T5) (?x13 T2)) #341)
-#4318 := (iff #344 #4315)
-#4316 := (iff #341 #341)
-#4317 := [refl]: #4316
-#4319 := [quant-intro #4317]: #4318
-#1953 := (~ #344 #344)
-#1989 := (~ #341 #341)
-#1990 := [refl]: #1989
-#1954 := [nnf-pos #1990]: #1953
+#4220 := (iff #344 #4217)
+#4218 := (iff #341 #341)
+#4219 := [refl]: #4218
+#4221 := [quant-intro #4219]: #4220
+#1848 := (~ #344 #344)
+#1884 := (~ #341 #341)
+#1885 := [refl]: #1884
+#1849 := [nnf-pos #1885]: #1848
#37 := (= #36 uf_8)
#38 := (ite #24 #35 #37)
#39 := (iff #34 #38)
@@ -4263,460 +265,4364 @@
#346 := [quant-intro #343]: #345
#333 := [asserted]: #40
#349 := [mp #333 #346]: #344
-#1991 := [mp~ #349 #1954]: #344
-#4320 := [mp #1991 #4319]: #4315
-#7026 := (not #4315)
-#32561 := (or #7026 #32564)
-#6089 := (= #5319 uf_8)
-#32580 := (= #20604 #7128)
-#32553 := (ite #32580 #6089 #32576)
-#32556 := (= #32554 uf_8)
-#32579 := (iff #32556 #32553)
-#32603 := (or #7026 #32579)
-#32548 := (iff #32603 #32561)
-#32606 := (iff #32561 #32561)
-#32631 := [rewrite]: #32606
-#32629 := (iff #32579 #32564)
-#32535 := (iff #32553 #32591)
-#6101 := (iff #6089 #5314)
-#6102 := [rewrite]: #6101
-#32601 := (iff #32580 #32602)
-#32563 := [rewrite]: #32601
-#32560 := [monotonicity #32563 #6102]: #32535
-#32537 := (iff #32556 #32538)
-#32557 := [rewrite]: #32537
-#32565 := [monotonicity #32557 #32560]: #32629
-#32587 := [monotonicity #32565]: #32548
-#32604 := [trans #32587 #32631]: #32548
-#32558 := [quant-inst]: #32603
-#32623 := [mp #32558 #32604]: #32561
-#32954 := [unit-resolution #32623 #4320]: #32564
-#30313 := (not #32538)
-#8488 := (uf_6 uf_17 ?x52!15)
-#9319 := (= uf_8 #8488)
-#9846 := (not #9319)
-#32968 := (iff #9846 #30313)
-#32955 := (iff #9319 #32538)
-#32985 := (iff #32538 #9319)
-#32980 := (= #32554 #8488)
-#32983 := (= #20604 ?x52!15)
-#20605 := (= ?x52!15 #20604)
-#12 := (uf_1 #10 #11)
-#4294 := (pattern #12)
-#13 := (uf_3 #12)
-#317 := (= #11 #13)
-#4295 := (forall (vars (?x2 T2) (?x3 T2)) (:pat #4294) #317)
-#321 := (forall (vars (?x2 T2) (?x3 T2)) #317)
-#4298 := (iff #321 #4295)
-#4296 := (iff #317 #317)
-#4297 := [refl]: #4296
-#4299 := [quant-intro #4297]: #4298
-#1948 := (~ #321 #321)
-#1980 := (~ #317 #317)
-#1981 := [refl]: #1980
-#1946 := [nnf-pos #1981]: #1948
-#14 := (= #13 #11)
-#15 := (forall (vars (?x2 T2) (?x3 T2)) #14)
-#322 := (iff #15 #321)
-#319 := (iff #14 #317)
-#320 := [rewrite]: #319
-#323 := [quant-intro #320]: #322
-#316 := [asserted]: #15
-#326 := [mp #316 #323]: #321
-#1982 := [mp~ #326 #1946]: #321
-#4300 := [mp #1982 #4299]: #4295
-#5378 := (not #4295)
-#27981 := (or #5378 #20605)
-#27945 := [quant-inst]: #27981
-#32953 := [unit-resolution #27945 #4300]: #20605
-#32984 := [symm #32953]: #32983
-#8596 := (= #7203 uf_17)
-#8594 := (= #150 uf_17)
-#4147 := (or #4677 #109)
-#4148 := [def-axiom]: #4147
-#7307 := [unit-resolution #4148 #7304]: #109
-#4150 := (or #4677 #4412)
-#4130 := [def-axiom]: #4150
-#8027 := [unit-resolution #4130 #7304]: #4412
-#4137 := (or #4677 #4437)
-#4132 := [def-axiom]: #4137
-#8030 := [unit-resolution #4132 #7304]: #4437
-#5284 := (or #4665 #4442 #4417 #1854)
-#4776 := (uf_4 uf_14 ?x64!17)
-#4777 := (* -1::int #4776)
-#4778 := (+ uf_9 #4777)
-#4779 := (<= #4778 0::int)
-#4845 := (?x40!7 ?x64!17)
-#4941 := (uf_6 uf_15 #4845)
-#4942 := (= uf_8 #4941)
-#4943 := (not #4942)
-#4848 := (uf_4 uf_14 #4845)
-#4849 := (* -1::int #4848)
-#4939 := (+ #4776 #4849)
-#4940 := (<= #4939 0::int)
-#4846 := (uf_1 #4845 ?x64!17)
-#4847 := (uf_10 #4846)
-#4842 := (* -1::int #4847)
-#4926 := (+ #4842 #4849)
-#4927 := (+ #4776 #4926)
-#4930 := (= #4927 0::int)
-#4932 := (not #4930)
-#5006 := (or #4932 #4940 #4943)
-#5242 := [hypothesis]: #4668
-#4159 := (or #4665 #933)
-#4154 := [def-axiom]: #4159
-#5243 := [unit-resolution #4154 #5242]: #933
-#4134 := (or #4665 #4659)
-#4135 := [def-axiom]: #4134
-#5244 := [unit-resolution #4135 #5242]: #4659
-#5245 := [hypothesis]: #109
-#5247 := (= #250 #108)
-#5246 := [symm #5243]: #231
-#5248 := [monotonicity #5246]: #5247
-#5249 := [trans #5248 #5245]: #251
-#4193 := (or #4641 #2536)
-#4198 := [def-axiom]: #4193
-#5250 := [unit-resolution #4198 #5249]: #4641
-#5087 := [hypothesis]: #4412
-#4160 := (or #4665 #4601)
-#4133 := [def-axiom]: #4160
-#5230 := [unit-resolution #4133 #5242]: #4601
-#5100 := (or #3693 #4417 #4606 #1053)
-#4862 := (uf_4 uf_14 ?x67!19)
-#3931 := (uf_4 uf_14 ?x66!20)
-#3932 := (* -1::int #3931)
-#4955 := (+ #3932 #4862)
-#4956 := (+ #2517 #4955)
-#4959 := (>= #4956 0::int)
-#4866 := (uf_6 uf_15 ?x67!19)
-#4867 := (= uf_8 #4866)
-#4863 := (* -1::int #4862)
-#4864 := (+ uf_9 #4863)
-#4865 := (<= #4864 0::int)
-#5068 := (not #4865)
-#5072 := [hypothesis]: #3698
-#4189 := (or #3693 #2523)
-#4186 := [def-axiom]: #4189
-#5073 := [unit-resolution #4186 #5072]: #2523
-#5061 := (+ #2514 #4863)
-#5063 := (>= #5061 0::int)
-#5060 := (= #2514 #4862)
-#5075 := (= #4862 #2514)
-#5074 := [hypothesis]: #933
-#5076 := [monotonicity #5074]: #5075
-#5077 := [symm #5076]: #5060
-#5078 := (not #5060)
-#5079 := (or #5078 #5063)
-#5080 := [th-lemma]: #5079
-#5081 := [unit-resolution #5080 #5077]: #5063
-#5069 := (not #5063)
-#5070 := (or #5068 #5069 #2522)
-#5064 := [hypothesis]: #2523
-#5065 := [hypothesis]: #4865
-#5066 := [hypothesis]: #5063
-#5067 := [th-lemma #5066 #5065 #5064]: false
-#5071 := [lemma #5067]: #5070
-#5082 := [unit-resolution #5071 #5081 #5073]: #5068
-#4869 := (or #4865 #4867)
-#5083 := [hypothesis]: #4601
-#4872 := (or #4606 #4865 #4867)
-#4868 := (or #4867 #4865)
-#4873 := (or #4606 #4868)
-#4880 := (iff #4873 #4872)
-#4875 := (or #4606 #4869)
-#4878 := (iff #4875 #4872)
-#4879 := [rewrite]: #4878
-#4876 := (iff #4873 #4875)
-#4870 := (iff #4868 #4869)
-#4871 := [rewrite]: #4870
-#4877 := [monotonicity #4871]: #4876
-#4881 := [trans #4877 #4879]: #4880
-#4874 := [quant-inst]: #4873
-#4882 := [mp #4874 #4881]: #4872
-#5084 := [unit-resolution #4882 #5083]: #4869
-#5085 := [unit-resolution #5084 #5082]: #4867
-#4953 := (not #4867)
-#5088 := (or #4953 #4959)
-#4190 := (or #3693 #2527)
-#4170 := [def-axiom]: #4190
-#5086 := [unit-resolution #4170 #5072]: #2527
-#4970 := (or #4417 #2526 #4953 #4959)
-#4948 := (+ #4862 #3932)
-#4949 := (+ #2517 #4948)
-#4952 := (>= #4949 0::int)
-#4954 := (or #4953 #2526 #4952)
-#4971 := (or #4417 #4954)
-#4978 := (iff #4971 #4970)
-#4965 := (or #2526 #4953 #4959)
-#4973 := (or #4417 #4965)
-#4976 := (iff #4973 #4970)
-#4977 := [rewrite]: #4976
-#4974 := (iff #4971 #4973)
-#4968 := (iff #4954 #4965)
-#4962 := (or #4953 #2526 #4959)
-#4966 := (iff #4962 #4965)
-#4967 := [rewrite]: #4966
-#4963 := (iff #4954 #4962)
-#4960 := (iff #4952 #4959)
-#4957 := (= #4949 #4956)
-#4958 := [rewrite]: #4957
-#4961 := [monotonicity #4958]: #4960
-#4964 := [monotonicity #4961]: #4963
-#4969 := [trans #4964 #4967]: #4968
-#4975 := [monotonicity #4969]: #4974
-#4979 := [trans #4975 #4977]: #4978
-#4972 := [quant-inst]: #4971
-#4980 := [mp #4972 #4979]: #4970
-#5089 := [unit-resolution #4980 #5087 #5086]: #5088
-#5090 := [unit-resolution #5089 #5085]: #4959
-#4171 := (not #3096)
-#4173 := (or #3693 #4171)
-#4174 := [def-axiom]: #4173
-#5091 := [unit-resolution #4174 #5072]: #4171
-#5054 := (+ #2512 #3932)
-#5058 := (<= #5054 0::int)
-#5053 := (= #2512 #3931)
-#5092 := (= #3931 #2512)
-#5093 := [monotonicity #5074]: #5092
-#5094 := [symm #5093]: #5053
-#5095 := (not #5053)
-#5096 := (or #5095 #5058)
-#5097 := [th-lemma]: #5096
-#5098 := [unit-resolution #5097 #5094]: #5058
-#5099 := [th-lemma #5098 #5091 #5081 #5090]: false
-#5101 := [lemma #5099]: #5100
-#5231 := [unit-resolution #5101 #5230 #5087 #5243]: #3693
-#4181 := (or #4650 #4644 #3698)
-#4182 := [def-axiom]: #4181
-#5232 := [unit-resolution #4182 #5231 #5250]: #4650
-#4161 := (or #4653 #4647)
-#4162 := [def-axiom]: #4161
-#5233 := [unit-resolution #4162 #5232]: #4653
-#4169 := (or #4662 #4622 #4656)
-#4155 := [def-axiom]: #4169
-#5234 := [unit-resolution #4155 #5233 #5244]: #4622
-#4194 := (or #4619 #4611)
-#4195 := [def-axiom]: #4194
-#5229 := [unit-resolution #4195 #5234]: #4611
-#5713 := (or #5006 #4616 #1053)
-#5123 := (uf_4 uf_22 #4845)
-#5136 := (* -1::int #5123)
-#5137 := (+ #2448 #5136)
-#5138 := (<= #5137 0::int)
-#5150 := (+ #4842 #5136)
-#5151 := (+ #2448 #5150)
-#5152 := (= #5151 0::int)
-#5382 := (+ #4848 #5136)
-#5387 := (>= #5382 0::int)
-#5381 := (= #4848 #5123)
-#5643 := (= #5123 #4848)
-#5642 := [symm #5074]: #231
-#5644 := [monotonicity #5642]: #5643
-#5645 := [symm #5644]: #5381
-#5646 := (not #5381)
-#5647 := (or #5646 #5387)
-#5648 := [th-lemma]: #5647
-#5649 := [unit-resolution #5648 #5645]: #5387
-#5119 := (+ #2448 #4777)
-#5121 := (>= #5119 0::int)
-#5118 := (= #2448 #4776)
-#5629 := (= #4776 #2448)
-#5630 := [monotonicity #5074]: #5629
-#5631 := [symm #5630]: #5118
-#5632 := (not #5118)
-#5633 := (or #5632 #5121)
-#5628 := [th-lemma]: #5633
-#5634 := [unit-resolution #5628 #5631]: #5121
-#5040 := (>= #4927 0::int)
-#5005 := (not #5006)
-#5635 := [hypothesis]: #5005
-#5042 := (or #5006 #4930)
-#5043 := [def-axiom]: #5042
-#5636 := [unit-resolution #5043 #5635]: #4930
-#5637 := (or #4932 #5040)
-#5638 := [th-lemma]: #5637
-#5653 := [unit-resolution #5638 #5636]: #5040
-#5386 := (<= #5382 0::int)
-#5654 := (or #5646 #5386)
-#5675 := [th-lemma]: #5654
-#5676 := [unit-resolution #5675 #5645]: #5386
-#5120 := (<= #5119 0::int)
-#5677 := (or #5632 #5120)
-#5678 := [th-lemma]: #5677
-#5679 := [unit-resolution #5678 #5631]: #5120
-#5034 := (<= #4927 0::int)
-#5674 := (or #4932 #5034)
-#5680 := [th-lemma]: #5674
-#5681 := [unit-resolution #5680 #5636]: #5034
-#5562 := (not #5387)
-#5567 := (not #5121)
-#5566 := (not #5040)
-#5779 := (not #5386)
-#5778 := (not #5120)
-#5777 := (not #5034)
-#5572 := (or #5152 #5777 #5778 #5779 #5566 #5567 #5562)
-#5774 := [hypothesis]: #5386
-#5775 := [hypothesis]: #5120
-#5776 := [hypothesis]: #5034
-#5157 := (not #5152)
-#5772 := [hypothesis]: #5157
-#5175 := (>= #5151 0::int)
-#5563 := [hypothesis]: #5387
-#5564 := [hypothesis]: #5121
-#5565 := [hypothesis]: #5040
-#5568 := (or #5175 #5566 #5567 #5562)
-#5569 := [th-lemma]: #5568
-#5570 := [unit-resolution #5569 #5565 #5564 #5563]: #5175
-#5784 := (not #5175)
-#5788 := (or #5784 #5152 #5777 #5778 #5779)
-#5773 := [hypothesis]: #5175
-#5174 := (<= #5151 0::int)
-#5780 := (or #5174 #5777 #5778 #5779)
-#5781 := [th-lemma]: #5780
-#5782 := [unit-resolution #5781 #5776 #5775 #5774]: #5174
-#5783 := (not #5174)
-#5785 := (or #5152 #5783 #5784)
-#5786 := [th-lemma]: #5785
-#5787 := [unit-resolution #5786 #5782 #5773 #5772]: false
-#5789 := [lemma #5787]: #5788
-#5571 := [unit-resolution #5789 #5570 #5772 #5776 #5775 #5774]: false
-#5641 := [lemma #5571]: #5572
-#5682 := [unit-resolution #5641 #5681 #5679 #5676 #5653 #5634 #5649]: #5152
-#5160 := (or #5138 #5157)
-#5683 := [hypothesis]: #4611
-#5163 := (or #4616 #5138 #5157)
-#5122 := (+ #2449 #4847)
-#5124 := (+ #5123 #5122)
-#5125 := (= #5124 0::int)
-#5126 := (not #5125)
-#5127 := (+ #5123 #2449)
-#5128 := (>= #5127 0::int)
-#5129 := (or #5128 #5126)
-#5164 := (or #4616 #5129)
-#5171 := (iff #5164 #5163)
-#5166 := (or #4616 #5160)
-#5169 := (iff #5166 #5163)
-#5170 := [rewrite]: #5169
-#5167 := (iff #5164 #5166)
-#5161 := (iff #5129 #5160)
-#5158 := (iff #5126 #5157)
-#5155 := (iff #5125 #5152)
-#5143 := (+ #4847 #5123)
-#5144 := (+ #2449 #5143)
-#5147 := (= #5144 0::int)
-#5153 := (iff #5147 #5152)
-#5154 := [rewrite]: #5153
-#5148 := (iff #5125 #5147)
-#5145 := (= #5124 #5144)
-#5146 := [rewrite]: #5145
-#5149 := [monotonicity #5146]: #5148
-#5156 := [trans #5149 #5154]: #5155
-#5159 := [monotonicity #5156]: #5158
-#5141 := (iff #5128 #5138)
-#5130 := (+ #2449 #5123)
-#5133 := (>= #5130 0::int)
-#5139 := (iff #5133 #5138)
-#5140 := [rewrite]: #5139
-#5134 := (iff #5128 #5133)
-#5131 := (= #5127 #5130)
-#5132 := [rewrite]: #5131
-#5135 := [monotonicity #5132]: #5134
-#5142 := [trans #5135 #5140]: #5141
-#5162 := [monotonicity #5142 #5159]: #5161
-#5168 := [monotonicity #5162]: #5167
-#5172 := [trans #5168 #5170]: #5171
-#5165 := [quant-inst]: #5164
-#5173 := [mp #5165 #5172]: #5163
-#5684 := [unit-resolution #5173 #5683]: #5160
-#5710 := [unit-resolution #5684 #5682]: #5138
-#5041 := (not #4940)
-#5044 := (or #5006 #5041)
-#5045 := [def-axiom]: #5044
-#5711 := [unit-resolution #5045 #5635]: #5041
-#5712 := [th-lemma #5634 #5711 #5649 #5710]: false
-#5714 := [lemma #5712]: #5713
-#5235 := [unit-resolution #5714 #5229 #5243]: #5006
-#5238 := (or #4779 #5005)
-#4191 := (or #4619 #2996)
-#4192 := [def-axiom]: #4191
-#5236 := [unit-resolution #4192 #5234]: #2996
-#5237 := [hypothesis]: #4437
-#5023 := (or #4442 #2993 #4779 #5005)
-#4850 := (+ #4849 #4842)
-#4851 := (+ #4776 #4850)
-#4852 := (= #4851 0::int)
-#4938 := (not #4852)
-#4944 := (or #4943 #4940 #4938)
-#4945 := (not #4944)
-#4946 := (or #2462 #4779 #4945)
-#5025 := (or #4442 #4946)
-#5031 := (iff #5025 #5023)
-#5013 := (or #2993 #4779 #5005)
-#5027 := (or #4442 #5013)
-#5024 := (iff #5027 #5023)
-#5030 := [rewrite]: #5024
-#5028 := (iff #5025 #5027)
-#5014 := (iff #4946 #5013)
-#5011 := (iff #4945 #5005)
-#5009 := (iff #4944 #5006)
-#4935 := (or #4943 #4940 #4932)
-#5007 := (iff #4935 #5006)
-#5008 := [rewrite]: #5007
-#4950 := (iff #4944 #4935)
-#4933 := (iff #4938 #4932)
-#4925 := (iff #4852 #4930)
-#4928 := (= #4851 #4927)
-#4929 := [rewrite]: #4928
-#4931 := [monotonicity #4929]: #4925
-#4934 := [monotonicity #4931]: #4933
-#4951 := [monotonicity #4934]: #4950
-#5010 := [trans #4951 #5008]: #5009
-#5012 := [monotonicity #5010]: #5011
-#5015 := [monotonicity #2995 #5012]: #5014
-#5029 := [monotonicity #5015]: #5028
-#5032 := [trans #5029 #5030]: #5031
-#5026 := [quant-inst]: #5025
-#5033 := [mp #5026 #5032]: #5023
-#5239 := [unit-resolution #5033 #5237 #5236]: #5238
-#5254 := [unit-resolution #5239 #5235]: #4779
-#4200 := (or #4619 #2461)
-#4207 := [def-axiom]: #4200
-#5255 := [unit-resolution #4207 #5234]: #2461
-#5280 := [monotonicity #5243]: #5629
-#5281 := [symm #5280]: #5118
-#5282 := [unit-resolution #5628 #5281]: #5121
-#5283 := [th-lemma #5282 #5255 #5254]: false
-#5279 := [lemma #5283]: #5284
-#8031 := [unit-resolution #5279 #8030 #8027 #7307]: #4665
-#4138 := (or #4677 #4671)
-#4106 := [def-axiom]: #4138
-#7357 := [unit-resolution #4106 #7304]: #4671
-#4143 := (or #4674 #4598 #4668)
-#4144 := [def-axiom]: #4143
-#7389 := [unit-resolution #4144 #7357 #8031]: #4598
-#4125 := (or #4595 #151)
-#4126 := [def-axiom]: #4125
-#8578 := [unit-resolution #4126 #7389]: #151
-#8595 := [symm #8578]: #8594
-#8592 := (= #7203 #150)
+#1886 := [mp~ #349 #1849]: #344
+#4222 := [mp #1886 #4221]: #4217
+#4987 := (not #4217)
+#13028 := (or #4987 #10333)
+#4958 := (= #3894 uf_8)
+#10322 := (ite #10319 #4958 #9519)
+#10325 := (= #10324 uf_8)
+#10326 := (iff #10325 #10322)
+#13031 := (or #4987 #10326)
+#13033 := (iff #13031 #13028)
+#13035 := (iff #13028 #13028)
+#13036 := [rewrite]: #13035
+#10334 := (iff #10326 #10333)
+#10331 := (iff #10322 #10330)
+#4970 := (iff #4958 #3895)
+#4971 := [rewrite]: #4970
+#10332 := [monotonicity #4971]: #10331
+#10328 := (iff #10325 #10327)
+#10329 := [rewrite]: #10328
+#10335 := [monotonicity #10329 #10332]: #10334
+#13034 := [monotonicity #10335]: #13033
+#13037 := [trans #13034 #13036]: #13033
+#13032 := [quant-inst]: #13031
+#13051 := [mp #13032 #13037]: #13028
+#13579 := [unit-resolution #13051 #4222]: #10333
+#13595 := (= #2257 #10324)
+#13584 := (= #10324 #2257)
+#13582 := (= #10323 uf_23)
+#7680 := (= #194 uf_23)
+#195 := (= uf_23 #194)
+#4549 := (or #2877 #4546)
+#4552 := (not #4549)
+#1480 := (* -1::int #202)
+#1481 := (+ #110 #1480)
+#1479 := (>= #1481 0::int)
+#4444 := (forall (vars (?x61 T2)) (:pat #4305 #4426) #1479)
+#4449 := (not #4444)
+#4555 := (or #4449 #4552)
+#4558 := (not #4555)
+decl ?x61!13 :: T2
+#2238 := ?x61!13
+#2241 := (uf_4 uf_14 ?x61!13)
+#2856 := (* -1::int #2241)
+#2239 := (uf_24 ?x61!13)
+#2857 := (+ #2239 #2856)
+#2858 := (<= #2857 0::int)
+#2863 := (not #2858)
+#4561 := (or #2863 #4558)
+#4564 := (not #4561)
+#196 := (uf_1 uf_22 #11)
+#4427 := (pattern #196)
+#197 := (uf_10 #196)
+#1623 := (+ #197 #1480)
+#1624 := (+ #188 #1623)
+#1625 := (= #1624 0::int)
+#1449 := (* -1::int #197)
+#1455 := (* -1::int #188)
+#1456 := (+ #1455 #1449)
+#1457 := (+ #110 #1456)
+#1458 := (<= #1457 0::int)
+#1450 := (+ uf_9 #1449)
+#1451 := (<= #1450 0::int)
+#3425 := (or #1451 #1458 #1625)
+#4436 := (forall (vars (?x59 T2)) (:pat #4427 #4305 #4426) #3425)
+#4441 := (not #4436)
+#3405 := (or #1451 #1458)
+#3406 := (not #3405)
+#3409 := (or #759 #3406)
+#4428 := (forall (vars (?x60 T2)) (:pat #4305 #4426 #4427) #3409)
+#4433 := (not #4428)
+decl ?x48!12 :: T2
+#2214 := ?x48!12
+#2220 := (uf_6 uf_15 ?x48!12)
+#2221 := (= uf_8 #2220)
+#2215 := (uf_4 uf_14 ?x48!12)
+#2216 := (* -1::int #2215)
+#2217 := (+ uf_9 #2216)
+#2218 := (<= #2217 0::int)
+#1655 := (+ uf_9 #1455)
+#1656 := (<= #1655 0::int)
+#114 := (uf_6 uf_15 #11)
+#4347 := (pattern #114)
+#1638 := (+ #110 #1455)
+#1637 := (>= #1638 0::int)
+#478 := (= uf_8 #114)
+#1644 := (or #478 #1637)
+#4418 := (forall (vars (?x58 T2)) (:pat #4347 #4305) #1644)
+#4423 := (not #4418)
+#185 := (uf_6 uf_15 uf_22)
+#728 := (= uf_8 #185)
+#981 := (not #195)
+#4567 := (or #981 #728 #4423 #1656 #2218 #2221 #4433 #4441 #4564)
+#4570 := (not #4567)
+decl ?x53!11 :: T2
+#2148 := ?x53!11
+decl ?x54!10 :: T2
+#2147 := ?x54!10
+#2153 := (uf_1 ?x54!10 ?x53!11)
+#2154 := (uf_10 #2153)
+#2161 := (* -1::int #2154)
+decl uf_19 :: T3
+#146 := uf_19
+#2151 := (uf_4 uf_19 ?x54!10)
+#2157 := (* -1::int #2151)
+#2813 := (+ #2157 #2161)
+#2149 := (uf_4 uf_19 ?x53!11)
+#2814 := (+ #2149 #2813)
+#2815 := (<= #2814 0::int)
+#2162 := (+ uf_9 #2161)
+#2163 := (<= #2162 0::int)
+#2158 := (+ uf_9 #2157)
+#2159 := (<= #2158 0::int)
+#3369 := (or #2159 #2163 #2815)
+#3374 := (not #3369)
+#154 := (uf_4 uf_19 #10)
+#1357 := (* -1::int #154)
+#151 := (uf_4 uf_19 #11)
+#1358 := (+ #151 #1357)
+#1364 := (+ #91 #1358)
+#1387 := (>= #1364 0::int)
+#1344 := (* -1::int #151)
+#1345 := (+ uf_9 #1344)
+#1346 := (<= #1345 0::int)
+#3337 := (or #1237 #1346 #1387)
+#4380 := (forall (vars (?x53 T2) (?x54 T2)) (:pat #4281) #3337)
+#4385 := (not #4380)
+#166 := (uf_4 uf_19 uf_11)
+#167 := (= #166 0::int)
+#4388 := (or #167 #4385)
+#4391 := (not #4388)
+#4394 := (or #4391 #3374)
+#4397 := (not #4394)
+#4356 := (pattern #151)
+decl ?x50!9 :: (-> T2 T2)
+#2124 := (?x50!9 #11)
+#2127 := (uf_1 #2124 #11)
+#2128 := (uf_10 #2127)
+#2783 := (* -1::int #2128)
+#2125 := (uf_4 uf_19 #2124)
+#2766 := (* -1::int #2125)
+#2784 := (+ #2766 #2783)
+#2785 := (+ #151 #2784)
+#2786 := (= #2785 0::int)
+#3307 := (not #2786)
+#2767 := (+ #151 #2766)
+#2768 := (<= #2767 0::int)
+#3308 := (or #2768 #3307)
+#3309 := (not #3308)
+#68 := (= #11 uf_11)
+#3315 := (or #68 #1346 #3309)
+#4372 := (forall (vars (?x49 T2)) (:pat #4356) #3315)
+#4377 := (not #4372)
+#4400 := (or #4377 #4397)
+#4403 := (not #4400)
+decl ?x49!8 :: T2
+#2084 := ?x49!8
+#2088 := (uf_1 #11 ?x49!8)
+#4357 := (pattern #2088)
+#2089 := (uf_10 #2088)
+#2085 := (uf_4 uf_19 ?x49!8)
+#2086 := (* -1::int #2085)
+#2736 := (+ #2086 #2089)
+#2737 := (+ #151 #2736)
+#2740 := (= #2737 0::int)
+#3271 := (not #2740)
+#2087 := (+ #151 #2086)
+#2092 := (>= #2087 0::int)
+#3272 := (or #2092 #3271)
+#4358 := (forall (vars (?x50 T2)) (:pat #4356 #4357) #3272)
+#4363 := (not #4358)
+#2712 := (= uf_11 ?x49!8)
+#2096 := (+ uf_9 #2086)
+#2097 := (<= #2096 0::int)
+#4366 := (or #2097 #2712 #4363)
+#4369 := (not #4366)
+#4406 := (or #4369 #4403)
+#4409 := (not #4406)
+#1299 := (* -1::int #110)
+#1300 := (+ uf_9 #1299)
+#1301 := (<= #1300 0::int)
+#3257 := (or #478 #1301)
+#4348 := (forall (vars (?x48 T2)) (:pat #4347 #4305) #3257)
+#4353 := (not #4348)
+#569 := (= uf_14 uf_19)
+#674 := (not #569)
+decl uf_16 :: T4
+#141 := uf_16
+#566 := (= uf_15 uf_16)
+#692 := (not #566)
+decl uf_21 :: T3
+#149 := uf_21
+decl uf_20 :: T3
+#148 := uf_20
+#150 := (= uf_20 uf_21)
+#665 := (not #150)
+decl uf_18 :: T2
+#144 := uf_18
+decl uf_17 :: T2
+#143 := uf_17
+#145 := (= uf_17 uf_18)
+#683 := (not #145)
+#4412 := (or #683 #665 #692 #674 #4353 #4409)
+#108 := (uf_4 uf_14 uf_11)
+#109 := (= #108 0::int)
+#4415 := (not #4412)
+#4573 := (or #4415 #4570)
+#4576 := (not #4573)
+decl ?x47!7 :: (-> T2 T2)
+#2047 := (?x47!7 #11)
+#2048 := (uf_4 uf_14 #2047)
+#2671 := (* -1::int #2048)
+#2686 := (+ #110 #2671)
+#2687 := (<= #2686 0::int)
+#2052 := (uf_1 #2047 #11)
+#2053 := (uf_10 #2052)
+#2672 := (* -1::int #2053)
+#2673 := (+ #2671 #2672)
+#2674 := (+ #110 #2673)
+#2675 := (= #2674 0::int)
+#3241 := (not #2675)
+#2056 := (uf_6 uf_15 #2047)
+#2057 := (= uf_8 #2056)
+#3240 := (not #2057)
+#3242 := (or #3240 #3241 #2687)
+#3243 := (not #3242)
+#3249 := (or #68 #1301 #3243)
+#4339 := (forall (vars (?x46 T2)) (:pat #4305) #3249)
+#4344 := (not #4339)
+decl uf_12 :: (-> T2 int)
+#69 := (uf_12 #11)
+#4257 := (pattern #69)
+decl ?x38!6 :: (-> T2 T2)
+#2020 := (?x38!6 #11)
+#2024 := (uf_12 #2020)
+#2630 := (* -1::int #2024)
+#2021 := (uf_1 #2020 #11)
+#2022 := (uf_10 #2021)
+#2647 := (* -1::int #2022)
+#2648 := (+ #2647 #2630)
+#2649 := (+ #69 #2648)
+#2650 := (= #2649 0::int)
+#3213 := (not #2650)
+#2631 := (+ #69 #2630)
+#2632 := (<= #2631 0::int)
+decl up_13 :: (-> T2 bool)
+#2030 := (up_13 #2020)
+#3212 := (not #2030)
+#3214 := (or #3212 #2632 #3213)
+#3215 := (not #3214)
+#1261 := (* -1::int #69)
+#1262 := (+ uf_9 #1261)
+#1263 := (<= #1262 0::int)
+#3221 := (or #68 #1263 #3215)
+#4331 := (forall (vars (?x37 T2)) (:pat #4257) #3221)
+#4336 := (not #4331)
+#117 := (uf_6 uf_15 #10)
+#4322 := (pattern #114 #117)
+#120 := (uf_4 uf_14 #10)
+#1313 := (* -1::int #120)
+#1314 := (+ #110 #1313)
+#1317 := (>= #1314 0::int)
+#484 := (= uf_8 #117)
+#3178 := (not #484)
+#3193 := (or #478 #3178 #1317)
+#4323 := (forall (vars (?x42 T2) (?x43 T2)) (:pat #4322) #3193)
+#4328 := (not #4323)
+#1315 := (+ #91 #1314)
+#1710 := (>= #1315 0::int)
+#481 := (not #478)
+#3170 := (or #481 #1237 #1710)
+#4314 := (forall (vars (?x44 T2) (?x45 T2)) (:pat #4281) #3170)
+#4319 := (not #4314)
+#1738 := (>= #110 0::int)
+#4306 := (forall (vars (?x41 T2)) (:pat #4305) #1738)
+#4311 := (not #4306)
+#1749 := (not #109)
+#4579 := (or #1749 #4311 #4319 #4328 #4336 #4344 #4576)
+#4582 := (not #4579)
+decl ?x37!5 :: T2
+#1976 := ?x37!5
+#1977 := (uf_1 #11 ?x37!5)
+#4290 := (pattern #1977)
+#77 := (up_13 #11)
+#4250 := (pattern #77)
+#1979 := (uf_12 ?x37!5)
+#1980 := (* -1::int #1979)
+#1978 := (uf_10 #1977)
+#2598 := (+ #1978 #1980)
+#2599 := (+ #69 #2598)
+#2602 := (= #2599 0::int)
+#3131 := (not #2602)
+#1984 := (+ #69 #1980)
+#1985 := (>= #1984 0::int)
+#78 := (not #77)
+#3132 := (or #78 #1985 #3131)
+#4291 := (forall (vars (?x38 T2)) (:pat #4250 #4257 #4290) #3132)
+#4296 := (not #4291)
+#2574 := (= uf_11 ?x37!5)
+#1989 := (+ uf_9 #1980)
+#1990 := (<= #1989 0::int)
+#4299 := (or #1990 #2574 #4296)
+#5019 := (= uf_9 #1979)
+#5185 := (not #5019)
+#1991 := (not #1990)
+#4302 := (not #4299)
+#5183 := [hypothesis]: #4302
+#4176 := (or #4299 #1991)
+#3850 := [def-axiom]: #4176
+#5184 := [unit-resolution #3850 #5183]: #1991
+#5186 := (or #5185 #1990)
+#5193 := [th-lemma]: #5186
+#5194 := [unit-resolution #5193 #5184]: #5185
+#2577 := (not #2574)
+#3851 := (or #4299 #2577)
+#4183 := [def-axiom]: #3851
+#5192 := [unit-resolution #4183 #5183]: #2577
+#437 := (= uf_9 #69)
+#443 := (or #68 #437)
+#4258 := (forall (vars (?x25 T2)) (:pat #4257) #443)
+#448 := (forall (vars (?x25 T2)) #443)
+#4261 := (iff #448 #4258)
+#4259 := (iff #443 #443)
+#4260 := [refl]: #4259
+#4262 := [quant-intro #4260]: #4261
+#1862 := (~ #448 #448)
+#1900 := (~ #443 #443)
+#1901 := [refl]: #1900
+#1863 := [nnf-pos #1901]: #1862
+#70 := (= #69 0::int)
+#73 := (not #68)
+#1807 := (or #73 #70)
+#1810 := (forall (vars (?x24 T2)) #1807)
+#1813 := (not #1810)
+#1741 := (forall (vars (?x41 T2)) #1738)
+#1744 := (not #1741)
+#487 := (and #481 #484)
+#493 := (not #487)
+#1727 := (or #493 #1317)
+#1732 := (forall (vars (?x42 T2) (?x43 T2)) #1727)
+#1735 := (not #1732)
+#1238 := (not #1237)
+#1702 := (and #478 #1238)
+#1707 := (not #1702)
+#1713 := (or #1707 #1710)
+#1716 := (forall (vars (?x44 T2) (?x45 T2)) #1713)
+#1719 := (not #1716)
+#1649 := (forall (vars (?x58 T2)) #1644)
+#1652 := (not #1649)
+#1459 := (not #1458)
+#1452 := (not #1451)
+#1462 := (and #1452 #1459)
+#1620 := (not #1462)
+#1628 := (or #1620 #1625)
+#1631 := (forall (vars (?x59 T2)) #1628)
+#1634 := (not #1631)
+#1558 := (= #1536 0::int)
+#1561 := (not #1504)
+#1570 := (and #773 #1561 #1558)
+#1575 := (exists (vars (?x76 T2)) #1570)
+#1547 := (+ uf_9 #1480)
+#1548 := (<= #1547 0::int)
+#1549 := (not #1548)
+#1552 := (and #73 #1549)
+#1555 := (not #1552)
+#1578 := (or #1555 #1575)
+#1581 := (forall (vars (?x75 T2)) #1578)
+#1526 := (and #773 #1238)
+#1531 := (not #1526)
+#1538 := (or #1531 #1534)
+#1541 := (forall (vars (?x71 T2) (?x72 T2)) #1538)
+#1544 := (not #1541)
+#1584 := (or #1544 #1581)
+#1587 := (and #1541 #1584)
+#796 := (and #779 #793)
+#802 := (not #796)
+#1512 := (or #802 #1504)
+#1517 := (forall (vars (?x67 T2) (?x68 T2)) #1512)
+#1520 := (not #1517)
+#1590 := (or #1520 #1587)
+#1593 := (and #1517 #1590)
+#1498 := (forall (vars (?x65 T2)) #1495)
+#1501 := (not #1498)
+#1596 := (or #1501 #1593)
+#1599 := (and #1498 #1596)
+#1602 := (or #1492 #1599)
+#1605 := (and #217 #1602)
+#785 := (forall (vars (?x63 T2)) #780)
+#939 := (not #785)
+#1608 := (or #939 #1605)
+#1611 := (and #785 #1608)
+#1484 := (forall (vars (?x61 T2)) #1479)
+#1487 := (not #1484)
+#1614 := (or #1487 #1611)
+#1617 := (and #1484 #1614)
+#1468 := (or #759 #1462)
+#1473 := (forall (vars (?x60 T2)) #1468)
+#1476 := (not #1473)
+#1302 := (not #1301)
+#1421 := (and #481 #1302)
+#1426 := (exists (vars (?x48 T2)) #1421)
+#1667 := (not #1426)
+#1691 := (or #981 #728 #1667 #1476 #1617 #1634 #1652 #1656)
+#1347 := (not #1346)
+#1381 := (and #1238 #1347)
+#1384 := (not #1381)
+#1390 := (or #1384 #1387)
+#1393 := (forall (vars (?x53 T2) (?x54 T2)) #1390)
+#1396 := (not #1393)
+#1404 := (or #167 #1396)
+#1409 := (and #1393 #1404)
+#1362 := (= #1364 0::int)
+#1356 := (>= #1358 0::int)
+#1359 := (not #1356)
+#1366 := (and #1359 #1362)
+#1369 := (exists (vars (?x50 T2)) #1366)
+#1350 := (and #73 #1347)
+#1353 := (not #1350)
+#1372 := (or #1353 #1369)
+#1375 := (forall (vars (?x49 T2)) #1372)
+#1378 := (not #1375)
+#1412 := (or #1378 #1409)
+#1415 := (and #1375 #1412)
+#1444 := (or #683 #665 #692 #674 #1415 #1426)
+#1696 := (and #1444 #1691)
+#1318 := (not #1317)
+#1311 := (= #1315 0::int)
+#1327 := (and #478 #1311 #1318)
+#1332 := (exists (vars (?x47 T2)) #1327)
+#1305 := (and #73 #1302)
+#1308 := (not #1305)
+#1335 := (or #1308 #1332)
+#1338 := (forall (vars (?x46 T2)) #1335)
+#1341 := (not #1338)
+#86 := (uf_12 #10)
+#1223 := (* -1::int #86)
+#1250 := (+ #1223 #91)
+#1251 := (+ #69 #1250)
+#1273 := (= #1251 0::int)
+#1224 := (+ #69 #1223)
+#1222 := (>= #1224 0::int)
+#1276 := (not #1222)
+#1285 := (and #77 #1276 #1273)
+#1290 := (exists (vars (?x38 T2)) #1285)
+#1264 := (not #1263)
+#1267 := (and #73 #1264)
+#1270 := (not #1267)
+#1293 := (or #1270 #1290)
+#1296 := (forall (vars (?x37 T2)) #1293)
+#1752 := (not #1296)
+#1773 := (or #1749 #1752 #1341 #1696 #1719 #1735 #1744)
+#1778 := (and #1296 #1773)
+#1248 := (>= #1251 0::int)
+#1241 := (and #77 #1238)
+#1244 := (not #1241)
+#1252 := (or #1244 #1248)
+#1255 := (forall (vars (?x33 T2) (?x34 T2)) #1252)
+#1258 := (not #1255)
+#1781 := (or #1258 #1778)
+#1784 := (and #1255 #1781)
+#84 := (up_13 #10)
+#85 := (and #78 #84)
+#454 := (not #85)
+#1226 := (or #454 #1222)
+#1229 := (forall (vars (?x29 T2) (?x30 T2)) #1226)
+#1232 := (not #1229)
+#1787 := (or #1232 #1784)
+#1790 := (and #1229 #1787)
+#1213 := (>= #69 0::int)
+#1214 := (forall (vars (?x27 T2)) #1213)
+#1217 := (not #1214)
+#1793 := (or #1217 #1790)
+#1796 := (and #1214 #1793)
+#80 := (uf_12 uf_11)
+#81 := (= #80 0::int)
+#1208 := (not #81)
+#1799 := (or #1208 #1796)
+#1802 := (and #81 #1799)
+#1177 := (not #448)
+#79 := (forall (vars (?x26 T2)) #78)
+#1168 := (not #79)
+#1825 := (or #1168 #1177 #1802 #1813)
+#1830 := (not #1825)
+#1 := true
+#242 := (implies false true)
+#229 := (+ #202 #91)
+#236 := (= #224 #229)
+#213 := (= #212 uf_8)
+#237 := (and #213 #236)
+#235 := (< #202 #224)
+#238 := (and #235 #237)
+#239 := (exists (vars (?x76 T2)) #238)
+#233 := (< #202 uf_9)
+#234 := (and #73 #233)
+#240 := (implies #234 #239)
+#241 := (forall (vars (?x75 T2)) #240)
+#243 := (implies #241 #242)
+#244 := (and #241 #243)
+#230 := (<= #224 #229)
+#92 := (< #91 uf_9)
+#228 := (and #213 #92)
+#231 := (implies #228 #230)
+#232 := (forall (vars (?x71 T2) (?x72 T2)) #231)
+#245 := (implies #232 #244)
+#246 := (and #232 #245)
+#225 := (<= #224 #202)
+#222 := (= #221 uf_8)
+#220 := (not #213)
+#223 := (and #220 #222)
+#226 := (implies #223 #225)
+#227 := (forall (vars (?x67 T2) (?x68 T2)) #226)
+#247 := (implies #227 #246)
+#248 := (and #227 #247)
+#218 := (<= 0::int #202)
+#219 := (forall (vars (?x65 T2)) #218)
+#249 := (implies #219 #248)
+#250 := (and #219 #249)
+#251 := (implies #217 #250)
+#252 := (and #217 #251)
+#253 := (implies true #252)
+#254 := (implies true #253)
+#207 := (= #202 #110)
+#214 := (implies #213 #207)
+#215 := (forall (vars (?x63 T2)) #214)
+#255 := (implies #215 #254)
+#256 := (and #215 #255)
+#210 := (<= #202 #110)
+#211 := (forall (vars (?x61 T2)) #210)
+#257 := (implies #211 #256)
+#258 := (and #211 #257)
+#199 := (+ #188 #197)
+#200 := (< #199 #110)
+#198 := (< #197 uf_9)
+#201 := (and #198 #200)
+#206 := (not #201)
+#208 := (implies #206 #207)
+#209 := (forall (vars (?x60 T2)) #208)
+#259 := (implies #209 #258)
+#203 := (= #202 #199)
+#204 := (implies #201 #203)
+#205 := (forall (vars (?x59 T2)) #204)
+#260 := (implies #205 #259)
+#261 := (implies #195 #260)
+#190 := (<= #188 #110)
+#115 := (= #114 uf_8)
+#116 := (not #115)
+#191 := (implies #116 #190)
+#192 := (forall (vars (?x58 T2)) #191)
+#262 := (implies #192 #261)
+#189 := (< #188 uf_9)
+#263 := (implies #189 #262)
+#186 := (= #185 uf_8)
+#187 := (not #186)
+#264 := (implies #187 #263)
+#129 := (< #110 uf_9)
+#138 := (and #116 #129)
+#139 := (exists (vars (?x48 T2)) #138)
+#265 := (implies #139 #264)
+#266 := (implies true #265)
+#267 := (implies true #266)
+#168 := (implies #167 true)
+#169 := (and #167 #168)
+#156 := (+ #151 #91)
+#163 := (<= #154 #156)
+#152 := (< #151 uf_9)
+#162 := (and #152 #92)
+#164 := (implies #162 #163)
+#165 := (forall (vars (?x53 T2) (?x54 T2)) #164)
+#170 := (implies #165 #169)
+#171 := (and #165 #170)
+#157 := (= #154 #156)
+#155 := (< #151 #154)
+#158 := (and #155 #157)
+#159 := (exists (vars (?x50 T2)) #158)
+#153 := (and #73 #152)
+#160 := (implies #153 #159)
+#161 := (forall (vars (?x49 T2)) #160)
+#172 := (implies #161 #171)
+#173 := (and #161 #172)
+#174 := (implies true #173)
+#175 := (implies #150 #174)
+#147 := (= uf_19 uf_14)
+#176 := (implies #147 #175)
+#177 := (implies #145 #176)
+#142 := (= uf_16 uf_15)
+#178 := (implies #142 #177)
+#179 := (implies true #178)
+#180 := (implies true #179)
+#140 := (not #139)
+#181 := (implies #140 #180)
+#182 := (implies true #181)
+#183 := (implies true #182)
+#268 := (and #183 #267)
+#269 := (implies true #268)
+#125 := (+ #110 #91)
+#132 := (= #120 #125)
+#133 := (and #115 #132)
+#131 := (< #110 #120)
+#134 := (and #131 #133)
+#135 := (exists (vars (?x47 T2)) #134)
+#130 := (and #73 #129)
+#136 := (implies #130 #135)
+#137 := (forall (vars (?x46 T2)) #136)
+#270 := (implies #137 #269)
+#126 := (<= #120 #125)
+#124 := (and #115 #92)
+#127 := (implies #124 #126)
+#128 := (forall (vars (?x44 T2) (?x45 T2)) #127)
+#271 := (implies #128 #270)
+#121 := (<= #120 #110)
+#118 := (= #117 uf_8)
+#119 := (and #116 #118)
+#122 := (implies #119 #121)
+#123 := (forall (vars (?x42 T2) (?x43 T2)) #122)
+#272 := (implies #123 #271)
+#111 := (<= 0::int #110)
+#112 := (forall (vars (?x41 T2)) #111)
+#273 := (implies #112 #272)
+#274 := (implies #109 #273)
+#275 := (implies true #274)
+#276 := (implies true #275)
+#94 := (+ #69 #91)
+#101 := (= #86 #94)
+#102 := (and #77 #101)
+#100 := (< #69 #86)
+#103 := (and #100 #102)
+#104 := (exists (vars (?x38 T2)) #103)
+#98 := (< #69 uf_9)
+#99 := (and #73 #98)
+#105 := (implies #99 #104)
+#106 := (forall (vars (?x37 T2)) #105)
+#277 := (implies #106 #276)
+#278 := (and #106 #277)
+#95 := (<= #86 #94)
+#93 := (and #77 #92)
+#96 := (implies #93 #95)
+#97 := (forall (vars (?x33 T2) (?x34 T2)) #96)
+#279 := (implies #97 #278)
+#280 := (and #97 #279)
+#87 := (<= #86 #69)
+#88 := (implies #85 #87)
+#89 := (forall (vars (?x29 T2) (?x30 T2)) #88)
+#281 := (implies #89 #280)
+#282 := (and #89 #281)
+#82 := (<= 0::int #69)
+#83 := (forall (vars (?x27 T2)) #82)
+#283 := (implies #83 #282)
+#284 := (and #83 #283)
+#285 := (implies #81 #284)
+#286 := (and #81 #285)
+#287 := (implies true #286)
+#288 := (implies #79 #287)
+#74 := (= #69 uf_9)
+#75 := (implies #73 #74)
+#76 := (forall (vars (?x25 T2)) #75)
+#289 := (implies #76 #288)
+#71 := (implies #68 #70)
+#72 := (forall (vars (?x24 T2)) #71)
+#290 := (implies #72 #289)
+#291 := (implies true #290)
+#292 := (implies true #291)
+#293 := (not #292)
+#1833 := (iff #293 #1830)
+#819 := (+ #91 #202)
+#837 := (= #224 #819)
+#840 := (and #773 #837)
+#843 := (and #235 #840)
+#846 := (exists (vars (?x76 T2)) #843)
+#852 := (not #234)
+#853 := (or #852 #846)
+#858 := (forall (vars (?x75 T2)) #853)
+#822 := (<= #224 #819)
+#814 := (and #92 #773)
+#828 := (not #814)
+#829 := (or #828 #822)
+#834 := (forall (vars (?x71 T2) (?x72 T2)) #829)
+#880 := (not #834)
+#881 := (or #880 #858)
+#886 := (and #834 #881)
+#803 := (or #225 #802)
+#808 := (forall (vars (?x67 T2) (?x68 T2)) #803)
+#892 := (not #808)
+#893 := (or #892 #886)
+#898 := (and #808 #893)
+#904 := (not #219)
+#905 := (or #904 #898)
+#910 := (and #219 #905)
+#788 := (= 0::int #216)
+#916 := (not #788)
+#917 := (or #916 #910)
+#922 := (and #788 #917)
+#940 := (or #939 #922)
+#945 := (and #785 #940)
+#951 := (not #211)
+#952 := (or #951 #945)
+#957 := (and #211 #952)
+#765 := (or #201 #759)
+#770 := (forall (vars (?x60 T2)) #765)
+#963 := (not #770)
+#964 := (or #963 #957)
+#745 := (= #199 #202)
+#751 := (or #206 #745)
+#756 := (forall (vars (?x59 T2)) #751)
+#972 := (not #756)
+#973 := (or #972 #964)
+#982 := (or #981 #973)
+#737 := (or #190 #478)
+#742 := (forall (vars (?x58 T2)) #737)
+#990 := (not #742)
+#991 := (or #990 #982)
+#999 := (not #189)
+#1000 := (or #999 #991)
+#1008 := (or #728 #1000)
+#555 := (and #129 #481)
+#560 := (exists (vars (?x48 T2)) #555)
+#563 := (not #560)
+#1016 := (or #563 #1008)
+#614 := (= 0::int #166)
+#572 := (+ #91 #151)
+#599 := (<= #154 #572)
+#596 := (and #92 #152)
+#605 := (not #596)
+#606 := (or #605 #599)
+#611 := (forall (vars (?x53 T2) (?x54 T2)) #606)
+#634 := (not #611)
+#635 := (or #634 #614)
+#640 := (and #611 #635)
+#575 := (= #154 #572)
+#578 := (and #155 #575)
+#581 := (exists (vars (?x50 T2)) #578)
+#587 := (not #153)
+#588 := (or #587 #581)
+#593 := (forall (vars (?x49 T2)) #588)
+#646 := (not #593)
+#647 := (or #646 #640)
+#652 := (and #593 #647)
+#666 := (or #665 #652)
+#675 := (or #674 #666)
+#684 := (or #683 #675)
+#693 := (or #692 #684)
+#712 := (or #560 #693)
+#1032 := (and #712 #1016)
+#510 := (+ #91 #110)
+#528 := (= #120 #510)
+#531 := (and #478 #528)
+#534 := (and #131 #531)
+#537 := (exists (vars (?x47 T2)) #534)
+#543 := (not #130)
+#544 := (or #543 #537)
+#549 := (forall (vars (?x46 T2)) #544)
+#1045 := (not #549)
+#1046 := (or #1045 #1032)
+#513 := (<= #120 #510)
+#505 := (and #92 #478)
+#519 := (not #505)
+#520 := (or #519 #513)
+#525 := (forall (vars (?x44 T2) (?x45 T2)) #520)
+#1054 := (not #525)
+#1055 := (or #1054 #1046)
+#494 := (or #121 #493)
+#499 := (forall (vars (?x42 T2) (?x43 T2)) #494)
+#1063 := (not #499)
+#1064 := (or #1063 #1055)
+#1072 := (not #112)
+#1073 := (or #1072 #1064)
+#475 := (= 0::int #108)
+#1081 := (not #475)
+#1082 := (or #1081 #1073)
+#468 := (not #99)
+#469 := (or #468 #104)
+#472 := (forall (vars (?x37 T2)) #469)
+#1101 := (not #472)
+#1102 := (or #1101 #1082)
+#1107 := (and #472 #1102)
+#461 := (not #93)
+#462 := (or #461 #95)
+#465 := (forall (vars (?x33 T2) (?x34 T2)) #462)
+#1113 := (not #465)
+#1114 := (or #1113 #1107)
+#1119 := (and #465 #1114)
+#455 := (or #454 #87)
+#458 := (forall (vars (?x29 T2) (?x30 T2)) #455)
+#1125 := (not #458)
+#1126 := (or #1125 #1119)
+#1131 := (and #458 #1126)
+#1137 := (not #83)
+#1138 := (or #1137 #1131)
+#1143 := (and #83 #1138)
+#451 := (= 0::int #80)
+#1149 := (not #451)
+#1150 := (or #1149 #1143)
+#1155 := (and #451 #1150)
+#1169 := (or #1168 #1155)
+#1178 := (or #1177 #1169)
+#423 := (= 0::int #69)
+#429 := (or #73 #423)
+#434 := (forall (vars (?x24 T2)) #429)
+#1186 := (not #434)
+#1187 := (or #1186 #1178)
+#1203 := (not #1187)
+#1831 := (iff #1203 #1830)
+#1828 := (iff #1187 #1825)
+#1816 := (or #1168 #1802)
+#1819 := (or #1177 #1816)
+#1822 := (or #1813 #1819)
+#1826 := (iff #1822 #1825)
+#1827 := [rewrite]: #1826
+#1823 := (iff #1187 #1822)
+#1820 := (iff #1178 #1819)
+#1817 := (iff #1169 #1816)
+#1803 := (iff #1155 #1802)
+#1800 := (iff #1150 #1799)
+#1797 := (iff #1143 #1796)
+#1794 := (iff #1138 #1793)
+#1791 := (iff #1131 #1790)
+#1788 := (iff #1126 #1787)
+#1785 := (iff #1119 #1784)
+#1782 := (iff #1114 #1781)
+#1779 := (iff #1107 #1778)
+#1776 := (iff #1102 #1773)
+#1755 := (or #1341 #1696)
+#1758 := (or #1719 #1755)
+#1761 := (or #1735 #1758)
+#1764 := (or #1744 #1761)
+#1767 := (or #1749 #1764)
+#1770 := (or #1752 #1767)
+#1774 := (iff #1770 #1773)
+#1775 := [rewrite]: #1774
+#1771 := (iff #1102 #1770)
+#1768 := (iff #1082 #1767)
+#1765 := (iff #1073 #1764)
+#1762 := (iff #1064 #1761)
+#1759 := (iff #1055 #1758)
+#1756 := (iff #1046 #1755)
+#1697 := (iff #1032 #1696)
+#1694 := (iff #1016 #1691)
+#1670 := (or #1476 #1617)
+#1673 := (or #1634 #1670)
+#1676 := (or #981 #1673)
+#1679 := (or #1652 #1676)
+#1682 := (or #1656 #1679)
+#1685 := (or #728 #1682)
+#1688 := (or #1667 #1685)
+#1692 := (iff #1688 #1691)
+#1693 := [rewrite]: #1692
+#1689 := (iff #1016 #1688)
+#1686 := (iff #1008 #1685)
+#1683 := (iff #1000 #1682)
+#1680 := (iff #991 #1679)
+#1677 := (iff #982 #1676)
+#1674 := (iff #973 #1673)
+#1671 := (iff #964 #1670)
+#1618 := (iff #957 #1617)
+#1615 := (iff #952 #1614)
+#1612 := (iff #945 #1611)
+#1609 := (iff #940 #1608)
+#1606 := (iff #922 #1605)
+#1603 := (iff #917 #1602)
+#1600 := (iff #910 #1599)
+#1597 := (iff #905 #1596)
+#1594 := (iff #898 #1593)
+#1591 := (iff #893 #1590)
+#1588 := (iff #886 #1587)
+#1585 := (iff #881 #1584)
+#1582 := (iff #858 #1581)
+#1579 := (iff #853 #1578)
+#1576 := (iff #846 #1575)
+#1573 := (iff #843 #1570)
+#1564 := (and #773 #1558)
+#1567 := (and #1561 #1564)
+#1571 := (iff #1567 #1570)
+#1572 := [rewrite]: #1571
+#1568 := (iff #843 #1567)
+#1565 := (iff #840 #1564)
+#1559 := (iff #837 #1558)
+#1560 := [rewrite]: #1559
+#1566 := [monotonicity #1560]: #1565
+#1562 := (iff #235 #1561)
+#1563 := [rewrite]: #1562
+#1569 := [monotonicity #1563 #1566]: #1568
+#1574 := [trans #1569 #1572]: #1573
+#1577 := [quant-intro #1574]: #1576
+#1556 := (iff #852 #1555)
+#1553 := (iff #234 #1552)
+#1550 := (iff #233 #1549)
+#1551 := [rewrite]: #1550
+#1554 := [monotonicity #1551]: #1553
+#1557 := [monotonicity #1554]: #1556
+#1580 := [monotonicity #1557 #1577]: #1579
+#1583 := [quant-intro #1580]: #1582
+#1545 := (iff #880 #1544)
+#1542 := (iff #834 #1541)
+#1539 := (iff #829 #1538)
+#1535 := (iff #822 #1534)
+#1537 := [rewrite]: #1535
+#1532 := (iff #828 #1531)
+#1529 := (iff #814 #1526)
+#1523 := (and #1238 #773)
+#1527 := (iff #1523 #1526)
+#1528 := [rewrite]: #1527
+#1524 := (iff #814 #1523)
+#1239 := (iff #92 #1238)
+#1240 := [rewrite]: #1239
+#1525 := [monotonicity #1240]: #1524
+#1530 := [trans #1525 #1528]: #1529
+#1533 := [monotonicity #1530]: #1532
+#1540 := [monotonicity #1533 #1537]: #1539
+#1543 := [quant-intro #1540]: #1542
+#1546 := [monotonicity #1543]: #1545
+#1586 := [monotonicity #1546 #1583]: #1585
+#1589 := [monotonicity #1543 #1586]: #1588
+#1521 := (iff #892 #1520)
+#1518 := (iff #808 #1517)
+#1515 := (iff #803 #1512)
+#1509 := (or #1504 #802)
+#1513 := (iff #1509 #1512)
+#1514 := [rewrite]: #1513
+#1510 := (iff #803 #1509)
+#1507 := (iff #225 #1504)
+#1508 := [rewrite]: #1507
+#1511 := [monotonicity #1508]: #1510
+#1516 := [trans #1511 #1514]: #1515
+#1519 := [quant-intro #1516]: #1518
+#1522 := [monotonicity #1519]: #1521
+#1592 := [monotonicity #1522 #1589]: #1591
+#1595 := [monotonicity #1519 #1592]: #1594
+#1502 := (iff #904 #1501)
+#1499 := (iff #219 #1498)
+#1496 := (iff #218 #1495)
+#1497 := [rewrite]: #1496
+#1500 := [quant-intro #1497]: #1499
+#1503 := [monotonicity #1500]: #1502
+#1598 := [monotonicity #1503 #1595]: #1597
+#1601 := [monotonicity #1500 #1598]: #1600
+#1493 := (iff #916 #1492)
+#1490 := (iff #788 #217)
+#1491 := [rewrite]: #1490
+#1494 := [monotonicity #1491]: #1493
+#1604 := [monotonicity #1494 #1601]: #1603
+#1607 := [monotonicity #1491 #1604]: #1606
+#1610 := [monotonicity #1607]: #1609
+#1613 := [monotonicity #1610]: #1612
+#1488 := (iff #951 #1487)
+#1485 := (iff #211 #1484)
+#1482 := (iff #210 #1479)
+#1483 := [rewrite]: #1482
+#1486 := [quant-intro #1483]: #1485
+#1489 := [monotonicity #1486]: #1488
+#1616 := [monotonicity #1489 #1613]: #1615
+#1619 := [monotonicity #1486 #1616]: #1618
+#1477 := (iff #963 #1476)
+#1474 := (iff #770 #1473)
+#1471 := (iff #765 #1468)
+#1465 := (or #1462 #759)
+#1469 := (iff #1465 #1468)
+#1470 := [rewrite]: #1469
+#1466 := (iff #765 #1465)
+#1463 := (iff #201 #1462)
+#1460 := (iff #200 #1459)
+#1461 := [rewrite]: #1460
+#1453 := (iff #198 #1452)
+#1454 := [rewrite]: #1453
+#1464 := [monotonicity #1454 #1461]: #1463
+#1467 := [monotonicity #1464]: #1466
+#1472 := [trans #1467 #1470]: #1471
+#1475 := [quant-intro #1472]: #1474
+#1478 := [monotonicity #1475]: #1477
+#1672 := [monotonicity #1478 #1619]: #1671
+#1635 := (iff #972 #1634)
+#1632 := (iff #756 #1631)
+#1629 := (iff #751 #1628)
+#1626 := (iff #745 #1625)
+#1627 := [rewrite]: #1626
+#1621 := (iff #206 #1620)
+#1622 := [monotonicity #1464]: #1621
+#1630 := [monotonicity #1622 #1627]: #1629
+#1633 := [quant-intro #1630]: #1632
+#1636 := [monotonicity #1633]: #1635
+#1675 := [monotonicity #1636 #1672]: #1674
+#1678 := [monotonicity #1675]: #1677
+#1653 := (iff #990 #1652)
+#1650 := (iff #742 #1649)
+#1647 := (iff #737 #1644)
+#1641 := (or #1637 #478)
+#1645 := (iff #1641 #1644)
+#1646 := [rewrite]: #1645
+#1642 := (iff #737 #1641)
+#1639 := (iff #190 #1637)
+#1640 := [rewrite]: #1639
+#1643 := [monotonicity #1640]: #1642
+#1648 := [trans #1643 #1646]: #1647
+#1651 := [quant-intro #1648]: #1650
+#1654 := [monotonicity #1651]: #1653
+#1681 := [monotonicity #1654 #1678]: #1680
+#1665 := (iff #999 #1656)
+#1657 := (not #1656)
+#1660 := (not #1657)
+#1663 := (iff #1660 #1656)
+#1664 := [rewrite]: #1663
+#1661 := (iff #999 #1660)
+#1658 := (iff #189 #1657)
+#1659 := [rewrite]: #1658
+#1662 := [monotonicity #1659]: #1661
+#1666 := [trans #1662 #1664]: #1665
+#1684 := [monotonicity #1666 #1681]: #1683
+#1687 := [monotonicity #1684]: #1686
+#1668 := (iff #563 #1667)
+#1427 := (iff #560 #1426)
+#1424 := (iff #555 #1421)
+#1418 := (and #1302 #481)
+#1422 := (iff #1418 #1421)
+#1423 := [rewrite]: #1422
+#1419 := (iff #555 #1418)
+#1303 := (iff #129 #1302)
+#1304 := [rewrite]: #1303
+#1420 := [monotonicity #1304]: #1419
+#1425 := [trans #1420 #1423]: #1424
+#1428 := [quant-intro #1425]: #1427
+#1669 := [monotonicity #1428]: #1668
+#1690 := [monotonicity #1669 #1687]: #1689
+#1695 := [trans #1690 #1693]: #1694
+#1447 := (iff #712 #1444)
+#1429 := (or #665 #1415)
+#1432 := (or #674 #1429)
+#1435 := (or #683 #1432)
+#1438 := (or #692 #1435)
+#1441 := (or #1426 #1438)
+#1445 := (iff #1441 #1444)
+#1446 := [rewrite]: #1445
+#1442 := (iff #712 #1441)
+#1439 := (iff #693 #1438)
+#1436 := (iff #684 #1435)
+#1433 := (iff #675 #1432)
+#1430 := (iff #666 #1429)
+#1416 := (iff #652 #1415)
+#1413 := (iff #647 #1412)
+#1410 := (iff #640 #1409)
+#1407 := (iff #635 #1404)
+#1401 := (or #1396 #167)
+#1405 := (iff #1401 #1404)
+#1406 := [rewrite]: #1405
+#1402 := (iff #635 #1401)
+#1399 := (iff #614 #167)
+#1400 := [rewrite]: #1399
+#1397 := (iff #634 #1396)
+#1394 := (iff #611 #1393)
+#1391 := (iff #606 #1390)
+#1388 := (iff #599 #1387)
+#1389 := [rewrite]: #1388
+#1385 := (iff #605 #1384)
+#1382 := (iff #596 #1381)
+#1348 := (iff #152 #1347)
+#1349 := [rewrite]: #1348
+#1383 := [monotonicity #1240 #1349]: #1382
+#1386 := [monotonicity #1383]: #1385
+#1392 := [monotonicity #1386 #1389]: #1391
+#1395 := [quant-intro #1392]: #1394
+#1398 := [monotonicity #1395]: #1397
+#1403 := [monotonicity #1398 #1400]: #1402
+#1408 := [trans #1403 #1406]: #1407
+#1411 := [monotonicity #1395 #1408]: #1410
+#1379 := (iff #646 #1378)
+#1376 := (iff #593 #1375)
+#1373 := (iff #588 #1372)
+#1370 := (iff #581 #1369)
+#1367 := (iff #578 #1366)
+#1363 := (iff #575 #1362)
+#1365 := [rewrite]: #1363
+#1360 := (iff #155 #1359)
+#1361 := [rewrite]: #1360
+#1368 := [monotonicity #1361 #1365]: #1367
+#1371 := [quant-intro #1368]: #1370
+#1354 := (iff #587 #1353)
+#1351 := (iff #153 #1350)
+#1352 := [monotonicity #1349]: #1351
+#1355 := [monotonicity #1352]: #1354
+#1374 := [monotonicity #1355 #1371]: #1373
+#1377 := [quant-intro #1374]: #1376
+#1380 := [monotonicity #1377]: #1379
+#1414 := [monotonicity #1380 #1411]: #1413
+#1417 := [monotonicity #1377 #1414]: #1416
+#1431 := [monotonicity #1417]: #1430
+#1434 := [monotonicity #1431]: #1433
+#1437 := [monotonicity #1434]: #1436
+#1440 := [monotonicity #1437]: #1439
+#1443 := [monotonicity #1428 #1440]: #1442
+#1448 := [trans #1443 #1446]: #1447
+#1698 := [monotonicity #1448 #1695]: #1697
+#1342 := (iff #1045 #1341)
+#1339 := (iff #549 #1338)
+#1336 := (iff #544 #1335)
+#1333 := (iff #537 #1332)
+#1330 := (iff #534 #1327)
+#1321 := (and #478 #1311)
+#1324 := (and #1318 #1321)
+#1328 := (iff #1324 #1327)
+#1329 := [rewrite]: #1328
+#1325 := (iff #534 #1324)
+#1322 := (iff #531 #1321)
+#1312 := (iff #528 #1311)
+#1316 := [rewrite]: #1312
+#1323 := [monotonicity #1316]: #1322
+#1319 := (iff #131 #1318)
+#1320 := [rewrite]: #1319
+#1326 := [monotonicity #1320 #1323]: #1325
+#1331 := [trans #1326 #1329]: #1330
+#1334 := [quant-intro #1331]: #1333
+#1309 := (iff #543 #1308)
+#1306 := (iff #130 #1305)
+#1307 := [monotonicity #1304]: #1306
+#1310 := [monotonicity #1307]: #1309
+#1337 := [monotonicity #1310 #1334]: #1336
+#1340 := [quant-intro #1337]: #1339
+#1343 := [monotonicity #1340]: #1342
+#1757 := [monotonicity #1343 #1698]: #1756
+#1720 := (iff #1054 #1719)
+#1717 := (iff #525 #1716)
+#1714 := (iff #520 #1713)
+#1711 := (iff #513 #1710)
+#1712 := [rewrite]: #1711
+#1708 := (iff #519 #1707)
+#1705 := (iff #505 #1702)
+#1699 := (and #1238 #478)
+#1703 := (iff #1699 #1702)
+#1704 := [rewrite]: #1703
+#1700 := (iff #505 #1699)
+#1701 := [monotonicity #1240]: #1700
+#1706 := [trans #1701 #1704]: #1705
+#1709 := [monotonicity #1706]: #1708
+#1715 := [monotonicity #1709 #1712]: #1714
+#1718 := [quant-intro #1715]: #1717
+#1721 := [monotonicity #1718]: #1720
+#1760 := [monotonicity #1721 #1757]: #1759
+#1736 := (iff #1063 #1735)
+#1733 := (iff #499 #1732)
+#1730 := (iff #494 #1727)
+#1724 := (or #1317 #493)
+#1728 := (iff #1724 #1727)
+#1729 := [rewrite]: #1728
+#1725 := (iff #494 #1724)
+#1722 := (iff #121 #1317)
+#1723 := [rewrite]: #1722
+#1726 := [monotonicity #1723]: #1725
+#1731 := [trans #1726 #1729]: #1730
+#1734 := [quant-intro #1731]: #1733
+#1737 := [monotonicity #1734]: #1736
+#1763 := [monotonicity #1737 #1760]: #1762
+#1745 := (iff #1072 #1744)
+#1742 := (iff #112 #1741)
+#1739 := (iff #111 #1738)
+#1740 := [rewrite]: #1739
+#1743 := [quant-intro #1740]: #1742
+#1746 := [monotonicity #1743]: #1745
+#1766 := [monotonicity #1746 #1763]: #1765
+#1750 := (iff #1081 #1749)
+#1747 := (iff #475 #109)
+#1748 := [rewrite]: #1747
+#1751 := [monotonicity #1748]: #1750
+#1769 := [monotonicity #1751 #1766]: #1768
+#1753 := (iff #1101 #1752)
+#1297 := (iff #472 #1296)
+#1294 := (iff #469 #1293)
+#1291 := (iff #104 #1290)
+#1288 := (iff #103 #1285)
+#1279 := (and #77 #1273)
+#1282 := (and #1276 #1279)
+#1286 := (iff #1282 #1285)
+#1287 := [rewrite]: #1286
+#1283 := (iff #103 #1282)
+#1280 := (iff #102 #1279)
+#1274 := (iff #101 #1273)
+#1275 := [rewrite]: #1274
+#1281 := [monotonicity #1275]: #1280
+#1277 := (iff #100 #1276)
+#1278 := [rewrite]: #1277
+#1284 := [monotonicity #1278 #1281]: #1283
+#1289 := [trans #1284 #1287]: #1288
+#1292 := [quant-intro #1289]: #1291
+#1271 := (iff #468 #1270)
+#1268 := (iff #99 #1267)
+#1265 := (iff #98 #1264)
+#1266 := [rewrite]: #1265
+#1269 := [monotonicity #1266]: #1268
+#1272 := [monotonicity #1269]: #1271
+#1295 := [monotonicity #1272 #1292]: #1294
+#1298 := [quant-intro #1295]: #1297
+#1754 := [monotonicity #1298]: #1753
+#1772 := [monotonicity #1754 #1769]: #1771
+#1777 := [trans #1772 #1775]: #1776
+#1780 := [monotonicity #1298 #1777]: #1779
+#1259 := (iff #1113 #1258)
+#1256 := (iff #465 #1255)
+#1253 := (iff #462 #1252)
+#1247 := (iff #95 #1248)
+#1249 := [rewrite]: #1247
+#1245 := (iff #461 #1244)
+#1242 := (iff #93 #1241)
+#1243 := [monotonicity #1240]: #1242
+#1246 := [monotonicity #1243]: #1245
+#1254 := [monotonicity #1246 #1249]: #1253
+#1257 := [quant-intro #1254]: #1256
+#1260 := [monotonicity #1257]: #1259
+#1783 := [monotonicity #1260 #1780]: #1782
+#1786 := [monotonicity #1257 #1783]: #1785
+#1233 := (iff #1125 #1232)
+#1230 := (iff #458 #1229)
+#1227 := (iff #455 #1226)
+#1221 := (iff #87 #1222)
+#1225 := [rewrite]: #1221
+#1228 := [monotonicity #1225]: #1227
+#1231 := [quant-intro #1228]: #1230
+#1234 := [monotonicity #1231]: #1233
+#1789 := [monotonicity #1234 #1786]: #1788
+#1792 := [monotonicity #1231 #1789]: #1791
+#1218 := (iff #1137 #1217)
+#1215 := (iff #83 #1214)
+#1211 := (iff #82 #1213)
+#1212 := [rewrite]: #1211
+#1216 := [quant-intro #1212]: #1215
+#1219 := [monotonicity #1216]: #1218
+#1795 := [monotonicity #1219 #1792]: #1794
+#1798 := [monotonicity #1216 #1795]: #1797
+#1209 := (iff #1149 #1208)
+#1206 := (iff #451 #81)
+#1207 := [rewrite]: #1206
+#1210 := [monotonicity #1207]: #1209
+#1801 := [monotonicity #1210 #1798]: #1800
+#1804 := [monotonicity #1207 #1801]: #1803
+#1818 := [monotonicity #1804]: #1817
+#1821 := [monotonicity #1818]: #1820
+#1814 := (iff #1186 #1813)
+#1811 := (iff #434 #1810)
+#1808 := (iff #429 #1807)
+#1805 := (iff #423 #70)
+#1806 := [rewrite]: #1805
+#1809 := [monotonicity #1806]: #1808
+#1812 := [quant-intro #1809]: #1811
+#1815 := [monotonicity #1812]: #1814
+#1824 := [monotonicity #1815 #1821]: #1823
+#1829 := [trans #1824 #1827]: #1828
+#1832 := [monotonicity #1829]: #1831
+#1204 := (iff #293 #1203)
+#1201 := (iff #292 #1187)
+#1192 := (implies true #1187)
+#1195 := (iff #1192 #1187)
+#1196 := [rewrite]: #1195
+#1199 := (iff #292 #1192)
+#1197 := (iff #291 #1187)
+#1193 := (iff #291 #1192)
+#1190 := (iff #290 #1187)
+#1183 := (implies #434 #1178)
+#1188 := (iff #1183 #1187)
+#1189 := [rewrite]: #1188
+#1184 := (iff #290 #1183)
+#1181 := (iff #289 #1178)
+#1174 := (implies #448 #1169)
+#1179 := (iff #1174 #1178)
+#1180 := [rewrite]: #1179
+#1175 := (iff #289 #1174)
+#1172 := (iff #288 #1169)
+#1165 := (implies #79 #1155)
+#1170 := (iff #1165 #1169)
+#1171 := [rewrite]: #1170
+#1166 := (iff #288 #1165)
+#1163 := (iff #287 #1155)
+#1158 := (implies true #1155)
+#1161 := (iff #1158 #1155)
+#1162 := [rewrite]: #1161
+#1159 := (iff #287 #1158)
+#1156 := (iff #286 #1155)
+#1153 := (iff #285 #1150)
+#1146 := (implies #451 #1143)
+#1151 := (iff #1146 #1150)
+#1152 := [rewrite]: #1151
+#1147 := (iff #285 #1146)
+#1144 := (iff #284 #1143)
+#1141 := (iff #283 #1138)
+#1134 := (implies #83 #1131)
+#1139 := (iff #1134 #1138)
+#1140 := [rewrite]: #1139
+#1135 := (iff #283 #1134)
+#1132 := (iff #282 #1131)
+#1129 := (iff #281 #1126)
+#1122 := (implies #458 #1119)
+#1127 := (iff #1122 #1126)
+#1128 := [rewrite]: #1127
+#1123 := (iff #281 #1122)
+#1120 := (iff #280 #1119)
+#1117 := (iff #279 #1114)
+#1110 := (implies #465 #1107)
+#1115 := (iff #1110 #1114)
+#1116 := [rewrite]: #1115
+#1111 := (iff #279 #1110)
+#1108 := (iff #278 #1107)
+#1105 := (iff #277 #1102)
+#1098 := (implies #472 #1082)
+#1103 := (iff #1098 #1102)
+#1104 := [rewrite]: #1103
+#1099 := (iff #277 #1098)
+#1096 := (iff #276 #1082)
+#1087 := (implies true #1082)
+#1090 := (iff #1087 #1082)
+#1091 := [rewrite]: #1090
+#1094 := (iff #276 #1087)
+#1092 := (iff #275 #1082)
+#1088 := (iff #275 #1087)
+#1085 := (iff #274 #1082)
+#1078 := (implies #475 #1073)
+#1083 := (iff #1078 #1082)
+#1084 := [rewrite]: #1083
+#1079 := (iff #274 #1078)
+#1076 := (iff #273 #1073)
+#1069 := (implies #112 #1064)
+#1074 := (iff #1069 #1073)
+#1075 := [rewrite]: #1074
+#1070 := (iff #273 #1069)
+#1067 := (iff #272 #1064)
+#1060 := (implies #499 #1055)
+#1065 := (iff #1060 #1064)
+#1066 := [rewrite]: #1065
+#1061 := (iff #272 #1060)
+#1058 := (iff #271 #1055)
+#1051 := (implies #525 #1046)
+#1056 := (iff #1051 #1055)
+#1057 := [rewrite]: #1056
+#1052 := (iff #271 #1051)
+#1049 := (iff #270 #1046)
+#1042 := (implies #549 #1032)
+#1047 := (iff #1042 #1046)
+#1048 := [rewrite]: #1047
+#1043 := (iff #270 #1042)
+#1040 := (iff #269 #1032)
+#1035 := (implies true #1032)
+#1038 := (iff #1035 #1032)
+#1039 := [rewrite]: #1038
+#1036 := (iff #269 #1035)
+#1033 := (iff #268 #1032)
+#1030 := (iff #267 #1016)
+#1021 := (implies true #1016)
+#1024 := (iff #1021 #1016)
+#1025 := [rewrite]: #1024
+#1028 := (iff #267 #1021)
+#1026 := (iff #266 #1016)
+#1022 := (iff #266 #1021)
+#1019 := (iff #265 #1016)
+#1013 := (implies #560 #1008)
+#1017 := (iff #1013 #1016)
+#1018 := [rewrite]: #1017
+#1014 := (iff #265 #1013)
+#1011 := (iff #264 #1008)
+#731 := (not #728)
+#1005 := (implies #731 #1000)
+#1009 := (iff #1005 #1008)
+#1010 := [rewrite]: #1009
+#1006 := (iff #264 #1005)
+#1003 := (iff #263 #1000)
+#996 := (implies #189 #991)
+#1001 := (iff #996 #1000)
+#1002 := [rewrite]: #1001
+#997 := (iff #263 #996)
+#994 := (iff #262 #991)
+#987 := (implies #742 #982)
+#992 := (iff #987 #991)
+#993 := [rewrite]: #992
+#988 := (iff #262 #987)
+#985 := (iff #261 #982)
+#978 := (implies #195 #973)
+#983 := (iff #978 #982)
+#984 := [rewrite]: #983
+#979 := (iff #261 #978)
+#976 := (iff #260 #973)
+#969 := (implies #756 #964)
+#974 := (iff #969 #973)
+#975 := [rewrite]: #974
+#970 := (iff #260 #969)
+#967 := (iff #259 #964)
+#960 := (implies #770 #957)
+#965 := (iff #960 #964)
+#966 := [rewrite]: #965
+#961 := (iff #259 #960)
+#958 := (iff #258 #957)
+#955 := (iff #257 #952)
+#948 := (implies #211 #945)
+#953 := (iff #948 #952)
+#954 := [rewrite]: #953
+#949 := (iff #257 #948)
+#946 := (iff #256 #945)
+#943 := (iff #255 #940)
+#936 := (implies #785 #922)
+#941 := (iff #936 #940)
+#942 := [rewrite]: #941
+#937 := (iff #255 #936)
+#934 := (iff #254 #922)
+#925 := (implies true #922)
+#928 := (iff #925 #922)
+#929 := [rewrite]: #928
+#932 := (iff #254 #925)
+#930 := (iff #253 #922)
+#926 := (iff #253 #925)
+#923 := (iff #252 #922)
+#920 := (iff #251 #917)
+#913 := (implies #788 #910)
+#918 := (iff #913 #917)
+#919 := [rewrite]: #918
+#914 := (iff #251 #913)
+#911 := (iff #250 #910)
+#908 := (iff #249 #905)
+#901 := (implies #219 #898)
+#906 := (iff #901 #905)
+#907 := [rewrite]: #906
+#902 := (iff #249 #901)
+#899 := (iff #248 #898)
+#896 := (iff #247 #893)
+#889 := (implies #808 #886)
+#894 := (iff #889 #893)
+#895 := [rewrite]: #894
+#890 := (iff #247 #889)
+#887 := (iff #246 #886)
+#884 := (iff #245 #881)
+#877 := (implies #834 #858)
+#882 := (iff #877 #881)
+#883 := [rewrite]: #882
+#878 := (iff #245 #877)
+#875 := (iff #244 #858)
+#870 := (and #858 true)
+#873 := (iff #870 #858)
+#874 := [rewrite]: #873
+#871 := (iff #244 #870)
+#868 := (iff #243 true)
+#863 := (implies #858 true)
+#866 := (iff #863 true)
+#867 := [rewrite]: #866
+#864 := (iff #243 #863)
+#861 := (iff #242 true)
+#862 := [rewrite]: #861
+#859 := (iff #241 #858)
+#856 := (iff #240 #853)
+#849 := (implies #234 #846)
+#854 := (iff #849 #853)
+#855 := [rewrite]: #854
+#850 := (iff #240 #849)
+#847 := (iff #239 #846)
+#844 := (iff #238 #843)
+#841 := (iff #237 #840)
+#838 := (iff #236 #837)
+#820 := (= #229 #819)
+#821 := [rewrite]: #820
+#839 := [monotonicity #821]: #838
+#774 := (iff #213 #773)
+#775 := [rewrite]: #774
+#842 := [monotonicity #775 #839]: #841
+#845 := [monotonicity #842]: #844
+#848 := [quant-intro #845]: #847
+#851 := [monotonicity #848]: #850
+#857 := [trans #851 #855]: #856
+#860 := [quant-intro #857]: #859
+#865 := [monotonicity #860 #862]: #864
+#869 := [trans #865 #867]: #868
+#872 := [monotonicity #860 #869]: #871
+#876 := [trans #872 #874]: #875
+#835 := (iff #232 #834)
+#832 := (iff #231 #829)
+#825 := (implies #814 #822)
+#830 := (iff #825 #829)
+#831 := [rewrite]: #830
+#826 := (iff #231 #825)
+#823 := (iff #230 #822)
+#824 := [monotonicity #821]: #823
+#817 := (iff #228 #814)
+#811 := (and #773 #92)
+#815 := (iff #811 #814)
+#816 := [rewrite]: #815
+#812 := (iff #228 #811)
+#813 := [monotonicity #775]: #812
+#818 := [trans #813 #816]: #817
+#827 := [monotonicity #818 #824]: #826
+#833 := [trans #827 #831]: #832
+#836 := [quant-intro #833]: #835
+#879 := [monotonicity #836 #876]: #878
+#885 := [trans #879 #883]: #884
+#888 := [monotonicity #836 #885]: #887
+#809 := (iff #227 #808)
+#806 := (iff #226 #803)
+#799 := (implies #796 #225)
+#804 := (iff #799 #803)
+#805 := [rewrite]: #804
+#800 := (iff #226 #799)
+#797 := (iff #223 #796)
+#794 := (iff #222 #793)
+#795 := [rewrite]: #794
+#791 := (iff #220 #779)
+#792 := [monotonicity #775]: #791
+#798 := [monotonicity #792 #795]: #797
+#801 := [monotonicity #798]: #800
+#807 := [trans #801 #805]: #806
+#810 := [quant-intro #807]: #809
+#891 := [monotonicity #810 #888]: #890
+#897 := [trans #891 #895]: #896
+#900 := [monotonicity #810 #897]: #899
+#903 := [monotonicity #900]: #902
+#909 := [trans #903 #907]: #908
+#912 := [monotonicity #909]: #911
+#789 := (iff #217 #788)
+#790 := [rewrite]: #789
+#915 := [monotonicity #790 #912]: #914
+#921 := [trans #915 #919]: #920
+#924 := [monotonicity #790 #921]: #923
+#927 := [monotonicity #924]: #926
+#931 := [trans #927 #929]: #930
+#933 := [monotonicity #931]: #932
+#935 := [trans #933 #929]: #934
+#786 := (iff #215 #785)
+#783 := (iff #214 #780)
+#776 := (implies #773 #759)
+#781 := (iff #776 #780)
+#782 := [rewrite]: #781
+#777 := (iff #214 #776)
+#760 := (iff #207 #759)
+#761 := [rewrite]: #760
+#778 := [monotonicity #775 #761]: #777
+#784 := [trans #778 #782]: #783
+#787 := [quant-intro #784]: #786
+#938 := [monotonicity #787 #935]: #937
+#944 := [trans #938 #942]: #943
+#947 := [monotonicity #787 #944]: #946
+#950 := [monotonicity #947]: #949
+#956 := [trans #950 #954]: #955
+#959 := [monotonicity #956]: #958
+#771 := (iff #209 #770)
+#768 := (iff #208 #765)
+#762 := (implies #206 #759)
+#766 := (iff #762 #765)
+#767 := [rewrite]: #766
+#763 := (iff #208 #762)
+#764 := [monotonicity #761]: #763
+#769 := [trans #764 #767]: #768
+#772 := [quant-intro #769]: #771
+#962 := [monotonicity #772 #959]: #961
+#968 := [trans #962 #966]: #967
+#757 := (iff #205 #756)
+#754 := (iff #204 #751)
+#748 := (implies #201 #745)
+#752 := (iff #748 #751)
+#753 := [rewrite]: #752
+#749 := (iff #204 #748)
+#746 := (iff #203 #745)
+#747 := [rewrite]: #746
+#750 := [monotonicity #747]: #749
+#755 := [trans #750 #753]: #754
+#758 := [quant-intro #755]: #757
+#971 := [monotonicity #758 #968]: #970
+#977 := [trans #971 #975]: #976
+#980 := [monotonicity #977]: #979
+#986 := [trans #980 #984]: #985
+#743 := (iff #192 #742)
+#740 := (iff #191 #737)
+#734 := (implies #481 #190)
+#738 := (iff #734 #737)
+#739 := [rewrite]: #738
+#735 := (iff #191 #734)
+#482 := (iff #116 #481)
+#479 := (iff #115 #478)
+#480 := [rewrite]: #479
+#483 := [monotonicity #480]: #482
+#736 := [monotonicity #483]: #735
+#741 := [trans #736 #739]: #740
+#744 := [quant-intro #741]: #743
+#989 := [monotonicity #744 #986]: #988
+#995 := [trans #989 #993]: #994
+#998 := [monotonicity #995]: #997
+#1004 := [trans #998 #1002]: #1003
+#732 := (iff #187 #731)
+#729 := (iff #186 #728)
+#730 := [rewrite]: #729
+#733 := [monotonicity #730]: #732
+#1007 := [monotonicity #733 #1004]: #1006
+#1012 := [trans #1007 #1010]: #1011
+#561 := (iff #139 #560)
+#558 := (iff #138 #555)
+#552 := (and #481 #129)
+#556 := (iff #552 #555)
+#557 := [rewrite]: #556
+#553 := (iff #138 #552)
+#554 := [monotonicity #483]: #553
+#559 := [trans #554 #557]: #558
+#562 := [quant-intro #559]: #561
+#1015 := [monotonicity #562 #1012]: #1014
+#1020 := [trans #1015 #1018]: #1019
+#1023 := [monotonicity #1020]: #1022
+#1027 := [trans #1023 #1025]: #1026
+#1029 := [monotonicity #1027]: #1028
+#1031 := [trans #1029 #1025]: #1030
+#726 := (iff #183 #712)
+#717 := (implies true #712)
+#720 := (iff #717 #712)
+#721 := [rewrite]: #720
+#724 := (iff #183 #717)
+#722 := (iff #182 #712)
+#718 := (iff #182 #717)
+#715 := (iff #181 #712)
+#709 := (implies #563 #693)
+#713 := (iff #709 #712)
+#714 := [rewrite]: #713
+#710 := (iff #181 #709)
+#707 := (iff #180 #693)
+#698 := (implies true #693)
+#701 := (iff #698 #693)
+#702 := [rewrite]: #701
+#705 := (iff #180 #698)
+#703 := (iff #179 #693)
+#699 := (iff #179 #698)
+#696 := (iff #178 #693)
+#689 := (implies #566 #684)
+#694 := (iff #689 #693)
+#695 := [rewrite]: #694
+#690 := (iff #178 #689)
+#687 := (iff #177 #684)
+#680 := (implies #145 #675)
+#685 := (iff #680 #684)
+#686 := [rewrite]: #685
+#681 := (iff #177 #680)
+#678 := (iff #176 #675)
+#671 := (implies #569 #666)
+#676 := (iff #671 #675)
+#677 := [rewrite]: #676
+#672 := (iff #176 #671)
+#669 := (iff #175 #666)
+#662 := (implies #150 #652)
+#667 := (iff #662 #666)
+#668 := [rewrite]: #667
+#663 := (iff #175 #662)
+#660 := (iff #174 #652)
+#655 := (implies true #652)
+#658 := (iff #655 #652)
+#659 := [rewrite]: #658
+#656 := (iff #174 #655)
+#653 := (iff #173 #652)
+#650 := (iff #172 #647)
+#643 := (implies #593 #640)
+#648 := (iff #643 #647)
+#649 := [rewrite]: #648
+#644 := (iff #172 #643)
+#641 := (iff #171 #640)
+#638 := (iff #170 #635)
+#631 := (implies #611 #614)
+#636 := (iff #631 #635)
+#637 := [rewrite]: #636
+#632 := (iff #170 #631)
+#629 := (iff #169 #614)
+#624 := (and #614 true)
+#627 := (iff #624 #614)
+#628 := [rewrite]: #627
+#625 := (iff #169 #624)
+#622 := (iff #168 true)
+#617 := (implies #614 true)
+#620 := (iff #617 true)
+#621 := [rewrite]: #620
+#618 := (iff #168 #617)
+#615 := (iff #167 #614)
+#616 := [rewrite]: #615
+#619 := [monotonicity #616]: #618
+#623 := [trans #619 #621]: #622
+#626 := [monotonicity #616 #623]: #625
+#630 := [trans #626 #628]: #629
+#612 := (iff #165 #611)
+#609 := (iff #164 #606)
+#602 := (implies #596 #599)
+#607 := (iff #602 #606)
+#608 := [rewrite]: #607
+#603 := (iff #164 #602)
+#600 := (iff #163 #599)
+#573 := (= #156 #572)
+#574 := [rewrite]: #573
+#601 := [monotonicity #574]: #600
+#597 := (iff #162 #596)
+#598 := [rewrite]: #597
+#604 := [monotonicity #598 #601]: #603
+#610 := [trans #604 #608]: #609
+#613 := [quant-intro #610]: #612
+#633 := [monotonicity #613 #630]: #632
+#639 := [trans #633 #637]: #638
+#642 := [monotonicity #613 #639]: #641
+#594 := (iff #161 #593)
+#591 := (iff #160 #588)
+#584 := (implies #153 #581)
+#589 := (iff #584 #588)
+#590 := [rewrite]: #589
+#585 := (iff #160 #584)
+#582 := (iff #159 #581)
+#579 := (iff #158 #578)
+#576 := (iff #157 #575)
+#577 := [monotonicity #574]: #576
+#580 := [monotonicity #577]: #579
+#583 := [quant-intro #580]: #582
+#586 := [monotonicity #583]: #585
+#592 := [trans #586 #590]: #591
+#595 := [quant-intro #592]: #594
+#645 := [monotonicity #595 #642]: #644
+#651 := [trans #645 #649]: #650
+#654 := [monotonicity #595 #651]: #653
+#657 := [monotonicity #654]: #656
+#661 := [trans #657 #659]: #660
+#664 := [monotonicity #661]: #663
+#670 := [trans #664 #668]: #669
+#570 := (iff #147 #569)
+#571 := [rewrite]: #570
+#673 := [monotonicity #571 #670]: #672
+#679 := [trans #673 #677]: #678
+#682 := [monotonicity #679]: #681
+#688 := [trans #682 #686]: #687
+#567 := (iff #142 #566)
+#568 := [rewrite]: #567
+#691 := [monotonicity #568 #688]: #690
+#697 := [trans #691 #695]: #696
+#700 := [monotonicity #697]: #699
+#704 := [trans #700 #702]: #703
+#706 := [monotonicity #704]: #705
+#708 := [trans #706 #702]: #707
+#564 := (iff #140 #563)
+#565 := [monotonicity #562]: #564
+#711 := [monotonicity #565 #708]: #710
+#716 := [trans #711 #714]: #715
+#719 := [monotonicity #716]: #718
+#723 := [trans #719 #721]: #722
+#725 := [monotonicity #723]: #724
+#727 := [trans #725 #721]: #726
+#1034 := [monotonicity #727 #1031]: #1033
+#1037 := [monotonicity #1034]: #1036
+#1041 := [trans #1037 #1039]: #1040
+#550 := (iff #137 #549)
+#547 := (iff #136 #544)
+#540 := (implies #130 #537)
+#545 := (iff #540 #544)
+#546 := [rewrite]: #545
+#541 := (iff #136 #540)
+#538 := (iff #135 #537)
+#535 := (iff #134 #534)
+#532 := (iff #133 #531)
+#529 := (iff #132 #528)
+#511 := (= #125 #510)
+#512 := [rewrite]: #511
+#530 := [monotonicity #512]: #529
+#533 := [monotonicity #480 #530]: #532
+#536 := [monotonicity #533]: #535
+#539 := [quant-intro #536]: #538
+#542 := [monotonicity #539]: #541
+#548 := [trans #542 #546]: #547
+#551 := [quant-intro #548]: #550
+#1044 := [monotonicity #551 #1041]: #1043
+#1050 := [trans #1044 #1048]: #1049
+#526 := (iff #128 #525)
+#523 := (iff #127 #520)
+#516 := (implies #505 #513)
+#521 := (iff #516 #520)
+#522 := [rewrite]: #521
+#517 := (iff #127 #516)
+#514 := (iff #126 #513)
+#515 := [monotonicity #512]: #514
+#508 := (iff #124 #505)
+#502 := (and #478 #92)
+#506 := (iff #502 #505)
+#507 := [rewrite]: #506
+#503 := (iff #124 #502)
+#504 := [monotonicity #480]: #503
+#509 := [trans #504 #507]: #508
+#518 := [monotonicity #509 #515]: #517
+#524 := [trans #518 #522]: #523
+#527 := [quant-intro #524]: #526
+#1053 := [monotonicity #527 #1050]: #1052
+#1059 := [trans #1053 #1057]: #1058
+#500 := (iff #123 #499)
+#497 := (iff #122 #494)
+#490 := (implies #487 #121)
+#495 := (iff #490 #494)
+#496 := [rewrite]: #495
+#491 := (iff #122 #490)
+#488 := (iff #119 #487)
+#485 := (iff #118 #484)
+#486 := [rewrite]: #485
+#489 := [monotonicity #483 #486]: #488
+#492 := [monotonicity #489]: #491
+#498 := [trans #492 #496]: #497
+#501 := [quant-intro #498]: #500
+#1062 := [monotonicity #501 #1059]: #1061
+#1068 := [trans #1062 #1066]: #1067
+#1071 := [monotonicity #1068]: #1070
+#1077 := [trans #1071 #1075]: #1076
+#476 := (iff #109 #475)
+#477 := [rewrite]: #476
+#1080 := [monotonicity #477 #1077]: #1079
+#1086 := [trans #1080 #1084]: #1085
+#1089 := [monotonicity #1086]: #1088
+#1093 := [trans #1089 #1091]: #1092
+#1095 := [monotonicity #1093]: #1094
+#1097 := [trans #1095 #1091]: #1096
+#473 := (iff #106 #472)
+#470 := (iff #105 #469)
+#471 := [rewrite]: #470
+#474 := [quant-intro #471]: #473
+#1100 := [monotonicity #474 #1097]: #1099
+#1106 := [trans #1100 #1104]: #1105
+#1109 := [monotonicity #474 #1106]: #1108
+#466 := (iff #97 #465)
+#463 := (iff #96 #462)
+#464 := [rewrite]: #463
+#467 := [quant-intro #464]: #466
+#1112 := [monotonicity #467 #1109]: #1111
+#1118 := [trans #1112 #1116]: #1117
+#1121 := [monotonicity #467 #1118]: #1120
+#459 := (iff #89 #458)
+#456 := (iff #88 #455)
+#457 := [rewrite]: #456
+#460 := [quant-intro #457]: #459
+#1124 := [monotonicity #460 #1121]: #1123
+#1130 := [trans #1124 #1128]: #1129
+#1133 := [monotonicity #460 #1130]: #1132
+#1136 := [monotonicity #1133]: #1135
+#1142 := [trans #1136 #1140]: #1141
+#1145 := [monotonicity #1142]: #1144
+#452 := (iff #81 #451)
+#453 := [rewrite]: #452
+#1148 := [monotonicity #453 #1145]: #1147
+#1154 := [trans #1148 #1152]: #1153
+#1157 := [monotonicity #453 #1154]: #1156
+#1160 := [monotonicity #1157]: #1159
+#1164 := [trans #1160 #1162]: #1163
+#1167 := [monotonicity #1164]: #1166
+#1173 := [trans #1167 #1171]: #1172
+#449 := (iff #76 #448)
+#446 := (iff #75 #443)
+#440 := (implies #73 #437)
+#444 := (iff #440 #443)
+#445 := [rewrite]: #444
+#441 := (iff #75 #440)
+#438 := (iff #74 #437)
+#439 := [rewrite]: #438
+#442 := [monotonicity #439]: #441
+#447 := [trans #442 #445]: #446
+#450 := [quant-intro #447]: #449
+#1176 := [monotonicity #450 #1173]: #1175
+#1182 := [trans #1176 #1180]: #1181
+#435 := (iff #72 #434)
+#432 := (iff #71 #429)
+#426 := (implies #68 #423)
+#430 := (iff #426 #429)
+#431 := [rewrite]: #430
+#427 := (iff #71 #426)
+#424 := (iff #70 #423)
+#425 := [rewrite]: #424
+#428 := [monotonicity #425]: #427
+#433 := [trans #428 #431]: #432
+#436 := [quant-intro #433]: #435
+#1185 := [monotonicity #436 #1182]: #1184
+#1191 := [trans #1185 #1189]: #1190
+#1194 := [monotonicity #1191]: #1193
+#1198 := [trans #1194 #1196]: #1197
+#1200 := [monotonicity #1198]: #1199
+#1202 := [trans #1200 #1196]: #1201
+#1205 := [monotonicity #1202]: #1204
+#1834 := [trans #1205 #1832]: #1833
+#422 := [asserted]: #293
+#1835 := [mp #422 #1834]: #1830
+#1837 := [not-or-elim #1835]: #448
+#1902 := [mp~ #1837 #1863]: #448
+#4263 := [mp #1902 #4262]: #4258
+#4706 := (not #4258)
+#5054 := (or #4706 #2574 #5019)
+#1992 := (= ?x37!5 uf_11)
+#5025 := (or #1992 #5019)
+#5056 := (or #4706 #5025)
+#5111 := (iff #5056 #5054)
+#5048 := (or #2574 #5019)
+#5057 := (or #4706 #5048)
+#5087 := (iff #5057 #5054)
+#5088 := [rewrite]: #5087
+#5059 := (iff #5056 #5057)
+#5049 := (iff #5025 #5048)
+#2575 := (iff #1992 #2574)
+#2576 := [rewrite]: #2575
+#5053 := [monotonicity #2576]: #5049
+#5060 := [monotonicity #5053]: #5059
+#5120 := [trans #5060 #5088]: #5111
+#5047 := [quant-inst]: #5056
+#5121 := [mp #5047 #5120]: #5054
+#5195 := [unit-resolution #5121 #4263 #5192 #5194]: false
+#5196 := [lemma #5195]: #4299
+#4585 := (or #4302 #4582)
+#4588 := (not #4585)
+#3123 := (or #78 #1237 #1248)
+#4282 := (forall (vars (?x33 T2) (?x34 T2)) (:pat #4281) #3123)
+#4287 := (not #4282)
+#4591 := (or #4287 #4588)
+#4594 := (not #4591)
+decl ?x34!3 :: T2
+#1946 := ?x34!3
+#1953 := (uf_12 ?x34!3)
+decl ?x33!4 :: T2
+#1947 := ?x33!4
+#1950 := (uf_12 ?x33!4)
+#1951 := (* -1::int #1950)
+#2561 := (+ #1951 #1953)
+#1948 := (uf_1 ?x34!3 ?x33!4)
+#1949 := (uf_10 #1948)
+#2562 := (+ #1949 #2561)
+#2565 := (>= #2562 0::int)
+#1960 := (up_13 ?x34!3)
+#3086 := (not #1960)
+#1956 := (* -1::int #1949)
+#1957 := (+ uf_9 #1956)
+#1958 := (<= #1957 0::int)
+#3101 := (or #1958 #3086 #2565)
+#5147 := [hypothesis]: #1960
+#4251 := (forall (vars (?x26 T2)) (:pat #4250) #78)
+#4254 := (iff #79 #4251)
+#4252 := (iff #78 #78)
+#4253 := [refl]: #4252
+#4255 := [quant-intro #4253]: #4254
+#1860 := (~ #79 #79)
+#1897 := (~ #78 #78)
+#1898 := [refl]: #1897
+#1861 := [nnf-pos #1898]: #1860
+#1836 := [not-or-elim #1835]: #79
+#1899 := [mp~ #1836 #1861]: #79
+#4256 := [mp #1899 #4255]: #4251
+#4844 := (not #4251)
+#4845 := (or #4844 #3086)
+#4846 := [quant-inst]: #4845
+#5148 := [unit-resolution #4846 #4256 #5147]: false
+#5157 := [lemma #5148]: #3086
+#3862 := (or #3101 #1960)
+#3866 := [def-axiom]: #3862
+#4921 := [unit-resolution #3866 #5157]: #3101
+#3106 := (not #3101)
+#4597 := (or #3106 #4594)
+#4600 := (not #4597)
+#4272 := (pattern #77 #84)
+#2527 := (not #84)
+#3078 := (or #77 #2527 #1222)
+#4273 := (forall (vars (?x29 T2) (?x30 T2)) (:pat #4272) #3078)
+#4278 := (not #4273)
+#4603 := (or #4278 #4600)
+#4606 := (not #4603)
+decl ?x30!1 :: T2
+#1921 := ?x30!1
+#1925 := (uf_12 ?x30!1)
+#2542 := (* -1::int #1925)
+decl ?x29!2 :: T2
+#1922 := ?x29!2
+#1923 := (uf_12 ?x29!2)
+#2543 := (+ #1923 #2542)
+#2544 := (<= #2543 0::int)
+#1929 := (up_13 ?x30!1)
+#1928 := (up_13 ?x29!2)
+#1968 := (not #1928)
+#2171 := (or #1968 #1929 #2544)
+#2248 := (not #2171)
+#4609 := (or #2248 #4606)
+#4612 := (not #4609)
+#4264 := (forall (vars (?x27 T2)) (:pat #4257) #1213)
+#4269 := (not #4264)
+#4615 := (or #4269 #4612)
+#4618 := (not #4615)
+decl ?x27!0 :: T2
+#1906 := ?x27!0
+#1907 := (uf_12 ?x27!0)
+#1908 := (>= #1907 0::int)
+#1909 := (not #1908)
+#4621 := (or #1909 #4618)
+#4624 := (not #4621)
+#4627 := (or #1208 #4624)
+#4630 := (not #4627)
+#4637 := (forall (vars (?x24 T2)) (:pat #4257) #1807)
+#4640 := (iff #1810 #4637)
+#4638 := (iff #1807 #1807)
+#4639 := [refl]: #4638
+#4641 := [quant-intro #4639]: #4640
+#2061 := (~ #1810 #1810)
+#2287 := (~ #1807 #1807)
+#2288 := [refl]: #2287
+#2062 := [nnf-pos #2288]: #2061
+#1840 := [not-or-elim #1835]: #1810
+#1967 := [mp~ #1840 #2062]: #1810
+#4642 := [mp #1967 #4641]: #4637
+#4660 := [hypothesis]: #1208
+#3800 := (not #4637)
+#3794 := (or #3800 #81)
+#3912 := (= uf_11 uf_11)
+#3913 := (not #3912)
+#3914 := (or #3913 #81)
+#3784 := (or #3800 #3914)
+#3782 := (iff #3784 #3794)
+#3786 := (iff #3794 #3794)
+#4657 := [rewrite]: #3786
+#3799 := (iff #3914 #81)
+#3778 := (or false #81)
+#3797 := (iff #3778 #81)
+#3798 := [rewrite]: #3797
+#3776 := (iff #3914 #3778)
+#3775 := (iff #3913 false)
+#8605 := (not true)
+#8608 := (iff #8605 false)
+#8609 := [rewrite]: #8608
+#3783 := (iff #3913 #8605)
+#3915 := (iff #3912 true)
+#3787 := [rewrite]: #3915
+#3788 := [monotonicity #3787]: #3783
+#3777 := [trans #3788 #8609]: #3775
+#3779 := [monotonicity #3777]: #3776
+#3791 := [trans #3779 #3798]: #3799
+#3785 := [monotonicity #3791]: #3782
+#4658 := [trans #3785 #4657]: #3782
+#3781 := [quant-inst]: #3784
+#4659 := [mp #3781 #4658]: #3794
+#4661 := [unit-resolution #4659 #4660 #4642]: false
+#4656 := [lemma #4661]: #81
+#4633 := (or #1208 #4630)
+#3536 := (forall (vars (?x76 T2)) #3525)
+#3543 := (not #3536)
+#3521 := (forall (vars (?x71 T2) (?x72 T2)) #3516)
+#3542 := (not #3521)
+#3544 := (or #2367 #2934 #3542 #3543)
+#3545 := (not #3544)
+#3550 := (or #3499 #3545)
+#3557 := (not #3550)
+#3476 := (forall (vars (?x67 T2) (?x68 T2)) #3471)
+#3556 := (not #3476)
+#3558 := (or #3556 #3557)
+#3559 := (not #3558)
+#3564 := (or #3453 #3559)
+#3570 := (not #3564)
+#3571 := (or #1501 #3570)
+#3572 := (not #3571)
+#3577 := (or #2284 #3572)
+#3583 := (not #3577)
+#3584 := (or #1492 #3583)
+#3585 := (not #3584)
+#3590 := (or #1492 #3585)
+#3596 := (not #3590)
+#3597 := (or #939 #3596)
+#3598 := (not #3597)
+#3603 := (or #2877 #3598)
+#3609 := (not #3603)
+#3610 := (or #1487 #3609)
+#3611 := (not #3610)
+#3616 := (or #2863 #3611)
+#3624 := (not #3616)
+#3430 := (forall (vars (?x59 T2)) #3425)
+#3623 := (not #3430)
+#3412 := (forall (vars (?x60 T2)) #3409)
+#3622 := (not #3412)
+#3625 := (or #981 #728 #1652 #1656 #2218 #2221 #3622 #3623 #3624)
+#3626 := (not #3625)
+#3342 := (forall (vars (?x53 T2) (?x54 T2)) #3337)
+#3348 := (not #3342)
+#3349 := (or #167 #3348)
+#3350 := (not #3349)
+#3377 := (or #3350 #3374)
+#3384 := (not #3377)
+#3320 := (forall (vars (?x49 T2)) #3315)
+#3383 := (not #3320)
+#3385 := (or #3383 #3384)
+#3386 := (not #3385)
+#3283 := (forall (vars (?x50 T2)) #3272)
+#3289 := (not #3283)
+#3290 := (or #2097 #2712 #3289)
+#3291 := (not #3290)
+#3391 := (or #3291 #3386)
+#3398 := (not #3391)
+#3268 := (forall (vars (?x48 T2)) #3257)
+#3397 := (not #3268)
+#3399 := (or #683 #665 #692 #674 #3397 #3398)
+#3400 := (not #3399)
+#3631 := (or #3400 #3626)
+#3641 := (not #3631)
+#3254 := (forall (vars (?x46 T2)) #3249)
+#3640 := (not #3254)
+#3226 := (forall (vars (?x37 T2)) #3221)
+#3639 := (not #3226)
+#3198 := (forall (vars (?x42 T2) (?x43 T2)) #3193)
+#3638 := (not #3198)
+#3175 := (forall (vars (?x44 T2) (?x45 T2)) #3170)
+#3637 := (not #3175)
+#3642 := (or #1749 #1744 #3637 #3638 #3639 #3640 #3641)
+#3643 := (not #3642)
+#3143 := (forall (vars (?x38 T2)) #3132)
+#3149 := (not #3143)
+#3150 := (or #1990 #2574 #3149)
+#3151 := (not #3150)
+#3648 := (or #3151 #3643)
+#3655 := (not #3648)
+#3128 := (forall (vars (?x33 T2) (?x34 T2)) #3123)
+#3654 := (not #3128)
+#3656 := (or #3654 #3655)
+#3657 := (not #3656)
+#3662 := (or #3106 #3657)
+#3669 := (not #3662)
+#3083 := (forall (vars (?x29 T2) (?x30 T2)) #3078)
+#3668 := (not #3083)
+#3670 := (or #3668 #3669)
+#3671 := (not #3670)
+#3676 := (or #2248 #3671)
+#3682 := (not #3676)
+#3683 := (or #1217 #3682)
+#3684 := (not #3683)
+#3689 := (or #1909 #3684)
+#3695 := (not #3689)
+#3696 := (or #1208 #3695)
+#3697 := (not #3696)
+#3702 := (or #1208 #3697)
+#4634 := (iff #3702 #4633)
+#4631 := (iff #3697 #4630)
+#4628 := (iff #3696 #4627)
+#4625 := (iff #3695 #4624)
+#4622 := (iff #3689 #4621)
+#4619 := (iff #3684 #4618)
+#4616 := (iff #3683 #4615)
+#4613 := (iff #3682 #4612)
+#4610 := (iff #3676 #4609)
+#4607 := (iff #3671 #4606)
+#4604 := (iff #3670 #4603)
+#4601 := (iff #3669 #4600)
+#4598 := (iff #3662 #4597)
+#4595 := (iff #3657 #4594)
+#4592 := (iff #3656 #4591)
+#4589 := (iff #3655 #4588)
+#4586 := (iff #3648 #4585)
+#4583 := (iff #3643 #4582)
+#4580 := (iff #3642 #4579)
+#4577 := (iff #3641 #4576)
+#4574 := (iff #3631 #4573)
+#4571 := (iff #3626 #4570)
+#4568 := (iff #3625 #4567)
+#4565 := (iff #3624 #4564)
+#4562 := (iff #3616 #4561)
+#4559 := (iff #3611 #4558)
+#4556 := (iff #3610 #4555)
+#4553 := (iff #3609 #4552)
+#4550 := (iff #3603 #4549)
+#4547 := (iff #3598 #4546)
+#4544 := (iff #3597 #4543)
+#4541 := (iff #3596 #4540)
+#4538 := (iff #3590 #4537)
+#4535 := (iff #3585 #4534)
+#4532 := (iff #3584 #4531)
+#4529 := (iff #3583 #4528)
+#4526 := (iff #3577 #4525)
+#4523 := (iff #3572 #4522)
+#4520 := (iff #3571 #4519)
+#4517 := (iff #3570 #4516)
+#4514 := (iff #3564 #4513)
+#4511 := (iff #3559 #4510)
+#4508 := (iff #3558 #4507)
+#4505 := (iff #3557 #4504)
+#4502 := (iff #3550 #4501)
+#4499 := (iff #3545 #4498)
+#4496 := (iff #3544 #4495)
+#4493 := (iff #3543 #4492)
+#4490 := (iff #3536 #4487)
+#4488 := (iff #3525 #3525)
+#4489 := [refl]: #4488
+#4491 := [quant-intro #4489]: #4490
+#4494 := [monotonicity #4491]: #4493
+#4484 := (iff #3542 #4483)
+#4481 := (iff #3521 #4478)
+#4479 := (iff #3516 #3516)
+#4480 := [refl]: #4479
+#4482 := [quant-intro #4480]: #4481
+#4485 := [monotonicity #4482]: #4484
+#4497 := [monotonicity #4485 #4494]: #4496
+#4500 := [monotonicity #4497]: #4499
+#4503 := [monotonicity #4500]: #4502
+#4506 := [monotonicity #4503]: #4505
+#4476 := (iff #3556 #4475)
+#4473 := (iff #3476 #4470)
+#4471 := (iff #3471 #3471)
+#4472 := [refl]: #4471
+#4474 := [quant-intro #4472]: #4473
+#4477 := [monotonicity #4474]: #4476
+#4509 := [monotonicity #4477 #4506]: #4508
+#4512 := [monotonicity #4509]: #4511
+#4515 := [monotonicity #4512]: #4514
+#4518 := [monotonicity #4515]: #4517
+#4467 := (iff #1501 #4466)
+#4464 := (iff #1498 #4461)
+#4462 := (iff #1495 #1495)
+#4463 := [refl]: #4462
+#4465 := [quant-intro #4463]: #4464
+#4468 := [monotonicity #4465]: #4467
+#4521 := [monotonicity #4468 #4518]: #4520
+#4524 := [monotonicity #4521]: #4523
+#4527 := [monotonicity #4524]: #4526
+#4530 := [monotonicity #4527]: #4529
+#4533 := [monotonicity #4530]: #4532
+#4536 := [monotonicity #4533]: #4535
+#4539 := [monotonicity #4536]: #4538
+#4542 := [monotonicity #4539]: #4541
+#4459 := (iff #939 #4458)
+#4456 := (iff #785 #4453)
+#4454 := (iff #780 #780)
+#4455 := [refl]: #4454
+#4457 := [quant-intro #4455]: #4456
+#4460 := [monotonicity #4457]: #4459
+#4545 := [monotonicity #4460 #4542]: #4544
+#4548 := [monotonicity #4545]: #4547
+#4551 := [monotonicity #4548]: #4550
+#4554 := [monotonicity #4551]: #4553
+#4450 := (iff #1487 #4449)
+#4447 := (iff #1484 #4444)
+#4445 := (iff #1479 #1479)
+#4446 := [refl]: #4445
+#4448 := [quant-intro #4446]: #4447
+#4451 := [monotonicity #4448]: #4450
+#4557 := [monotonicity #4451 #4554]: #4556
+#4560 := [monotonicity #4557]: #4559
+#4563 := [monotonicity #4560]: #4562
+#4566 := [monotonicity #4563]: #4565
+#4442 := (iff #3623 #4441)
+#4439 := (iff #3430 #4436)
+#4437 := (iff #3425 #3425)
+#4438 := [refl]: #4437
+#4440 := [quant-intro #4438]: #4439
+#4443 := [monotonicity #4440]: #4442
+#4434 := (iff #3622 #4433)
+#4431 := (iff #3412 #4428)
+#4429 := (iff #3409 #3409)
+#4430 := [refl]: #4429
+#4432 := [quant-intro #4430]: #4431
+#4435 := [monotonicity #4432]: #4434
+#4424 := (iff #1652 #4423)
+#4421 := (iff #1649 #4418)
+#4419 := (iff #1644 #1644)
+#4420 := [refl]: #4419
+#4422 := [quant-intro #4420]: #4421
+#4425 := [monotonicity #4422]: #4424
+#4569 := [monotonicity #4425 #4435 #4443 #4566]: #4568
+#4572 := [monotonicity #4569]: #4571
+#4416 := (iff #3400 #4415)
+#4413 := (iff #3399 #4412)
+#4410 := (iff #3398 #4409)
+#4407 := (iff #3391 #4406)
+#4404 := (iff #3386 #4403)
+#4401 := (iff #3385 #4400)
+#4398 := (iff #3384 #4397)
+#4395 := (iff #3377 #4394)
+#4392 := (iff #3350 #4391)
+#4389 := (iff #3349 #4388)
+#4386 := (iff #3348 #4385)
+#4383 := (iff #3342 #4380)
+#4381 := (iff #3337 #3337)
+#4382 := [refl]: #4381
+#4384 := [quant-intro #4382]: #4383
+#4387 := [monotonicity #4384]: #4386
+#4390 := [monotonicity #4387]: #4389
+#4393 := [monotonicity #4390]: #4392
+#4396 := [monotonicity #4393]: #4395
+#4399 := [monotonicity #4396]: #4398
+#4378 := (iff #3383 #4377)
+#4375 := (iff #3320 #4372)
+#4373 := (iff #3315 #3315)
+#4374 := [refl]: #4373
+#4376 := [quant-intro #4374]: #4375
+#4379 := [monotonicity #4376]: #4378
+#4402 := [monotonicity #4379 #4399]: #4401
+#4405 := [monotonicity #4402]: #4404
+#4370 := (iff #3291 #4369)
+#4367 := (iff #3290 #4366)
+#4364 := (iff #3289 #4363)
+#4361 := (iff #3283 #4358)
+#4359 := (iff #3272 #3272)
+#4360 := [refl]: #4359
+#4362 := [quant-intro #4360]: #4361
+#4365 := [monotonicity #4362]: #4364
+#4368 := [monotonicity #4365]: #4367
+#4371 := [monotonicity #4368]: #4370
+#4408 := [monotonicity #4371 #4405]: #4407
+#4411 := [monotonicity #4408]: #4410
+#4354 := (iff #3397 #4353)
+#4351 := (iff #3268 #4348)
+#4349 := (iff #3257 #3257)
+#4350 := [refl]: #4349
+#4352 := [quant-intro #4350]: #4351
+#4355 := [monotonicity #4352]: #4354
+#4414 := [monotonicity #4355 #4411]: #4413
+#4417 := [monotonicity #4414]: #4416
+#4575 := [monotonicity #4417 #4572]: #4574
+#4578 := [monotonicity #4575]: #4577
+#4345 := (iff #3640 #4344)
+#4342 := (iff #3254 #4339)
+#4340 := (iff #3249 #3249)
+#4341 := [refl]: #4340
+#4343 := [quant-intro #4341]: #4342
+#4346 := [monotonicity #4343]: #4345
+#4337 := (iff #3639 #4336)
+#4334 := (iff #3226 #4331)
+#4332 := (iff #3221 #3221)
+#4333 := [refl]: #4332
+#4335 := [quant-intro #4333]: #4334
+#4338 := [monotonicity #4335]: #4337
+#4329 := (iff #3638 #4328)
+#4326 := (iff #3198 #4323)
+#4324 := (iff #3193 #3193)
+#4325 := [refl]: #4324
+#4327 := [quant-intro #4325]: #4326
+#4330 := [monotonicity #4327]: #4329
+#4320 := (iff #3637 #4319)
+#4317 := (iff #3175 #4314)
+#4315 := (iff #3170 #3170)
+#4316 := [refl]: #4315
+#4318 := [quant-intro #4316]: #4317
+#4321 := [monotonicity #4318]: #4320
+#4312 := (iff #1744 #4311)
+#4309 := (iff #1741 #4306)
+#4307 := (iff #1738 #1738)
+#4308 := [refl]: #4307
+#4310 := [quant-intro #4308]: #4309
+#4313 := [monotonicity #4310]: #4312
+#4581 := [monotonicity #4313 #4321 #4330 #4338 #4346 #4578]: #4580
+#4584 := [monotonicity #4581]: #4583
+#4303 := (iff #3151 #4302)
+#4300 := (iff #3150 #4299)
+#4297 := (iff #3149 #4296)
+#4294 := (iff #3143 #4291)
+#4292 := (iff #3132 #3132)
+#4293 := [refl]: #4292
+#4295 := [quant-intro #4293]: #4294
+#4298 := [monotonicity #4295]: #4297
+#4301 := [monotonicity #4298]: #4300
+#4304 := [monotonicity #4301]: #4303
+#4587 := [monotonicity #4304 #4584]: #4586
+#4590 := [monotonicity #4587]: #4589
+#4288 := (iff #3654 #4287)
+#4285 := (iff #3128 #4282)
+#4283 := (iff #3123 #3123)
+#4284 := [refl]: #4283
+#4286 := [quant-intro #4284]: #4285
+#4289 := [monotonicity #4286]: #4288
+#4593 := [monotonicity #4289 #4590]: #4592
+#4596 := [monotonicity #4593]: #4595
+#4599 := [monotonicity #4596]: #4598
+#4602 := [monotonicity #4599]: #4601
+#4279 := (iff #3668 #4278)
+#4276 := (iff #3083 #4273)
+#4274 := (iff #3078 #3078)
+#4275 := [refl]: #4274
+#4277 := [quant-intro #4275]: #4276
+#4280 := [monotonicity #4277]: #4279
+#4605 := [monotonicity #4280 #4602]: #4604
+#4608 := [monotonicity #4605]: #4607
+#4611 := [monotonicity #4608]: #4610
+#4614 := [monotonicity #4611]: #4613
+#4270 := (iff #1217 #4269)
+#4267 := (iff #1214 #4264)
+#4265 := (iff #1213 #1213)
+#4266 := [refl]: #4265
+#4268 := [quant-intro #4266]: #4267
+#4271 := [monotonicity #4268]: #4270
+#4617 := [monotonicity #4271 #4614]: #4616
+#4620 := [monotonicity #4617]: #4619
+#4623 := [monotonicity #4620]: #4622
+#4626 := [monotonicity #4623]: #4625
+#4629 := [monotonicity #4626]: #4628
+#4632 := [monotonicity #4629]: #4631
+#4635 := [monotonicity #4632]: #4634
+#2363 := (not #2362)
+#2965 := (and #773 #2363 #2962)
+#2968 := (not #2965)
+#2971 := (forall (vars (?x76 T2)) #2968)
+#2937 := (not #2934)
+#2368 := (not #2367)
+#2980 := (and #1541 #2368 #2937 #2971)
+#2907 := (and #2336 #2338)
+#2910 := (not #2907)
+#2928 := (or #2910 #2923)
+#2931 := (not #2928)
+#2985 := (or #2931 #2980)
+#2988 := (and #1517 #2985)
+#2307 := (not #2306)
+#2882 := (and #2304 #2307)
+#2885 := (not #2882)
+#2901 := (or #2885 #2896)
+#2904 := (not #2901)
+#2991 := (or #2904 #2988)
+#2994 := (and #1498 #2991)
+#2997 := (or #2284 #2994)
+#3000 := (and #217 #2997)
+#3003 := (or #1492 #3000)
+#3006 := (and #785 #3003)
+#3009 := (or #2877 #3006)
+#3012 := (and #1484 #3009)
+#3015 := (or #2863 #3012)
+#2222 := (not #2221)
+#2219 := (not #2218)
+#3021 := (and #195 #731 #1473 #1631 #1649 #1657 #2219 #2222 #3015)
+#2164 := (not #2163)
+#2160 := (not #2159)
+#2800 := (and #2160 #2164)
+#2803 := (not #2800)
+#2820 := (or #2803 #2815)
+#2823 := (not #2820)
+#2173 := (not #167)
+#2183 := (and #2173 #1393)
+#2829 := (or #2183 #2823)
+#2773 := (not #2768)
+#2791 := (and #2773 #2786)
+#2794 := (or #1353 #2791)
+#2797 := (forall (vars (?x49 T2)) #2794)
+#2834 := (and #2797 #2829)
+#2093 := (not #2092)
+#2743 := (and #2093 #2740)
+#2746 := (not #2743)
+#2749 := (forall (vars (?x50 T2)) #2746)
+#2715 := (not #2712)
+#2098 := (not #2097)
+#2755 := (and #2098 #2715 #2749)
+#2837 := (or #2755 #2834)
+#2199 := (not #1421)
+#2202 := (forall (vars (?x48 T2)) #2199)
+#2843 := (and #145 #150 #566 #569 #2202 #2837)
+#3026 := (or #2843 #3021)
+#2692 := (not #2687)
+#2695 := (and #2057 #2675 #2692)
+#2698 := (or #1308 #2695)
+#2701 := (forall (vars (?x46 T2)) #2698)
+#2637 := (not #2632)
+#2655 := (and #2030 #2637 #2650)
+#2658 := (or #1270 #2655)
+#2661 := (forall (vars (?x37 T2)) #2658)
+#3032 := (and #109 #1716 #1732 #1741 #2661 #2701 #3026)
+#1986 := (not #1985)
+#2605 := (and #77 #1986 #2602)
+#2608 := (not #2605)
+#2611 := (forall (vars (?x38 T2)) #2608)
+#2617 := (and #1991 #2577 #2611)
+#3037 := (or #2617 #3032)
+#3040 := (and #1255 #3037)
+#1959 := (not #1958)
+#2555 := (and #1959 #1960)
+#2558 := (not #2555)
+#2568 := (or #2558 #2565)
+#2571 := (not #2568)
+#3043 := (or #2571 #3040)
+#3046 := (and #1229 #3043)
+#1930 := (not #1929)
+#2530 := (and #1928 #1930)
+#2533 := (not #2530)
+#2549 := (or #2533 #2544)
+#2552 := (not #2549)
+#3049 := (or #2552 #3046)
+#3052 := (and #1214 #3049)
+#3055 := (or #1909 #3052)
+#3058 := (and #81 #3055)
+#3061 := (or #1208 #3058)
+#3703 := (iff #3061 #3702)
+#3700 := (iff #3058 #3697)
+#3692 := (and #81 #3689)
+#3698 := (iff #3692 #3697)
+#3699 := [rewrite]: #3698
+#3693 := (iff #3058 #3692)
+#3690 := (iff #3055 #3689)
+#3687 := (iff #3052 #3684)
+#3679 := (and #1214 #3676)
+#3685 := (iff #3679 #3684)
+#3686 := [rewrite]: #3685
+#3680 := (iff #3052 #3679)
+#3677 := (iff #3049 #3676)
+#3674 := (iff #3046 #3671)
+#3665 := (and #3083 #3662)
+#3672 := (iff #3665 #3671)
+#3673 := [rewrite]: #3672
+#3666 := (iff #3046 #3665)
+#3663 := (iff #3043 #3662)
+#3660 := (iff #3040 #3657)
+#3651 := (and #3128 #3648)
+#3658 := (iff #3651 #3657)
+#3659 := [rewrite]: #3658
+#3652 := (iff #3040 #3651)
+#3649 := (iff #3037 #3648)
+#3646 := (iff #3032 #3643)
+#3634 := (and #109 #3175 #3198 #1741 #3226 #3254 #3631)
+#3644 := (iff #3634 #3643)
+#3645 := [rewrite]: #3644
+#3635 := (iff #3032 #3634)
+#3632 := (iff #3026 #3631)
+#3629 := (iff #3021 #3626)
+#3619 := (and #195 #731 #3412 #3430 #1649 #1657 #2219 #2222 #3616)
+#3627 := (iff #3619 #3626)
+#3628 := [rewrite]: #3627
+#3620 := (iff #3021 #3619)
+#3617 := (iff #3015 #3616)
+#3614 := (iff #3012 #3611)
+#3606 := (and #1484 #3603)
+#3612 := (iff #3606 #3611)
+#3613 := [rewrite]: #3612
+#3607 := (iff #3012 #3606)
+#3604 := (iff #3009 #3603)
+#3601 := (iff #3006 #3598)
+#3593 := (and #785 #3590)
+#3599 := (iff #3593 #3598)
+#3600 := [rewrite]: #3599
+#3594 := (iff #3006 #3593)
+#3591 := (iff #3003 #3590)
+#3588 := (iff #3000 #3585)
+#3580 := (and #217 #3577)
+#3586 := (iff #3580 #3585)
+#3587 := [rewrite]: #3586
+#3581 := (iff #3000 #3580)
+#3578 := (iff #2997 #3577)
+#3575 := (iff #2994 #3572)
+#3567 := (and #1498 #3564)
+#3573 := (iff #3567 #3572)
+#3574 := [rewrite]: #3573
+#3568 := (iff #2994 #3567)
+#3565 := (iff #2991 #3564)
+#3562 := (iff #2988 #3559)
+#3553 := (and #3476 #3550)
+#3560 := (iff #3553 #3559)
+#3561 := [rewrite]: #3560
+#3554 := (iff #2988 #3553)
+#3551 := (iff #2985 #3550)
+#3548 := (iff #2980 #3545)
+#3539 := (and #3521 #2368 #2937 #3536)
+#3546 := (iff #3539 #3545)
+#3547 := [rewrite]: #3546
+#3540 := (iff #2980 #3539)
+#3537 := (iff #2971 #3536)
+#3534 := (iff #2968 #3525)
+#3526 := (not #3525)
+#3529 := (not #3526)
+#3532 := (iff #3529 #3525)
+#3533 := [rewrite]: #3532
+#3530 := (iff #2968 #3529)
+#3527 := (iff #2965 #3526)
+#3528 := [rewrite]: #3527
+#3531 := [monotonicity #3528]: #3530
+#3535 := [trans #3531 #3533]: #3534
+#3538 := [quant-intro #3535]: #3537
+#3522 := (iff #1541 #3521)
+#3519 := (iff #1538 #3516)
+#3502 := (or #779 #1237)
+#3513 := (or #3502 #1534)
+#3517 := (iff #3513 #3516)
+#3518 := [rewrite]: #3517
+#3514 := (iff #1538 #3513)
+#3511 := (iff #1531 #3502)
+#3503 := (not #3502)
+#3506 := (not #3503)
+#3509 := (iff #3506 #3502)
+#3510 := [rewrite]: #3509
+#3507 := (iff #1531 #3506)
+#3504 := (iff #1526 #3503)
+#3505 := [rewrite]: #3504
+#3508 := [monotonicity #3505]: #3507
+#3512 := [trans #3508 #3510]: #3511
+#3515 := [monotonicity #3512]: #3514
+#3520 := [trans #3515 #3518]: #3519
+#3523 := [quant-intro #3520]: #3522
+#3541 := [monotonicity #3523 #3538]: #3540
+#3549 := [trans #3541 #3547]: #3548
+#3500 := (iff #2931 #3499)
+#3497 := (iff #2928 #3494)
+#3480 := (or #2335 #3479)
+#3491 := (or #3480 #2923)
+#3495 := (iff #3491 #3494)
+#3496 := [rewrite]: #3495
+#3492 := (iff #2928 #3491)
+#3489 := (iff #2910 #3480)
+#3481 := (not #3480)
+#3484 := (not #3481)
+#3487 := (iff #3484 #3480)
+#3488 := [rewrite]: #3487
+#3485 := (iff #2910 #3484)
+#3482 := (iff #2907 #3481)
+#3483 := [rewrite]: #3482
+#3486 := [monotonicity #3483]: #3485
+#3490 := [trans #3486 #3488]: #3489
+#3493 := [monotonicity #3490]: #3492
+#3498 := [trans #3493 #3496]: #3497
+#3501 := [monotonicity #3498]: #3500
+#3552 := [monotonicity #3501 #3549]: #3551
+#3477 := (iff #1517 #3476)
+#3474 := (iff #1512 #3471)
+#3457 := (or #773 #3456)
+#3468 := (or #3457 #1504)
+#3472 := (iff #3468 #3471)
+#3473 := [rewrite]: #3472
+#3469 := (iff #1512 #3468)
+#3466 := (iff #802 #3457)
+#3458 := (not #3457)
+#3461 := (not #3458)
+#3464 := (iff #3461 #3457)
+#3465 := [rewrite]: #3464
+#3462 := (iff #802 #3461)
+#3459 := (iff #796 #3458)
+#3460 := [rewrite]: #3459
+#3463 := [monotonicity #3460]: #3462
+#3467 := [trans #3463 #3465]: #3466
+#3470 := [monotonicity #3467]: #3469
+#3475 := [trans #3470 #3473]: #3474
+#3478 := [quant-intro #3475]: #3477
+#3555 := [monotonicity #3478 #3552]: #3554
+#3563 := [trans #3555 #3561]: #3562
+#3454 := (iff #2904 #3453)
+#3451 := (iff #2901 #3448)
+#3434 := (or #3433 #2306)
+#3445 := (or #3434 #2896)
+#3449 := (iff #3445 #3448)
+#3450 := [rewrite]: #3449
+#3446 := (iff #2901 #3445)
+#3443 := (iff #2885 #3434)
+#3435 := (not #3434)
+#3438 := (not #3435)
+#3441 := (iff #3438 #3434)
+#3442 := [rewrite]: #3441
+#3439 := (iff #2885 #3438)
+#3436 := (iff #2882 #3435)
+#3437 := [rewrite]: #3436
+#3440 := [monotonicity #3437]: #3439
+#3444 := [trans #3440 #3442]: #3443
+#3447 := [monotonicity #3444]: #3446
+#3452 := [trans #3447 #3450]: #3451
+#3455 := [monotonicity #3452]: #3454
+#3566 := [monotonicity #3455 #3563]: #3565
+#3569 := [monotonicity #3566]: #3568
+#3576 := [trans #3569 #3574]: #3575
+#3579 := [monotonicity #3576]: #3578
+#3582 := [monotonicity #3579]: #3581
+#3589 := [trans #3582 #3587]: #3588
+#3592 := [monotonicity #3589]: #3591
+#3595 := [monotonicity #3592]: #3594
+#3602 := [trans #3595 #3600]: #3601
+#3605 := [monotonicity #3602]: #3604
+#3608 := [monotonicity #3605]: #3607
+#3615 := [trans #3608 #3613]: #3614
+#3618 := [monotonicity #3615]: #3617
+#3431 := (iff #1631 #3430)
+#3428 := (iff #1628 #3425)
+#3422 := (or #3405 #1625)
+#3426 := (iff #3422 #3425)
+#3427 := [rewrite]: #3426
+#3423 := (iff #1628 #3422)
+#3420 := (iff #1620 #3405)
+#3415 := (not #3406)
+#3418 := (iff #3415 #3405)
+#3419 := [rewrite]: #3418
+#3416 := (iff #1620 #3415)
+#3407 := (iff #1462 #3406)
+#3408 := [rewrite]: #3407
+#3417 := [monotonicity #3408]: #3416
+#3421 := [trans #3417 #3419]: #3420
+#3424 := [monotonicity #3421]: #3423
+#3429 := [trans #3424 #3427]: #3428
+#3432 := [quant-intro #3429]: #3431
+#3413 := (iff #1473 #3412)
+#3410 := (iff #1468 #3409)
+#3411 := [monotonicity #3408]: #3410
+#3414 := [quant-intro #3411]: #3413
+#3621 := [monotonicity #3414 #3432 #3618]: #3620
+#3630 := [trans #3621 #3628]: #3629
+#3403 := (iff #2843 #3400)
+#3394 := (and #145 #150 #566 #569 #3268 #3391)
+#3401 := (iff #3394 #3400)
+#3402 := [rewrite]: #3401
+#3395 := (iff #2843 #3394)
+#3392 := (iff #2837 #3391)
+#3389 := (iff #2834 #3386)
+#3380 := (and #3320 #3377)
+#3387 := (iff #3380 #3386)
+#3388 := [rewrite]: #3387
+#3381 := (iff #2834 #3380)
+#3378 := (iff #2829 #3377)
+#3375 := (iff #2823 #3374)
+#3372 := (iff #2820 #3369)
+#3355 := (or #2159 #2163)
+#3366 := (or #3355 #2815)
+#3370 := (iff #3366 #3369)
+#3371 := [rewrite]: #3370
+#3367 := (iff #2820 #3366)
+#3364 := (iff #2803 #3355)
+#3356 := (not #3355)
+#3359 := (not #3356)
+#3362 := (iff #3359 #3355)
+#3363 := [rewrite]: #3362
+#3360 := (iff #2803 #3359)
+#3357 := (iff #2800 #3356)
+#3358 := [rewrite]: #3357
+#3361 := [monotonicity #3358]: #3360
+#3365 := [trans #3361 #3363]: #3364
+#3368 := [monotonicity #3365]: #3367
+#3373 := [trans #3368 #3371]: #3372
+#3376 := [monotonicity #3373]: #3375
+#3353 := (iff #2183 #3350)
+#3345 := (and #2173 #3342)
+#3351 := (iff #3345 #3350)
+#3352 := [rewrite]: #3351
+#3346 := (iff #2183 #3345)
+#3343 := (iff #1393 #3342)
+#3340 := (iff #1390 #3337)
+#3323 := (or #1237 #1346)
+#3334 := (or #3323 #1387)
+#3338 := (iff #3334 #3337)
+#3339 := [rewrite]: #3338
+#3335 := (iff #1390 #3334)
+#3332 := (iff #1384 #3323)
+#3324 := (not #3323)
+#3327 := (not #3324)
+#3330 := (iff #3327 #3323)
+#3331 := [rewrite]: #3330
+#3328 := (iff #1384 #3327)
+#3325 := (iff #1381 #3324)
+#3326 := [rewrite]: #3325
+#3329 := [monotonicity #3326]: #3328
+#3333 := [trans #3329 #3331]: #3332
+#3336 := [monotonicity #3333]: #3335
+#3341 := [trans #3336 #3339]: #3340
+#3344 := [quant-intro #3341]: #3343
+#3347 := [monotonicity #3344]: #3346
+#3354 := [trans #3347 #3352]: #3353
+#3379 := [monotonicity #3354 #3376]: #3378
+#3321 := (iff #2797 #3320)
+#3318 := (iff #2794 #3315)
+#3296 := (or #68 #1346)
+#3312 := (or #3296 #3309)
+#3316 := (iff #3312 #3315)
+#3317 := [rewrite]: #3316
+#3313 := (iff #2794 #3312)
+#3310 := (iff #2791 #3309)
+#3311 := [rewrite]: #3310
+#3305 := (iff #1353 #3296)
+#3297 := (not #3296)
+#3300 := (not #3297)
+#3303 := (iff #3300 #3296)
+#3304 := [rewrite]: #3303
+#3301 := (iff #1353 #3300)
+#3298 := (iff #1350 #3297)
+#3299 := [rewrite]: #3298
+#3302 := [monotonicity #3299]: #3301
+#3306 := [trans #3302 #3304]: #3305
+#3314 := [monotonicity #3306 #3311]: #3313
+#3319 := [trans #3314 #3317]: #3318
+#3322 := [quant-intro #3319]: #3321
+#3382 := [monotonicity #3322 #3379]: #3381
+#3390 := [trans #3382 #3388]: #3389
+#3294 := (iff #2755 #3291)
+#3286 := (and #2098 #2715 #3283)
+#3292 := (iff #3286 #3291)
+#3293 := [rewrite]: #3292
+#3287 := (iff #2755 #3286)
+#3284 := (iff #2749 #3283)
+#3281 := (iff #2746 #3272)
+#3273 := (not #3272)
+#3276 := (not #3273)
+#3279 := (iff #3276 #3272)
+#3280 := [rewrite]: #3279
+#3277 := (iff #2746 #3276)
+#3274 := (iff #2743 #3273)
+#3275 := [rewrite]: #3274
+#3278 := [monotonicity #3275]: #3277
+#3282 := [trans #3278 #3280]: #3281
+#3285 := [quant-intro #3282]: #3284
+#3288 := [monotonicity #3285]: #3287
+#3295 := [trans #3288 #3293]: #3294
+#3393 := [monotonicity #3295 #3390]: #3392
+#3269 := (iff #2202 #3268)
+#3266 := (iff #2199 #3257)
+#3258 := (not #3257)
+#3261 := (not #3258)
+#3264 := (iff #3261 #3257)
+#3265 := [rewrite]: #3264
+#3262 := (iff #2199 #3261)
+#3259 := (iff #1421 #3258)
+#3260 := [rewrite]: #3259
+#3263 := [monotonicity #3260]: #3262
+#3267 := [trans #3263 #3265]: #3266
+#3270 := [quant-intro #3267]: #3269
+#3396 := [monotonicity #3270 #3393]: #3395
+#3404 := [trans #3396 #3402]: #3403
+#3633 := [monotonicity #3404 #3630]: #3632
+#3255 := (iff #2701 #3254)
+#3252 := (iff #2698 #3249)
+#3229 := (or #68 #1301)
+#3246 := (or #3229 #3243)
+#3250 := (iff #3246 #3249)
+#3251 := [rewrite]: #3250
+#3247 := (iff #2698 #3246)
+#3244 := (iff #2695 #3243)
+#3245 := [rewrite]: #3244
+#3238 := (iff #1308 #3229)
+#3230 := (not #3229)
+#3233 := (not #3230)
+#3236 := (iff #3233 #3229)
+#3237 := [rewrite]: #3236
+#3234 := (iff #1308 #3233)
+#3231 := (iff #1305 #3230)
+#3232 := [rewrite]: #3231
+#3235 := [monotonicity #3232]: #3234
+#3239 := [trans #3235 #3237]: #3238
+#3248 := [monotonicity #3239 #3245]: #3247
+#3253 := [trans #3248 #3251]: #3252
+#3256 := [quant-intro #3253]: #3255
+#3227 := (iff #2661 #3226)
+#3224 := (iff #2658 #3221)
+#3201 := (or #68 #1263)
+#3218 := (or #3201 #3215)
+#3222 := (iff #3218 #3221)
+#3223 := [rewrite]: #3222
+#3219 := (iff #2658 #3218)
+#3216 := (iff #2655 #3215)
+#3217 := [rewrite]: #3216
+#3210 := (iff #1270 #3201)
+#3202 := (not #3201)
+#3205 := (not #3202)
+#3208 := (iff #3205 #3201)
+#3209 := [rewrite]: #3208
+#3206 := (iff #1270 #3205)
+#3203 := (iff #1267 #3202)
+#3204 := [rewrite]: #3203
+#3207 := [monotonicity #3204]: #3206
+#3211 := [trans #3207 #3209]: #3210
+#3220 := [monotonicity #3211 #3217]: #3219
+#3225 := [trans #3220 #3223]: #3224
+#3228 := [quant-intro #3225]: #3227
+#3199 := (iff #1732 #3198)
+#3196 := (iff #1727 #3193)
+#3179 := (or #478 #3178)
+#3190 := (or #3179 #1317)
+#3194 := (iff #3190 #3193)
+#3195 := [rewrite]: #3194
+#3191 := (iff #1727 #3190)
+#3188 := (iff #493 #3179)
+#3180 := (not #3179)
+#3183 := (not #3180)
+#3186 := (iff #3183 #3179)
+#3187 := [rewrite]: #3186
+#3184 := (iff #493 #3183)
+#3181 := (iff #487 #3180)
+#3182 := [rewrite]: #3181
+#3185 := [monotonicity #3182]: #3184
+#3189 := [trans #3185 #3187]: #3188
+#3192 := [monotonicity #3189]: #3191
+#3197 := [trans #3192 #3195]: #3196
+#3200 := [quant-intro #3197]: #3199
+#3176 := (iff #1716 #3175)
+#3173 := (iff #1713 #3170)
+#3156 := (or #481 #1237)
+#3167 := (or #3156 #1710)
+#3171 := (iff #3167 #3170)
+#3172 := [rewrite]: #3171
+#3168 := (iff #1713 #3167)
+#3165 := (iff #1707 #3156)
+#3157 := (not #3156)
+#3160 := (not #3157)
+#3163 := (iff #3160 #3156)
+#3164 := [rewrite]: #3163
+#3161 := (iff #1707 #3160)
+#3158 := (iff #1702 #3157)
+#3159 := [rewrite]: #3158
+#3162 := [monotonicity #3159]: #3161
+#3166 := [trans #3162 #3164]: #3165
+#3169 := [monotonicity #3166]: #3168
+#3174 := [trans #3169 #3172]: #3173
+#3177 := [quant-intro #3174]: #3176
+#3636 := [monotonicity #3177 #3200 #3228 #3256 #3633]: #3635
+#3647 := [trans #3636 #3645]: #3646
+#3154 := (iff #2617 #3151)
+#3146 := (and #1991 #2577 #3143)
+#3152 := (iff #3146 #3151)
+#3153 := [rewrite]: #3152
+#3147 := (iff #2617 #3146)
+#3144 := (iff #2611 #3143)
+#3141 := (iff #2608 #3132)
+#3133 := (not #3132)
+#3136 := (not #3133)
+#3139 := (iff #3136 #3132)
+#3140 := [rewrite]: #3139
+#3137 := (iff #2608 #3136)
+#3134 := (iff #2605 #3133)
+#3135 := [rewrite]: #3134
+#3138 := [monotonicity #3135]: #3137
+#3142 := [trans #3138 #3140]: #3141
+#3145 := [quant-intro #3142]: #3144
+#3148 := [monotonicity #3145]: #3147
+#3155 := [trans #3148 #3153]: #3154
+#3650 := [monotonicity #3155 #3647]: #3649
+#3129 := (iff #1255 #3128)
+#3126 := (iff #1252 #3123)
+#3109 := (or #78 #1237)
+#3120 := (or #3109 #1248)
+#3124 := (iff #3120 #3123)
+#3125 := [rewrite]: #3124
+#3121 := (iff #1252 #3120)
+#3118 := (iff #1244 #3109)
+#3110 := (not #3109)
+#3113 := (not #3110)
+#3116 := (iff #3113 #3109)
+#3117 := [rewrite]: #3116
+#3114 := (iff #1244 #3113)
+#3111 := (iff #1241 #3110)
+#3112 := [rewrite]: #3111
+#3115 := [monotonicity #3112]: #3114
+#3119 := [trans #3115 #3117]: #3118
+#3122 := [monotonicity #3119]: #3121
+#3127 := [trans #3122 #3125]: #3126
+#3130 := [quant-intro #3127]: #3129
+#3653 := [monotonicity #3130 #3650]: #3652
+#3661 := [trans #3653 #3659]: #3660
+#3107 := (iff #2571 #3106)
+#3104 := (iff #2568 #3101)
+#3087 := (or #1958 #3086)
+#3098 := (or #3087 #2565)
+#3102 := (iff #3098 #3101)
+#3103 := [rewrite]: #3102
+#3099 := (iff #2568 #3098)
+#3096 := (iff #2558 #3087)
+#3088 := (not #3087)
+#3091 := (not #3088)
+#3094 := (iff #3091 #3087)
+#3095 := [rewrite]: #3094
+#3092 := (iff #2558 #3091)
+#3089 := (iff #2555 #3088)
+#3090 := [rewrite]: #3089
+#3093 := [monotonicity #3090]: #3092
+#3097 := [trans #3093 #3095]: #3096
+#3100 := [monotonicity #3097]: #3099
+#3105 := [trans #3100 #3103]: #3104
+#3108 := [monotonicity #3105]: #3107
+#3664 := [monotonicity #3108 #3661]: #3663
+#3084 := (iff #1229 #3083)
+#3081 := (iff #1226 #3078)
+#3064 := (or #77 #2527)
+#3075 := (or #3064 #1222)
+#3079 := (iff #3075 #3078)
+#3080 := [rewrite]: #3079
+#3076 := (iff #1226 #3075)
+#3073 := (iff #454 #3064)
+#3065 := (not #3064)
+#3068 := (not #3065)
+#3071 := (iff #3068 #3064)
+#3072 := [rewrite]: #3071
+#3069 := (iff #454 #3068)
+#3066 := (iff #85 #3065)
+#3067 := [rewrite]: #3066
+#3070 := [monotonicity #3067]: #3069
+#3074 := [trans #3070 #3072]: #3073
+#3077 := [monotonicity #3074]: #3076
+#3082 := [trans #3077 #3080]: #3081
+#3085 := [quant-intro #3082]: #3084
+#3667 := [monotonicity #3085 #3664]: #3666
+#3675 := [trans #3667 #3673]: #3674
+#2345 := (iff #2552 #2248)
+#2137 := (iff #2549 #2171)
+#1937 := (or #1968 #1929)
+#2268 := (or #1937 #2544)
+#2172 := (iff #2268 #2171)
+#2136 := [rewrite]: #2172
+#2226 := (iff #2549 #2268)
+#2035 := (iff #2533 #1937)
+#1868 := (not #1937)
+#2314 := (not #1868)
+#1913 := (iff #2314 #1937)
+#2034 := [rewrite]: #1913
+#2315 := (iff #2533 #2314)
+#1869 := (iff #2530 #1868)
+#1938 := [rewrite]: #1869
+#1912 := [monotonicity #1938]: #2315
+#2267 := [trans #1912 #2034]: #2035
+#2227 := [monotonicity #2267]: #2226
+#2247 := [trans #2227 #2136]: #2137
+#2346 := [monotonicity #2247]: #2345
+#3678 := [monotonicity #2346 #3675]: #3677
+#3681 := [monotonicity #3678]: #3680
+#3688 := [trans #3681 #3686]: #3687
+#3691 := [monotonicity #3688]: #3690
+#3694 := [monotonicity #3691]: #3693
+#3701 := [trans #3694 #3699]: #3700
+#3704 := [monotonicity #3701]: #3703
+#2360 := (+ #2359 #2357)
+#2361 := (= #2360 0::int)
+#2364 := (and #773 #2363 #2361)
+#2381 := (not #2364)
+#2384 := (forall (vars (?x76 T2)) #2381)
+#2369 := (= ?x75!20 uf_11)
+#2370 := (not #2369)
+#2371 := (and #2370 #2368)
+#2372 := (not #2371)
+#2378 := (not #2372)
+#2388 := (and #2378 #2384)
+#2393 := (and #1541 #2388)
+#2326 := (* -1::int #2325)
+#2328 := (+ #2327 #2326)
+#2331 := (+ #2330 #2328)
+#2332 := (>= #2331 0::int)
+#2339 := (and #2338 #2336)
+#2340 := (not #2339)
+#2341 := (or #2340 #2332)
+#2342 := (not #2341)
+#2397 := (or #2342 #2393)
+#2401 := (and #1517 #2397)
+#2299 := (* -1::int #2298)
+#2301 := (+ #2300 #2299)
+#2302 := (>= #2301 0::int)
+#2308 := (and #2307 #2304)
+#2309 := (not #2308)
+#2310 := (or #2309 #2302)
+#2311 := (not #2310)
+#2405 := (or #2311 #2401)
+#2409 := (and #1498 #2405)
+#2413 := (or #2284 #2409)
+#2278 := (not #1492)
+#2417 := (and #2278 #2413)
+#2421 := (or #1492 #2417)
+#2425 := (and #785 #2421)
+#2262 := (= #2261 #2260)
+#2263 := (or #2262 #2259)
+#2264 := (not #2263)
+#2429 := (or #2264 #2425)
+#2433 := (and #1484 #2429)
+#2240 := (* -1::int #2239)
+#2242 := (+ #2241 #2240)
+#2243 := (>= #2242 0::int)
+#2244 := (not #2243)
+#2437 := (or #2244 #2433)
+#2223 := (and #2222 #2219)
+#2209 := (not #981)
+#2457 := (and #2209 #731 #2223 #1473 #2437 #1631 #1649 #1657)
+#2150 := (* -1::int #2149)
+#2152 := (+ #2151 #2150)
+#2155 := (+ #2154 #2152)
+#2156 := (>= #2155 0::int)
+#2165 := (and #2164 #2160)
+#2166 := (not #2165)
+#2167 := (or #2166 #2156)
+#2168 := (not #2167)
+#2187 := (or #2168 #2183)
+#2126 := (+ #2125 #1344)
+#2129 := (+ #2128 #2126)
+#2130 := (= #2129 0::int)
+#2131 := (>= #2126 0::int)
+#2132 := (not #2131)
+#2133 := (and #2132 #2130)
+#2138 := (or #1353 #2133)
+#2141 := (forall (vars (?x49 T2)) #2138)
+#2191 := (and #2141 #2187)
+#2090 := (+ #2089 #2087)
+#2091 := (= #2090 0::int)
+#2094 := (and #2093 #2091)
+#2110 := (not #2094)
+#2113 := (forall (vars (?x50 T2)) #2110)
+#2099 := (= ?x49!8 uf_11)
+#2100 := (not #2099)
+#2101 := (and #2100 #2098)
+#2102 := (not #2101)
+#2107 := (not #2102)
+#2117 := (and #2107 #2113)
+#2195 := (or #2117 #2191)
+#2081 := (not #674)
+#2078 := (not #692)
+#2075 := (not #665)
+#2072 := (not #683)
+#2205 := (and #2072 #2075 #2078 #2081 #2195 #2202)
+#2461 := (or #2205 #2457)
+#2049 := (+ #2048 #1299)
+#2050 := (>= #2049 0::int)
+#2051 := (not #2050)
+#2054 := (+ #2053 #2049)
+#2055 := (= #2054 0::int)
+#2058 := (and #2057 #2055 #2051)
+#2063 := (or #1308 #2058)
+#2066 := (forall (vars (?x46 T2)) #2063)
+#2023 := (+ #1261 #2022)
+#2025 := (+ #2024 #2023)
+#2026 := (= #2025 0::int)
+#2027 := (+ #2024 #1261)
+#2028 := (>= #2027 0::int)
+#2029 := (not #2028)
+#2031 := (and #2030 #2029 #2026)
+#2036 := (or #1270 #2031)
+#2039 := (forall (vars (?x37 T2)) #2036)
+#2015 := (not #1749)
+#2486 := (and #2015 #2039 #2066 #2461 #1716 #1732 #1741)
+#1981 := (+ #1980 #1978)
+#1982 := (+ #69 #1981)
+#1983 := (= #1982 0::int)
+#1987 := (and #77 #1986 #1983)
+#2003 := (not #1987)
+#2006 := (forall (vars (?x38 T2)) #2003)
+#1993 := (not #1992)
+#1994 := (and #1993 #1991)
+#1995 := (not #1994)
+#2000 := (not #1995)
+#2010 := (and #2000 #2006)
+#2490 := (or #2010 #2486)
+#2494 := (and #1255 #2490)
+#1952 := (+ #1951 #1949)
+#1954 := (+ #1953 #1952)
+#1955 := (>= #1954 0::int)
+#1961 := (and #1960 #1959)
+#1962 := (not #1961)
+#1963 := (or #1962 #1955)
+#1964 := (not #1963)
+#2498 := (or #1964 #2494)
+#2502 := (and #1229 #2498)
+#1924 := (* -1::int #1923)
+#1926 := (+ #1925 #1924)
+#1927 := (>= #1926 0::int)
+#1931 := (and #1930 #1928)
+#1932 := (not #1931)
+#1933 := (or #1932 #1927)
+#1934 := (not #1933)
+#2506 := (or #1934 #2502)
+#2510 := (and #1214 #2506)
+#2514 := (or #1909 #2510)
+#1864 := (not #1208)
+#2518 := (and #1864 #2514)
+#2522 := (or #1208 #2518)
+#3062 := (iff #2522 #3061)
+#3059 := (iff #2518 #3058)
+#3056 := (iff #2514 #3055)
+#3053 := (iff #2510 #3052)
+#3050 := (iff #2506 #3049)
+#3047 := (iff #2502 #3046)
+#3044 := (iff #2498 #3043)
+#3041 := (iff #2494 #3040)
+#3038 := (iff #2490 #3037)
+#3035 := (iff #2486 #3032)
+#3029 := (and #109 #2661 #2701 #3026 #1716 #1732 #1741)
+#3033 := (iff #3029 #3032)
+#3034 := [rewrite]: #3033
+#3030 := (iff #2486 #3029)
+#3027 := (iff #2461 #3026)
+#3024 := (iff #2457 #3021)
+#3018 := (and #195 #731 #2223 #1473 #3015 #1631 #1649 #1657)
+#3022 := (iff #3018 #3021)
+#3023 := [rewrite]: #3022
+#3019 := (iff #2457 #3018)
+#3016 := (iff #2437 #3015)
+#3013 := (iff #2433 #3012)
+#3010 := (iff #2429 #3009)
+#3007 := (iff #2425 #3006)
+#3004 := (iff #2421 #3003)
+#3001 := (iff #2417 #3000)
+#2998 := (iff #2413 #2997)
+#2995 := (iff #2409 #2994)
+#2992 := (iff #2405 #2991)
+#2989 := (iff #2401 #2988)
+#2986 := (iff #2397 #2985)
+#2983 := (iff #2393 #2980)
+#2943 := (and #2368 #2937)
+#2974 := (and #2943 #2971)
+#2977 := (and #1541 #2974)
+#2981 := (iff #2977 #2980)
+#2982 := [rewrite]: #2981
+#2978 := (iff #2393 #2977)
+#2975 := (iff #2388 #2974)
+#2972 := (iff #2384 #2971)
+#2969 := (iff #2381 #2968)
+#2966 := (iff #2364 #2965)
+#2963 := (iff #2361 #2962)
+#2960 := (= #2360 #2959)
+#2961 := [rewrite]: #2960
+#2964 := [monotonicity #2961]: #2963
+#2967 := [monotonicity #2964]: #2966
+#2970 := [monotonicity #2967]: #2969
+#2973 := [quant-intro #2970]: #2972
+#2956 := (iff #2378 #2943)
+#2948 := (not #2943)
+#2951 := (not #2948)
+#2954 := (iff #2951 #2943)
+#2955 := [rewrite]: #2954
+#2952 := (iff #2378 #2951)
+#2949 := (iff #2372 #2948)
+#2946 := (iff #2371 #2943)
+#2940 := (and #2937 #2368)
+#2944 := (iff #2940 #2943)
+#2945 := [rewrite]: #2944
+#2941 := (iff #2371 #2940)
+#2938 := (iff #2370 #2937)
+#2935 := (iff #2369 #2934)
+#2936 := [rewrite]: #2935
+#2939 := [monotonicity #2936]: #2938
+#2942 := [monotonicity #2939]: #2941
+#2947 := [trans #2942 #2945]: #2946
+#2950 := [monotonicity #2947]: #2949
+#2953 := [monotonicity #2950]: #2952
+#2957 := [trans #2953 #2955]: #2956
+#2976 := [monotonicity #2957 #2973]: #2975
+#2979 := [monotonicity #2976]: #2978
+#2984 := [trans #2979 #2982]: #2983
+#2932 := (iff #2342 #2931)
+#2929 := (iff #2341 #2928)
+#2926 := (iff #2332 #2923)
+#2913 := (+ #2327 #2330)
+#2914 := (+ #2326 #2913)
+#2917 := (>= #2914 0::int)
+#2924 := (iff #2917 #2923)
+#2925 := [rewrite]: #2924
+#2918 := (iff #2332 #2917)
+#2915 := (= #2331 #2914)
+#2916 := [rewrite]: #2915
+#2919 := [monotonicity #2916]: #2918
+#2927 := [trans #2919 #2925]: #2926
+#2911 := (iff #2340 #2910)
+#2908 := (iff #2339 #2907)
+#2909 := [rewrite]: #2908
+#2912 := [monotonicity #2909]: #2911
+#2930 := [monotonicity #2912 #2927]: #2929
+#2933 := [monotonicity #2930]: #2932
+#2987 := [monotonicity #2933 #2984]: #2986
+#2990 := [monotonicity #2987]: #2989
+#2905 := (iff #2311 #2904)
+#2902 := (iff #2310 #2901)
+#2899 := (iff #2302 #2896)
+#2888 := (+ #2299 #2300)
+#2891 := (>= #2888 0::int)
+#2897 := (iff #2891 #2896)
+#2898 := [rewrite]: #2897
+#2892 := (iff #2302 #2891)
+#2889 := (= #2301 #2888)
+#2890 := [rewrite]: #2889
+#2893 := [monotonicity #2890]: #2892
+#2900 := [trans #2893 #2898]: #2899
+#2886 := (iff #2309 #2885)
+#2883 := (iff #2308 #2882)
+#2884 := [rewrite]: #2883
+#2887 := [monotonicity #2884]: #2886
+#2903 := [monotonicity #2887 #2900]: #2902
+#2906 := [monotonicity #2903]: #2905
+#2993 := [monotonicity #2906 #2990]: #2992
+#2996 := [monotonicity #2993]: #2995
+#2999 := [monotonicity #2996]: #2998
+#2880 := (iff #2278 #217)
+#2881 := [rewrite]: #2880
+#3002 := [monotonicity #2881 #2999]: #3001
+#3005 := [monotonicity #3002]: #3004
+#3008 := [monotonicity #3005]: #3007
+#2878 := (iff #2264 #2877)
+#2875 := (iff #2263 #2872)
+#2869 := (or #2866 #2259)
+#2873 := (iff #2869 #2872)
+#2874 := [rewrite]: #2873
+#2870 := (iff #2263 #2869)
+#2867 := (iff #2262 #2866)
+#2868 := [rewrite]: #2867
+#2871 := [monotonicity #2868]: #2870
+#2876 := [trans #2871 #2874]: #2875
+#2879 := [monotonicity #2876]: #2878
+#3011 := [monotonicity #2879 #3008]: #3010
+#3014 := [monotonicity #3011]: #3013
+#2864 := (iff #2244 #2863)
+#2861 := (iff #2243 #2858)
+#2850 := (+ #2240 #2241)
+#2853 := (>= #2850 0::int)
+#2859 := (iff #2853 #2858)
+#2860 := [rewrite]: #2859
+#2854 := (iff #2243 #2853)
+#2851 := (= #2242 #2850)
+#2852 := [rewrite]: #2851
+#2855 := [monotonicity #2852]: #2854
+#2862 := [trans #2855 #2860]: #2861
+#2865 := [monotonicity #2862]: #2864
+#3017 := [monotonicity #2865 #3014]: #3016
+#2848 := (iff #2209 #195)
+#2849 := [rewrite]: #2848
+#3020 := [monotonicity #2849 #3017]: #3019
+#3025 := [trans #3020 #3023]: #3024
+#2846 := (iff #2205 #2843)
+#2840 := (and #145 #150 #566 #569 #2837 #2202)
+#2844 := (iff #2840 #2843)
+#2845 := [rewrite]: #2844
+#2841 := (iff #2205 #2840)
+#2838 := (iff #2195 #2837)
+#2835 := (iff #2191 #2834)
+#2832 := (iff #2187 #2829)
+#2826 := (or #2823 #2183)
+#2830 := (iff #2826 #2829)
+#2831 := [rewrite]: #2830
+#2827 := (iff #2187 #2826)
+#2824 := (iff #2168 #2823)
+#2821 := (iff #2167 #2820)
+#2818 := (iff #2156 #2815)
+#2806 := (+ #2151 #2154)
+#2807 := (+ #2150 #2806)
+#2810 := (>= #2807 0::int)
+#2816 := (iff #2810 #2815)
+#2817 := [rewrite]: #2816
+#2811 := (iff #2156 #2810)
+#2808 := (= #2155 #2807)
+#2809 := [rewrite]: #2808
+#2812 := [monotonicity #2809]: #2811
+#2819 := [trans #2812 #2817]: #2818
+#2804 := (iff #2166 #2803)
+#2801 := (iff #2165 #2800)
+#2802 := [rewrite]: #2801
+#2805 := [monotonicity #2802]: #2804
+#2822 := [monotonicity #2805 #2819]: #2821
+#2825 := [monotonicity #2822]: #2824
+#2828 := [monotonicity #2825]: #2827
+#2833 := [trans #2828 #2831]: #2832
+#2798 := (iff #2141 #2797)
+#2795 := (iff #2138 #2794)
+#2792 := (iff #2133 #2791)
+#2789 := (iff #2130 #2786)
+#2776 := (+ #2125 #2128)
+#2777 := (+ #1344 #2776)
+#2780 := (= #2777 0::int)
+#2787 := (iff #2780 #2786)
+#2788 := [rewrite]: #2787
+#2781 := (iff #2130 #2780)
+#2778 := (= #2129 #2777)
+#2779 := [rewrite]: #2778
+#2782 := [monotonicity #2779]: #2781
+#2790 := [trans #2782 #2788]: #2789
+#2774 := (iff #2132 #2773)
+#2771 := (iff #2131 #2768)
+#2760 := (+ #1344 #2125)
+#2763 := (>= #2760 0::int)
+#2769 := (iff #2763 #2768)
+#2770 := [rewrite]: #2769
+#2764 := (iff #2131 #2763)
+#2761 := (= #2126 #2760)
+#2762 := [rewrite]: #2761
+#2765 := [monotonicity #2762]: #2764
+#2772 := [trans #2765 #2770]: #2771
+#2775 := [monotonicity #2772]: #2774
+#2793 := [monotonicity #2775 #2790]: #2792
+#2796 := [monotonicity #2793]: #2795
+#2799 := [quant-intro #2796]: #2798
+#2836 := [monotonicity #2799 #2833]: #2835
+#2758 := (iff #2117 #2755)
+#2721 := (and #2098 #2715)
+#2752 := (and #2721 #2749)
+#2756 := (iff #2752 #2755)
+#2757 := [rewrite]: #2756
+#2753 := (iff #2117 #2752)
+#2750 := (iff #2113 #2749)
+#2747 := (iff #2110 #2746)
+#2744 := (iff #2094 #2743)
+#2741 := (iff #2091 #2740)
+#2738 := (= #2090 #2737)
+#2739 := [rewrite]: #2738
+#2742 := [monotonicity #2739]: #2741
+#2745 := [monotonicity #2742]: #2744
+#2748 := [monotonicity #2745]: #2747
+#2751 := [quant-intro #2748]: #2750
+#2734 := (iff #2107 #2721)
+#2726 := (not #2721)
+#2729 := (not #2726)
+#2732 := (iff #2729 #2721)
+#2733 := [rewrite]: #2732
+#2730 := (iff #2107 #2729)
+#2727 := (iff #2102 #2726)
+#2724 := (iff #2101 #2721)
+#2718 := (and #2715 #2098)
+#2722 := (iff #2718 #2721)
+#2723 := [rewrite]: #2722
+#2719 := (iff #2101 #2718)
+#2716 := (iff #2100 #2715)
+#2713 := (iff #2099 #2712)
+#2714 := [rewrite]: #2713
+#2717 := [monotonicity #2714]: #2716
+#2720 := [monotonicity #2717]: #2719
+#2725 := [trans #2720 #2723]: #2724
+#2728 := [monotonicity #2725]: #2727
+#2731 := [monotonicity #2728]: #2730
+#2735 := [trans #2731 #2733]: #2734
+#2754 := [monotonicity #2735 #2751]: #2753
+#2759 := [trans #2754 #2757]: #2758
+#2839 := [monotonicity #2759 #2836]: #2838
+#2710 := (iff #2081 #569)
+#2711 := [rewrite]: #2710
+#2708 := (iff #2078 #566)
+#2709 := [rewrite]: #2708
+#2706 := (iff #2075 #150)
+#2707 := [rewrite]: #2706
+#2704 := (iff #2072 #145)
+#2705 := [rewrite]: #2704
+#2842 := [monotonicity #2705 #2707 #2709 #2711 #2839]: #2841
+#2847 := [trans #2842 #2845]: #2846
+#3028 := [monotonicity #2847 #3025]: #3027
+#2702 := (iff #2066 #2701)
+#2699 := (iff #2063 #2698)
+#2696 := (iff #2058 #2695)
+#2693 := (iff #2051 #2692)
+#2690 := (iff #2050 #2687)
+#2680 := (+ #1299 #2048)
+#2683 := (>= #2680 0::int)
+#2688 := (iff #2683 #2687)
+#2689 := [rewrite]: #2688
+#2684 := (iff #2050 #2683)
+#2681 := (= #2049 #2680)
+#2682 := [rewrite]: #2681
+#2685 := [monotonicity #2682]: #2684
+#2691 := [trans #2685 #2689]: #2690
+#2694 := [monotonicity #2691]: #2693
+#2678 := (iff #2055 #2675)
+#2664 := (+ #2048 #2053)
+#2665 := (+ #1299 #2664)
+#2668 := (= #2665 0::int)
+#2676 := (iff #2668 #2675)
+#2677 := [rewrite]: #2676
+#2669 := (iff #2055 #2668)
+#2666 := (= #2054 #2665)
+#2667 := [rewrite]: #2666
+#2670 := [monotonicity #2667]: #2669
+#2679 := [trans #2670 #2677]: #2678
+#2697 := [monotonicity #2679 #2694]: #2696
+#2700 := [monotonicity #2697]: #2699
+#2703 := [quant-intro #2700]: #2702
+#2662 := (iff #2039 #2661)
+#2659 := (iff #2036 #2658)
+#2656 := (iff #2031 #2655)
+#2653 := (iff #2026 #2650)
+#2640 := (+ #2022 #2024)
+#2641 := (+ #1261 #2640)
+#2644 := (= #2641 0::int)
+#2651 := (iff #2644 #2650)
+#2652 := [rewrite]: #2651
+#2645 := (iff #2026 #2644)
+#2642 := (= #2025 #2641)
+#2643 := [rewrite]: #2642
+#2646 := [monotonicity #2643]: #2645
+#2654 := [trans #2646 #2652]: #2653
+#2638 := (iff #2029 #2637)
+#2635 := (iff #2028 #2632)
+#2624 := (+ #1261 #2024)
+#2627 := (>= #2624 0::int)
+#2633 := (iff #2627 #2632)
+#2634 := [rewrite]: #2633
+#2628 := (iff #2028 #2627)
+#2625 := (= #2027 #2624)
+#2626 := [rewrite]: #2625
+#2629 := [monotonicity #2626]: #2628
+#2636 := [trans #2629 #2634]: #2635
+#2639 := [monotonicity #2636]: #2638
+#2657 := [monotonicity #2639 #2654]: #2656
+#2660 := [monotonicity #2657]: #2659
+#2663 := [quant-intro #2660]: #2662
+#2622 := (iff #2015 #109)
+#2623 := [rewrite]: #2622
+#3031 := [monotonicity #2623 #2663 #2703 #3028]: #3030
+#3036 := [trans #3031 #3034]: #3035
+#2620 := (iff #2010 #2617)
+#2583 := (and #1991 #2577)
+#2614 := (and #2583 #2611)
+#2618 := (iff #2614 #2617)
+#2619 := [rewrite]: #2618
+#2615 := (iff #2010 #2614)
+#2612 := (iff #2006 #2611)
+#2609 := (iff #2003 #2608)
+#2606 := (iff #1987 #2605)
+#2603 := (iff #1983 #2602)
+#2600 := (= #1982 #2599)
+#2601 := [rewrite]: #2600
+#2604 := [monotonicity #2601]: #2603
+#2607 := [monotonicity #2604]: #2606
+#2610 := [monotonicity #2607]: #2609
+#2613 := [quant-intro #2610]: #2612
+#2596 := (iff #2000 #2583)
+#2588 := (not #2583)
+#2591 := (not #2588)
+#2594 := (iff #2591 #2583)
+#2595 := [rewrite]: #2594
+#2592 := (iff #2000 #2591)
+#2589 := (iff #1995 #2588)
+#2586 := (iff #1994 #2583)
+#2580 := (and #2577 #1991)
+#2584 := (iff #2580 #2583)
+#2585 := [rewrite]: #2584
+#2581 := (iff #1994 #2580)
+#2578 := (iff #1993 #2577)
+#2579 := [monotonicity #2576]: #2578
+#2582 := [monotonicity #2579]: #2581
+#2587 := [trans #2582 #2585]: #2586
+#2590 := [monotonicity #2587]: #2589
+#2593 := [monotonicity #2590]: #2592
+#2597 := [trans #2593 #2595]: #2596
+#2616 := [monotonicity #2597 #2613]: #2615
+#2621 := [trans #2616 #2619]: #2620
+#3039 := [monotonicity #2621 #3036]: #3038
+#3042 := [monotonicity #3039]: #3041
+#2572 := (iff #1964 #2571)
+#2569 := (iff #1963 #2568)
+#2566 := (iff #1955 #2565)
+#2563 := (= #1954 #2562)
+#2564 := [rewrite]: #2563
+#2567 := [monotonicity #2564]: #2566
+#2559 := (iff #1962 #2558)
+#2556 := (iff #1961 #2555)
+#2557 := [rewrite]: #2556
+#2560 := [monotonicity #2557]: #2559
+#2570 := [monotonicity #2560 #2567]: #2569
+#2573 := [monotonicity #2570]: #2572
+#3045 := [monotonicity #2573 #3042]: #3044
+#3048 := [monotonicity #3045]: #3047
+#2553 := (iff #1934 #2552)
+#2550 := (iff #1933 #2549)
+#2547 := (iff #1927 #2544)
+#2536 := (+ #1924 #1925)
+#2539 := (>= #2536 0::int)
+#2545 := (iff #2539 #2544)
+#2546 := [rewrite]: #2545
+#2540 := (iff #1927 #2539)
+#2537 := (= #1926 #2536)
+#2538 := [rewrite]: #2537
+#2541 := [monotonicity #2538]: #2540
+#2548 := [trans #2541 #2546]: #2547
+#2534 := (iff #1932 #2533)
+#2531 := (iff #1931 #2530)
+#2532 := [rewrite]: #2531
+#2535 := [monotonicity #2532]: #2534
+#2551 := [monotonicity #2535 #2548]: #2550
+#2554 := [monotonicity #2551]: #2553
+#3051 := [monotonicity #2554 #3048]: #3050
+#3054 := [monotonicity #3051]: #3053
+#3057 := [monotonicity #3054]: #3056
+#2528 := (iff #1864 #81)
+#2529 := [rewrite]: #2528
+#3060 := [monotonicity #2529 #3057]: #3059
+#3063 := [monotonicity #3060]: #3062
+#1838 := (not #1802)
+#2523 := (~ #1838 #2522)
+#2519 := (not #1799)
+#2520 := (~ #2519 #2518)
+#2515 := (not #1796)
+#2516 := (~ #2515 #2514)
+#2511 := (not #1793)
+#2512 := (~ #2511 #2510)
+#2507 := (not #1790)
+#2508 := (~ #2507 #2506)
+#2503 := (not #1787)
+#2504 := (~ #2503 #2502)
+#2499 := (not #1784)
+#2500 := (~ #2499 #2498)
+#2495 := (not #1781)
+#2496 := (~ #2495 #2494)
+#2491 := (not #1778)
+#2492 := (~ #2491 #2490)
+#2487 := (not #1773)
+#2488 := (~ #2487 #2486)
+#2483 := (not #1744)
+#2484 := (~ #2483 #1741)
+#2481 := (~ #1741 #1741)
+#2479 := (~ #1738 #1738)
+#2480 := [refl]: #2479
+#2482 := [nnf-pos #2480]: #2481
+#2485 := [nnf-neg #2482]: #2484
+#2476 := (not #1735)
+#2477 := (~ #2476 #1732)
+#2474 := (~ #1732 #1732)
+#2472 := (~ #1727 #1727)
+#2473 := [refl]: #2472
+#2475 := [nnf-pos #2473]: #2474
+#2478 := [nnf-neg #2475]: #2477
+#2469 := (not #1719)
+#2470 := (~ #2469 #1716)
+#2467 := (~ #1716 #1716)
+#2465 := (~ #1713 #1713)
+#2466 := [refl]: #2465
+#2468 := [nnf-pos #2466]: #2467
+#2471 := [nnf-neg #2468]: #2470
+#2462 := (not #1696)
+#2463 := (~ #2462 #2461)
+#2458 := (not #1691)
+#2459 := (~ #2458 #2457)
+#2455 := (~ #1657 #1657)
+#2456 := [refl]: #2455
+#2452 := (not #1652)
+#2453 := (~ #2452 #1649)
+#2450 := (~ #1649 #1649)
+#2448 := (~ #1644 #1644)
+#2449 := [refl]: #2448
+#2451 := [nnf-pos #2449]: #2450
+#2454 := [nnf-neg #2451]: #2453
+#2445 := (not #1634)
+#2446 := (~ #2445 #1631)
+#2443 := (~ #1631 #1631)
+#2441 := (~ #1628 #1628)
+#2442 := [refl]: #2441
+#2444 := [nnf-pos #2442]: #2443
+#2447 := [nnf-neg #2444]: #2446
+#2438 := (not #1617)
+#2439 := (~ #2438 #2437)
+#2434 := (not #1614)
+#2435 := (~ #2434 #2433)
+#2430 := (not #1611)
+#2431 := (~ #2430 #2429)
+#2426 := (not #1608)
+#2427 := (~ #2426 #2425)
+#2422 := (not #1605)
+#2423 := (~ #2422 #2421)
+#2418 := (not #1602)
+#2419 := (~ #2418 #2417)
+#2414 := (not #1599)
+#2415 := (~ #2414 #2413)
+#2410 := (not #1596)
+#2411 := (~ #2410 #2409)
+#2406 := (not #1593)
+#2407 := (~ #2406 #2405)
+#2402 := (not #1590)
+#2403 := (~ #2402 #2401)
+#2398 := (not #1587)
+#2399 := (~ #2398 #2397)
+#2394 := (not #1584)
+#2395 := (~ #2394 #2393)
+#2375 := (not #1581)
+#2391 := (~ #2375 #2388)
+#2365 := (exists (vars (?x76 T2)) #2364)
+#2373 := (or #2372 #2365)
+#2374 := (not #2373)
+#2389 := (~ #2374 #2388)
+#2385 := (not #2365)
+#2386 := (~ #2385 #2384)
+#2382 := (~ #2381 #2381)
+#2383 := [refl]: #2382
+#2387 := [nnf-neg #2383]: #2386
+#2379 := (~ #2378 #2378)
+#2380 := [refl]: #2379
+#2390 := [nnf-neg #2380 #2387]: #2389
+#2376 := (~ #2375 #2374)
+#2377 := [sk]: #2376
+#2392 := [trans #2377 #2390]: #2391
+#2351 := (not #1544)
+#2352 := (~ #2351 #1541)
+#2349 := (~ #1541 #1541)
+#2347 := (~ #1538 #1538)
+#2348 := [refl]: #2347
+#2350 := [nnf-pos #2348]: #2349
+#2353 := [nnf-neg #2350]: #2352
+#2396 := [nnf-neg #2353 #2392]: #2395
+#2343 := (~ #1544 #2342)
+#2344 := [sk]: #2343
+#2400 := [nnf-neg #2344 #2396]: #2399
+#2320 := (not #1520)
+#2321 := (~ #2320 #1517)
+#2318 := (~ #1517 #1517)
+#2316 := (~ #1512 #1512)
+#2317 := [refl]: #2316
+#2319 := [nnf-pos #2317]: #2318
+#2322 := [nnf-neg #2319]: #2321
+#2404 := [nnf-neg #2322 #2400]: #2403
+#2312 := (~ #1520 #2311)
+#2313 := [sk]: #2312
+#2408 := [nnf-neg #2313 #2404]: #2407
+#2293 := (not #1501)
+#2294 := (~ #2293 #1498)
+#2291 := (~ #1498 #1498)
+#2289 := (~ #1495 #1495)
+#2290 := [refl]: #2289
+#2292 := [nnf-pos #2290]: #2291
+#2295 := [nnf-neg #2292]: #2294
+#2412 := [nnf-neg #2295 #2408]: #2411
+#2285 := (~ #1501 #2284)
+#2286 := [sk]: #2285
+#2416 := [nnf-neg #2286 #2412]: #2415
+#2279 := (~ #2278 #2278)
+#2280 := [refl]: #2279
+#2420 := [nnf-neg #2280 #2416]: #2419
+#2276 := (~ #1492 #1492)
+#2277 := [refl]: #2276
+#2424 := [nnf-neg #2277 #2420]: #2423
+#2273 := (not #939)
+#2274 := (~ #2273 #785)
+#2271 := (~ #785 #785)
+#2269 := (~ #780 #780)
+#2270 := [refl]: #2269
+#2272 := [nnf-pos #2270]: #2271
+#2275 := [nnf-neg #2272]: #2274
+#2428 := [nnf-neg #2275 #2424]: #2427
+#2265 := (~ #939 #2264)
+#2266 := [sk]: #2265
+#2432 := [nnf-neg #2266 #2428]: #2431
+#2253 := (not #1487)
+#2254 := (~ #2253 #1484)
+#2251 := (~ #1484 #1484)
+#2249 := (~ #1479 #1479)
+#2250 := [refl]: #2249
+#2252 := [nnf-pos #2250]: #2251
+#2255 := [nnf-neg #2252]: #2254
+#2436 := [nnf-neg #2255 #2432]: #2435
+#2245 := (~ #1487 #2244)
+#2246 := [sk]: #2245
+#2440 := [nnf-neg #2246 #2436]: #2439
+#2235 := (not #1476)
+#2236 := (~ #2235 #1473)
+#2233 := (~ #1473 #1473)
+#2231 := (~ #1468 #1468)
+#2232 := [refl]: #2231
+#2234 := [nnf-pos #2232]: #2233
+#2237 := [nnf-neg #2234]: #2236
+#2228 := (not #1667)
+#2229 := (~ #2228 #2223)
+#2224 := (~ #1426 #2223)
+#2225 := [sk]: #2224
+#2230 := [nnf-neg #2225]: #2229
+#2212 := (~ #731 #731)
+#2213 := [refl]: #2212
+#2210 := (~ #2209 #2209)
+#2211 := [refl]: #2210
+#2460 := [nnf-neg #2211 #2213 #2230 #2237 #2440 #2447 #2454 #2456]: #2459
+#2206 := (not #1444)
+#2207 := (~ #2206 #2205)
+#2203 := (~ #1667 #2202)
+#2200 := (~ #2199 #2199)
+#2201 := [refl]: #2200
+#2204 := [nnf-neg #2201]: #2203
+#2196 := (not #1415)
+#2197 := (~ #2196 #2195)
+#2192 := (not #1412)
+#2193 := (~ #2192 #2191)
+#2188 := (not #1409)
+#2189 := (~ #2188 #2187)
+#2184 := (not #1404)
+#2185 := (~ #2184 #2183)
+#2180 := (not #1396)
+#2181 := (~ #2180 #1393)
+#2178 := (~ #1393 #1393)
+#2176 := (~ #1390 #1390)
+#2177 := [refl]: #2176
+#2179 := [nnf-pos #2177]: #2178
+#2182 := [nnf-neg #2179]: #2181
+#2174 := (~ #2173 #2173)
+#2175 := [refl]: #2174
+#2186 := [nnf-neg #2175 #2182]: #2185
+#2169 := (~ #1396 #2168)
+#2170 := [sk]: #2169
+#2190 := [nnf-neg #2170 #2186]: #2189
+#2144 := (not #1378)
+#2145 := (~ #2144 #2141)
+#2142 := (~ #1375 #2141)
+#2139 := (~ #1372 #2138)
+#2134 := (~ #1369 #2133)
+#2135 := [sk]: #2134
+#2122 := (~ #1353 #1353)
+#2123 := [refl]: #2122
+#2140 := [monotonicity #2123 #2135]: #2139
+#2143 := [nnf-pos #2140]: #2142
+#2146 := [nnf-neg #2143]: #2145
+#2194 := [nnf-neg #2146 #2190]: #2193
+#2120 := (~ #1378 #2117)
+#2095 := (exists (vars (?x50 T2)) #2094)
+#2103 := (or #2102 #2095)
+#2104 := (not #2103)
+#2118 := (~ #2104 #2117)
+#2114 := (not #2095)
+#2115 := (~ #2114 #2113)
+#2111 := (~ #2110 #2110)
+#2112 := [refl]: #2111
+#2116 := [nnf-neg #2112]: #2115
+#2108 := (~ #2107 #2107)
+#2109 := [refl]: #2108
+#2119 := [nnf-neg #2109 #2116]: #2118
+#2105 := (~ #1378 #2104)
+#2106 := [sk]: #2105
+#2121 := [trans #2106 #2119]: #2120
+#2198 := [nnf-neg #2121 #2194]: #2197
+#2082 := (~ #2081 #2081)
+#2083 := [refl]: #2082
+#2079 := (~ #2078 #2078)
+#2080 := [refl]: #2079
+#2076 := (~ #2075 #2075)
+#2077 := [refl]: #2076
+#2073 := (~ #2072 #2072)
+#2074 := [refl]: #2073
+#2208 := [nnf-neg #2074 #2077 #2080 #2083 #2198 #2204]: #2207
+#2464 := [nnf-neg #2208 #2460]: #2463
+#2069 := (not #1341)
+#2070 := (~ #2069 #2066)
+#2067 := (~ #1338 #2066)
+#2064 := (~ #1335 #2063)
+#2059 := (~ #1332 #2058)
+#2060 := [sk]: #2059
+#2045 := (~ #1308 #1308)
+#2046 := [refl]: #2045
+#2065 := [monotonicity #2046 #2060]: #2064
+#2068 := [nnf-pos #2065]: #2067
+#2071 := [nnf-neg #2068]: #2070
+#2042 := (not #1752)
+#2043 := (~ #2042 #2039)
+#2040 := (~ #1296 #2039)
+#2037 := (~ #1293 #2036)
+#2032 := (~ #1290 #2031)
+#2033 := [sk]: #2032
+#2018 := (~ #1270 #1270)
+#2019 := [refl]: #2018
+#2038 := [monotonicity #2019 #2033]: #2037
+#2041 := [nnf-pos #2038]: #2040
+#2044 := [nnf-neg #2041]: #2043
+#2016 := (~ #2015 #2015)
+#2017 := [refl]: #2016
+#2489 := [nnf-neg #2017 #2044 #2071 #2464 #2471 #2478 #2485]: #2488
+#2013 := (~ #1752 #2010)
+#1988 := (exists (vars (?x38 T2)) #1987)
+#1996 := (or #1995 #1988)
+#1997 := (not #1996)
+#2011 := (~ #1997 #2010)
+#2007 := (not #1988)
+#2008 := (~ #2007 #2006)
+#2004 := (~ #2003 #2003)
+#2005 := [refl]: #2004
+#2009 := [nnf-neg #2005]: #2008
+#2001 := (~ #2000 #2000)
+#2002 := [refl]: #2001
+#2012 := [nnf-neg #2002 #2009]: #2011
+#1998 := (~ #1752 #1997)
+#1999 := [sk]: #1998
+#2014 := [trans #1999 #2012]: #2013
+#2493 := [nnf-neg #2014 #2489]: #2492
+#1973 := (not #1258)
+#1974 := (~ #1973 #1255)
+#1971 := (~ #1255 #1255)
+#1969 := (~ #1252 #1252)
+#1970 := [refl]: #1969
+#1972 := [nnf-pos #1970]: #1971
+#1975 := [nnf-neg #1972]: #1974
+#2497 := [nnf-neg #1975 #2493]: #2496
+#1965 := (~ #1258 #1964)
+#1966 := [sk]: #1965
+#2501 := [nnf-neg #1966 #2497]: #2500
+#1943 := (not #1232)
+#1944 := (~ #1943 #1229)
+#1941 := (~ #1229 #1229)
+#1939 := (~ #1226 #1226)
+#1940 := [refl]: #1939
+#1942 := [nnf-pos #1940]: #1941
+#1945 := [nnf-neg #1942]: #1944
+#2505 := [nnf-neg #1945 #2501]: #2504
+#1935 := (~ #1232 #1934)
+#1936 := [sk]: #1935
+#2509 := [nnf-neg #1936 #2505]: #2508
+#1918 := (not #1217)
+#1919 := (~ #1918 #1214)
+#1916 := (~ #1214 #1214)
+#1914 := (~ #1213 #1213)
+#1915 := [refl]: #1914
+#1917 := [nnf-pos #1915]: #1916
+#1920 := [nnf-neg #1917]: #1919
+#2513 := [nnf-neg #1920 #2509]: #2512
+#1910 := (~ #1217 #1909)
+#1911 := [sk]: #1910
+#2517 := [nnf-neg #1911 #2513]: #2516
+#1865 := (~ #1864 #1864)
+#1905 := [refl]: #1865
+#2521 := [nnf-neg #1905 #2517]: #2520
+#1903 := (~ #1208 #1208)
+#1904 := [refl]: #1903
+#2524 := [nnf-neg #1904 #2521]: #2523
+#1839 := [not-or-elim #1835]: #1838
+#2525 := [mp~ #1839 #2524]: #2522
+#2526 := [mp #2525 #3063]: #3061
+#3705 := [mp #2526 #3704]: #3702
+#4636 := [mp #3705 #4635]: #4633
+#4922 := [unit-resolution #4636 #4656]: #4630
+#3960 := (or #4627 #4621)
+#3961 := [def-axiom]: #3960
+#4948 := [unit-resolution #3961 #4922]: #4621
+#373 := (<= uf_9 0::int)
+#374 := (not #373)
+#57 := (< 0::int uf_9)
+#375 := (iff #57 #374)
+#376 := [rewrite]: #375
+#369 := [asserted]: #57
+#377 := [mp #369 #376]: #374
+#4731 := (* -1::int #1907)
+#4773 := (+ uf_9 #4731)
+#4774 := (<= #4773 0::int)
+#4662 := (= uf_9 #1907)
+#4665 := (= uf_11 ?x27!0)
+#4779 := (not #4665)
+#4776 := (= #1907 0::int)
+#4795 := (not #4776)
+#4789 := [hypothesis]: #1909
+#4796 := (or #4795 #1908)
+#4797 := [th-lemma]: #4796
+#4798 := [unit-resolution #4797 #4789]: #4795
+#4767 := (or #3800 #4779 #4776)
+#4663 := (= ?x27!0 uf_11)
+#4777 := (not #4663)
+#4778 := (or #4777 #4776)
+#4762 := (or #3800 #4778)
+#4791 := (iff #4762 #4767)
+#4764 := (or #4779 #4776)
+#4769 := (or #3800 #4764)
+#4772 := (iff #4769 #4767)
+#4790 := [rewrite]: #4772
+#4770 := (iff #4762 #4769)
+#4765 := (iff #4778 #4764)
+#4780 := (iff #4777 #4779)
+#4666 := (iff #4663 #4665)
+#4718 := [rewrite]: #4666
+#4763 := [monotonicity #4718]: #4780
+#4766 := [monotonicity #4763]: #4765
+#4771 := [monotonicity #4766]: #4770
+#4792 := [trans #4771 #4790]: #4791
+#4768 := [quant-inst]: #4762
+#4793 := [mp #4768 #4792]: #4767
+#4799 := [unit-resolution #4793 #4642 #4798]: #4779
+#4722 := (or #4662 #4665)
+#4707 := (or #4706 #4662 #4665)
+#4664 := (or #4663 #4662)
+#4708 := (or #4706 #4664)
+#4714 := (iff #4708 #4707)
+#4710 := (or #4706 #4722)
+#4712 := (iff #4710 #4707)
+#4713 := [rewrite]: #4712
+#4705 := (iff #4708 #4710)
+#4725 := (iff #4664 #4722)
+#4719 := (or #4665 #4662)
+#4723 := (iff #4719 #4722)
+#4724 := [rewrite]: #4723
+#4720 := (iff #4664 #4719)
+#4721 := [monotonicity #4718]: #4720
+#4726 := [trans #4721 #4724]: #4725
+#4711 := [monotonicity #4726]: #4705
+#4715 := [trans #4711 #4713]: #4714
+#4709 := [quant-inst]: #4708
+#4730 := [mp #4709 #4715]: #4707
+#4851 := [unit-resolution #4730 #4263]: #4722
+#4852 := [unit-resolution #4851 #4799]: #4662
+#4853 := (not #4662)
+#4854 := (or #4853 #4774)
+#4855 := [th-lemma]: #4854
+#4856 := [unit-resolution #4855 #4852]: #4774
+#4794 := (<= #1907 0::int)
+#4857 := (or #4794 #1908)
+#4858 := [th-lemma]: #4857
+#4859 := [unit-resolution #4858 #4789]: #4794
+#4839 := [th-lemma #4859 #4856 #377]: false
+#4840 := [lemma #4839]: #1908
+#3955 := (or #4624 #1909 #4618)
+#3956 := [def-axiom]: #3955
+#5086 := [unit-resolution #3956 #4840 #4948]: #4618
+#3979 := (or #4615 #4609)
+#3980 := [def-axiom]: #3979
+#5292 := [unit-resolution #3980 #5086]: #4609
+#5416 := [hypothesis]: #1928
+#5028 := (or #4844 #1968)
+#5029 := [quant-inst]: #5028
+#5422 := [unit-resolution #5029 #4256 #5416]: false
+#5423 := [lemma #5422]: #1968
+#3772 := (or #2171 #1928)
+#3859 := [def-axiom]: #3772
+#5293 := [unit-resolution #3859 #5423]: #2171
+#3973 := (or #4612 #2248 #4606)
+#3975 := [def-axiom]: #3973
+#5417 := [unit-resolution #3975 #5293 #5292]: #4606
+#4000 := (or #4603 #4597)
+#4001 := [def-axiom]: #4000
+#5418 := [unit-resolution #4001 #5417]: #4597
+#3996 := (or #4600 #3106 #4594)
+#3997 := [def-axiom]: #3996
+#5452 := [unit-resolution #3997 #5418 #4921]: #4594
+#4010 := (or #4591 #4585)
+#4031 := [def-axiom]: #4010
+#5507 := [unit-resolution #4031 #5452]: #4585
+#4018 := (or #4588 #4302 #4582)
+#4019 := [def-axiom]: #4018
+#5496 := [unit-resolution #4019 #5507 #5196]: #4582
+#4049 := (or #4579 #109)
+#4050 := [def-axiom]: #4049
+#5498 := [unit-resolution #4050 #5496]: #109
+#9048 := (= #166 #108)
+#9042 := [hypothesis]: #4415
+#4151 := (or #4412 #569)
+#4152 := [def-axiom]: #4151
+#9043 := [unit-resolution #4152 #9042]: #569
+#8965 := [symm #9043]: #147
+#9049 := [monotonicity #8965]: #9048
+#9047 := [trans #9049 #5498]: #167
+#3867 := (or #4412 #4348)
+#4149 := [def-axiom]: #3867
+#9030 := [unit-resolution #4149 #9042]: #4348
+#7181 := (or #3369 #4353 #674)
+#9174 := [hypothesis]: #569
+#9183 := [hypothesis]: #4348
+#9172 := [hypothesis]: #3374
+#4168 := (or #3369 #2164)
+#4169 := [def-axiom]: #4168
+#7182 := [unit-resolution #4169 #9172]: #2164
+#9200 := (or #3369 #2163 #4353 #674)
+#8980 := (uf_4 uf_14 ?x54!10)
+#7073 := (uf_4 uf_14 ?x53!11)
+#7171 := (* -1::int #7073)
+#9058 := (+ #7171 #8980)
+#9059 := (+ #2154 #9058)
+#9062 := (>= #9059 0::int)
+#8984 := (uf_6 uf_15 ?x54!10)
+#8985 := (= uf_8 #8984)
+#8981 := (* -1::int #8980)
+#8982 := (+ uf_9 #8981)
+#8983 := (<= #8982 0::int)
+#9168 := (not #8983)
+#4166 := (or #3369 #2160)
+#4167 := [def-axiom]: #4166
+#9173 := [unit-resolution #4167 #9172]: #2160
+#9161 := (+ #2151 #8981)
+#9163 := (>= #9161 0::int)
+#9160 := (= #2151 #8980)
+#9175 := (= #8980 #2151)
+#9176 := [monotonicity #9174]: #9175
+#9177 := [symm #9176]: #9160
+#9178 := (not #9160)
+#9179 := (or #9178 #9163)
+#9180 := [th-lemma]: #9179
+#9181 := [unit-resolution #9180 #9177]: #9163
+#9169 := (not #9163)
+#9170 := (or #9168 #9169 #2159)
+#9164 := [hypothesis]: #2160
+#9165 := [hypothesis]: #8983
+#9166 := [hypothesis]: #9163
+#9167 := [th-lemma #9166 #9165 #9164]: false
+#9171 := [lemma #9167]: #9170
+#9182 := [unit-resolution #9171 #9181 #9173]: #9168
+#8987 := (or #8983 #8985)
+#8990 := (or #4353 #8983 #8985)
+#8986 := (or #8985 #8983)
+#8991 := (or #4353 #8986)
+#8998 := (iff #8991 #8990)
+#8993 := (or #4353 #8987)
+#8996 := (iff #8993 #8990)
+#8997 := [rewrite]: #8996
+#8994 := (iff #8991 #8993)
+#8988 := (iff #8986 #8987)
+#8989 := [rewrite]: #8988
+#8995 := [monotonicity #8989]: #8994
+#8999 := [trans #8995 #8997]: #8998
+#8992 := [quant-inst]: #8991
+#9000 := [mp #8992 #8999]: #8990
+#9184 := [unit-resolution #9000 #9183]: #8987
+#9185 := [unit-resolution #9184 #9182]: #8985
+#9056 := (not #8985)
+#9188 := (or #9056 #9062)
+#9186 := [hypothesis]: #2164
+#4052 := (or #4579 #4314)
+#4032 := [def-axiom]: #4052
+#9187 := [unit-resolution #4032 #5496]: #4314
+#9073 := (or #4319 #2163 #9056 #9062)
+#9051 := (+ #8980 #7171)
+#9052 := (+ #2154 #9051)
+#9055 := (>= #9052 0::int)
+#9057 := (or #9056 #2163 #9055)
+#9074 := (or #4319 #9057)
+#9081 := (iff #9074 #9073)
+#9068 := (or #2163 #9056 #9062)
+#9076 := (or #4319 #9068)
+#9079 := (iff #9076 #9073)
+#9080 := [rewrite]: #9079
+#9077 := (iff #9074 #9076)
+#9071 := (iff #9057 #9068)
+#9065 := (or #9056 #2163 #9062)
+#9069 := (iff #9065 #9068)
+#9070 := [rewrite]: #9069
+#9066 := (iff #9057 #9065)
+#9063 := (iff #9055 #9062)
+#9060 := (= #9052 #9059)
+#9061 := [rewrite]: #9060
+#9064 := [monotonicity #9061]: #9063
+#9067 := [monotonicity #9064]: #9066
+#9072 := [trans #9067 #9070]: #9071
+#9078 := [monotonicity #9072]: #9077
+#9082 := [trans #9078 #9080]: #9081
+#9075 := [quant-inst]: #9074
+#9083 := [mp #9075 #9082]: #9073
+#9189 := [unit-resolution #9083 #9187 #9186]: #9188
+#9190 := [unit-resolution #9189 #9185]: #9062
+#4164 := (not #2815)
+#4170 := (or #3369 #4164)
+#3808 := [def-axiom]: #4170
+#9191 := [unit-resolution #3808 #9172]: #4164
+#9155 := (+ #2149 #7171)
+#9158 := (<= #9155 0::int)
+#9154 := (= #2149 #7073)
+#9192 := (= #7073 #2149)
+#9193 := [monotonicity #9174]: #9192
+#9194 := [symm #9193]: #9154
+#9195 := (not #9154)
+#9196 := (or #9195 #9158)
+#9197 := [th-lemma]: #9196
+#9198 := [unit-resolution #9197 #9194]: #9158
+#9199 := [th-lemma #9198 #9191 #9181 #9190]: false
+#9201 := [lemma #9199]: #9200
+#7183 := [unit-resolution #9201 #7182 #9172 #9183 #9174]: false
+#7082 := [lemma #7183]: #7181
+#9031 := [unit-resolution #7082 #9030 #9043]: #3369
+#4153 := (or #4412 #4406)
+#4150 := [def-axiom]: #4153
+#8964 := [unit-resolution #4150 #9042]: #4406
+#9037 := (or #4412 #2097)
+#5396 := (uf_4 uf_14 ?x49!8)
+#5456 := (* -1::int #5396)
+#5457 := (+ uf_9 #5456)
+#5458 := (<= #5457 0::int)
+#6793 := (not #5458)
+#6788 := [hypothesis]: #2098
+#6206 := (+ #2085 #5456)
+#6232 := (>= #6206 0::int)
+#5257 := (= #2085 #5396)
+#9044 := (= #5396 #2085)
+#9045 := [monotonicity #9043]: #9044
+#8975 := [symm #9045]: #5257
+#8976 := (not #5257)
+#8977 := (or #8976 #6232)
+#8978 := [th-lemma]: #8977
+#8979 := [unit-resolution #8978 #8975]: #6232
+#6794 := (not #6232)
+#6792 := (or #6793 #6794 #2097)
+#6786 := [hypothesis]: #6232
+#6790 := [hypothesis]: #5458
+#6791 := [th-lemma #6790 #6786 #6788]: false
+#6816 := [lemma #6791]: #6792
+#8974 := [unit-resolution #6816 #8979 #6788]: #6793
+#6231 := (<= #6206 0::int)
+#8961 := (or #8976 #6231)
+#8962 := [th-lemma]: #8961
+#8963 := [unit-resolution #8962 #8975]: #6231
+#4163 := (or #4388 #2173)
+#3826 := [def-axiom]: #4163
+#9029 := [unit-resolution #3826 #9047]: #4388
+#4175 := (or #4397 #4391 #3374)
+#4161 := [def-axiom]: #4175
+#9032 := [unit-resolution #4161 #9031 #9029]: #4397
+#3885 := (or #4400 #4394)
+#3886 := [def-axiom]: #3885
+#9046 := [unit-resolution #3886 #9032]: #4400
+#4155 := (or #4409 #4369 #4403)
+#4159 := [def-axiom]: #4155
+#9033 := [unit-resolution #4159 #9046 #8964]: #4369
+#5178 := (?x47!7 ?x49!8)
+#6376 := (uf_4 uf_19 #5178)
+#6600 := (* -1::int #6376)
+#5179 := (uf_4 uf_14 #5178)
+#8481 := (+ #5179 #6600)
+#6172 := (<= #8481 0::int)
+#5887 := (= #5179 #6376)
+#9028 := [monotonicity #9043]: #5887
+#9034 := (not #5887)
+#9035 := (or #9034 #6172)
+#9036 := [th-lemma]: #9035
+#9038 := [unit-resolution #9036 #9028]: #6172
+#8515 := (>= #8481 0::int)
+#9053 := (or #9034 #8515)
+#9054 := [th-lemma]: #9053
+#9109 := [unit-resolution #9054 #9028]: #8515
+#9290 := (not #6172)
+#9289 := (not #6231)
+#8950 := (not #8515)
+#9263 := (or #4366 #6794 #8950 #9289 #9290 #5458)
+#5641 := (+ #5179 #5456)
+#5665 := (>= #5641 0::int)
+#7930 := (not #5665)
+#5450 := (uf_1 #5178 ?x49!8)
+#5451 := (uf_10 #5450)
+#5631 := (+ #5456 #5451)
+#5637 := (+ #5179 #5631)
+#5526 := (= #5637 0::int)
+#5525 := (not #5526)
+#5508 := (uf_6 uf_15 #5178)
+#5517 := (= uf_8 #5508)
+#5518 := (not #5517)
+#5697 := (or #5518 #5525 #5665)
+#5707 := (not #5697)
+#9240 := [hypothesis]: #6793
+#9241 := [hypothesis]: #4369
+#3837 := (or #4366 #2715)
+#3842 := [def-axiom]: #3837
+#9242 := [unit-resolution #3842 #9241]: #2715
+#4039 := (or #4579 #4339)
+#4034 := [def-axiom]: #4039
+#9243 := [unit-resolution #4034 #5496]: #4339
+#7629 := (or #4344 #2712 #5458 #5707)
+#5424 := (* -1::int #5179)
+#5425 := (+ #5396 #5424)
+#5426 := (<= #5425 0::int)
+#5509 := (* -1::int #5451)
+#5514 := (+ #5424 #5509)
+#5515 := (+ #5396 #5514)
+#5513 := (= #5515 0::int)
+#5516 := (not #5513)
+#5523 := (or #5518 #5516 #5426)
+#5524 := (not #5523)
+#5522 := (or #2099 #5458 #5524)
+#7083 := (or #4344 #5522)
+#7435 := (iff #7083 #7629)
+#5819 := (or #2712 #5458 #5707)
+#7261 := (or #4344 #5819)
+#7430 := (iff #7261 #7629)
+#7436 := [rewrite]: #7430
+#7210 := (iff #7083 #7261)
+#5798 := (iff #5522 #5819)
+#5801 := (iff #5524 #5707)
+#5705 := (iff #5523 #5697)
+#5638 := (iff #5426 #5665)
+#5536 := (+ #5424 #5396)
+#5639 := (<= #5536 0::int)
+#5666 := (iff #5639 #5665)
+#5703 := [rewrite]: #5666
+#5640 := (iff #5426 #5639)
+#5497 := (= #5425 #5536)
+#5495 := [rewrite]: #5497
+#5634 := [monotonicity #5495]: #5640
+#5704 := [trans #5634 #5703]: #5638
+#5534 := (iff #5516 #5525)
+#5533 := (iff #5513 #5526)
+#5499 := (+ #5396 #5509)
+#5500 := (+ #5424 #5499)
+#5504 := (= #5500 0::int)
+#5527 := (iff #5504 #5526)
+#5532 := [rewrite]: #5527
+#5635 := (iff #5513 #5504)
+#5505 := (= #5515 #5500)
+#5506 := [rewrite]: #5505
+#5636 := [monotonicity #5506]: #5635
+#5531 := [trans #5636 #5532]: #5533
+#5535 := [monotonicity #5531]: #5534
+#5706 := [monotonicity #5535 #5704]: #5705
+#5818 := [monotonicity #5706]: #5801
+#5817 := [monotonicity #2714 #5818]: #5798
+#6900 := [monotonicity #5817]: #7210
+#7432 := [trans #6900 #7436]: #7435
+#7217 := [quant-inst]: #7083
+#7437 := [mp #7217 #7432]: #7629
+#9244 := [unit-resolution #7437 #9243 #9242 #9240]: #5707
+#7888 := (or #5697 #7930)
+#7931 := [def-axiom]: #7888
+#9239 := [unit-resolution #7931 #9244]: #7930
+#6592 := (+ #2085 #6600)
+#6591 := (<= #6592 0::int)
+#6800 := (+ #5509 #6600)
+#6802 := (+ #2085 #6800)
+#6783 := (= #6802 0::int)
+#8973 := (<= #6802 0::int)
+#9282 := [hypothesis]: #6172
+#9283 := [hypothesis]: #6231
+#5866 := (>= #5637 0::int)
+#7549 := (or #5697 #5526)
+#7928 := [def-axiom]: #7549
+#9245 := [unit-resolution #7928 #9244]: #5526
+#9246 := (or #5525 #5866)
+#9247 := [th-lemma]: #9246
+#9248 := [unit-resolution #9247 #9245]: #5866
+#9288 := (not #5866)
+#9291 := (or #8973 #9288 #9289 #9290)
+#9284 := [hypothesis]: #5866
+#9285 := (not #8973)
+#9286 := [hypothesis]: #9285
+#9287 := [th-lemma #9286 #9284 #9283 #9282]: false
+#9292 := [lemma #9287]: #9291
+#9249 := [unit-resolution #9292 #9248 #9283 #9282]: #8973
+#9256 := (or #6783 #9285)
+#7263 := (>= #6802 0::int)
+#8944 := [hypothesis]: #8515
+#5863 := (<= #5637 0::int)
+#9251 := (or #5525 #5863)
+#9252 := [th-lemma]: #9251
+#9253 := [unit-resolution #9252 #9245]: #5863
+#8949 := (not #5863)
+#8951 := (or #7263 #8949 #6794 #8950)
+#8945 := [hypothesis]: #5863
+#8946 := (not #7263)
+#8947 := [hypothesis]: #8946
+#8948 := [th-lemma #8947 #8945 #6786 #8944]: false
+#8952 := [lemma #8948]: #8951
+#9254 := [unit-resolution #8952 #9253 #6786 #8944]: #7263
+#9255 := (or #6783 #9285 #8946)
+#9250 := [th-lemma]: #9255
+#9257 := [unit-resolution #9250 #9254]: #9256
+#9258 := [unit-resolution #9257 #9249]: #6783
+#6818 := (not #6783)
+#6815 := (or #6591 #6818)
+#4178 := (or #4366 #4358)
+#3838 := [def-axiom]: #4178
+#9259 := [unit-resolution #3838 #9241]: #4358
+#8898 := (or #4363 #6591 #6818)
+#6374 := (+ #2086 #5451)
+#6377 := (+ #6376 #6374)
+#6477 := (= #6377 0::int)
+#6478 := (not #6477)
+#6366 := (+ #6376 #2086)
+#6479 := (>= #6366 0::int)
+#6480 := (or #6479 #6478)
+#8899 := (or #4363 #6480)
+#8905 := (iff #8899 #8898)
+#8124 := (or #4363 #6815)
+#8903 := (iff #8124 #8898)
+#8904 := [rewrite]: #8903
+#8901 := (iff #8899 #8124)
+#6821 := (iff #6480 #6815)
+#6819 := (iff #6478 #6818)
+#6782 := (iff #6477 #6783)
+#6572 := (+ #5451 #6376)
+#6011 := (+ #2086 #6572)
+#6083 := (= #6011 0::int)
+#6787 := (iff #6083 #6783)
+#6789 := [rewrite]: #6787
+#6797 := (iff #6477 #6083)
+#6795 := (= #6377 #6011)
+#6796 := [rewrite]: #6795
+#6799 := [monotonicity #6796]: #6797
+#6817 := [trans #6799 #6789]: #6782
+#6820 := [monotonicity #6817]: #6819
+#6626 := (iff #6479 #6591)
+#6481 := (+ #2086 #6376)
+#6597 := (>= #6481 0::int)
+#6627 := (iff #6597 #6591)
+#6628 := [rewrite]: #6627
+#6598 := (iff #6479 #6597)
+#6476 := (= #6366 #6481)
+#6482 := [rewrite]: #6476
+#6599 := [monotonicity #6482]: #6598
+#6629 := [trans #6599 #6628]: #6626
+#6784 := [monotonicity #6629 #6820]: #6821
+#8902 := [monotonicity #6784]: #8901
+#7262 := [trans #8902 #8904]: #8905
+#8900 := [quant-inst]: #8899
+#7283 := [mp #8900 #7262]: #8898
+#9260 := [unit-resolution #7283 #9259]: #6815
+#9264 := [unit-resolution #9260 #9258]: #6591
+#9265 := [th-lemma #6786 #8944 #9264 #9239]: false
+#9266 := [lemma #9265]: #9263
+#9110 := [unit-resolution #9266 #9109 #9038 #9033 #8963 #8979 #8974]: false
+#9111 := [lemma #9110]: #9037
+#5419 := [unit-resolution #9111 #9042]: #2097
+#4187 := (or #4366 #2098)
+#4177 := [def-axiom]: #4187
+#5867 := [unit-resolution #4177 #5419]: #4366
+#5862 := [unit-resolution #4159 #5867 #8964]: #4403
+#5363 := [unit-resolution #3886 #5862]: #4394
+#7926 := [unit-resolution #4161 #5363 #9031]: #4391
+#7932 := [unit-resolution #3826 #7926]: #2173
+#7884 := [unit-resolution #7932 #9047]: false
+#8887 := [lemma #7884]: #4412
+#4040 := (or #4579 #4573)
+#4008 := [def-axiom]: #4040
+#10724 := [unit-resolution #4008 #5496]: #4573
+#4045 := (or #4576 #4415 #4570)
+#4046 := [def-axiom]: #4045
+#10725 := [unit-resolution #4046 #10724]: #4573
+#10726 := [unit-resolution #10725 #8887]: #4570
+#4068 := (or #4567 #195)
+#4069 := [def-axiom]: #4068
+#13581 := [unit-resolution #4069 #10726]: #195
+#13578 := [symm #13581]: #7680
+#13576 := (= #10323 #194)
#48 := (:var 0 T5)
#47 := (:var 2 T4)
#49 := (uf_7 #47 #10 #48)
-#4329 := (pattern #49)
+#4231 := (pattern #49)
#360 := (= uf_8 #48)
#50 := (uf_6 #49 #10)
#356 := (= uf_8 #50)
#363 := (iff #356 #360)
-#4330 := (forall (vars (?x17 T4) (?x18 T2) (?x19 T5)) (:pat #4329) #363)
+#4232 := (forall (vars (?x17 T4) (?x18 T2) (?x19 T5)) (:pat #4231) #363)
#366 := (forall (vars (?x17 T4) (?x18 T2) (?x19 T5)) #363)
-#4333 := (iff #366 #4330)
-#4331 := (iff #363 #363)
-#4332 := [refl]: #4331
-#4334 := [quant-intro #4332]: #4333
-#1957 := (~ #366 #366)
-#1995 := (~ #363 #363)
-#1996 := [refl]: #1995
-#1958 := [nnf-pos #1996]: #1957
+#4235 := (iff #366 #4232)
+#4233 := (iff #363 #363)
+#4234 := [refl]: #4233
+#4236 := [quant-intro #4234]: #4235
+#1852 := (~ #366 #366)
+#1890 := (~ #363 #363)
+#1891 := [refl]: #1890
+#1853 := [nnf-pos #1891]: #1852
#52 := (= #48 uf_8)
#51 := (= #50 uf_8)
#53 := (iff #51 #52)
@@ -4731,274 +4637,150 @@
#368 := [quant-intro #365]: #367
#355 := [asserted]: #54
#371 := [mp #355 #368]: #366
-#1997 := [mp~ #371 #1958]: #366
-#4335 := [mp #1997 #4334]: #4330
-#7014 := (not #4330)
-#7015 := (or #7014 #5314)
-#5318 := (= uf_8 uf_8)
-#5320 := (iff #5314 #5318)
-#7018 := (or #7014 #5320)
-#7020 := (iff #7018 #7015)
-#7022 := (iff #7015 #7015)
-#7023 := [rewrite]: #7022
-#5344 := (iff #5320 #5314)
-#5323 := (iff #5314 true)
-#5342 := (iff #5323 #5314)
-#5343 := [rewrite]: #5342
-#5324 := (iff #5320 #5323)
-#5321 := (iff #5318 true)
-#5322 := [rewrite]: #5321
-#5340 := [monotonicity #5322]: #5324
-#5345 := [trans #5340 #5343]: #5344
-#7021 := [monotonicity #5345]: #7020
-#7024 := [trans #7021 #7023]: #7020
-#7019 := [quant-inst]: #7018
-#7025 := [mp #7019 #7024]: #7015
-#8579 := [unit-resolution #7025 #4335]: #5314
-#8580 := [symm #8579]: #6089
-#8035 := (= #7128 uf_16)
-#7129 := (= uf_16 #7128)
-#16 := (uf_2 #12)
-#325 := (= #10 #16)
-#4301 := (forall (vars (?x4 T2) (?x5 T2)) (:pat #4294) #325)
-#329 := (forall (vars (?x4 T2) (?x5 T2)) #325)
-#4304 := (iff #329 #4301)
-#4302 := (iff #325 #325)
-#4303 := [refl]: #4302
-#4305 := [quant-intro #4303]: #4304
-#1949 := (~ #329 #329)
-#1983 := (~ #325 #325)
-#1984 := [refl]: #1983
-#1950 := [nnf-pos #1984]: #1949
-#17 := (= #16 #10)
-#18 := (forall (vars (?x4 T2) (?x5 T2)) #17)
-#330 := (iff #18 #329)
-#327 := (iff #17 #325)
-#328 := [rewrite]: #327
-#331 := [quant-intro #328]: #330
-#324 := [asserted]: #18
-#334 := [mp #324 #331]: #329
-#1985 := [mp~ #334 #1950]: #329
-#4306 := [mp #1985 #4305]: #4301
-#7136 := (not #4301)
-#7154 := (or #7136 #7129)
-#7155 := [quant-inst]: #7154
-#8034 := [unit-resolution #7155 #4306]: #7129
-#8036 := [symm #8034]: #8035
-#8593 := [monotonicity #8036 #8580]: #8592
-#8591 := [trans #8593 #8595]: #8596
-#32982 := [monotonicity #8591 #32984]: #32980
-#32970 := [monotonicity #32982]: #32985
-#32965 := [symm #32970]: #32955
-#32971 := [monotonicity #32965]: #32968
-#32956 := (not #15367)
-#32950 := [hypothesis]: #32956
-#15373 := (or #9846 #15367)
-#8693 := (= #144 #2212)
-#8633 := (= #2212 #144)
-#6559 := (= ?x46!9 uf_16)
-#7707 := (= ?x46!9 #7128)
-#6330 := (uf_6 uf_15 ?x46!9)
-#6365 := (= uf_8 #6330)
-#7717 := (ite #7707 #5314 #6365)
-#7711 := (uf_6 #7203 ?x46!9)
-#7714 := (= uf_8 #7711)
-#7720 := (iff #7714 #7717)
-#8351 := (or #7026 #7720)
-#7708 := (ite #7707 #6089 #6365)
-#7712 := (= #7711 uf_8)
-#7713 := (iff #7712 #7708)
-#8361 := (or #7026 #7713)
-#8363 := (iff #8361 #8351)
-#8365 := (iff #8351 #8351)
-#8366 := [rewrite]: #8365
-#7721 := (iff #7713 #7720)
-#7718 := (iff #7708 #7717)
-#7719 := [monotonicity #6102]: #7718
-#7715 := (iff #7712 #7714)
-#7716 := [rewrite]: #7715
-#7722 := [monotonicity #7716 #7719]: #7721
-#8364 := [monotonicity #7722]: #8363
-#8367 := [trans #8364 #8366]: #8363
-#8362 := [quant-inst]: #8361
-#8368 := [mp #8362 #8367]: #8351
-#8576 := [unit-resolution #8368 #4320]: #7720
-#8601 := (= #2208 #7711)
-#8597 := (= #7711 #2208)
-#8598 := [monotonicity #8591]: #8597
-#8625 := [symm #8598]: #8601
-#8571 := [hypothesis]: #2836
-#4285 := (or #2831 #2209)
-#4275 := [def-axiom]: #4285
-#8577 := [unit-resolution #4275 #8571]: #2209
-#8626 := [trans #8577 #8625]: #7714
-#8404 := (not #7714)
-#8401 := (not #7720)
-#8405 := (or #8401 #8404 #7717)
-#8400 := [def-axiom]: #8405
-#8627 := [unit-resolution #8400 #8626 #8576]: #7717
-#6393 := (uf_1 uf_16 ?x46!9)
-#6394 := (uf_10 #6393)
-#6337 := (* -1::int #2212)
-#6411 := (+ #6337 #6394)
-#6412 := (+ #144 #6411)
-#6413 := (>= #6412 0::int)
-#8287 := (not #6413)
-#6395 := (* -1::int #6394)
-#6396 := (+ uf_9 #6395)
-#6397 := (<= #6396 0::int)
-#6421 := (or #6397 #6413)
-#6426 := (not #6421)
-#3935 := (not #2825)
-#3940 := (or #2831 #3935)
-#4276 := [def-axiom]: #3940
-#8572 := [unit-resolution #4276 #8571]: #3935
-#4212 := (or #4595 #4456)
-#4213 := [def-axiom]: #4212
-#8574 := [unit-resolution #4213 #7389]: #4456
-#8302 := (or #4461 #2825 #6426)
-#6398 := (+ #1449 #6395)
-#6399 := (+ #2212 #6398)
-#6400 := (<= #6399 0::int)
-#6401 := (or #6400 #6397)
-#6402 := (not #6401)
-#6403 := (or #2213 #6402)
-#8303 := (or #4461 #6403)
-#8310 := (iff #8303 #8302)
-#6429 := (or #2825 #6426)
-#8305 := (or #4461 #6429)
-#8308 := (iff #8305 #8302)
-#8309 := [rewrite]: #8308
-#8306 := (iff #8303 #8305)
-#6430 := (iff #6403 #6429)
-#6427 := (iff #6402 #6426)
-#6424 := (iff #6401 #6421)
-#6418 := (or #6413 #6397)
-#6422 := (iff #6418 #6421)
-#6423 := [rewrite]: #6422
-#6419 := (iff #6401 #6418)
-#6416 := (iff #6400 #6413)
-#6404 := (+ #2212 #6395)
-#6405 := (+ #1449 #6404)
-#6408 := (<= #6405 0::int)
-#6414 := (iff #6408 #6413)
-#6415 := [rewrite]: #6414
-#6409 := (iff #6400 #6408)
-#6406 := (= #6399 #6405)
-#6407 := [rewrite]: #6406
-#6410 := [monotonicity #6407]: #6409
-#6417 := [trans #6410 #6415]: #6416
-#6420 := [monotonicity #6417]: #6419
-#6425 := [trans #6420 #6423]: #6424
-#6428 := [monotonicity #6425]: #6427
-#6431 := [monotonicity #2827 #6428]: #6430
-#8307 := [monotonicity #6431]: #8306
-#8311 := [trans #8307 #8309]: #8310
-#8304 := [quant-inst]: #8303
-#8312 := [mp #8304 #8311]: #8302
-#8628 := [unit-resolution #8312 #8574 #8572]: #6426
-#8288 := (or #6421 #8287)
-#8289 := [def-axiom]: #8288
-#8629 := [unit-resolution #8289 #8628]: #8287
-#8369 := (not #7717)
-#9187 := (or #7707 #6413 #8369)
-#7754 := (uf_1 #7128 ?x46!9)
-#7838 := (uf_3 #7754)
-#9086 := (uf_4 uf_14 #7838)
-#9087 := (* -1::int #9086)
-#7168 := (uf_4 uf_14 #7128)
-#9088 := (+ #7168 #9087)
-#9089 := (>= #9088 0::int)
-#9090 := (uf_6 uf_15 #7838)
-#9091 := (= uf_8 #9090)
-#9139 := (= #6330 #9090)
-#9135 := (= #9090 #6330)
-#9133 := (= #7838 ?x46!9)
-#7839 := (= ?x46!9 #7838)
-#8519 := (or #5378 #7839)
-#8257 := [quant-inst]: #8519
-#9132 := [unit-resolution #8257 #4300]: #7839
-#9134 := [symm #9132]: #9133
-#9136 := [monotonicity #9134]: #9135
-#9140 := [symm #9136]: #9139
-#9129 := [hypothesis]: #7717
-#7733 := (not #7707)
-#9130 := [hypothesis]: #7733
-#8347 := (or #8369 #7707 #6365)
-#8354 := [def-axiom]: #8347
-#9131 := [unit-resolution #8354 #9130 #9129]: #6365
-#9141 := [trans #9131 #9140]: #9091
-#9092 := (not #9091)
-#9154 := (or #9089 #9092)
-#7246 := (uf_6 uf_15 #7128)
-#7247 := (= uf_8 #7246)
-#9149 := (not #7247)
-#9150 := (iff #588 #9149)
-#9147 := (iff #585 #7247)
-#9145 := (iff #7247 #585)
-#9143 := (= #7246 #141)
-#9144 := [monotonicity #8036]: #9143
-#9146 := [monotonicity #9144]: #9145
-#9148 := [symm #9146]: #9147
-#9151 := [monotonicity #9148]: #9150
-#4127 := (or #4595 #588)
-#4220 := [def-axiom]: #4127
-#9142 := [unit-resolution #4220 #7389]: #588
-#9152 := [mp #9142 #9151]: #9149
-#4076 := (or #4677 #4421)
-#4131 := [def-axiom]: #4076
-#9153 := [unit-resolution #4131 #7304]: #4421
-#9097 := (or #4426 #7247 #9089 #9092)
-#9093 := (or #9092 #7247 #9089)
-#9098 := (or #4426 #9093)
-#9105 := (iff #9098 #9097)
-#9094 := (or #7247 #9089 #9092)
-#9100 := (or #4426 #9094)
-#9103 := (iff #9100 #9097)
-#9104 := [rewrite]: #9103
-#9101 := (iff #9098 #9100)
-#9095 := (iff #9093 #9094)
-#9096 := [rewrite]: #9095
-#9102 := [monotonicity #9096]: #9101
-#9106 := [trans #9102 #9104]: #9105
-#9099 := [quant-inst]: #9098
-#9107 := [mp #9099 #9106]: #9097
-#9155 := [unit-resolution #9107 #9153 #9152]: #9154
-#9156 := [unit-resolution #9155 #9141]: #9089
-#9157 := [hypothesis]: #8287
-#7755 := (uf_10 #7754)
-#7756 := (* -1::int #7755)
-#8520 := (+ #6394 #7756)
-#8524 := (>= #8520 0::int)
-#8517 := (= #6394 #7755)
-#9160 := (= #7755 #6394)
-#9158 := (= #7754 #6393)
-#9159 := [monotonicity #8036]: #9158
-#9161 := [monotonicity #9159]: #9160
-#9162 := [symm #9161]: #8517
-#9163 := (not #8517)
-#9164 := (or #9163 #8524)
-#9165 := [th-lemma]: #9164
-#9166 := [unit-resolution #9165 #9162]: #8524
-#8514 := (>= #7755 0::int)
-#7798 := (<= #7755 0::int)
-#7799 := (not #7798)
-#7804 := (or #7707 #7799)
+#1892 := [mp~ #371 #1853]: #366
+#4237 := [mp #1892 #4236]: #4232
+#3883 := (not #4232)
+#3893 := (or #3883 #3895)
+#3909 := (= uf_8 uf_8)
+#3896 := (iff #3895 #3909)
+#3874 := (or #3883 #3896)
+#3876 := (iff #3874 #3893)
+#3877 := (iff #3893 #3893)
+#3878 := [rewrite]: #3877
+#3891 := (iff #3896 #3895)
+#3899 := (iff #3895 true)
+#3890 := (iff #3899 #3895)
+#3882 := [rewrite]: #3890
+#3888 := (iff #3896 #3899)
+#3898 := (iff #3909 true)
+#3897 := [rewrite]: #3898
+#3889 := [monotonicity #3897]: #3888
+#3892 := [trans #3889 #3882]: #3891
+#3868 := [monotonicity #3892]: #3876
+#3869 := [trans #3868 #3878]: #3876
+#3875 := [quant-inst]: #3874
+#3879 := [mp #3875 #3869]: #3893
+#7677 := [unit-resolution #3879 #4237]: #3895
+#7678 := [symm #7677]: #4958
+#13577 := [monotonicity #10708 #7678]: #13576
+#13583 := [trans #13577 #13578]: #13582
+#13585 := [monotonicity #13583]: #13584
+#13596 := [symm #13585]: #13595
+#13580 := [hypothesis]: #2258
+#13597 := [trans #13580 #13596]: #10327
+#13450 := (not #10327)
+#13447 := (not #10333)
+#13451 := (or #13447 #13450 #10330)
+#13454 := [def-axiom]: #13451
+#13593 := [unit-resolution #13454 #13597 #13579]: #10330
+#13335 := (not #9519)
+#11136 := (uf_6 uf_15 #10448)
+#11137 := (= uf_8 #11136)
+#11138 := (not #11137)
+#11133 := (* -1::int #11132)
+#9701 := (uf_4 uf_14 #9695)
+#11134 := (+ #9701 #11133)
+#11135 := (>= #11134 0::int)
+#13999 := (not #11135)
+#9563 := (uf_1 uf_22 ?x63!14)
+#9564 := (uf_10 #9563)
+#9508 := (* -1::int #2261)
+#9581 := (+ #9508 #9564)
+#9582 := (+ #188 #9581)
+#9583 := (>= #9582 0::int)
+#12179 := (not #9583)
+#9565 := (* -1::int #9564)
+#9569 := (+ uf_9 #9565)
+#9570 := (<= #9569 0::int)
+#9588 := (or #9570 #9583)
+#9591 := (not #9588)
+#13188 := [hypothesis]: #4140
+#4061 := (or #4567 #4428)
+#4056 := [def-axiom]: #4061
+#10727 := [unit-resolution #4056 #10726]: #4428
+#13444 := (or #4433 #2866 #9591)
+#9566 := (+ #1455 #9565)
+#9567 := (+ #2261 #9566)
+#9568 := (<= #9567 0::int)
+#9571 := (or #9570 #9568)
+#9572 := (not #9571)
+#9573 := (or #2262 #9572)
+#11618 := (or #4433 #9573)
+#11883 := (iff #11618 #13444)
+#9594 := (or #2866 #9591)
+#11662 := (or #4433 #9594)
+#11855 := (iff #11662 #13444)
+#11841 := [rewrite]: #11855
+#11663 := (iff #11618 #11662)
+#9595 := (iff #9573 #9594)
+#9592 := (iff #9572 #9591)
+#9589 := (iff #9571 #9588)
+#9586 := (iff #9568 #9583)
+#9574 := (+ #2261 #9565)
+#9575 := (+ #1455 #9574)
+#9578 := (<= #9575 0::int)
+#9584 := (iff #9578 #9583)
+#9585 := [rewrite]: #9584
+#9579 := (iff #9568 #9578)
+#9576 := (= #9567 #9575)
+#9577 := [rewrite]: #9576
+#9580 := [monotonicity #9577]: #9579
+#9587 := [trans #9580 #9585]: #9586
+#9590 := [monotonicity #9587]: #9589
+#9593 := [monotonicity #9590]: #9592
+#9596 := [monotonicity #2868 #9593]: #9595
+#11801 := [monotonicity #9596]: #11663
+#11930 := [trans #11801 #11841]: #11883
+#11417 := [quant-inst]: #11618
+#12087 := [mp #11417 #11930]: #13444
+#13594 := [unit-resolution #12087 #10727 #13188]: #9591
+#12344 := (or #9588 #12179)
+#11143 := [def-axiom]: #12344
+#13599 := [unit-resolution #11143 #13594]: #12179
+#14000 := (or #13999 #9583)
+#13979 := [hypothesis]: #11135
+#13980 := [hypothesis]: #12179
+#10368 := (uf_10 #10367)
+#10372 := (* -1::int #10368)
+#11940 := (+ #9564 #10372)
+#11942 := (>= #11940 0::int)
+#9867 := (= #9564 #10368)
+#13987 := (= #9563 #10367)
+#13988 := [monotonicity #10706]: #13987
+#13989 := [monotonicity #13988]: #9867
+#13990 := (not #9867)
+#13991 := (or #13990 #11942)
+#13992 := [th-lemma]: #13991
+#13993 := [unit-resolution #13992 #13989]: #11942
+#11219 := (>= #10368 0::int)
+#10318 := (= #10368 0::int)
+#11983 := (not #10318)
+#11981 := (not #11219)
+#11982 := [hypothesis]: #11981
+#11984 := (or #11983 #11219)
+#11985 := [th-lemma]: #11984
+#11986 := [unit-resolution #11985 #11982]: #11983
+#10404 := (<= #10368 0::int)
+#11987 := (or #11219 #10404)
+#11988 := [th-lemma]: #11987
+#11989 := [unit-resolution #11988 #11982]: #10404
+#10405 := (not #10404)
+#10410 := (or #10319 #10405)
#59 := (uf_10 #12)
#409 := (<= #59 0::int)
#410 := (not #409)
#58 := (= #10 #11)
#413 := (or #58 #410)
-#4342 := (forall (vars (?x22 T2) (?x23 T2)) (:pat #4294) #413)
+#4244 := (forall (vars (?x22 T2) (?x23 T2)) (:pat #4196) #413)
#416 := (forall (vars (?x22 T2) (?x23 T2)) #413)
-#4345 := (iff #416 #4342)
-#4343 := (iff #413 #413)
-#4344 := [refl]: #4343
-#4346 := [quant-intro #4344]: #4345
-#1963 := (~ #416 #416)
-#1962 := (~ #413 #413)
-#2000 := [refl]: #1962
-#1964 := [nnf-pos #2000]: #1963
+#4247 := (iff #416 #4244)
+#4245 := (iff #413 #413)
+#4246 := [refl]: #4245
+#4248 := [quant-intro #4246]: #4247
+#1858 := (~ #416 #416)
+#1857 := (~ #413 #413)
+#1895 := [refl]: #1857
+#1859 := [nnf-pos #1895]: #1858
#64 := (< 0::int #59)
#63 := (not #58)
#65 := (implies #63 #64)
@@ -5019,98 +4801,42 @@
#420 := [trans #408 #418]: #419
#402 := [asserted]: #66
#421 := [mp #402 #420]: #416
-#2001 := [mp~ #421 #1964]: #416
-#4347 := [mp #2001 #4346]: #4342
-#7093 := (not #4342)
-#8435 := (or #7093 #7707 #7799)
-#7800 := (= #7128 ?x46!9)
-#7801 := (or #7800 #7799)
-#8436 := (or #7093 #7801)
-#8447 := (iff #8436 #8435)
-#8437 := (or #7093 #7804)
-#8443 := (iff #8437 #8435)
-#8444 := [rewrite]: #8443
-#8438 := (iff #8436 #8437)
-#7805 := (iff #7801 #7804)
-#7802 := (iff #7800 #7707)
-#7803 := [rewrite]: #7802
-#7806 := [monotonicity #7803]: #7805
-#8439 := [monotonicity #7806]: #8438
-#8448 := [trans #8439 #8444]: #8447
-#8434 := [quant-inst]: #8436
-#8482 := [mp #8434 #8448]: #8435
-#9167 := [unit-resolution #8482 #4347]: #7804
-#9168 := [unit-resolution #9167 #9130]: #7799
-#9169 := (or #8514 #7798)
-#9170 := [th-lemma]: #9169
-#9171 := [unit-resolution #9170 #9168]: #8514
-#9126 := (+ #2212 #9087)
-#9127 := (<= #9126 0::int)
-#9125 := (= #2212 #9086)
-#9172 := (= #9086 #2212)
-#9173 := [monotonicity #9134]: #9172
-#9174 := [symm #9173]: #9125
-#9175 := (not #9125)
-#9176 := (or #9175 #9127)
-#9177 := [th-lemma]: #9176
-#9178 := [unit-resolution #9177 #9174]: #9127
-#7162 := (* -1::int #7168)
-#7568 := (+ #144 #7162)
-#7572 := (>= #7568 0::int)
-#7233 := (= #144 #7168)
-#9179 := (= #7168 #144)
-#9180 := [monotonicity #8036]: #9179
-#9181 := [symm #9180]: #7233
-#9182 := (not #7233)
-#9183 := (or #9182 #7572)
-#9184 := [th-lemma]: #9183
-#9185 := [unit-resolution #9184 #9181]: #7572
-#9186 := [th-lemma #9185 #9178 #9171 #9166 #9157 #9156]: false
-#9188 := [lemma #9186]: #9187
-#8624 := [unit-resolution #9188 #8629 #8627]: #7707
-#8630 := [trans #8624 #8036]: #6559
-#8634 := [monotonicity #8630]: #8633
-#8694 := [symm #8634]: #8693
-#8695 := (= #2211 #144)
-#5856 := (uf_18 uf_16)
-#8641 := (= #5856 #144)
-#5857 := (= #144 #5856)
-#5844 := (uf_1 uf_16 uf_16)
-#5845 := (uf_10 #5844)
-#5864 := (>= #5845 0::int)
-#5848 := (* -1::int #5845)
-#5849 := (+ uf_9 #5848)
-#5850 := (<= #5849 0::int)
-#5872 := (or #5850 #5864)
-#7965 := (uf_1 #7128 #7128)
-#7966 := (uf_10 #7965)
-#7967 := (* -1::int #7966)
-#8029 := (+ #5845 #7967)
-#8033 := (>= #8029 0::int)
-#8028 := (= #5845 #7966)
-#8039 := (= #5844 #7965)
-#8037 := (= #7965 #5844)
-#8038 := [monotonicity #8036 #8036]: #8037
-#8040 := [symm #8038]: #8039
-#8041 := [monotonicity #8040]: #8028
-#8042 := (not #8028)
-#8043 := (or #8042 #8033)
-#8044 := [th-lemma]: #8043
-#8045 := [unit-resolution #8044 #8041]: #8033
-#7976 := (>= #7966 0::int)
-#7998 := (= #7966 0::int)
+#1896 := [mp~ #421 #1859]: #416
+#4249 := [mp #1896 #4248]: #4244
+#10302 := (not #4244)
+#11162 := (or #10302 #10319 #10405)
+#10406 := (= #9695 ?x63!14)
+#10407 := (or #10406 #10405)
+#11163 := (or #10302 #10407)
+#11205 := (iff #11163 #11162)
+#11188 := (or #10302 #10410)
+#11203 := (iff #11188 #11162)
+#11204 := [rewrite]: #11203
+#11189 := (iff #11163 #11188)
+#10411 := (iff #10407 #10410)
+#10408 := (iff #10406 #10319)
+#10409 := [rewrite]: #10408
+#10412 := [monotonicity #10409]: #10411
+#11202 := [monotonicity #10412]: #11189
+#11206 := [trans #11202 #11204]: #11205
+#11164 := [quant-inst]: #11163
+#11201 := [mp #11164 #11206]: #11162
+#11990 := [unit-resolution #11201 #4249]: #10410
+#11991 := [unit-resolution #11990 #11989]: #10319
+#10346 := (not #10319)
+#10431 := (or #10318 #10346)
#60 := (= #59 0::int)
#393 := (or #63 #60)
-#4336 := (forall (vars (?x20 T2) (?x21 T2)) (:pat #4294) #393)
+#4238 := (forall (vars (?x20 T2) (?x21 T2)) (:pat #4196) #393)
#396 := (forall (vars (?x20 T2) (?x21 T2)) #393)
-#4339 := (iff #396 #4336)
-#4337 := (iff #393 #393)
-#4338 := [refl]: #4337
-#4340 := [quant-intro #4338]: #4339
-#1959 := (~ #396 #396)
-#1998 := (~ #393 #393)
-#1999 := [refl]: #1998
-#1960 := [nnf-pos #1999]: #1959
+#4241 := (iff #396 #4238)
+#4239 := (iff #393 #393)
+#4240 := [refl]: #4239
+#4242 := [quant-intro #4240]: #4241
+#1854 := (~ #396 #396)
+#1893 := (~ #393 #393)
+#1894 := [refl]: #1893
+#1855 := [nnf-pos #1894]: #1854
#61 := (implies #58 #60)
#62 := (forall (vars (?x20 T2) (?x21 T2)) #61)
#399 := (iff #62 #396)
@@ -5137,1945 +4863,2267 @@
#400 := [trans #390 #398]: #399
#370 := [asserted]: #62
#401 := [mp #370 #400]: #396
-#1961 := [mp~ #401 #1960]: #396
-#4341 := [mp #1961 #4340]: #4336
-#6863 := (not #4336)
-#8012 := (or #6863 #7998)
-#7248 := (= #7128 #7128)
-#7999 := (not #7248)
-#8000 := (or #7999 #7998)
-#8013 := (or #6863 #8000)
-#8015 := (iff #8013 #8012)
-#8017 := (iff #8012 #8012)
-#8018 := [rewrite]: #8017
-#8010 := (iff #8000 #7998)
-#8005 := (or false #7998)
-#8008 := (iff #8005 #7998)
-#8009 := [rewrite]: #8008
-#8006 := (iff #8000 #8005)
-#8003 := (iff #7999 false)
-#8001 := (iff #7999 #6849)
-#7256 := (iff #7248 true)
-#7257 := [rewrite]: #7256
-#8002 := [monotonicity #7257]: #8001
-#8004 := [trans #8002 #6853]: #8003
-#8007 := [monotonicity #8004]: #8006
-#8011 := [trans #8007 #8009]: #8010
-#8016 := [monotonicity #8011]: #8015
-#8019 := [trans #8016 #8018]: #8015
-#8014 := [quant-inst]: #8013
-#8020 := [mp #8014 #8019]: #8012
-#8046 := [unit-resolution #8020 #4341]: #7998
-#8047 := (not #7998)
-#8048 := (or #8047 #7976)
-#8049 := [th-lemma]: #8048
-#8050 := [unit-resolution #8049 #8046]: #7976
-#6974 := (not #5864)
-#8051 := [hypothesis]: #6974
-#8052 := [th-lemma #8051 #8050 #8045]: false
-#8053 := [lemma #8052]: #5864
-#6975 := (or #5872 #6974)
-#6976 := [def-axiom]: #6975
-#8573 := [unit-resolution #6976 #8053]: #5872
-#5877 := (not #5872)
-#5880 := (or #5857 #5877)
-#6955 := (or #4461 #5857 #5877)
-#5851 := (+ #1449 #5848)
-#5852 := (+ #144 #5851)
-#5853 := (<= #5852 0::int)
-#5854 := (or #5853 #5850)
-#5855 := (not #5854)
-#5858 := (or #5857 #5855)
-#6956 := (or #4461 #5858)
-#6967 := (iff #6956 #6955)
-#6962 := (or #4461 #5880)
-#6965 := (iff #6962 #6955)
-#6966 := [rewrite]: #6965
-#6963 := (iff #6956 #6962)
-#5881 := (iff #5858 #5880)
-#5878 := (iff #5855 #5877)
-#5875 := (iff #5854 #5872)
-#5869 := (or #5864 #5850)
-#5873 := (iff #5869 #5872)
-#5874 := [rewrite]: #5873
-#5870 := (iff #5854 #5869)
-#5867 := (iff #5853 #5864)
-#5861 := (<= #5848 0::int)
-#5865 := (iff #5861 #5864)
-#5866 := [rewrite]: #5865
-#5862 := (iff #5853 #5861)
-#5859 := (= #5852 #5848)
-#5860 := [rewrite]: #5859
-#5863 := [monotonicity #5860]: #5862
-#5868 := [trans #5863 #5866]: #5867
-#5871 := [monotonicity #5868]: #5870
-#5876 := [trans #5871 #5874]: #5875
-#5879 := [monotonicity #5876]: #5878
-#5882 := [monotonicity #5879]: #5881
-#6964 := [monotonicity #5882]: #6963
-#6968 := [trans #6964 #6966]: #6967
-#6961 := [quant-inst]: #6956
-#6969 := [mp #6961 #6968]: #6955
-#8575 := [unit-resolution #6969 #8574]: #5880
-#8570 := [unit-resolution #8575 #8573]: #5857
-#8642 := [symm #8570]: #8641
-#8631 := (= #2211 #5856)
-#8632 := [monotonicity #8630]: #8631
-#8696 := [trans #8632 #8642]: #8695
-#8697 := [trans #8696 #8694]: #2825
-#8698 := [unit-resolution #8572 #8697]: false
-#8699 := [lemma #8698]: #2831
-#4203 := (or #4595 #4589)
-#4204 := [def-axiom]: #4203
-#9435 := [unit-resolution #4204 #7389]: #4589
-#4209 := (or #4595 #4464)
-#4214 := [def-axiom]: #4209
-#7390 := [unit-resolution #4214 #7389]: #4464
-#6363 := (or #2817 #4469 #4461)
-#6139 := (uf_1 uf_16 ?x45!8)
-#6140 := (uf_10 #6139)
-#6165 := (+ #2191 #6140)
-#6166 := (+ #144 #6165)
-#6192 := (>= #6166 0::int)
-#6169 := (= #6166 0::int)
-#6144 := (* -1::int #6140)
-#6145 := (+ uf_9 #6144)
-#6146 := (<= #6145 0::int)
-#6226 := (not #6146)
-#6158 := (+ #2815 #6140)
-#6159 := (+ #144 #6158)
-#6160 := (>= #6159 0::int)
-#6203 := (or #6146 #6160)
-#6208 := (not #6203)
-#6197 := (= #2190 #2192)
-#6342 := (not #6197)
-#6341 := [hypothesis]: #2822
-#6345 := (or #6342 #2817)
-#6346 := [th-lemma]: #6345
-#6347 := [unit-resolution #6346 #6341]: #6342
-#6348 := [hypothesis]: #4456
-#6214 := (or #4461 #6197 #6208)
-#6147 := (+ #1449 #6144)
-#6148 := (+ #2192 #6147)
-#6149 := (<= #6148 0::int)
-#6193 := (or #6149 #6146)
-#6194 := (not #6193)
-#6195 := (= #2192 #2190)
-#6196 := (or #6195 #6194)
-#6215 := (or #4461 #6196)
-#6222 := (iff #6215 #6214)
-#6211 := (or #6197 #6208)
-#6217 := (or #4461 #6211)
-#6220 := (iff #6217 #6214)
-#6221 := [rewrite]: #6220
-#6218 := (iff #6215 #6217)
-#6212 := (iff #6196 #6211)
-#6209 := (iff #6194 #6208)
-#6206 := (iff #6193 #6203)
-#6200 := (or #6160 #6146)
-#6204 := (iff #6200 #6203)
-#6205 := [rewrite]: #6204
-#6201 := (iff #6193 #6200)
-#6163 := (iff #6149 #6160)
-#6151 := (+ #2192 #6144)
-#6152 := (+ #1449 #6151)
-#6155 := (<= #6152 0::int)
-#6161 := (iff #6155 #6160)
-#6162 := [rewrite]: #6161
-#6156 := (iff #6149 #6155)
-#6153 := (= #6148 #6152)
-#6154 := [rewrite]: #6153
-#6157 := [monotonicity #6154]: #6156
-#6164 := [trans #6157 #6162]: #6163
-#6202 := [monotonicity #6164]: #6201
-#6207 := [trans #6202 #6205]: #6206
-#6210 := [monotonicity #6207]: #6209
-#6198 := (iff #6195 #6197)
-#6199 := [rewrite]: #6198
-#6213 := [monotonicity #6199 #6210]: #6212
-#6219 := [monotonicity #6213]: #6218
-#6223 := [trans #6219 #6221]: #6222
-#6216 := [quant-inst]: #6215
-#6224 := [mp #6216 #6223]: #6214
-#6349 := [unit-resolution #6224 #6348 #6347]: #6208
-#6227 := (or #6203 #6226)
-#6228 := [def-axiom]: #6227
-#6350 := [unit-resolution #6228 #6349]: #6226
-#6229 := (not #6160)
-#6230 := (or #6203 #6229)
-#6231 := [def-axiom]: #6230
-#6351 := [unit-resolution #6231 #6349]: #6229
-#6175 := (or #6146 #6160 #6169)
-#6352 := [hypothesis]: #4464
-#6180 := (or #4469 #6146 #6160 #6169)
-#6141 := (+ #6140 #2191)
-#6142 := (+ #144 #6141)
-#6143 := (= #6142 0::int)
-#6150 := (or #6149 #6146 #6143)
-#6181 := (or #4469 #6150)
-#6188 := (iff #6181 #6180)
-#6183 := (or #4469 #6175)
-#6186 := (iff #6183 #6180)
-#6187 := [rewrite]: #6186
-#6184 := (iff #6181 #6183)
-#6178 := (iff #6150 #6175)
-#6172 := (or #6160 #6146 #6169)
-#6176 := (iff #6172 #6175)
-#6177 := [rewrite]: #6176
-#6173 := (iff #6150 #6172)
-#6170 := (iff #6143 #6169)
-#6167 := (= #6142 #6166)
-#6168 := [rewrite]: #6167
-#6171 := [monotonicity #6168]: #6170
-#6174 := [monotonicity #6164 #6171]: #6173
-#6179 := [trans #6174 #6177]: #6178
-#6185 := [monotonicity #6179]: #6184
-#6189 := [trans #6185 #6187]: #6188
-#6182 := [quant-inst]: #6181
-#6190 := [mp #6182 #6189]: #6180
-#6353 := [unit-resolution #6190 #6352]: #6175
-#6354 := [unit-resolution #6353 #6351 #6350]: #6169
-#6355 := (not #6169)
-#6356 := (or #6355 #6192)
-#6357 := [th-lemma]: #6356
-#6358 := [unit-resolution #6357 #6354]: #6192
-#6225 := (>= #2816 0::int)
-#6359 := (or #6225 #2817)
-#6360 := [th-lemma]: #6359
-#6361 := [unit-resolution #6360 #6341]: #6225
-#6362 := [th-lemma #6361 #6351 #6358]: false
-#6364 := [lemma #6362]: #6363
-#9436 := [unit-resolution #6364 #7390 #8574]: #2817
-#4123 := (or #4592 #2822 #4586)
-#4124 := [def-axiom]: #4123
-#9437 := [unit-resolution #4124 #9436 #9435]: #4586
-#4215 := (or #4583 #4577)
-#4216 := [def-axiom]: #4215
-#9438 := [unit-resolution #4216 #9437]: #4577
-#4111 := (or #4580 #2836 #4574)
-#4070 := [def-axiom]: #4111
-#9439 := [unit-resolution #4070 #9438]: #4577
-#9422 := [unit-resolution #9439 #8699]: #4574
-#4068 := (or #4571 #4481)
-#4069 := [def-axiom]: #4068
-#9423 := [unit-resolution #4069 #9422]: #4481
-#10877 := (or #4486 #9846 #15367)
-#15363 := (= #15362 #2306)
-#15366 := (or #15363 #9846)
-#14529 := (or #4486 #15366)
-#14658 := (iff #14529 #10877)
-#14681 := (or #4486 #15373)
-#14554 := (iff #14681 #10877)
-#14690 := [rewrite]: #14554
-#12540 := (iff #14529 #14681)
-#15376 := (iff #15366 #15373)
-#15370 := (or #15367 #9846)
-#15374 := (iff #15370 #15373)
-#15375 := [rewrite]: #15374
-#15371 := (iff #15366 #15370)
-#15368 := (iff #15363 #15367)
-#15369 := [rewrite]: #15368
-#15372 := [monotonicity #15369]: #15371
-#15377 := [trans #15372 #15375]: #15376
-#14677 := [monotonicity #15377]: #12540
-#14520 := [trans #14677 #14690]: #14658
-#14692 := [quant-inst]: #14529
-#10887 := [mp #14692 #14520]: #10877
-#32978 := [unit-resolution #10887 #9423]: #15373
-#32979 := [unit-resolution #32978 #32950]: #9846
-#32981 := [mp #32979 #32971]: #30313
-#18779 := (= ?x52!15 #7128)
-#32989 := (iff #18779 #32602)
-#32770 := (iff #32602 #18779)
-#25219 := (= #7128 ?x52!15)
-#25223 := (iff #25219 #18779)
-#29787 := [commutativity]: #25223
-#32974 := (iff #32602 #25219)
-#32975 := [monotonicity #32984]: #32974
-#32986 := [trans #32975 #29787]: #32770
-#32991 := [symm #32986]: #32989
-#15413 := (uf_1 uf_16 ?x52!15)
-#15414 := (uf_10 #15413)
-#15439 := (+ #2307 #15414)
-#15440 := (+ #144 #15439)
-#15443 := (= #15440 0::int)
-#15432 := (+ #15397 #15414)
-#15433 := (+ #144 #15432)
-#15434 := (>= #15433 0::int)
-#15418 := (* -1::int #15414)
-#15419 := (+ uf_9 #15418)
-#15420 := (<= #15419 0::int)
-#15473 := (or #15420 #15434)
-#15478 := (not #15473)
-#15481 := (or #15367 #15478)
-#14730 := (or #4461 #15367 #15478)
-#15421 := (+ #1449 #15418)
-#15422 := (+ #15362 #15421)
-#15423 := (<= #15422 0::int)
-#15467 := (or #15423 #15420)
-#15468 := (not #15467)
-#15469 := (or #15363 #15468)
-#14738 := (or #4461 #15469)
-#14986 := (iff #14738 #14730)
-#14556 := (or #4461 #15481)
-#14896 := (iff #14556 #14730)
-#15034 := [rewrite]: #14896
-#14832 := (iff #14738 #14556)
-#15482 := (iff #15469 #15481)
-#15479 := (iff #15468 #15478)
-#15476 := (iff #15467 #15473)
-#15470 := (or #15434 #15420)
-#15474 := (iff #15470 #15473)
-#15475 := [rewrite]: #15474
-#15471 := (iff #15467 #15470)
-#15437 := (iff #15423 #15434)
-#15425 := (+ #15362 #15418)
-#15426 := (+ #1449 #15425)
-#15429 := (<= #15426 0::int)
-#15435 := (iff #15429 #15434)
-#15436 := [rewrite]: #15435
-#15430 := (iff #15423 #15429)
-#15427 := (= #15422 #15426)
-#15428 := [rewrite]: #15427
-#15431 := [monotonicity #15428]: #15430
-#15438 := [trans #15431 #15436]: #15437
-#15472 := [monotonicity #15438]: #15471
-#15477 := [trans #15472 #15475]: #15476
-#15480 := [monotonicity #15477]: #15479
-#15483 := [monotonicity #15369 #15480]: #15482
-#15031 := [monotonicity #15483]: #14832
-#14985 := [trans #15031 #15034]: #14986
-#12501 := [quant-inst]: #14738
-#15678 := [mp #12501 #14985]: #14730
-#32969 := [unit-resolution #15678 #8574]: #15481
-#32952 := [unit-resolution #32969 #32950]: #15478
-#29629 := (or #15473 #15443)
-#25301 := (not #15443)
-#29623 := [hypothesis]: #25301
-#15187 := (not #15420)
-#29624 := [hypothesis]: #15478
-#14833 := (or #15473 #15187)
-#15233 := [def-axiom]: #14833
-#29625 := [unit-resolution #15233 #29624]: #15187
-#8899 := (not #15434)
-#15050 := (or #15473 #8899)
-#15028 := [def-axiom]: #15050
-#29626 := [unit-resolution #15028 #29624]: #8899
-#15449 := (or #15420 #15434 #15443)
-#12503 := (or #4469 #15420 #15434 #15443)
-#15415 := (+ #15414 #2307)
-#15416 := (+ #144 #15415)
-#15417 := (= #15416 0::int)
-#15424 := (or #15423 #15420 #15417)
-#12502 := (or #4469 #15424)
-#14824 := (iff #12502 #12503)
-#14693 := (or #4469 #15449)
-#14698 := (iff #14693 #12503)
-#14734 := [rewrite]: #14698
-#14675 := (iff #12502 #14693)
-#15452 := (iff #15424 #15449)
-#15446 := (or #15434 #15420 #15443)
-#15450 := (iff #15446 #15449)
-#15451 := [rewrite]: #15450
-#15447 := (iff #15424 #15446)
-#15444 := (iff #15417 #15443)
-#15441 := (= #15416 #15440)
-#15442 := [rewrite]: #15441
-#15445 := [monotonicity #15442]: #15444
-#15448 := [monotonicity #15438 #15445]: #15447
-#15453 := [trans #15448 #15451]: #15452
-#14648 := [monotonicity #15453]: #14675
-#14687 := [trans #14648 #14734]: #14824
-#14736 := [quant-inst]: #12502
-#13488 := [mp #14736 #14687]: #12503
-#29627 := [unit-resolution #13488 #7390]: #15449
-#29628 := [unit-resolution #29627 #29626 #29625 #29623]: false
-#29630 := [lemma #29628]: #29629
-#32972 := [unit-resolution #29630 #32952]: #15443
-#29799 := (or #25301 #18779)
-#7126 := (uf_3 #6008)
-#15598 := (uf_1 #7126 ?x52!15)
-#27533 := (uf_3 #15598)
-#28710 := (uf_1 #7128 #27533)
-#28711 := (uf_10 #28710)
-#28714 := (* -1::int #28711)
-#28814 := (+ #15414 #28714)
-#28506 := (>= #28814 0::int)
-#28505 := (= #15414 #28711)
-#29767 := (= #28711 #15414)
-#29765 := (= #28710 #15413)
-#29763 := (= #27533 ?x52!15)
-#27534 := (= ?x52!15 #27533)
-#27563 := (or #5378 #27534)
-#27564 := [quant-inst]: #27563
-#29762 := [unit-resolution #27564 #4300]: #27534
-#29764 := [symm #29762]: #29763
-#29766 := [monotonicity #8036 #29764]: #29765
-#29768 := [monotonicity #29766]: #29767
-#29769 := [symm #29768]: #28505
-#29770 := (not #28505)
-#29771 := (or #29770 #28506)
-#29772 := [th-lemma]: #29771
-#29773 := [unit-resolution #29772 #29769]: #28506
-#5902 := (* -1::int #5856)
-#6232 := (+ #144 #5902)
-#6233 := (>= #6232 0::int)
-#4218 := (or #4583 #4472)
-#4120 := [def-axiom]: #4218
-#14110 := [unit-resolution #4120 #9437]: #4472
-#6959 := (or #4477 #6233)
-#6960 := [quant-inst]: #6959
-#12934 := [unit-resolution #6960 #14110]: #6233
-#7167 := (uf_18 #7128)
-#8141 := (* -1::int #7167)
-#10187 := (+ #5856 #8141)
-#7462 := (>= #10187 0::int)
-#10181 := (= #5856 #7167)
-#14102 := (= #7167 #5856)
-#14103 := [monotonicity #8036]: #14102
-#14104 := [symm #14103]: #10181
-#14105 := (not #10181)
-#25236 := (or #14105 #7462)
-#25243 := [th-lemma]: #25236
-#25235 := [unit-resolution #25243 #14104]: #7462
-#14406 := (<= #15440 0::int)
-#25300 := [hypothesis]: #15443
-#25302 := (or #25301 #14406)
-#25303 := [th-lemma]: #25302
-#25304 := [unit-resolution #25303 #25300]: #14406
-#15344 := (+ #2306 #8141)
-#15518 := (<= #15344 0::int)
-#7164 := (uf_6 uf_17 #7128)
-#7165 := (= uf_8 #7164)
-#25365 := (= #5319 #7164)
-#25361 := (= #7164 #5319)
-#25364 := [monotonicity #8578 #8036]: #25361
-#25366 := [symm #25364]: #25365
-#25367 := [trans #8579 #25366]: #7165
-#15503 := (uf_1 #7128 ?x52!15)
-#15504 := (uf_10 #15503)
-#15530 := (* -1::int #15504)
-#15531 := (+ #8141 #15530)
-#15532 := (+ #2306 #15531)
-#15533 := (= #15532 0::int)
-#25324 := (or #25301 #15533)
-#15538 := (not #15533)
-#25256 := [hypothesis]: #15538
-#14445 := (>= #15532 0::int)
-#14444 := (+ #15414 #15530)
-#14494 := (>= #14444 0::int)
-#14488 := (= #15414 #15504)
-#25275 := (= #15504 #15414)
-#25257 := (= #15503 #15413)
-#25274 := [monotonicity #8036]: #25257
-#25270 := [monotonicity #25274]: #25275
-#25276 := [symm #25270]: #14488
-#25277 := (not #14488)
-#25278 := (or #25277 #14494)
-#25279 := [th-lemma]: #25278
-#25280 := [unit-resolution #25279 #25276]: #14494
-#25306 := (not #14406)
-#25305 := (not #14494)
-#13409 := (not #6233)
-#25299 := (not #7462)
-#25307 := (or #14445 #25299 #13409 #25305 #25306)
-#25308 := [th-lemma]: #25307
-#25309 := [unit-resolution #25308 #25304 #25235 #12934 #25280]: #14445
-#14391 := (<= #15532 0::int)
-#14441 := (<= #14444 0::int)
-#25316 := (or #25277 #14441)
-#25317 := [th-lemma]: #25316
-#25315 := [unit-resolution #25317 #25276]: #14441
-#6970 := (<= #6232 0::int)
-#14098 := (not #5857)
-#14099 := (or #14098 #6970)
-#14100 := [th-lemma]: #14099
-#14101 := [unit-resolution #14100 #8570]: #6970
-#10188 := (<= #10187 0::int)
-#14106 := (or #14105 #10188)
-#14107 := [th-lemma]: #14106
-#14108 := [unit-resolution #14107 #14104]: #10188
-#14435 := (>= #15440 0::int)
-#25318 := (or #25301 #14435)
-#25319 := [th-lemma]: #25318
-#25320 := [unit-resolution #25319 #25300]: #14435
-#25333 := (not #14435)
-#25332 := (not #14441)
-#12642 := (not #6970)
-#25331 := (not #10188)
-#25334 := (or #14391 #25331 #12642 #25332 #25333)
-#25335 := [th-lemma]: #25334
-#25336 := [unit-resolution #25335 #25320 #14108 #14101 #25315]: #14391
-#25314 := (not #14445)
-#25337 := (not #14391)
-#25321 := (or #15533 #25337 #25314)
-#25322 := [th-lemma]: #25321
-#25323 := [unit-resolution #25322 #25336 #25309 #25256]: false
-#25313 := [lemma #25323]: #25324
-#29774 := [unit-resolution #25313 #25300]: #15533
-#7166 := (not #7165)
-#15541 := (or #7166 #15518 #15538)
-#6002 := (+ #108 #1449)
-#7864 := (<= #6002 0::int)
-#23377 := (= #108 #144)
-#12197 := (= #144 #108)
-#5945 := (= uf_16 uf_11)
-#5947 := (= uf_11 uf_16)
-#5928 := (?x40!7 uf_16)
-#5932 := (uf_4 uf_14 #5928)
-#5933 := (* -1::int #5932)
-#5929 := (uf_1 #5928 uf_16)
-#5930 := (uf_10 #5929)
-#5931 := (* -1::int #5930)
-#5950 := (+ #5931 #5933)
-#5951 := (+ #144 #5950)
-#5954 := (= #5951 0::int)
-#5957 := (not #5954)
-#5940 := (uf_6 uf_15 #5928)
-#5941 := (= uf_8 #5940)
-#5942 := (not #5941)
-#5938 := (+ #144 #5933)
-#5939 := (<= #5938 0::int)
-#5963 := (or #5939 #5942 #5957)
-#6003 := (>= #6002 0::int)
-#9539 := (not #7864)
-#23470 := [hypothesis]: #9539
-#23505 := (or #7864 #6003)
-#23465 := [th-lemma]: #23505
-#23464 := [unit-resolution #23465 #23470]: #6003
-#9672 := (not #6003)
-#18009 := (or #9672 #5939)
-#7466 := (>= #5932 0::int)
-#8252 := (not #7466)
-#8253 := [hypothesis]: #8252
-#8212 := (or #4409 #7466)
-#8206 := [quant-inst]: #8212
-#8263 := [unit-resolution #8206 #7305 #8253]: false
-#8264 := [lemma #8263]: #7466
-#17999 := (or #9672 #8252 #5939)
-#4050 := (<= #108 0::int)
-#7308 := (or #1854 #4050)
-#7309 := [th-lemma]: #7308
-#7310 := [unit-resolution #7309 #7307]: #4050
-#5512 := (not #4050)
-#17980 := (or #9672 #5512 #8252 #5939)
-#17982 := [th-lemma]: #17980
-#17995 := [unit-resolution #17982 #7310]: #17999
-#18007 := [unit-resolution #17995 #8264]: #18009
-#23469 := [unit-resolution #18007 #23464]: #5939
-#7005 := (not #5939)
-#7006 := (or #5963 #7005)
-#7007 := [def-axiom]: #7006
-#23506 := [unit-resolution #7007 #23469]: #5963
-#5968 := (not #5963)
-#18000 := (or #5947 #5968)
-#4208 := (or #4595 #1657)
-#4210 := [def-axiom]: #4208
-#16348 := [unit-resolution #4210 #7389]: #1657
-#6992 := (or #4442 #1656 #5947 #5968)
-#5934 := (+ #5933 #5931)
-#5935 := (+ #144 #5934)
-#5936 := (= #5935 0::int)
-#5937 := (not #5936)
-#5943 := (or #5942 #5939 #5937)
-#5944 := (not #5943)
-#5946 := (or #5945 #1656 #5944)
-#6993 := (or #4442 #5946)
-#7000 := (iff #6993 #6992)
-#5974 := (or #1656 #5947 #5968)
-#6995 := (or #4442 #5974)
-#6998 := (iff #6995 #6992)
-#6999 := [rewrite]: #6998
-#6996 := (iff #6993 #6995)
-#5977 := (iff #5946 #5974)
-#5971 := (or #5947 #1656 #5968)
-#5975 := (iff #5971 #5974)
-#5976 := [rewrite]: #5975
-#5972 := (iff #5946 #5971)
-#5969 := (iff #5944 #5968)
-#5966 := (iff #5943 #5963)
-#5960 := (or #5942 #5939 #5957)
-#5964 := (iff #5960 #5963)
-#5965 := [rewrite]: #5964
-#5961 := (iff #5943 #5960)
-#5958 := (iff #5937 #5957)
-#5955 := (iff #5936 #5954)
-#5952 := (= #5935 #5951)
-#5953 := [rewrite]: #5952
-#5956 := [monotonicity #5953]: #5955
-#5959 := [monotonicity #5956]: #5958
-#5962 := [monotonicity #5959]: #5961
-#5967 := [trans #5962 #5965]: #5966
-#5970 := [monotonicity #5967]: #5969
-#5948 := (iff #5945 #5947)
-#5949 := [rewrite]: #5948
-#5973 := [monotonicity #5949 #5970]: #5972
-#5978 := [trans #5973 #5976]: #5977
-#6997 := [monotonicity #5978]: #6996
-#7001 := [trans #6997 #6999]: #7000
-#6994 := [quant-inst]: #6993
-#7002 := [mp #6994 #7001]: #6992
-#18030 := [unit-resolution #7002 #8030 #16348]: #18000
-#23510 := [unit-resolution #18030 #23506]: #5947
-#12009 := [symm #23510]: #5945
-#12163 := [monotonicity #12009]: #12197
-#12023 := [symm #12163]: #23377
-#12215 := (not #23377)
-#12216 := (or #12215 #7864)
-#11464 := [th-lemma]: #12216
-#12217 := [unit-resolution #11464 #23470 #12023]: false
-#12311 := [lemma #12217]: #7864
-#9540 := (or #2234 #9539)
-#6554 := (uf_1 uf_16 ?x47!10)
-#6555 := (uf_10 #6554)
-#6435 := (* -1::int #2233)
-#6597 := (+ #6435 #6555)
-#6598 := (+ #144 #6597)
-#8322 := (<= #6598 0::int)
-#6601 := (= #6598 0::int)
-#6538 := (* -1::int #6555)
-#6539 := (+ uf_9 #6538)
-#6540 := (<= #6539 0::int)
-#8336 := (not #6540)
-#6327 := (uf_4 uf_14 ?x47!10)
-#6471 := (* -1::int #6327)
-#6590 := (+ #6471 #6555)
-#6591 := (+ #144 #6590)
-#6592 := (>= #6591 0::int)
-#6650 := (or #6540 #6592)
-#6660 := (not #6650)
-#6344 := (= #2233 #6327)
-#9327 := (not #6344)
-#6472 := (+ #2233 #6471)
-#8301 := (>= #6472 0::int)
-#9317 := (not #8301)
-#9321 := [hypothesis]: #2235
-#6814 := (>= #6327 0::int)
-#7656 := (or #4409 #6814)
-#7657 := [quant-inst]: #7656
-#9322 := [unit-resolution #7657 #7305]: #6814
-#9323 := (not #6814)
-#9324 := (or #9317 #2234 #9323)
-#9325 := [th-lemma]: #9324
-#9326 := [unit-resolution #9325 #9322 #9321]: #9317
-#9347 := (or #9327 #8301)
-#9348 := [th-lemma]: #9347
-#9349 := [unit-resolution #9348 #9326]: #9327
-#6662 := (or #6344 #6660)
-#8339 := (or #4461 #6344 #6660)
-#6541 := (+ #1449 #6538)
-#6536 := (+ #6327 #6541)
-#6542 := (<= #6536 0::int)
-#6641 := (or #6542 #6540)
-#6642 := (not #6641)
-#6328 := (= #6327 #2233)
-#6643 := (or #6328 #6642)
-#8314 := (or #4461 #6643)
-#8333 := (iff #8314 #8339)
-#8281 := (or #4461 #6662)
-#8343 := (iff #8281 #8339)
-#8332 := [rewrite]: #8343
-#8341 := (iff #8314 #8281)
-#6663 := (iff #6643 #6662)
-#6661 := (iff #6642 #6660)
-#6655 := (iff #6641 #6650)
-#6649 := (or #6592 #6540)
-#6653 := (iff #6649 #6650)
-#6654 := [rewrite]: #6653
-#6651 := (iff #6641 #6649)
-#6595 := (iff #6542 #6592)
-#6544 := (+ #6327 #6538)
-#6545 := (+ #1449 #6544)
-#6562 := (<= #6545 0::int)
-#6593 := (iff #6562 #6592)
-#6594 := [rewrite]: #6593
-#6587 := (iff #6542 #6562)
-#6546 := (= #6536 #6545)
-#6561 := [rewrite]: #6546
-#6589 := [monotonicity #6561]: #6587
-#6596 := [trans #6589 #6594]: #6595
-#6652 := [monotonicity #6596]: #6651
-#6658 := [trans #6652 #6654]: #6655
-#6659 := [monotonicity #6658]: #6661
-#6383 := (iff #6328 #6344)
-#6384 := [rewrite]: #6383
-#6664 := [monotonicity #6384 #6659]: #6663
-#8342 := [monotonicity #6664]: #8341
-#8334 := [trans #8342 #8332]: #8333
-#8340 := [quant-inst]: #8314
-#8335 := [mp #8340 #8334]: #8339
-#9350 := [unit-resolution #8335 #8574]: #6662
-#9351 := [unit-resolution #9350 #9349]: #6660
-#8327 := (or #6650 #8336)
-#8352 := [def-axiom]: #8327
-#9346 := [unit-resolution #8352 #9351]: #8336
-#8360 := (not #6592)
-#8348 := (or #6650 #8360)
-#8353 := [def-axiom]: #8348
-#9352 := [unit-resolution #8353 #9351]: #8360
-#6607 := (or #6540 #6592 #6601)
-#8318 := (or #4469 #6540 #6592 #6601)
-#6556 := (+ #6555 #6435)
-#6557 := (+ #144 #6556)
-#6537 := (= #6557 0::int)
-#6543 := (or #6542 #6540 #6537)
-#8344 := (or #4469 #6543)
-#8331 := (iff #8344 #8318)
-#8349 := (or #4469 #6607)
-#8330 := (iff #8349 #8318)
-#8325 := [rewrite]: #8330
-#8328 := (iff #8344 #8349)
-#6578 := (iff #6543 #6607)
-#6604 := (or #6592 #6540 #6601)
-#6579 := (iff #6604 #6607)
-#6580 := [rewrite]: #6579
-#6605 := (iff #6543 #6604)
-#6602 := (iff #6537 #6601)
-#6599 := (= #6557 #6598)
-#6600 := [rewrite]: #6599
-#6603 := [monotonicity #6600]: #6602
-#6606 := [monotonicity #6596 #6603]: #6605
-#6581 := [trans #6606 #6580]: #6578
-#8329 := [monotonicity #6581]: #8328
-#8320 := [trans #8329 #8325]: #8331
-#8345 := [quant-inst]: #8344
-#8321 := [mp #8345 #8320]: #8318
-#9353 := [unit-resolution #8321 #7390]: #6607
-#9354 := [unit-resolution #9353 #9352 #9346]: #6601
-#9355 := (not #6601)
-#9356 := (or #9355 #8322)
-#9367 := [th-lemma]: #9356
-#9368 := [unit-resolution #9367 #9354]: #8322
-#9369 := [hypothesis]: #7864
-#4041 := (>= #108 0::int)
-#9370 := (or #1854 #4041)
-#9371 := [th-lemma]: #9370
-#9366 := [unit-resolution #9371 #7307]: #4041
-#8900 := (uf_1 #7128 ?x47!10)
-#8901 := (uf_10 #8900)
-#8908 := (* -1::int #8901)
-#9307 := (+ #6555 #8908)
-#9320 := (>= #9307 0::int)
-#9304 := (= #6555 #8901)
-#9374 := (= #8901 #6555)
-#9372 := (= #8900 #6554)
-#9373 := [monotonicity #8036]: #9372
-#9375 := [monotonicity #9373]: #9374
-#9376 := [symm #9375]: #9304
-#9382 := (not #9304)
-#9383 := (or #9382 #9320)
-#9432 := [th-lemma]: #9383
-#9433 := [unit-resolution #9432 #9376]: #9320
-#9287 := (>= #8901 0::int)
-#9080 := (<= #8901 0::int)
-#9207 := (not #9080)
-#8373 := (= ?x47!10 #7128)
-#8730 := (not #8373)
-#6710 := (uf_6 uf_15 ?x47!10)
-#6711 := (= uf_8 #6710)
-#8599 := (ite #8373 #5314 #6711)
-#8729 := (not #8599)
-#7658 := (uf_6 #7203 ?x47!10)
-#8338 := (= uf_8 #7658)
-#8700 := (iff #8338 #8599)
-#8684 := (or #7026 #8700)
-#7640 := (ite #8373 #6089 #6711)
-#7653 := (= #7658 uf_8)
-#8337 := (iff #7653 #7640)
-#8723 := (or #7026 #8337)
-#8725 := (iff #8723 #8684)
-#8726 := (iff #8684 #8684)
-#8722 := [rewrite]: #8726
-#8682 := (iff #8337 #8700)
-#8326 := (iff #7640 #8599)
-#8600 := [monotonicity #6102]: #8326
-#8410 := (iff #7653 #8338)
-#8521 := [rewrite]: #8410
-#8683 := [monotonicity #8521 #8600]: #8682
-#8720 := [monotonicity #8683]: #8725
-#8727 := [trans #8720 #8722]: #8725
-#8724 := [quant-inst]: #8723
-#8728 := [mp #8724 #8727]: #8684
-#9434 := [unit-resolution #8728 #4320]: #8700
-#8895 := (not #8338)
-#6323 := (uf_6 uf_17 ?x47!10)
-#6325 := (= uf_8 #6323)
-#6326 := (not #6325)
-#9431 := (iff #6326 #8895)
-#9429 := (iff #6325 #8338)
-#9427 := (iff #8338 #6325)
-#9426 := (= #7658 #6323)
-#9421 := [monotonicity #8591]: #9426
-#9428 := [monotonicity #9421]: #9427
-#9430 := [symm #9428]: #9429
-#9460 := [monotonicity #9430]: #9431
-#6382 := (or #6326 #6344)
-#8268 := (or #4486 #6326 #6344)
-#6343 := (or #6328 #6326)
-#8269 := (or #4486 #6343)
-#8297 := (iff #8269 #8268)
-#8294 := (or #4486 #6382)
-#8296 := (iff #8294 #8268)
-#8283 := [rewrite]: #8296
-#8284 := (iff #8269 #8294)
-#6390 := (iff #6343 #6382)
-#6385 := (or #6344 #6326)
-#6388 := (iff #6385 #6382)
-#6389 := [rewrite]: #6388
-#6386 := (iff #6343 #6385)
-#6387 := [monotonicity #6384]: #6386
-#6391 := [trans #6387 #6389]: #6390
-#8295 := [monotonicity #6391]: #8284
-#8298 := [trans #8295 #8283]: #8297
-#8293 := [quant-inst]: #8269
-#8299 := [mp #8293 #8298]: #8268
-#9424 := [unit-resolution #8299 #9423]: #6382
-#9425 := [unit-resolution #9424 #9349]: #6326
-#9461 := [mp #9425 #9460]: #8895
-#8917 := (not #8700)
-#8920 := (or #8917 #8338 #8729)
-#8894 := [def-axiom]: #8920
-#9462 := [unit-resolution #8894 #9461 #9434]: #8729
-#9463 := (or #8599 #8730)
-#7040 := (not #5314)
-#8907 := (or #8599 #8730 #7040)
-#8910 := [def-axiom]: #8907
-#9464 := [unit-resolution #8910 #8579]: #9463
-#9459 := [unit-resolution #9464 #9462]: #8730
-#9206 := (or #8373 #9207)
-#9214 := (or #7093 #8373 #9207)
-#9208 := (= #7128 ?x47!10)
-#9209 := (or #9208 #9207)
-#9215 := (or #7093 #9209)
-#9241 := (iff #9215 #9214)
-#9242 := (or #7093 #9206)
-#9245 := (iff #9242 #9214)
-#9246 := [rewrite]: #9245
-#9243 := (iff #9215 #9242)
-#9212 := (iff #9209 #9206)
-#9210 := (iff #9208 #8373)
-#9211 := [rewrite]: #9210
-#9213 := [monotonicity #9211]: #9212
-#9244 := [monotonicity #9213]: #9243
-#9247 := [trans #9244 #9246]: #9241
-#9216 := [quant-inst]: #9215
-#9248 := [mp #9216 #9247]: #9214
-#9465 := [unit-resolution #9248 #4347]: #9206
-#9466 := [unit-resolution #9465 #9459]: #9207
-#9467 := (or #9287 #9080)
-#9468 := [th-lemma]: #9467
-#9469 := [unit-resolution #9468 #9466]: #9287
-#9538 := [th-lemma #9321 #9469 #9433 #9366 #9369 #9368]: false
-#9541 := [lemma #9538]: #9540
-#29775 := [unit-resolution #9541 #12311]: #2234
-#4222 := (or #4571 #4565)
-#4223 := [def-axiom]: #4222
-#25326 := [unit-resolution #4223 #9422]: #4565
-#25357 := (or #4568 #4562)
-#6056 := (= #108 #172)
-#25354 := (iff #6056 #173)
-#25353 := [commutativity]: #1490
-#25351 := (iff #6056 #645)
-#25352 := [monotonicity #7307]: #25351
-#25355 := [trans #25352 #25353]: #25354
-#6015 := (uf_10 #6008)
-#6019 := (* -1::int #6015)
-#6022 := (+ #1449 #6019)
-#6023 := (+ #108 #6022)
-#6024 := (<= #6023 0::int)
-#6020 := (+ uf_9 #6019)
-#6021 := (<= #6020 0::int)
-#6058 := (or #6021 #6024)
-#7125 := (>= #6015 0::int)
-#7105 := (= #6015 0::int)
-#7087 := (<= #6015 0::int)
-#4062 := (not #6024)
-#7293 := [hypothesis]: #4062
-#7312 := (or #7087 #6024)
-#7088 := (not #7087)
-#7292 := [hypothesis]: #7088
-#6001 := (>= #144 0::int)
-#7016 := (or #4409 #6001)
-#7017 := [quant-inst]: #7016
-#7306 := [unit-resolution #7017 #7305]: #6001
-#7311 := [th-lemma #7310 #7306 #7293 #7292]: false
-#7313 := [lemma #7311]: #7312
-#7186 := [unit-resolution #7313 #7293]: #7087
-#7090 := (or #5947 #7088)
-#7094 := (or #7093 #5947 #7088)
-#7089 := (or #5945 #7088)
-#7095 := (or #7093 #7089)
-#7102 := (iff #7095 #7094)
-#7097 := (or #7093 #7090)
-#7100 := (iff #7097 #7094)
-#7101 := [rewrite]: #7100
-#7098 := (iff #7095 #7097)
-#7091 := (iff #7089 #7090)
-#7092 := [monotonicity #5949]: #7091
-#7099 := [monotonicity #7092]: #7098
-#7103 := [trans #7099 #7101]: #7102
-#7096 := [quant-inst]: #7095
-#7104 := [mp #7096 #7103]: #7094
-#7187 := [unit-resolution #7104 #4347]: #7090
-#7182 := [unit-resolution #7187 #7186]: #5947
-#7108 := (not #5947)
-#7111 := (or #7108 #7105)
-#7114 := (or #6863 #7108 #7105)
-#7106 := (not #5945)
-#7107 := (or #7106 #7105)
-#7115 := (or #6863 #7107)
-#7122 := (iff #7115 #7114)
-#7117 := (or #6863 #7111)
-#7120 := (iff #7117 #7114)
-#7121 := [rewrite]: #7120
-#7118 := (iff #7115 #7117)
-#7112 := (iff #7107 #7111)
-#7109 := (iff #7106 #7108)
-#7110 := [monotonicity #5949]: #7109
-#7113 := [monotonicity #7110]: #7112
-#7119 := [monotonicity #7113]: #7118
-#7123 := [trans #7119 #7121]: #7122
-#7116 := [quant-inst]: #7115
-#7124 := [mp #7116 #7123]: #7114
-#7188 := [unit-resolution #7124 #4341]: #7111
-#7189 := [unit-resolution #7188 #7182]: #7105
-#7190 := (not #7105)
-#7191 := (or #7190 #7125)
-#7192 := [th-lemma]: #7191
-#7196 := [unit-resolution #7192 #7189]: #7125
-#7197 := [th-lemma #7310 #7306 #7293 #7196]: false
-#7195 := [lemma #7197]: #6024
-#5757 := (or #6058 #4062)
-#5573 := [def-axiom]: #5757
-#25327 := [unit-resolution #5573 #7195]: #6058
-#6061 := (not #6058)
-#6064 := (or #6056 #6061)
-#6681 := (or #4461 #6056 #6061)
-#6054 := (or #6024 #6021)
-#6055 := (not #6054)
-#6057 := (or #6056 #6055)
-#6682 := (or #4461 #6057)
-#6844 := (iff #6682 #6681)
-#6138 := (or #4461 #6064)
-#6392 := (iff #6138 #6681)
-#6683 := [rewrite]: #6392
-#6118 := (iff #6682 #6138)
-#6065 := (iff #6057 #6064)
-#6062 := (iff #6055 #6061)
-#6059 := (iff #6054 #6058)
-#6060 := [rewrite]: #6059
-#6063 := [monotonicity #6060]: #6062
-#6066 := [monotonicity #6063]: #6065
-#6735 := [monotonicity #6066]: #6118
-#6845 := [trans #6735 #6683]: #6844
-#6137 := [quant-inst]: #6682
-#6878 := [mp #6137 #6845]: #6681
-#25328 := [unit-resolution #6878 #8574]: #6064
-#25329 := [unit-resolution #25328 #25327]: #6056
-#25356 := [mp #25329 #25355]: #173
-#4237 := (or #4568 #1492 #4562)
-#4066 := [def-axiom]: #4237
-#25358 := [unit-resolution #4066 #25356]: #25357
-#25359 := [unit-resolution #25358 #25326]: #4562
-#4232 := (or #4559 #4553)
-#4233 := [def-axiom]: #4232
-#25339 := [unit-resolution #4233 #25359]: #4553
-#4087 := (or #4556 #2235 #4550)
-#4088 := [def-axiom]: #4087
-#25340 := [unit-resolution #4088 #25339]: #4553
-#29776 := [unit-resolution #25340 #29775]: #4550
-#4242 := (or #4547 #4541)
-#4243 := [def-axiom]: #4242
-#29777 := [unit-resolution #4243 #29776]: #4541
-#25343 := (or #4544 #4538)
-#12812 := (= #2249 #5856)
-#12998 := (= ?x48!12 uf_16)
-#10849 := (= ?x48!12 #7128)
-#10847 := (uf_6 uf_15 ?x48!12)
-#10848 := (= uf_8 #10847)
-#10857 := (ite #10849 #5314 #10848)
-#10851 := (uf_6 #7203 ?x48!12)
-#10854 := (= uf_8 #10851)
-#10860 := (iff #10854 #10857)
-#12152 := (or #7026 #10860)
-#10850 := (ite #10849 #6089 #10848)
-#10852 := (= #10851 uf_8)
-#10853 := (iff #10852 #10850)
-#12155 := (or #7026 #10853)
-#10823 := (iff #12155 #12152)
-#10879 := (iff #12152 #12152)
-#10880 := [rewrite]: #10879
-#10861 := (iff #10853 #10860)
-#10858 := (iff #10850 #10857)
-#10859 := [monotonicity #6102]: #10858
-#10855 := (iff #10852 #10854)
-#10856 := [rewrite]: #10855
-#10862 := [monotonicity #10856 #10859]: #10861
-#10824 := [monotonicity #10862]: #10823
-#11111 := [trans #10824 #10880]: #10823
-#12156 := [quant-inst]: #12155
-#11091 := [mp #12156 #11111]: #12152
-#13286 := [unit-resolution #11091 #4320]: #10860
-#12615 := (= #2254 #10851)
-#12608 := (= #10851 #2254)
-#12613 := [monotonicity #8591]: #12608
-#12730 := [symm #12613]: #12615
-#12965 := [hypothesis]: #3403
-#3920 := (or #3398 #2255)
-#4261 := [def-axiom]: #3920
-#12611 := [unit-resolution #4261 #12965]: #2255
-#13209 := [trans #12611 #12730]: #10854
-#11918 := (not #10854)
-#10920 := (not #10860)
-#11919 := (or #10920 #11918 #10857)
-#12057 := [def-axiom]: #11919
-#13217 := [unit-resolution #12057 #13209 #13286]: #10857
-#10236 := (not #10848)
-#11183 := (uf_4 uf_14 ?x48!12)
-#11200 := (* -1::int #11183)
-#13667 := (+ #7168 #11200)
-#13668 := (>= #13667 0::int)
-#13764 := (not #13668)
-#12813 := (+ #2249 #5902)
-#12814 := (<= #12813 0::int)
-#13407 := (not #12814)
-#11572 := (uf_4 uf_14 ?x49!11)
-#11589 := (* -1::int #11572)
-#11709 := (+ #144 #11589)
-#11710 := (<= #11709 0::int)
-#11467 := (uf_6 uf_15 ?x49!11)
-#11468 := (= uf_8 #11467)
-#12026 := (not #11468)
-#11469 := (= ?x49!11 #7128)
-#11477 := (ite #11469 #5314 #11468)
-#12038 := (not #11477)
-#11471 := (uf_6 #7203 ?x49!11)
-#11474 := (= uf_8 #11471)
-#11480 := (iff #11474 #11477)
-#12030 := (or #7026 #11480)
-#11470 := (ite #11469 #6089 #11468)
-#11472 := (= #11471 uf_8)
-#11473 := (iff #11472 #11470)
-#12028 := (or #7026 #11473)
-#12024 := (iff #12028 #12030)
-#12033 := (iff #12030 #12030)
-#12035 := [rewrite]: #12033
-#11481 := (iff #11473 #11480)
-#11478 := (iff #11470 #11477)
-#11479 := [monotonicity #6102]: #11478
-#11475 := (iff #11472 #11474)
-#11476 := [rewrite]: #11475
-#11482 := [monotonicity #11476 #11479]: #11481
-#12032 := [monotonicity #11482]: #12024
-#12036 := [trans #12032 #12035]: #12024
-#12031 := [quant-inst]: #12028
-#12034 := [mp #12031 #12036]: #12030
-#13262 := [unit-resolution #12034 #4320]: #11480
-#12051 := (not #11474)
-#13387 := (iff #2258 #12051)
-#13353 := (iff #2257 #11474)
-#12939 := (iff #11474 #2257)
-#13219 := (= #11471 #2256)
-#13243 := [monotonicity #8591]: #13219
-#13039 := [monotonicity #13243]: #12939
-#13377 := [symm #13039]: #13353
-#13388 := [monotonicity #13377]: #13387
-#3924 := (or #3398 #2258)
-#3925 := [def-axiom]: #3924
-#12937 := [unit-resolution #3925 #12965]: #2258
-#12543 := [mp #12937 #13388]: #12051
-#12047 := (not #11480)
-#12048 := (or #12047 #11474 #12038)
-#12050 := [def-axiom]: #12048
-#12544 := [unit-resolution #12050 #12543 #13262]: #12038
-#12039 := (not #11469)
-#12539 := (or #11477 #12039)
-#12042 := (or #11477 #12039 #7040)
-#12043 := [def-axiom]: #12042
-#12545 := [unit-resolution #12043 #8579]: #12539
-#12546 := [unit-resolution #12545 #12544]: #12039
-#12044 := (or #11477 #11469 #12026)
-#12045 := [def-axiom]: #12044
-#12548 := [unit-resolution #12045 #12546 #12544]: #12026
-#11715 := (or #11468 #11710)
-#4217 := (or #4595 #4446)
-#4221 := [def-axiom]: #4217
-#12574 := [unit-resolution #4221 #7389]: #4446
-#12438 := (or #4451 #11468 #11710)
-#11700 := (+ #11572 #1449)
-#11701 := (>= #11700 0::int)
-#11702 := (or #11468 #11701)
-#12444 := (or #4451 #11702)
-#12454 := (iff #12444 #12438)
-#12448 := (or #4451 #11715)
-#12452 := (iff #12448 #12438)
-#12453 := [rewrite]: #12452
-#12450 := (iff #12444 #12448)
-#11716 := (iff #11702 #11715)
-#11713 := (iff #11701 #11710)
-#11703 := (+ #1449 #11572)
-#11706 := (>= #11703 0::int)
-#11711 := (iff #11706 #11710)
-#11712 := [rewrite]: #11711
-#11707 := (iff #11701 #11706)
-#11704 := (= #11700 #11703)
-#11705 := [rewrite]: #11704
-#11708 := [monotonicity #11705]: #11707
-#11714 := [trans #11708 #11712]: #11713
-#11717 := [monotonicity #11714]: #11716
-#12451 := [monotonicity #11717]: #12450
-#12449 := [trans #12451 #12453]: #12454
-#12447 := [quant-inst]: #12444
-#12455 := [mp #12447 #12449]: #12438
-#12575 := [unit-resolution #12455 #12574]: #11715
-#12576 := [unit-resolution #12575 #12548]: #11710
-#3926 := (not #2855)
-#3927 := (or #3398 #3926)
-#4263 := [def-axiom]: #3927
-#12577 := [unit-resolution #4263 #12965]: #3926
-#13397 := (not #11710)
-#12612 := (or #13407 #2855 #11469 #13397)
-#11605 := (uf_1 uf_16 ?x49!11)
-#11606 := (uf_10 #11605)
-#11631 := (+ #2853 #11606)
-#11632 := (+ #144 #11631)
-#12233 := (<= #11632 0::int)
-#11635 := (= #11632 0::int)
-#11610 := (* -1::int #11606)
-#11611 := (+ uf_9 #11610)
-#11612 := (<= #11611 0::int)
-#12253 := (not #11612)
-#11624 := (+ #11589 #11606)
-#11625 := (+ #144 #11624)
-#11626 := (>= #11625 0::int)
-#11669 := (or #11612 #11626)
-#11674 := (not #11669)
-#11663 := (= #2251 #11572)
-#13437 := (not #11663)
-#11590 := (+ #2251 #11589)
-#12252 := (>= #11590 0::int)
-#13367 := (not #12252)
-#13284 := [hypothesis]: #11710
-#13478 := [hypothesis]: #3926
-#13215 := [hypothesis]: #12814
-#13389 := (or #13367 #13397 #2855 #13407 #13409)
-#13410 := [th-lemma]: #13389
-#13436 := [unit-resolution #13410 #13215 #13478 #13284 #12934]: #13367
-#13434 := (or #13437 #12252)
-#12573 := [th-lemma]: #13434
-#13419 := [unit-resolution #12573 #13436]: #13437
-#11677 := (or #11663 #11674)
-#12241 := (or #4461 #11663 #11674)
-#11613 := (+ #1449 #11610)
-#11614 := (+ #11572 #11613)
-#11615 := (<= #11614 0::int)
-#11659 := (or #11615 #11612)
-#11660 := (not #11659)
-#11661 := (= #11572 #2251)
-#11662 := (or #11661 #11660)
-#12242 := (or #4461 #11662)
-#12249 := (iff #12242 #12241)
-#12245 := (or #4461 #11677)
-#12247 := (iff #12245 #12241)
-#12248 := [rewrite]: #12247
-#12239 := (iff #12242 #12245)
-#11678 := (iff #11662 #11677)
-#11675 := (iff #11660 #11674)
-#11672 := (iff #11659 #11669)
-#11666 := (or #11626 #11612)
-#11670 := (iff #11666 #11669)
-#11671 := [rewrite]: #11670
-#11667 := (iff #11659 #11666)
-#11629 := (iff #11615 #11626)
-#11617 := (+ #11572 #11610)
-#11618 := (+ #1449 #11617)
-#11621 := (<= #11618 0::int)
-#11627 := (iff #11621 #11626)
-#11628 := [rewrite]: #11627
-#11622 := (iff #11615 #11621)
-#11619 := (= #11614 #11618)
-#11620 := [rewrite]: #11619
-#11623 := [monotonicity #11620]: #11622
-#11630 := [trans #11623 #11628]: #11629
-#11668 := [monotonicity #11630]: #11667
-#11673 := [trans #11668 #11671]: #11672
-#11676 := [monotonicity #11673]: #11675
-#11664 := (iff #11661 #11663)
-#11665 := [rewrite]: #11664
-#11679 := [monotonicity #11665 #11676]: #11678
-#12246 := [monotonicity #11679]: #12239
-#12244 := [trans #12246 #12248]: #12249
-#12243 := [quant-inst]: #12242
-#12251 := [mp #12243 #12244]: #12241
-#13417 := [unit-resolution #12251 #8574]: #11677
-#13423 := [unit-resolution #13417 #13419]: #11674
-#12254 := (or #11669 #12253)
-#12258 := [def-axiom]: #12254
-#13426 := [unit-resolution #12258 #13423]: #12253
-#12250 := (not #11626)
-#12259 := (or #11669 #12250)
-#12257 := [def-axiom]: #12259
-#13412 := [unit-resolution #12257 #13423]: #12250
-#11641 := (or #11612 #11626 #11635)
-#12229 := (or #4469 #11612 #11626 #11635)
-#11607 := (+ #11606 #2853)
-#11608 := (+ #144 #11607)
-#11609 := (= #11608 0::int)
-#11616 := (or #11615 #11612 #11609)
-#12222 := (or #4469 #11616)
-#12236 := (iff #12222 #12229)
-#12231 := (or #4469 #11641)
-#12227 := (iff #12231 #12229)
-#12235 := [rewrite]: #12227
-#12232 := (iff #12222 #12231)
-#11644 := (iff #11616 #11641)
-#11638 := (or #11626 #11612 #11635)
-#11642 := (iff #11638 #11641)
-#11643 := [rewrite]: #11642
-#11639 := (iff #11616 #11638)
-#11636 := (iff #11609 #11635)
-#11633 := (= #11608 #11632)
-#11634 := [rewrite]: #11633
-#11637 := [monotonicity #11634]: #11636
-#11640 := [monotonicity #11630 #11637]: #11639
-#11645 := [trans #11640 #11643]: #11644
-#12234 := [monotonicity #11645]: #12232
-#12237 := [trans #12234 #12235]: #12236
-#12230 := [quant-inst]: #12222
-#12238 := [mp #12230 #12237]: #12229
-#13413 := [unit-resolution #12238 #7390]: #11641
-#13433 := [unit-resolution #13413 #13412 #13426]: #11635
-#13370 := (not #11635)
-#13390 := (or #13370 #12233)
-#13391 := [th-lemma]: #13390
-#13385 := [unit-resolution #13391 #13433]: #12233
-#12787 := (uf_1 #7128 ?x49!11)
-#12788 := (uf_10 #12787)
-#12790 := (* -1::int #12788)
-#13285 := (+ #11606 #12790)
-#13280 := (>= #13285 0::int)
-#13216 := (= #11606 #12788)
-#12644 := (= #12788 #11606)
-#12645 := (= #12787 #11605)
-#13418 := [monotonicity #8036]: #12645
-#12646 := [monotonicity #13418]: #12644
-#12578 := [symm #12646]: #13216
-#12641 := (not #13216)
-#12647 := (or #12641 #13280)
-#12643 := [th-lemma]: #12647
-#12582 := [unit-resolution #12643 #12578]: #13280
-#13068 := (<= #12788 0::int)
-#13063 := (not #13068)
-#12581 := [hypothesis]: #12039
-#13211 := (or #7093 #11469 #13063)
-#12936 := (= #7128 ?x49!11)
-#13162 := (or #12936 #13063)
-#13263 := (or #7093 #13162)
-#13354 := (iff #13263 #13211)
-#13255 := (or #11469 #13063)
-#13161 := (or #7093 #13255)
-#13351 := (iff #13161 #13211)
-#13352 := [rewrite]: #13351
-#13071 := (iff #13263 #13161)
-#13069 := (iff #13162 #13255)
-#13204 := (iff #12936 #11469)
-#13265 := [rewrite]: #13204
-#13210 := [monotonicity #13265]: #13069
-#13163 := [monotonicity #13210]: #13071
-#13067 := [trans #13163 #13352]: #13354
-#13160 := [quant-inst]: #13263
-#13355 := [mp #13160 #13067]: #13211
-#12609 := [unit-resolution #13355 #4347 #12581]: #13063
-#12610 := [th-lemma #13478 #13215 #12934 #12609 #12582 #13385]: false
-#12583 := [lemma #12610]: #12612
-#12780 := [unit-resolution #12583 #12577 #12546 #12576]: #13407
-#11201 := (+ #2249 #11200)
-#11202 := (<= #11201 0::int)
-#12087 := (or #4477 #11202)
-#11190 := (+ #11183 #2250)
-#11193 := (>= #11190 0::int)
-#12088 := (or #4477 #11193)
-#12090 := (iff #12088 #12087)
-#12092 := (iff #12087 #12087)
-#12093 := [rewrite]: #12092
-#11205 := (iff #11193 #11202)
-#11194 := (+ #2250 #11183)
-#11197 := (>= #11194 0::int)
-#11203 := (iff #11197 #11202)
-#11204 := [rewrite]: #11203
-#11198 := (iff #11193 #11197)
-#11195 := (= #11190 #11194)
-#11196 := [rewrite]: #11195
-#11199 := [monotonicity #11196]: #11198
-#11206 := [trans #11199 #11204]: #11205
-#12091 := [monotonicity #11206]: #12090
-#12095 := [trans #12091 #12093]: #12090
-#12085 := [quant-inst]: #12088
-#12097 := [mp #12085 #12095]: #12087
-#13218 := [unit-resolution #12097 #14110]: #11202
-#12617 := (not #11202)
-#12729 := (not #7572)
-#12728 := (or #13764 #12729 #12814 #12617 #12642)
-#12733 := [th-lemma]: #12728
-#12616 := [unit-resolution #12733 #13218 #9185 #14101 #12780]: #13764
-#13844 := (or #10236 #13668)
-#13842 := [hypothesis]: #13764
-#13843 := [hypothesis]: #10848
-#13801 := (or #4426 #7247 #10236 #13668)
-#13669 := (or #10236 #7247 #13668)
-#13802 := (or #4426 #13669)
-#13788 := (iff #13802 #13801)
-#13670 := (or #7247 #10236 #13668)
-#13804 := (or #4426 #13670)
-#13786 := (iff #13804 #13801)
-#13787 := [rewrite]: #13786
-#13805 := (iff #13802 #13804)
-#13665 := (iff #13669 #13670)
-#13671 := [rewrite]: #13665
-#13806 := [monotonicity #13671]: #13805
-#13789 := [trans #13806 #13787]: #13788
-#13803 := [quant-inst]: #13802
-#13790 := [mp #13803 #13789]: #13801
-#13838 := [unit-resolution #13790 #9153 #9152 #13843 #13842]: false
-#13845 := [lemma #13838]: #13844
-#12734 := [unit-resolution #13845 #12616]: #10236
-#11030 := (not #10857)
-#11307 := (or #11030 #10849 #10848)
-#11294 := [def-axiom]: #11307
-#12742 := [unit-resolution #11294 #12734 #13217]: #10849
-#12732 := [trans #12742 #8036]: #12998
-#12743 := [monotonicity #12732]: #12812
-#12969 := (not #12812)
-#12967 := (or #12969 #12814)
-#12973 := [th-lemma]: #12967
-#12786 := [unit-resolution #12973 #12780]: #12969
-#12771 := [unit-resolution #12786 #12743]: false
-#12735 := [lemma #12771]: #3398
-#4251 := (or #4544 #3403 #4538)
-#4248 := [def-axiom]: #4251
-#25338 := [unit-resolution #4248 #12735]: #25343
-#29778 := [unit-resolution #25338 #29777]: #4538
-#3968 := (or #4535 #4529)
-#3969 := [def-axiom]: #3968
-#29779 := [unit-resolution #3969 #29778]: #4529
-#25346 := (or #4532 #4526)
-#17148 := [hypothesis]: #3449
-#4266 := (or #3444 #2287)
-#4267 := [def-axiom]: #4266
-#17149 := [unit-resolution #4267 #17148]: #2287
-#9931 := (uf_1 uf_16 ?x50!14)
-#9932 := (uf_10 #9931)
-#9936 := (* -1::int #9932)
-#17081 := (+ #2281 #9936)
-#17083 := (>= #17081 0::int)
-#17080 := (= #2281 #9932)
-#17180 := (= #2280 #9931)
-#17179 := (= ?x51!13 uf_16)
-#10336 := (= ?x51!13 #7128)
-#10334 := (uf_6 uf_15 ?x51!13)
-#10335 := (= uf_8 #10334)
-#10367 := (not #10335)
-#10193 := (uf_4 uf_14 ?x51!13)
-#9874 := (uf_4 uf_14 ?x50!14)
-#9915 := (* -1::int #9874)
-#10384 := (+ #9915 #10193)
-#10385 := (+ #2281 #10384)
-#10388 := (>= #10385 0::int)
-#17156 := (not #10388)
-#9916 := (+ #2276 #9915)
-#9917 := (<= #9916 0::int)
-#16708 := (or #4477 #9917)
-#9907 := (+ #9874 #2277)
-#9908 := (>= #9907 0::int)
-#16709 := (or #4477 #9908)
-#16711 := (iff #16709 #16708)
-#16713 := (iff #16708 #16708)
-#16714 := [rewrite]: #16713
-#9920 := (iff #9908 #9917)
-#9909 := (+ #2277 #9874)
-#9912 := (>= #9909 0::int)
-#9918 := (iff #9912 #9917)
-#9919 := [rewrite]: #9918
-#9913 := (iff #9908 #9912)
-#9910 := (= #9907 #9909)
-#9911 := [rewrite]: #9910
-#9914 := [monotonicity #9911]: #9913
-#9921 := [trans #9914 #9919]: #9920
-#16712 := [monotonicity #9921]: #16711
-#16715 := [trans #16712 #16714]: #16711
-#16710 := [quant-inst]: #16709
-#16716 := [mp #16710 #16715]: #16708
-#17308 := [unit-resolution #16716 #14110]: #9917
-#3906 := (not #2882)
-#4269 := (or #3444 #3906)
-#4271 := [def-axiom]: #4269
-#17151 := [unit-resolution #4271 #17148]: #3906
-#10228 := (* -1::int #10193)
-#10229 := (+ #2278 #10228)
-#15878 := (>= #10229 0::int)
-#10198 := (= #2278 #10193)
-#4262 := (or #3444 #2289)
-#4268 := [def-axiom]: #4262
-#17152 := [unit-resolution #4268 #17148]: #2289
-#16493 := (or #4486 #3429 #10198)
-#10194 := (= #10193 #2278)
-#10197 := (or #10194 #3429)
-#16494 := (or #4486 #10197)
-#16503 := (iff #16494 #16493)
-#10204 := (or #3429 #10198)
-#16498 := (or #4486 #10204)
-#16501 := (iff #16498 #16493)
-#16502 := [rewrite]: #16501
-#16499 := (iff #16494 #16498)
-#10207 := (iff #10197 #10204)
-#10201 := (or #10198 #3429)
-#10205 := (iff #10201 #10204)
-#10206 := [rewrite]: #10205
-#10202 := (iff #10197 #10201)
-#10199 := (iff #10194 #10198)
-#10200 := [rewrite]: #10199
-#10203 := [monotonicity #10200]: #10202
-#10208 := [trans #10203 #10206]: #10207
-#16500 := [monotonicity #10208]: #16499
-#16504 := [trans #16500 #16502]: #16503
-#16497 := [quant-inst]: #16494
-#16505 := [mp #16497 #16504]: #16493
-#17150 := [unit-resolution #16505 #9423 #17152]: #10198
-#17153 := (not #10198)
-#17154 := (or #17153 #15878)
-#17155 := [th-lemma]: #17154
-#17147 := [unit-resolution #17155 #17150]: #15878
-#17313 := (not #9917)
-#17315 := (not #15878)
-#17157 := (or #17156 #17315 #17313 #2882)
-#17158 := [th-lemma]: #17157
-#17159 := [unit-resolution #17158 #17147 #17151 #17308]: #17156
-#17146 := (or #10367 #10388)
-#16749 := (or #4417 #2286 #10367 #10388)
-#10380 := (+ #10193 #9915)
-#10381 := (+ #2281 #10380)
-#10382 := (>= #10381 0::int)
-#10383 := (or #10367 #2286 #10382)
-#16750 := (or #4417 #10383)
-#16757 := (iff #16750 #16749)
-#10394 := (or #2286 #10367 #10388)
-#16752 := (or #4417 #10394)
-#16755 := (iff #16752 #16749)
-#16756 := [rewrite]: #16755
-#16753 := (iff #16750 #16752)
-#10397 := (iff #10383 #10394)
-#10391 := (or #10367 #2286 #10388)
-#10395 := (iff #10391 #10394)
-#10396 := [rewrite]: #10395
-#10392 := (iff #10383 #10391)
-#10389 := (iff #10382 #10388)
-#10386 := (= #10381 #10385)
-#10387 := [rewrite]: #10386
-#10390 := [monotonicity #10387]: #10389
-#10393 := [monotonicity #10390]: #10392
-#10398 := [trans #10393 #10396]: #10397
-#16754 := [monotonicity #10398]: #16753
-#16758 := [trans #16754 #16756]: #16757
-#16751 := [quant-inst]: #16750
-#16759 := [mp #16751 #16758]: #16749
-#17160 := [unit-resolution #16759 #8027 #17149]: #17146
-#17161 := [unit-resolution #17160 #17159]: #10367
-#10344 := (ite #10336 #5314 #10335)
-#10338 := (uf_6 #7203 ?x51!13)
-#10341 := (= uf_8 #10338)
-#10347 := (iff #10341 #10344)
-#16506 := (or #7026 #10347)
-#10337 := (ite #10336 #6089 #10335)
-#10339 := (= #10338 uf_8)
-#10340 := (iff #10339 #10337)
-#16507 := (or #7026 #10340)
-#16509 := (iff #16507 #16506)
-#16511 := (iff #16506 #16506)
-#16512 := [rewrite]: #16511
-#10348 := (iff #10340 #10347)
-#10345 := (iff #10337 #10344)
-#10346 := [monotonicity #6102]: #10345
-#10342 := (iff #10339 #10341)
-#10343 := [rewrite]: #10342
-#10349 := [monotonicity #10343 #10346]: #10348
-#16510 := [monotonicity #10349]: #16509
-#16513 := [trans #16510 #16512]: #16509
-#16508 := [quant-inst]: #16507
-#16514 := [mp #16508 #16513]: #16506
-#17162 := [unit-resolution #16514 #4320]: #10347
-#17171 := (= #2288 #10338)
-#17163 := (= #10338 #2288)
-#17164 := [monotonicity #8591]: #17163
-#17174 := [symm #17164]: #17171
-#17175 := [trans #17152 #17174]: #10341
-#16528 := (not #10341)
-#16525 := (not #10347)
-#16529 := (or #16525 #16528 #10344)
-#16530 := [def-axiom]: #16529
-#17176 := [unit-resolution #16530 #17175 #17162]: #10344
-#16515 := (not #10344)
-#16519 := (or #16515 #10336 #10335)
-#16520 := [def-axiom]: #16519
-#17178 := [unit-resolution #16520 #17176 #17161]: #10336
-#17177 := [trans #17178 #8036]: #17179
-#17181 := [monotonicity #17177]: #17180
-#17182 := [monotonicity #17181]: #17080
-#17187 := (not #17080)
-#17188 := (or #17187 #17083)
-#17186 := [th-lemma]: #17188
-#17189 := [unit-resolution #17186 #17182]: #17083
-#9937 := (+ uf_9 #9936)
-#9938 := (<= #9937 0::int)
-#9950 := (+ #9915 #9932)
-#9951 := (+ #144 #9950)
-#9952 := (>= #9951 0::int)
-#16744 := (not #9952)
-#10475 := (uf_2 #2280)
-#11002 := (uf_4 uf_14 #10475)
-#11016 := (* -1::int #11002)
-#16798 := (+ #10193 #11016)
-#16800 := (>= #16798 0::int)
-#16797 := (= #10193 #11002)
-#10476 := (= ?x51!13 #10475)
-#16793 := (or #7136 #10476)
-#16794 := [quant-inst]: #16793
-#17292 := [unit-resolution #16794 #4306]: #10476
-#17295 := [monotonicity #17292]: #16797
-#17296 := (not #16797)
-#17297 := (or #17296 #16800)
-#17298 := [th-lemma]: #17297
-#17299 := [unit-resolution #17298 #17295]: #16800
-#11017 := (+ #144 #11016)
-#11018 := (<= #11017 0::int)
-#17065 := (= #144 #11002)
-#17202 := (= #11002 #144)
-#17194 := (= #10475 uf_16)
-#17192 := (= #10475 #7128)
-#17190 := (= #10475 ?x51!13)
-#17191 := [symm #17292]: #17190
-#17193 := [trans #17191 #17178]: #17192
-#17195 := [trans #17193 #8036]: #17194
-#17203 := [monotonicity #17195]: #17202
-#17204 := [symm #17203]: #17065
-#17205 := (not #17065)
-#17206 := (or #17205 #11018)
-#17201 := [th-lemma]: #17206
-#17207 := [unit-resolution #17201 #17204]: #11018
-#17316 := (not #11018)
-#17314 := (not #16800)
-#17208 := (not #17083)
-#17209 := (or #16744 #17208 #17313 #2882 #17314 #17315 #17316)
-#17210 := [th-lemma]: #17209
-#17211 := [unit-resolution #17210 #17207 #17308 #17147 #17151 #17299 #17189]: #16744
-#9957 := (+ #2277 #9932)
-#9958 := (+ #144 #9957)
-#9961 := (= #9958 0::int)
-#17223 := (not #9961)
-#16729 := (>= #9958 0::int)
-#17219 := (not #16729)
-#17220 := (or #17219 #17208 #2882 #17314 #17315 #17316)
-#17221 := [th-lemma]: #17220
-#17222 := [unit-resolution #17221 #17207 #17147 #17151 #17299 #17189]: #17219
-#17218 := (or #17223 #16729)
-#17224 := [th-lemma]: #17218
-#17225 := [unit-resolution #17224 #17222]: #17223
-#9967 := (or #9938 #9952 #9961)
-#16717 := (or #4469 #9938 #9952 #9961)
-#9933 := (+ #9932 #2277)
-#9934 := (+ #144 #9933)
-#9935 := (= #9934 0::int)
-#9939 := (+ #1449 #9936)
-#9940 := (+ #9874 #9939)
-#9941 := (<= #9940 0::int)
-#9942 := (or #9941 #9938 #9935)
-#16718 := (or #4469 #9942)
-#16725 := (iff #16718 #16717)
-#16720 := (or #4469 #9967)
-#16723 := (iff #16720 #16717)
-#16724 := [rewrite]: #16723
-#16721 := (iff #16718 #16720)
-#9970 := (iff #9942 #9967)
-#9964 := (or #9952 #9938 #9961)
-#9968 := (iff #9964 #9967)
-#9969 := [rewrite]: #9968
-#9965 := (iff #9942 #9964)
-#9962 := (iff #9935 #9961)
-#9959 := (= #9934 #9958)
-#9960 := [rewrite]: #9959
-#9963 := [monotonicity #9960]: #9962
-#9955 := (iff #9941 #9952)
-#9943 := (+ #9874 #9936)
-#9944 := (+ #1449 #9943)
-#9947 := (<= #9944 0::int)
-#9953 := (iff #9947 #9952)
-#9954 := [rewrite]: #9953
-#9948 := (iff #9941 #9947)
-#9945 := (= #9940 #9944)
-#9946 := [rewrite]: #9945
-#9949 := [monotonicity #9946]: #9948
-#9956 := [trans #9949 #9954]: #9955
-#9966 := [monotonicity #9956 #9963]: #9965
-#9971 := [trans #9966 #9969]: #9970
-#16722 := [monotonicity #9971]: #16721
-#16726 := [trans #16722 #16724]: #16725
-#16719 := [quant-inst]: #16718
-#16727 := [mp #16719 #16726]: #16717
-#17226 := [unit-resolution #16727 #7390]: #9967
-#17227 := [unit-resolution #17226 #17225 #17211]: #9938
-#17228 := [th-lemma #17227 #17189 #17149]: false
-#17253 := [lemma #17228]: #3444
-#4253 := (or #4532 #3449 #4526)
-#4257 := [def-axiom]: #4253
-#25347 := [unit-resolution #4257 #17253]: #25346
-#29780 := [unit-resolution #25347 #29779]: #4526
-#3983 := (or #4523 #4515)
-#3984 := [def-axiom]: #3983
-#29781 := [unit-resolution #3984 #29780]: #4515
-#20547 := (or #4520 #7166 #15518 #15538)
-#15505 := (+ #2307 #15504)
-#15506 := (+ #7167 #15505)
-#15507 := (= #15506 0::int)
-#15508 := (not #15507)
-#15509 := (+ #7167 #2307)
-#15510 := (>= #15509 0::int)
-#15511 := (or #7166 #15510 #15508)
-#17626 := (or #4520 #15511)
-#20578 := (iff #17626 #20547)
-#20549 := (or #4520 #15541)
-#20516 := (iff #20549 #20547)
-#20517 := [rewrite]: #20516
-#20386 := (iff #17626 #20549)
-#15542 := (iff #15511 #15541)
-#15539 := (iff #15508 #15538)
-#15536 := (iff #15507 #15533)
-#15523 := (+ #7167 #15504)
-#15524 := (+ #2307 #15523)
-#15527 := (= #15524 0::int)
-#15534 := (iff #15527 #15533)
-#15535 := [rewrite]: #15534
-#15528 := (iff #15507 #15527)
-#15525 := (= #15506 #15524)
-#15526 := [rewrite]: #15525
-#15529 := [monotonicity #15526]: #15528
-#15537 := [trans #15529 #15535]: #15536
-#15540 := [monotonicity #15537]: #15539
-#15521 := (iff #15510 #15518)
-#15512 := (+ #2307 #7167)
-#15515 := (>= #15512 0::int)
-#15519 := (iff #15515 #15518)
-#15520 := [rewrite]: #15519
-#15516 := (iff #15510 #15515)
-#15513 := (= #15509 #15512)
-#15514 := [rewrite]: #15513
-#15517 := [monotonicity #15514]: #15516
-#15522 := [trans #15517 #15520]: #15521
-#15543 := [monotonicity #15522 #15540]: #15542
-#20388 := [monotonicity #15543]: #20386
-#20485 := [trans #20388 #20517]: #20578
-#20612 := [quant-inst]: #17626
-#20795 := [mp #20612 #20485]: #20547
-#29782 := [unit-resolution #20795 #29781]: #15541
-#29783 := [unit-resolution #29782 #29774 #25367]: #15518
-#28771 := (<= #28711 0::int)
-#28772 := (not #28771)
-#28773 := (= #7128 #27533)
-#29792 := (not #28773)
-#28056 := (not #18779)
-#29793 := (iff #28056 #29792)
-#29790 := (iff #18779 #28773)
-#29788 := (iff #28773 #18779)
-#29785 := (iff #28773 #25219)
-#29786 := [monotonicity #29764]: #29785
-#29789 := [trans #29786 #29787]: #29788
-#29791 := [symm #29789]: #29790
-#29794 := [monotonicity #29791]: #29793
-#29784 := [hypothesis]: #28056
-#29795 := [mp #29784 #29794]: #29792
-#28775 := (or #28772 #28773)
-#29743 := (or #7093 #28772 #28773)
-#28774 := (or #28773 #28772)
-#29744 := (or #7093 #28774)
-#29751 := (iff #29744 #29743)
-#29746 := (or #7093 #28775)
-#29749 := (iff #29746 #29743)
-#29750 := [rewrite]: #29749
-#29747 := (iff #29744 #29746)
-#28776 := (iff #28774 #28775)
-#28777 := [rewrite]: #28776
-#29748 := [monotonicity #28777]: #29747
-#29752 := [trans #29748 #29750]: #29751
-#29745 := [quant-inst]: #29744
-#29753 := [mp #29745 #29752]: #29743
-#29796 := [unit-resolution #29753 #4347]: #28775
-#29797 := [unit-resolution #29796 #29795]: #28772
-#29798 := [th-lemma #29797 #29783 #25304 #25235 #12934 #29773]: false
-#29800 := [lemma #29798]: #29799
-#32973 := [unit-resolution #29800 #32972]: #18779
-#32992 := [mp #32973 #32991]: #32602
-#32632 := (not #32602)
-#32993 := (or #32591 #32632)
-#29702 := (or #32591 #32632 #7040)
-#30315 := [def-axiom]: #29702
-#32995 := [unit-resolution #30315 #8579]: #32993
-#32996 := [unit-resolution #32995 #32992]: #32591
-#32599 := (not #32591)
-#28920 := (not #32564)
-#30916 := (or #28920 #32538 #32599)
-#31002 := [def-axiom]: #30916
-#32987 := [unit-resolution #31002 #32996 #32981 #32954]: false
-#32997 := [lemma #32987]: #15367
-#39375 := (or #32956 #14218)
-#39376 := [th-lemma]: #39375
-#39377 := [unit-resolution #39376 #32997]: #14218
-#34351 := (not #14218)
-#34357 := (or #34324 #34351)
-#4272 := (or #4523 #2319)
-#4270 := [def-axiom]: #4272
-#34292 := [unit-resolution #4270 #29780]: #2319
-#34293 := [hypothesis]: #14218
-#34291 := [hypothesis]: #16010
-#34294 := [th-lemma #34291 #34293 #34292]: false
-#34641 := [lemma #34294]: #34357
-#39378 := [unit-resolution #34641 #39377]: #34324
-#39380 := (or #16010 #16030)
-#4273 := (or #4523 #2896)
-#4259 := [def-axiom]: #4273
-#39379 := [unit-resolution #4259 #29780]: #2896
-#17785 := (or #4442 #2893 #16010 #16030)
-#15998 := (+ #15997 #15995)
-#15999 := (+ #15362 #15998)
-#16000 := (= #15999 0::int)
-#16001 := (not #16000)
-#16007 := (or #16006 #16003 #16001)
-#16008 := (not #16007)
-#16011 := (or #2320 #16010 #16008)
-#20897 := (or #4442 #16011)
-#21453 := (iff #20897 #17785)
-#16033 := (or #2893 #16010 #16030)
-#21128 := (or #4442 #16033)
-#18084 := (iff #21128 #17785)
-#22003 := [rewrite]: #18084
-#20788 := (iff #20897 #21128)
-#16034 := (iff #16011 #16033)
-#16031 := (iff #16008 #16030)
-#16028 := (iff #16007 #16025)
-#16022 := (or #16006 #16003 #16019)
-#16026 := (iff #16022 #16025)
-#16027 := [rewrite]: #16026
-#16023 := (iff #16007 #16022)
-#16020 := (iff #16001 #16019)
-#16017 := (iff #16000 #16016)
-#16014 := (= #15999 #16013)
-#16015 := [rewrite]: #16014
-#16018 := [monotonicity #16015]: #16017
-#16021 := [monotonicity #16018]: #16020
-#16024 := [monotonicity #16021]: #16023
-#16029 := [trans #16024 #16027]: #16028
-#16032 := [monotonicity #16029]: #16031
-#16035 := [monotonicity #2895 #16032]: #16034
-#21237 := [monotonicity #16035]: #20788
-#21330 := [trans #21237 #22003]: #21453
-#21234 := [quant-inst]: #20897
-#21506 := [mp #21234 #21330]: #17785
-#39381 := [unit-resolution #21506 #8030 #39379]: #39380
-#39382 := [unit-resolution #39381 #39378]: #16030
-#22030 := (or #16025 #16016)
-#18058 := [def-axiom]: #22030
-#32365 := [unit-resolution #18058 #39382]: #16016
-#32368 := (or #16019 #22006)
-#29568 := [th-lemma]: #32368
-#29612 := [unit-resolution #29568 #32365]: #22006
-#20411 := (+ uf_9 #15995)
-#20412 := (<= #20411 0::int)
-#20215 := (uf_6 uf_17 #15992)
-#20216 := (= uf_8 #20215)
-#20606 := (uf_2 #15993)
-#39327 := (uf_6 #7203 #20606)
-#38901 := (= #39327 #20215)
-#38905 := (= #20215 #39327)
-#20607 := (= #15992 #20606)
-#25402 := (or #7136 #20607)
-#25393 := [quant-inst]: #25402
-#39384 := [unit-resolution #25393 #4306]: #20607
-#8247 := (= uf_17 #7203)
-#8291 := (= #150 #7203)
-#8151 := [symm #8593]: #8291
-#8423 := [trans #8578 #8151]: #8247
-#38906 := [monotonicity #8423 #39384]: #38905
-#38907 := [symm #38906]: #38901
-#39330 := (= uf_8 #39327)
-#21345 := (uf_6 uf_15 #20606)
-#21346 := (= uf_8 #21345)
-#39333 := (= #7128 #20606)
-#39336 := (ite #39333 #5314 #21346)
-#39339 := (iff #39330 #39336)
-#38867 := (or #7026 #39339)
-#39325 := (= #20606 #7128)
-#39326 := (ite #39325 #6089 #21346)
-#39328 := (= #39327 uf_8)
-#39329 := (iff #39328 #39326)
-#38877 := (or #7026 #39329)
-#38879 := (iff #38877 #38867)
-#38890 := (iff #38867 #38867)
-#38888 := [rewrite]: #38890
-#39340 := (iff #39329 #39339)
-#39337 := (iff #39326 #39336)
-#39334 := (iff #39325 #39333)
-#39335 := [rewrite]: #39334
-#39338 := [monotonicity #39335 #6102]: #39337
-#39331 := (iff #39328 #39330)
-#39332 := [rewrite]: #39331
-#39341 := [monotonicity #39332 #39338]: #39340
-#38889 := [monotonicity #39341]: #38879
-#38894 := [trans #38889 #38888]: #38879
-#38878 := [quant-inst]: #38877
-#38893 := [mp #38878 #38894]: #38867
-#38919 := [unit-resolution #38893 #4320]: #39339
-#38895 := (not #39339)
-#38922 := (or #38895 #39330)
-#39351 := (not #39336)
-#39371 := [hypothesis]: #39351
-#39352 := (not #39333)
-#39372 := (or #39336 #39352)
-#39357 := (or #39336 #39352 #7040)
-#39358 := [def-axiom]: #39357
-#39373 := [unit-resolution #39358 #8579]: #39372
-#39374 := [unit-resolution #39373 #39371]: #39352
-#39394 := (or #39336 #39333)
-#39391 := (= #16004 #21345)
-#39387 := (= #21345 #16004)
-#39385 := (= #20606 #15992)
-#39386 := [symm #39384]: #39385
-#39388 := [monotonicity #39386]: #39387
-#39392 := [symm #39388]: #39391
-#21698 := (or #16025 #16005)
-#21997 := [def-axiom]: #21698
-#39383 := [unit-resolution #21997 #39382]: #16005
-#39393 := [trans #39383 #39392]: #21346
-#21347 := (not #21346)
-#39359 := (or #39336 #39333 #21347)
-#39360 := [def-axiom]: #39359
-#39395 := [unit-resolution #39360 #39393]: #39394
-#39396 := [unit-resolution #39395 #39374 #39371]: false
-#39397 := [lemma #39396]: #39336
-#38896 := (or #38895 #39330 #39351)
-#38897 := [def-axiom]: #38896
-#38902 := [unit-resolution #38897 #39397]: #38922
-#38903 := [unit-resolution #38902 #38919]: #39330
-#38908 := [trans #38903 #38907]: #20216
-#20217 := (not #20216)
-#38921 := [hypothesis]: #20217
-#38924 := [unit-resolution #38921 #38908]: false
-#38927 := [lemma #38924]: #20216
-#20218 := (uf_18 #15992)
-#20235 := (* -1::int #20218)
-#20421 := (+ #15995 #20235)
-#20422 := (+ #2306 #20421)
-#20423 := (<= #20422 0::int)
-#31764 := (not #20423)
-#26473 := (>= #20422 0::int)
-#20236 := (+ #15996 #20235)
-#20237 := (>= #20236 0::int)
-#25927 := (or #4477 #20237)
-#26030 := [quant-inst]: #25927
-#27294 := [unit-resolution #26030 #14110]: #20237
-#32338 := (not #20237)
-#29920 := (not #22006)
-#29919 := (or #26473 #29920 #34351 #32338)
-#32347 := [th-lemma]: #29919
-#32336 := [unit-resolution #32347 #29612 #27294 #39377]: #26473
-#20465 := (= #20422 0::int)
-#20470 := (not #20465)
-#20454 := (+ #2306 #20235)
-#20455 := (<= #20454 0::int)
-#32331 := (not #20455)
-#22027 := (not #16003)
-#21587 := (or #16025 #22027)
-#21112 := [def-axiom]: #21587
-#32344 := [unit-resolution #21112 #39382]: #22027
-#32343 := (or #32331 #16003 #34351 #32338)
-#32335 := [th-lemma]: #32343
-#32375 := [unit-resolution #32335 #32344 #27294 #39377]: #32331
-#20473 := (or #20217 #20455 #20470)
-#25436 := (or #4520 #20217 #20455 #20470)
-#20442 := (+ #2307 #15994)
-#20443 := (+ #20218 #20442)
-#20444 := (= #20443 0::int)
-#20445 := (not #20444)
-#20406 := (+ #20218 #2307)
-#20446 := (>= #20406 0::int)
-#20447 := (or #20217 #20446 #20445)
-#26505 := (or #4520 #20447)
-#26705 := (iff #26505 #25436)
-#11899 := (or #4520 #20473)
-#26697 := (iff #11899 #25436)
-#26704 := [rewrite]: #26697
-#25435 := (iff #26505 #11899)
-#20474 := (iff #20447 #20473)
-#20471 := (iff #20445 #20470)
-#20468 := (iff #20444 #20465)
-#20414 := (+ #15994 #20218)
-#20415 := (+ #2307 #20414)
-#20462 := (= #20415 0::int)
-#20466 := (iff #20462 #20465)
-#20467 := [rewrite]: #20466
-#20463 := (iff #20444 #20462)
-#20460 := (= #20443 #20415)
-#20461 := [rewrite]: #20460
-#20464 := [monotonicity #20461]: #20463
-#20469 := [trans #20464 #20467]: #20468
-#20472 := [monotonicity #20469]: #20471
-#20458 := (iff #20446 #20455)
-#20448 := (+ #2307 #20218)
-#20451 := (>= #20448 0::int)
-#20456 := (iff #20451 #20455)
-#20457 := [rewrite]: #20456
-#20452 := (iff #20446 #20451)
-#20449 := (= #20406 #20448)
-#20450 := [rewrite]: #20449
-#20453 := [monotonicity #20450]: #20452
-#20459 := [trans #20453 #20457]: #20458
-#20475 := [monotonicity #20459 #20472]: #20474
-#26696 := [monotonicity #20475]: #25435
-#26698 := [trans #26696 #26704]: #26705
-#26504 := [quant-inst]: #26505
-#26615 := [mp #26504 #26698]: #25436
-#29644 := [unit-resolution #26615 #29781]: #20473
-#29611 := [unit-resolution #29644 #38927 #32375]: #20470
-#32349 := (not #26473)
-#31762 := (or #20465 #31764 #32349)
-#29679 := [th-lemma]: #31762
-#32366 := [unit-resolution #29679 #29611 #32336]: #31764
-#20428 := (or #20217 #20412 #20423)
-#4260 := (or #4523 #4506)
-#3982 := [def-axiom]: #4260
-#29894 := [unit-resolution #3982 #29780]: #4506
-#26338 := (or #4511 #20217 #20412 #20423)
-#20407 := (+ #15994 #20406)
-#20410 := (>= #20407 0::int)
-#20413 := (or #20217 #20412 #20410)
-#26340 := (or #4511 #20413)
-#25469 := (iff #26340 #26338)
-#10685 := (or #4511 #20428)
-#25478 := (iff #10685 #26338)
-#25474 := [rewrite]: #25478
-#25437 := (iff #26340 #10685)
-#20429 := (iff #20413 #20428)
-#20426 := (iff #20410 #20423)
-#20418 := (>= #20415 0::int)
-#20424 := (iff #20418 #20423)
-#20425 := [rewrite]: #20424
-#20419 := (iff #20410 #20418)
-#20416 := (= #20407 #20415)
-#20417 := [rewrite]: #20416
-#20420 := [monotonicity #20417]: #20419
-#20427 := [trans #20420 #20425]: #20426
-#20430 := [monotonicity #20427]: #20429
-#25388 := [monotonicity #20430]: #25437
-#25466 := [trans #25388 #25474]: #25469
-#25477 := [quant-inst]: #26340
-#25432 := [mp #25477 #25466]: #26338
-#31826 := [unit-resolution #25432 #29894]: #20428
-#29616 := [unit-resolution #31826 #32366 #38927]: #20412
-[th-lemma #34292 #39377 #29616 #29612 #29563]: false
+#1856 := [mp~ #401 #1855]: #396
+#4243 := [mp #1856 #4242]: #4238
+#6331 := (not #4238)
+#11098 := (or #6331 #10318 #10346)
+#10424 := (not #10406)
+#10425 := (or #10424 #10318)
+#11207 := (or #6331 #10425)
+#11222 := (iff #11207 #11098)
+#11209 := (or #6331 #10431)
+#11220 := (iff #11209 #11098)
+#11221 := [rewrite]: #11220
+#11210 := (iff #11207 #11209)
+#10434 := (iff #10425 #10431)
+#10428 := (or #10346 #10318)
+#10432 := (iff #10428 #10431)
+#10433 := [rewrite]: #10432
+#10429 := (iff #10425 #10428)
+#10426 := (iff #10424 #10346)
+#10427 := [monotonicity #10409]: #10426
+#10430 := [monotonicity #10427]: #10429
+#10435 := [trans #10430 #10433]: #10434
+#11211 := [monotonicity #10435]: #11210
+#11223 := [trans #11211 #11221]: #11222
+#11208 := [quant-inst]: #11207
+#11224 := [mp #11208 #11223]: #11098
+#11992 := [unit-resolution #11224 #4243]: #10431
+#11993 := [unit-resolution #11992 #11991 #11986]: false
+#11994 := [lemma #11993]: #11219
+#10057 := (+ #2261 #11133)
+#11955 := (<= #10057 0::int)
+#13994 := (not #12385)
+#13995 := (or #13994 #11955)
+#13996 := [th-lemma]: #13995
+#13997 := [unit-resolution #13996 #13203]: #11955
+#9707 := (* -1::int #9701)
+#10565 := (+ #188 #9707)
+#10581 := (>= #10565 0::int)
+#9923 := (= #188 #9701)
+#12919 := (= #9701 #188)
+#12920 := [monotonicity #10708]: #12919
+#12921 := [symm #12920]: #9923
+#12922 := (not #9923)
+#12923 := (or #12922 #10581)
+#12924 := [th-lemma]: #12923
+#12925 := [unit-resolution #12924 #12921]: #10581
+#13998 := [th-lemma #12925 #13997 #11994 #13993 #13980 #13979]: false
+#14001 := [lemma #13998]: #14000
+#13600 := [unit-resolution #14001 #13599]: #13999
+#13971 := (or #11138 #11135)
+#13935 := [hypothesis]: #13999
+#13936 := [hypothesis]: #11137
+#9685 := (uf_6 uf_15 #9695)
+#9686 := (= uf_8 #9685)
+#13964 := (not #9686)
+#13965 := (iff #731 #13964)
+#13957 := (iff #728 #9686)
+#13955 := (iff #9686 #728)
+#13948 := (= #9685 #185)
+#13954 := [monotonicity #10708]: #13948
+#13956 := [monotonicity #13954]: #13955
+#13958 := [symm #13956]: #13957
+#13968 := [monotonicity #13958]: #13965
+#4070 := (or #4567 #731)
+#4065 := [def-axiom]: #4070
+#13953 := [unit-resolution #4065 #10726]: #731
+#13969 := [mp #13953 #13968]: #13964
+#3978 := (or #4579 #4323)
+#4033 := [def-axiom]: #3978
+#13967 := [unit-resolution #4033 #5496]: #4323
+#13906 := (or #4328 #9686 #11135 #11138)
+#11139 := (or #9686 #11138 #11135)
+#13907 := (or #4328 #11139)
+#13933 := (iff #13907 #13906)
+#11140 := (or #9686 #11135 #11138)
+#13912 := (or #4328 #11140)
+#13931 := (iff #13912 #13906)
+#13932 := [rewrite]: #13931
+#13929 := (iff #13907 #13912)
+#11141 := (iff #11139 #11140)
+#11142 := [rewrite]: #11141
+#13930 := [monotonicity #11142]: #13929
+#13928 := [trans #13930 #13932]: #13933
+#13911 := [quant-inst]: #13907
+#13934 := [mp #13911 #13928]: #13906
+#13970 := [unit-resolution #13934 #13967 #13969 #13936 #13935]: false
+#13972 := [lemma #13970]: #13971
+#13598 := [unit-resolution #13972 #13600]: #11138
+#13978 := (or #13335 #11137)
+#13974 := (iff #9519 #11137)
+#13973 := (iff #11137 #9519)
+#13736 := (= #11136 #9518)
+#13693 := (= #10448 ?x63!14)
+#13735 := [symm #13195]: #13693
+#13905 := [monotonicity #13735]: #13736
+#13966 := [monotonicity #13905]: #13973
+#13975 := [symm #13966]: #13974
+#13619 := [hypothesis]: #9519
+#13976 := [mp #13619 #13975]: #11137
+#13625 := [hypothesis]: #11138
+#13977 := [unit-resolution #13625 #13976]: false
+#13982 := [lemma #13977]: #13978
+#13601 := [unit-resolution #13982 #13598]: #13335
+#13052 := (not #10330)
+#13244 := (or #13052 #10319 #9519)
+#13279 := [def-axiom]: #13244
+#13602 := [unit-resolution #13279 #13601 #13593]: #10319
+#13607 := [trans #13735 #13602]: #13609
+#13611 := [trans #13607 #10708]: #13610
+#13622 := [monotonicity #13611]: #13621
+#13629 := [symm #13622]: #13623
+#13634 := (= #2260 #188)
+#4740 := (uf_24 uf_22)
+#10619 := (= #4740 #188)
+#4741 := (= #188 #4740)
+#4729 := (uf_10 #4728)
+#4748 := (>= #4729 0::int)
+#4732 := (* -1::int #4729)
+#4736 := (+ uf_9 #4732)
+#4737 := (<= #4736 0::int)
+#4753 := (or #4737 #4748)
+#9615 := (= #4729 0::int)
+#9682 := (or #6331 #9615)
+#4959 := (= uf_22 uf_22)
+#9598 := (not #4959)
+#9599 := (or #9598 #9615)
+#9683 := (or #6331 #9599)
+#9749 := (iff #9683 #9682)
+#9751 := (iff #9682 #9682)
+#9752 := [rewrite]: #9751
+#9631 := (iff #9599 #9615)
+#9603 := (or false #9615)
+#9606 := (iff #9603 #9615)
+#9607 := [rewrite]: #9606
+#9604 := (iff #9599 #9603)
+#9602 := (iff #9598 false)
+#9600 := (iff #9598 #8605)
+#4968 := (iff #4959 true)
+#4969 := [rewrite]: #4968
+#9601 := [monotonicity #4969]: #9600
+#9597 := [trans #9601 #8609]: #9602
+#9605 := [monotonicity #9597]: #9604
+#9632 := [trans #9605 #9607]: #9631
+#9750 := [monotonicity #9632]: #9749
+#9747 := [trans #9750 #9752]: #9749
+#9748 := [quant-inst]: #9683
+#9724 := [mp #9748 #9747]: #9682
+#10718 := [unit-resolution #9724 #4243]: #9615
+#10719 := (not #9615)
+#10720 := (or #10719 #4748)
+#10721 := [th-lemma]: #10720
+#10722 := [unit-resolution #10721 #10718]: #4748
+#9223 := (not #4748)
+#9224 := (or #4753 #9223)
+#9225 := [def-axiom]: #9224
+#10723 := [unit-resolution #9225 #10722]: #4753
+#4756 := (not #4753)
+#4759 := (or #4741 #4756)
+#7499 := (or #4433 #4741 #4756)
+#4733 := (+ #1455 #4732)
+#4734 := (+ #188 #4733)
+#4735 := (<= #4734 0::int)
+#4738 := (or #4737 #4735)
+#4739 := (not #4738)
+#4742 := (or #4741 #4739)
+#7438 := (or #4433 #4742)
+#9202 := (iff #7438 #7499)
+#9040 := (or #4433 #4759)
+#9159 := (iff #9040 #7499)
+#9162 := [rewrite]: #9159
+#9149 := (iff #7438 #9040)
+#4760 := (iff #4742 #4759)
+#4757 := (iff #4739 #4756)
+#4754 := (iff #4738 #4753)
+#4751 := (iff #4735 #4748)
+#4745 := (<= #4732 0::int)
+#4749 := (iff #4745 #4748)
+#4750 := [rewrite]: #4749
+#4746 := (iff #4735 #4745)
+#4743 := (= #4734 #4732)
+#4744 := [rewrite]: #4743
+#4747 := [monotonicity #4744]: #4746
+#4752 := [trans #4747 #4750]: #4751
+#4755 := [monotonicity #4752]: #4754
+#4758 := [monotonicity #4755]: #4757
+#4761 := [monotonicity #4758]: #4760
+#8886 := [monotonicity #4761]: #9149
+#9203 := [trans #8886 #9162]: #9202
+#9039 := [quant-inst]: #7438
+#9204 := [mp #9039 #9203]: #7499
+#10728 := [unit-resolution #9204 #10727]: #4759
+#10729 := [unit-resolution #10728 #10723]: #4741
+#13620 := [symm #10729]: #10619
+#13608 := (= #2260 #4740)
+#9704 := (= ?x63!14 uf_22)
+#13603 := [trans #13602 #10708]: #9704
+#13612 := [monotonicity #13603]: #13608
+#13641 := [trans #13612 #13620]: #13634
+#13633 := [trans #13641 #13629]: #13222
+#13644 := [trans #13633 #13213]: #2866
+#13646 := [unit-resolution #13188 #13644]: false
+#13639 := [lemma #13646]: #2872
+#10564 := [unit-resolution #13639 #10294 #10559]: false
+#10587 := [lemma #10564]: #2872
+#4036 := (or #4567 #4561)
+#4037 := [def-axiom]: #4036
+#10784 := [unit-resolution #4037 #10726]: #4561
+#4062 := (or #4567 #4436)
+#4035 := [def-axiom]: #4062
+#10785 := [unit-resolution #4035 #10726]: #4436
+#9537 := (or #2858 #4441 #4433)
+#9339 := (uf_1 uf_22 ?x61!13)
+#9340 := (uf_10 #9339)
+#9365 := (+ #2240 #9340)
+#9366 := (+ #188 #9365)
+#9387 := (>= #9366 0::int)
+#9369 := (= #9366 0::int)
+#9344 := (* -1::int #9340)
+#9348 := (+ uf_9 #9344)
+#9349 := (<= #9348 0::int)
+#9416 := (not #9349)
+#9358 := (+ #2856 #9340)
+#9359 := (+ #188 #9358)
+#9360 := (>= #9359 0::int)
+#9395 := (or #9349 #9360)
+#9398 := (not #9395)
+#9392 := (= #2239 #2241)
+#9517 := (not #9392)
+#9516 := [hypothesis]: #2863
+#9520 := (or #9517 #2858)
+#9521 := [th-lemma]: #9520
+#9522 := [unit-resolution #9521 #9516]: #9517
+#9523 := [hypothesis]: #4428
+#9404 := (or #4433 #9392 #9398)
+#9345 := (+ #1455 #9344)
+#9346 := (+ #2241 #9345)
+#9347 := (<= #9346 0::int)
+#9388 := (or #9349 #9347)
+#9389 := (not #9388)
+#9390 := (= #2241 #2239)
+#9391 := (or #9390 #9389)
+#9405 := (or #4433 #9391)
+#9412 := (iff #9405 #9404)
+#9401 := (or #9392 #9398)
+#9407 := (or #4433 #9401)
+#9410 := (iff #9407 #9404)
+#9411 := [rewrite]: #9410
+#9408 := (iff #9405 #9407)
+#9402 := (iff #9391 #9401)
+#9399 := (iff #9389 #9398)
+#9396 := (iff #9388 #9395)
+#9363 := (iff #9347 #9360)
+#9351 := (+ #2241 #9344)
+#9352 := (+ #1455 #9351)
+#9355 := (<= #9352 0::int)
+#9361 := (iff #9355 #9360)
+#9362 := [rewrite]: #9361
+#9356 := (iff #9347 #9355)
+#9353 := (= #9346 #9352)
+#9354 := [rewrite]: #9353
+#9357 := [monotonicity #9354]: #9356
+#9364 := [trans #9357 #9362]: #9363
+#9397 := [monotonicity #9364]: #9396
+#9400 := [monotonicity #9397]: #9399
+#9393 := (iff #9390 #9392)
+#9394 := [rewrite]: #9393
+#9403 := [monotonicity #9394 #9400]: #9402
+#9409 := [monotonicity #9403]: #9408
+#9413 := [trans #9409 #9411]: #9412
+#9406 := [quant-inst]: #9405
+#9414 := [mp #9406 #9413]: #9404
+#9524 := [unit-resolution #9414 #9523 #9522]: #9398
+#9417 := (or #9395 #9416)
+#9418 := [def-axiom]: #9417
+#9525 := [unit-resolution #9418 #9524]: #9416
+#9419 := (not #9360)
+#9420 := (or #9395 #9419)
+#9421 := [def-axiom]: #9420
+#9526 := [unit-resolution #9421 #9524]: #9419
+#9372 := (or #9349 #9360 #9369)
+#7593 := [hypothesis]: #4436
+#9375 := (or #4441 #9349 #9360 #9369)
+#9341 := (+ #9340 #2240)
+#9342 := (+ #188 #9341)
+#9343 := (= #9342 0::int)
+#9350 := (or #9349 #9347 #9343)
+#9376 := (or #4441 #9350)
+#9383 := (iff #9376 #9375)
+#9378 := (or #4441 #9372)
+#9381 := (iff #9378 #9375)
+#9382 := [rewrite]: #9381
+#9379 := (iff #9376 #9378)
+#9373 := (iff #9350 #9372)
+#9370 := (iff #9343 #9369)
+#9367 := (= #9342 #9366)
+#9368 := [rewrite]: #9367
+#9371 := [monotonicity #9368]: #9370
+#9374 := [monotonicity #9364 #9371]: #9373
+#9380 := [monotonicity #9374]: #9379
+#9384 := [trans #9380 #9382]: #9383
+#9377 := [quant-inst]: #9376
+#9385 := [mp #9377 #9384]: #9375
+#9527 := [unit-resolution #9385 #7593]: #9372
+#9528 := [unit-resolution #9527 #9526 #9525]: #9369
+#9529 := (not #9369)
+#9530 := (or #9529 #9387)
+#9531 := [th-lemma]: #9530
+#9532 := [unit-resolution #9531 #9528]: #9387
+#9415 := (>= #2857 0::int)
+#9533 := (or #9415 #2858)
+#9534 := [th-lemma]: #9533
+#9535 := [unit-resolution #9534 #9516]: #9415
+#9536 := [th-lemma #9535 #9526 #9532]: false
+#9538 := [lemma #9536]: #9537
+#10786 := [unit-resolution #9538 #10785 #10727]: #2858
+#4066 := (or #4564 #2863 #4558)
+#4067 := [def-axiom]: #4066
+#10787 := [unit-resolution #4067 #10786 #10784]: #4558
+#4081 := (or #4555 #4549)
+#4082 := [def-axiom]: #4081
+#25696 := [unit-resolution #4082 #10787]: #4549
+#4077 := (or #4552 #2877 #4546)
+#4078 := [def-axiom]: #4077
+#25697 := [unit-resolution #4078 #25696]: #4549
+#25698 := [unit-resolution #25697 #10587]: #4546
+#4087 := (or #4543 #4453)
+#4089 := [def-axiom]: #4087
+#25699 := [unit-resolution #4089 #25698]: #4453
+#17073 := (or #3494 #2335 #4458)
+#4079 := (or #4555 #4444)
+#4080 := [def-axiom]: #4079
+#10788 := [unit-resolution #4080 #10787]: #4444
+#4071 := (or #4567 #4418)
+#4057 := [def-axiom]: #4071
+#17666 := [unit-resolution #4057 #10726]: #4418
+#17049 := (or #3494 #2335 #4441 #4423 #981 #4449 #4458)
+#7717 := (or #3494 #4319 #2335 #4441 #4423 #981 #4449 #4458)
+#6095 := (uf_4 uf_14 ?x72!18)
+#6194 := (* -1::int #6095)
+#6195 := (+ #2327 #6194)
+#7308 := (>= #6195 0::int)
+#6100 := (= #2327 #6095)
+#4138 := (or #3494 #2338)
+#4132 := [def-axiom]: #4138
+#7656 := [unit-resolution #4132 #7658]: #2338
+#7708 := [hypothesis]: #4453
+#6849 := (or #4458 #3479 #6100)
+#6096 := (= #6095 #2327)
+#6099 := (or #6096 #3479)
+#6850 := (or #4458 #6099)
+#6859 := (iff #6850 #6849)
+#6106 := (or #3479 #6100)
+#6854 := (or #4458 #6106)
+#6857 := (iff #6854 #6849)
+#6858 := [rewrite]: #6857
+#6855 := (iff #6850 #6854)
+#6109 := (iff #6099 #6106)
+#6103 := (or #6100 #3479)
+#6107 := (iff #6103 #6106)
+#6108 := [rewrite]: #6107
+#6104 := (iff #6099 #6103)
+#6101 := (iff #6096 #6100)
+#6102 := [rewrite]: #6101
+#6105 := [monotonicity #6102]: #6104
+#6110 := [trans #6105 #6108]: #6109
+#6856 := [monotonicity #6110]: #6855
+#6860 := [trans #6856 #6858]: #6859
+#6853 := [quant-inst]: #6850
+#6861 := [mp #6853 #6860]: #6849
+#7667 := [unit-resolution #6861 #7708 #7656]: #6100
+#7668 := (not #6100)
+#7666 := (or #7668 #7308)
+#7669 := [th-lemma]: #7666
+#7670 := [unit-resolution #7669 #7667]: #7308
+#4139 := (not #2923)
+#3968 := (or #3494 #4139)
+#3970 := [def-axiom]: #3968
+#7671 := [unit-resolution #3970 #7658]: #4139
+#7057 := (uf_4 uf_14 ?x71!19)
+#7092 := (* -1::int #7057)
+#7093 := (+ #2325 #7092)
+#7094 := (<= #7093 0::int)
+#7672 := [hypothesis]: #4444
+#7099 := (or #4449 #7094)
+#7084 := (+ #7057 #2326)
+#7085 := (>= #7084 0::int)
+#7100 := (or #4449 #7085)
+#7102 := (iff #7100 #7099)
+#7104 := (iff #7099 #7099)
+#7105 := [rewrite]: #7104
+#7097 := (iff #7085 #7094)
+#7086 := (+ #2326 #7057)
+#7089 := (>= #7086 0::int)
+#7095 := (iff #7089 #7094)
+#7096 := [rewrite]: #7095
+#7090 := (iff #7085 #7089)
+#7087 := (= #7084 #7086)
+#7088 := [rewrite]: #7087
+#7091 := [monotonicity #7088]: #7090
+#7098 := [trans #7091 #7096]: #7097
+#7103 := [monotonicity #7098]: #7102
+#7106 := [trans #7103 #7105]: #7102
+#7101 := [quant-inst]: #7100
+#7107 := [mp #7101 #7106]: #7099
+#7673 := [unit-resolution #7107 #7672]: #7094
+#7218 := (+ #6095 #7092)
+#7219 := (+ #2330 #7218)
+#7220 := (>= #7219 0::int)
+#6129 := (uf_6 uf_15 ?x72!18)
+#6130 := (= uf_8 #6129)
+decl uf_2 :: (-> T1 T2)
+#7303 := (uf_2 #2329)
+#7315 := (uf_6 uf_15 #7303)
+#7316 := (= uf_8 #7315)
+#7618 := (iff #7316 #6130)
+#7616 := (= #7315 #6129)
+#7707 := (= #6129 #7315)
+#7304 := (= ?x72!18 #7303)
+#16 := (uf_2 #12)
+#325 := (= #10 #16)
+#4203 := (forall (vars (?x4 T2) (?x5 T2)) (:pat #4196) #325)
+#329 := (forall (vars (?x4 T2) (?x5 T2)) #325)
+#4206 := (iff #329 #4203)
+#4204 := (iff #325 #325)
+#4205 := [refl]: #4204
+#4207 := [quant-intro #4205]: #4206
+#1844 := (~ #329 #329)
+#1878 := (~ #325 #325)
+#1879 := [refl]: #1878
+#1845 := [nnf-pos #1879]: #1844
+#17 := (= #16 #10)
+#18 := (forall (vars (?x4 T2) (?x5 T2)) #17)
+#330 := (iff #18 #329)
+#327 := (iff #17 #325)
+#328 := [rewrite]: #327
+#331 := [quant-intro #328]: #330
+#324 := [asserted]: #18
+#334 := [mp #324 #331]: #329
+#1880 := [mp~ #334 #1845]: #329
+#4208 := [mp #1880 #4207]: #4203
+#7310 := (not #4203)
+#7311 := (or #7310 #7304)
+#7312 := [quant-inst]: #7311
+#7862 := [unit-resolution #7312 #4208]: #7304
+#7751 := [monotonicity #7862]: #7707
+#7710 := [symm #7751]: #7616
+#7711 := [monotonicity #7710]: #7618
+#7575 := [hypothesis]: #4418
+#6147 := (= uf_22 ?x72!18)
+#6150 := (ite #6147 #3895 #6130)
+#4961 := (uf_7 uf_15 uf_22 #3894)
+#6141 := (uf_6 #4961 ?x72!18)
+#6144 := (= uf_8 #6141)
+#6153 := (iff #6144 #6150)
+#7188 := (or #4987 #6153)
+#6139 := (= ?x72!18 uf_22)
+#6140 := (ite #6139 #4958 #6130)
+#6142 := (= #6141 uf_8)
+#6143 := (iff #6142 #6140)
+#7189 := (or #4987 #6143)
+#7191 := (iff #7189 #7188)
+#7193 := (iff #7188 #7188)
+#7194 := [rewrite]: #7193
+#6154 := (iff #6143 #6153)
+#6151 := (iff #6140 #6150)
+#6148 := (iff #6139 #6147)
+#6149 := [rewrite]: #6148
+#6152 := [monotonicity #6149 #4971]: #6151
+#6145 := (iff #6142 #6144)
+#6146 := [rewrite]: #6145
+#6155 := [monotonicity #6146 #6152]: #6154
+#7192 := [monotonicity #6155]: #7191
+#7195 := [trans #7192 #7194]: #7191
+#7190 := [quant-inst]: #7189
+#7196 := [mp #7190 #7195]: #7188
+#7674 := [unit-resolution #7196 #4222]: #6153
+#7702 := (= #2337 #6141)
+#7684 := (= #6141 #2337)
+#7682 := (= #4961 uf_23)
+#7718 := [hypothesis]: #195
+#7681 := [symm #7718]: #7680
+#7676 := (= #4961 #194)
+#7679 := [monotonicity #7678]: #7676
+#7683 := [trans #7679 #7681]: #7682
+#7700 := [monotonicity #7683]: #7684
+#7703 := [symm #7700]: #7702
+#7704 := [trans #7656 #7703]: #6144
+#7211 := (not #6144)
+#7208 := (not #6153)
+#7212 := (or #7208 #7211 #6150)
+#7213 := [def-axiom]: #7212
+#7705 := [unit-resolution #7213 #7704 #7674]: #6150
+#7587 := [hypothesis]: #2336
+#7197 := (not #6150)
+#7876 := (not #7308)
+#7626 := (not #7094)
+#7627 := (or #7316 #7626 #2923 #7876 #4441 #2335 #7197 #4423)
+#7857 := [hypothesis]: #7308
+#7858 := [hypothesis]: #4139
+#7108 := (uf_1 uf_22 ?x71!19)
+#7109 := (uf_10 #7108)
+#7113 := (* -1::int #7109)
+#7842 := (+ #2330 #7113)
+#7844 := (>= #7842 0::int)
+#7841 := (= #2330 #7109)
+#7843 := (= #2329 #7108)
+#7559 := [hypothesis]: #6150
+#7205 := (not #6130)
+#7614 := (not #7316)
+#7615 := [hypothesis]: #7614
+#7625 := (or #7205 #7316)
+#7620 := (iff #6130 #7316)
+#7863 := (= #7303 ?x72!18)
+#7864 := [symm #7862]: #7863
+#7617 := [monotonicity #7864]: #7616
+#7619 := [monotonicity #7617]: #7618
+#7621 := [symm #7619]: #7620
+#7613 := [hypothesis]: #6130
+#7665 := [mp #7613 #7621]: #7316
+#7624 := [unit-resolution #7615 #7665]: false
+#7623 := [lemma #7624]: #7625
+#7565 := [unit-resolution #7623 #7615]: #7205
+#7201 := (or #7197 #6147 #6130)
+#7202 := [def-axiom]: #7201
+#7566 := [unit-resolution #7202 #7565 #7559]: #6147
+#7567 := [symm #7566]: #6139
+#7568 := [monotonicity #7567]: #7843
+#7569 := [monotonicity #7568]: #7841
+#7847 := (not #7841)
+#7848 := (or #7847 #7844)
+#7849 := [th-lemma]: #7848
+#7576 := [unit-resolution #7849 #7569]: #7844
+#7577 := [hypothesis]: #7094
+#7127 := (+ #7092 #7109)
+#7128 := (+ #188 #7127)
+#7129 := (>= #7128 0::int)
+#7134 := (+ #2326 #7109)
+#7135 := (+ #188 #7134)
+#7138 := (= #7135 0::int)
+#7584 := (not #7138)
+#7156 := (>= #7135 0::int)
+#7875 := (not #7156)
+#7309 := (uf_4 uf_14 #7303)
+#7324 := (* -1::int #7309)
+#7325 := (+ #188 #7324)
+#7326 := (<= #7325 0::int)
+#7331 := (or #7316 #7326)
+#7334 := (or #4423 #7316 #7326)
+#7313 := (+ #7309 #1455)
+#7314 := (>= #7313 0::int)
+#7317 := (or #7316 #7314)
+#7335 := (or #4423 #7317)
+#7342 := (iff #7335 #7334)
+#7337 := (or #4423 #7331)
+#7340 := (iff #7337 #7334)
+#7341 := [rewrite]: #7340
+#7338 := (iff #7335 #7337)
+#7332 := (iff #7317 #7331)
+#7329 := (iff #7314 #7326)
+#7318 := (+ #1455 #7309)
+#7321 := (>= #7318 0::int)
+#7327 := (iff #7321 #7326)
+#7328 := [rewrite]: #7327
+#7322 := (iff #7314 #7321)
+#7319 := (= #7313 #7318)
+#7320 := [rewrite]: #7319
+#7323 := [monotonicity #7320]: #7322
+#7330 := [trans #7323 #7328]: #7329
+#7333 := [monotonicity #7330]: #7332
+#7339 := [monotonicity #7333]: #7338
+#7343 := [trans #7339 #7341]: #7342
+#7336 := [quant-inst]: #7335
+#7344 := [mp #7336 #7343]: #7334
+#7578 := [unit-resolution #7344 #7575]: #7331
+#7579 := [unit-resolution #7578 #7615]: #7326
+#7874 := (not #7326)
+#7873 := (not #7844)
+#7877 := (or #7873 #7874 #7875 #2923 #7876)
+#7859 := [hypothesis]: #7156
+#7860 := [hypothesis]: #7844
+#7861 := [hypothesis]: #7326
+#7503 := (+ #6095 #7324)
+#7507 := (>= #7503 0::int)
+#7502 := (= #6095 #7309)
+#7865 := (= #7309 #6095)
+#7866 := [monotonicity #7864]: #7865
+#7867 := [symm #7866]: #7502
+#7868 := (not #7502)
+#7869 := (or #7868 #7507)
+#7870 := [th-lemma]: #7869
+#7871 := [unit-resolution #7870 #7867]: #7507
+#7872 := [th-lemma #7871 #7861 #7860 #7859 #7858 #7857]: false
+#7878 := [lemma #7872]: #7877
+#7580 := [unit-resolution #7878 #7576 #7579 #7858 #7857]: #7875
+#7585 := (or #7584 #7156)
+#7581 := [th-lemma]: #7585
+#7586 := [unit-resolution #7581 #7580]: #7584
+#7117 := (+ uf_9 #7113)
+#7118 := (<= #7117 0::int)
+#7180 := (not #7118)
+#7590 := (or #7180 #2335 #7873)
+#7591 := [th-lemma]: #7590
+#7592 := [unit-resolution #7591 #7576 #7587]: #7180
+#7141 := (or #7118 #7129 #7138)
+#7144 := (or #4441 #7118 #7129 #7138)
+#7110 := (+ #7109 #2326)
+#7111 := (+ #188 #7110)
+#7112 := (= #7111 0::int)
+#7114 := (+ #1455 #7113)
+#7115 := (+ #7057 #7114)
+#7116 := (<= #7115 0::int)
+#7119 := (or #7118 #7116 #7112)
+#7145 := (or #4441 #7119)
+#7152 := (iff #7145 #7144)
+#7147 := (or #4441 #7141)
+#7150 := (iff #7147 #7144)
+#7151 := [rewrite]: #7150
+#7148 := (iff #7145 #7147)
+#7142 := (iff #7119 #7141)
+#7139 := (iff #7112 #7138)
+#7136 := (= #7111 #7135)
+#7137 := [rewrite]: #7136
+#7140 := [monotonicity #7137]: #7139
+#7132 := (iff #7116 #7129)
+#7120 := (+ #7057 #7113)
+#7121 := (+ #1455 #7120)
+#7124 := (<= #7121 0::int)
+#7130 := (iff #7124 #7129)
+#7131 := [rewrite]: #7130
+#7125 := (iff #7116 #7124)
+#7122 := (= #7115 #7121)
+#7123 := [rewrite]: #7122
+#7126 := [monotonicity #7123]: #7125
+#7133 := [trans #7126 #7131]: #7132
+#7143 := [monotonicity #7133 #7140]: #7142
+#7149 := [monotonicity #7143]: #7148
+#7153 := [trans #7149 #7151]: #7152
+#7146 := [quant-inst]: #7145
+#7154 := [mp #7146 #7153]: #7144
+#7594 := [unit-resolution #7154 #7593]: #7141
+#7595 := [unit-resolution #7594 #7592 #7586]: #7129
+#7632 := [th-lemma #7871 #7579 #7595 #7577 #7576 #7858 #7857]: false
+#7628 := [lemma #7632]: #7627
+#7706 := [unit-resolution #7628 #7673 #7671 #7670 #7593 #7587 #7705 #7575]: #7316
+#7709 := [mp #7706 #7711]: #6130
+#7713 := (or #7205 #7220)
+#7712 := [hypothesis]: #4314
+#7225 := (or #4319 #2335 #7205 #7220)
+#7221 := (or #7205 #2335 #7220)
+#7226 := (or #4319 #7221)
+#7233 := (iff #7226 #7225)
+#7222 := (or #2335 #7205 #7220)
+#7228 := (or #4319 #7222)
+#7231 := (iff #7228 #7225)
+#7232 := [rewrite]: #7231
+#7229 := (iff #7226 #7228)
+#7223 := (iff #7221 #7222)
+#7224 := [rewrite]: #7223
+#7230 := [monotonicity #7224]: #7229
+#7234 := [trans #7230 #7232]: #7233
+#7227 := [quant-inst]: #7226
+#7235 := [mp #7227 #7234]: #7225
+#7714 := [unit-resolution #7235 #7712 #7587]: #7713
+#7715 := [unit-resolution #7714 #7709]: #7220
+#7716 := [th-lemma #7715 #7673 #7671 #7670]: false
+#7761 := [lemma #7716]: #7717
+#16979 := [unit-resolution #7761 #9187]: #17049
+#17090 := [unit-resolution #16979 #10785 #17666 #13581 #10788]: #17073
+#16348 := [unit-resolution #17090 #25699]: #17077
+#17046 := [unit-resolution #16348 #17052 #7658]: false
+#16349 := [lemma #17046]: #3494
+#5169 := (uf_6 uf_23 ?x75!20)
+#5170 := (= uf_8 #5169)
+#21788 := (uf_6 #10323 ?x75!20)
+#20832 := (= #21788 #5169)
+#20857 := (= #5169 #21788)
+#14425 := (= uf_23 #10323)
+#14423 := (= #194 #10323)
+#14424 := [symm #13577]: #14423
+#14426 := [trans #13581 #14424]: #14425
+#20702 := [monotonicity #14426]: #20857
+#20877 := [symm #20702]: #20832
+#21791 := (= uf_8 #21788)
+#6014 := (uf_6 uf_15 ?x75!20)
+#6015 := (= uf_8 #6014)
+#21786 := (= ?x75!20 #9695)
+#21794 := (ite #21786 #3895 #6015)
+#21797 := (iff #21791 #21794)
+#19678 := (or #4987 #21797)
+#21787 := (ite #21786 #4958 #6015)
+#21789 := (= #21788 uf_8)
+#21790 := (iff #21789 #21787)
+#19676 := (or #4987 #21790)
+#19311 := (iff #19676 #19678)
+#19682 := (iff #19678 #19678)
+#19685 := [rewrite]: #19682
+#21798 := (iff #21790 #21797)
+#21795 := (iff #21787 #21794)
+#21796 := [monotonicity #4971]: #21795
+#21792 := (iff #21789 #21791)
+#21793 := [rewrite]: #21792
+#21799 := [monotonicity #21793 #21796]: #21798
+#19681 := [monotonicity #21799]: #19311
+#19733 := [trans #19681 #19685]: #19311
+#19684 := [quant-inst]: #19676
+#19731 := [mp #19684 #19733]: #19678
+#20449 := [unit-resolution #19731 #4222]: #21797
+#15125 := (uf_1 #9695 ?x75!20)
+#15126 := (uf_10 #15125)
+#19741 := (<= #15126 0::int)
+#4781 := (* -1::int #4740)
+#5008 := (+ #188 #4781)
+#5009 := (>= #5008 0::int)
+#9232 := (or #4449 #5009)
+#7564 := [quant-inst]: #9232
+#9311 := [unit-resolution #7564 #10788]: #5009
+#11895 := (uf_24 #9695)
+#10002 := (* -1::int #11895)
+#14620 := (+ #2355 #10002)
+#15146 := (<= #14620 0::int)
+#14621 := (uf_6 uf_23 #9695)
+#14622 := (= uf_8 #14621)
+#21303 := (= #3894 #14621)
+#21293 := (= #14621 #3894)
+#21294 := [monotonicity #13581 #10708]: #21293
+#21304 := [symm #21294]: #21303
+#21305 := [trans #7677 #21304]: #14622
+#15158 := (* -1::int #15126)
+#15159 := (+ #10002 #15158)
+#15160 := (+ #2355 #15159)
+#15161 := (= #15160 0::int)
+#23339 := (<= #15160 0::int)
+#5042 := (<= #5008 0::int)
+#10190 := (not #4741)
+#10191 := (or #10190 #5042)
+#10192 := [th-lemma]: #10191
+#17097 := [unit-resolution #10192 #10729]: #5042
+#10025 := (+ #4740 #10002)
+#10040 := (<= #10025 0::int)
+#9964 := (= #4740 #11895)
+#17098 := (= #11895 #4740)
+#17107 := [monotonicity #10708]: #17098
+#17108 := [symm #17107]: #9964
+#17109 := (not #9964)
+#17110 := (or #17109 #10040)
+#17111 := [th-lemma]: #17110
+#17112 := [unit-resolution #17111 #17108]: #10040
+#5826 := (uf_1 uf_22 ?x75!20)
+#5827 := (uf_10 #5826)
+#23569 := (+ #5827 #15158)
+#23570 := (<= #23569 0::int)
+#23568 := (= #5827 #15126)
+#20561 := (= #5826 #15125)
+#25948 := (= #15125 #5826)
+#25949 := [monotonicity #10708]: #25948
+#20537 := [symm #25949]: #20561
+#20580 := [monotonicity #20537]: #23568
+#25953 := (not #23568)
+#25961 := (or #25953 #23570)
+#25962 := [th-lemma]: #25961
+#20545 := [unit-resolution #25962 #20580]: #23570
+#5852 := (+ #2356 #5827)
+#5853 := (+ #188 #5852)
+#23301 := (>= #5853 0::int)
+#20066 := [hypothesis]: #4498
+#4125 := (or #4495 #2368)
+#4127 := [def-axiom]: #4125
+#20064 := [unit-resolution #4127 #20066]: #2368
+#29068 := (or #23301 #2367)
+#4860 := (>= #188 0::int)
+#4051 := (or #4579 #4306)
+#4047 := [def-axiom]: #4051
+#10596 := [unit-resolution #4047 #5496]: #4306
+#9276 := (or #4311 #4860)
+#9277 := [quant-inst]: #9276
+#12530 := [unit-resolution #9277 #10596]: #4860
+#25950 := (= #15126 #5827)
+#25951 := [monotonicity #25949]: #25950
+#25952 := [symm #25951]: #23568
+#25963 := [unit-resolution #25962 #25952]: #23570
+#23340 := (>= #15160 0::int)
+#10021 := (>= #10025 0::int)
+#25933 := (or #17109 #10021)
+#25934 := [th-lemma]: #25933
+#25935 := [unit-resolution #25934 #17108]: #10021
+#23571 := (>= #23569 0::int)
+#25954 := (or #25953 #23571)
+#25955 := [th-lemma]: #25954
+#25956 := [unit-resolution #25955 #25952]: #23571
+#23300 := (<= #5853 0::int)
+#25968 := (not #23301)
+#25609 := [hypothesis]: #25968
+#29059 := (or #23300 #23301)
+#29062 := [th-lemma]: #29059
+#29061 := [unit-resolution #29062 #25609]: #23300
+#25957 := (not #23571)
+#25944 := (not #23300)
+#8759 := (not #5009)
+#25942 := (not #10021)
+#25958 := (or #23340 #25942 #8759 #25944 #25957)
+#25959 := [th-lemma]: #25958
+#29063 := [unit-resolution #25959 #29061 #25956 #25935 #9311]: #23340
+#24500 := [hypothesis]: #2368
+#5831 := (* -1::int #5827)
+#5835 := (+ uf_9 #5831)
+#5836 := (<= #5835 0::int)
+#25729 := (or #23301 #5836)
+#23313 := (not #5836)
+#25608 := [hypothesis]: #23313
+#5856 := (= #5853 0::int)
+#25937 := (not #5856)
+#25964 := (or #25937 #23301)
+#25965 := [th-lemma]: #25964
+#25722 := [unit-resolution #25965 #25609]: #25937
+#5775 := (uf_4 uf_14 ?x75!20)
+#5810 := (* -1::int #5775)
+#5845 := (+ #5810 #5827)
+#5846 := (+ #188 #5845)
+#5847 := (>= #5846 0::int)
+#23316 := (not #5847)
+#5811 := (+ #2355 #5810)
+#5812 := (<= #5811 0::int)
+#23280 := (or #4449 #5812)
+#5802 := (+ #5775 #2356)
+#5803 := (>= #5802 0::int)
+#23281 := (or #4449 #5803)
+#23283 := (iff #23281 #23280)
+#23285 := (iff #23280 #23280)
+#23286 := [rewrite]: #23285
+#5815 := (iff #5803 #5812)
+#5804 := (+ #2356 #5775)
+#5807 := (>= #5804 0::int)
+#5813 := (iff #5807 #5812)
+#5814 := [rewrite]: #5813
+#5808 := (iff #5803 #5807)
+#5805 := (= #5802 #5804)
+#5806 := [rewrite]: #5805
+#5809 := [monotonicity #5806]: #5808
+#5816 := [trans #5809 #5814]: #5815
+#23284 := [monotonicity #5816]: #23283
+#23287 := [trans #23284 #23286]: #23283
+#23282 := [quant-inst]: #23281
+#23288 := [mp #23282 #23287]: #23280
+#25723 := [unit-resolution #23288 #10788]: #5812
+#25724 := (not #5812)
+#25725 := (or #23301 #23316 #25724)
+#25726 := [th-lemma]: #25725
+#25721 := [unit-resolution #25726 #25609 #25723]: #23316
+#5859 := (or #5836 #5847 #5856)
+#23289 := (or #4441 #5836 #5847 #5856)
+#5828 := (+ #5827 #2356)
+#5829 := (+ #188 #5828)
+#5830 := (= #5829 0::int)
+#5832 := (+ #1455 #5831)
+#5833 := (+ #5775 #5832)
+#5834 := (<= #5833 0::int)
+#5837 := (or #5836 #5834 #5830)
+#23290 := (or #4441 #5837)
+#23297 := (iff #23290 #23289)
+#23292 := (or #4441 #5859)
+#23295 := (iff #23292 #23289)
+#23296 := [rewrite]: #23295
+#23293 := (iff #23290 #23292)
+#5860 := (iff #5837 #5859)
+#5857 := (iff #5830 #5856)
+#5854 := (= #5829 #5853)
+#5855 := [rewrite]: #5854
+#5858 := [monotonicity #5855]: #5857
+#5850 := (iff #5834 #5847)
+#5838 := (+ #5775 #5831)
+#5839 := (+ #1455 #5838)
+#5842 := (<= #5839 0::int)
+#5848 := (iff #5842 #5847)
+#5849 := [rewrite]: #5848
+#5843 := (iff #5834 #5842)
+#5840 := (= #5833 #5839)
+#5841 := [rewrite]: #5840
+#5844 := [monotonicity #5841]: #5843
+#5851 := [trans #5844 #5849]: #5850
+#5861 := [monotonicity #5851 #5858]: #5860
+#23294 := [monotonicity #5861]: #23293
+#23298 := [trans #23294 #23296]: #23297
+#23291 := [quant-inst]: #23290
+#23299 := [mp #23291 #23298]: #23289
+#25727 := [unit-resolution #23299 #10785]: #5859
+#25728 := [unit-resolution #25727 #25721 #25722 #25608]: false
+#25730 := [lemma #25728]: #25729
+#29064 := [unit-resolution #25730 #25609]: #5836
+#29069 := [th-lemma #29064 #24500 #29063 #17112 #17097 #25963 #12530]: false
+#29071 := [lemma #29069]: #29068
+#20448 := [unit-resolution #29071 #20064]: #23301
+#25969 := (not #23570)
+#8760 := (not #5042)
+#25967 := (not #10040)
+#25970 := (or #23339 #25967 #8760 #25968 #25969)
+#25971 := [th-lemma]: #25970
+#20530 := [unit-resolution #25971 #20448 #20545 #17112 #17097]: #23339
+#20756 := [unit-resolution #25955 #20580]: #23571
+#5878 := (or #5836 #5847)
+#5881 := (not #5878)
+#5780 := (= #2355 #5775)
+#20062 := (not #5780)
+#24414 := (>= #5811 0::int)
+#24509 := (not #24414)
+#4128 := (or #4495 #2937)
+#4126 := [def-axiom]: #4128
+#20016 := [unit-resolution #4126 #20066]: #2937
+#4012 := (or #4495 #4487)
+#4013 := [def-axiom]: #4012
+#20068 := [unit-resolution #4013 #20066]: #4487
+#23167 := (or #24509 #4492 #2934 #2367)
+#6043 := (?x47!7 ?x75!20)
+#6048 := (uf_1 #6043 ?x75!20)
+#24986 := (uf_2 #6048)
+#25837 := (uf_6 uf_15 #24986)
+#25838 := (= uf_8 #25837)
+#21703 := (= #9695 #24986)
+#22526 := (ite #21703 #3895 #25838)
+#23044 := (not #22526)
+#21277 := (uf_6 #10323 #24986)
+#21622 := (= uf_8 #21277)
+#22242 := (iff #21622 #22526)
+#22524 := (or #4987 #22242)
+#21246 := (= #24986 #9695)
+#21220 := (ite #21246 #4958 #25838)
+#21600 := (= #21277 uf_8)
+#21601 := (iff #21600 #21220)
+#23024 := (or #4987 #21601)
+#23028 := (iff #23024 #22524)
+#23042 := (iff #22524 #22524)
+#23043 := [rewrite]: #23042
+#22533 := (iff #21601 #22242)
+#22529 := (iff #21220 #22526)
+#22515 := (iff #21246 #21703)
+#22520 := [rewrite]: #22515
+#22530 := [monotonicity #22520 #4971]: #22529
+#21227 := (iff #21600 #21622)
+#21608 := [rewrite]: #21227
+#22592 := [monotonicity #21608 #22530]: #22533
+#23029 := [monotonicity #22592]: #23028
+#23041 := [trans #23029 #23043]: #23028
+#23025 := [quant-inst]: #23024
+#22593 := [mp #23025 #23041]: #22524
+#23122 := [unit-resolution #22593 #4222]: #22242
+#23057 := (not #21622)
+#24996 := (uf_6 uf_23 #24986)
+#24997 := (= uf_8 #24996)
+#24998 := (not #24997)
+#23123 := (iff #24998 #23057)
+#23153 := (iff #24997 #21622)
+#23146 := (iff #21622 #24997)
+#23151 := (= #21277 #24996)
+#23149 := [monotonicity #13583]: #23151
+#23152 := [monotonicity #23149]: #23146
+#23127 := [symm #23152]: #23153
+#23124 := [monotonicity #23127]: #23123
+#24506 := [hypothesis]: #24414
+#6049 := (uf_10 #6048)
+#6050 := (* -1::int #6049)
+#6044 := (uf_4 uf_14 #6043)
+#6045 := (* -1::int #6044)
+#6051 := (+ #6045 #6050)
+#6052 := (+ #5775 #6051)
+#18721 := (>= #6052 0::int)
+#6053 := (= #6052 0::int)
+#6055 := (uf_6 uf_15 #6043)
+#6056 := (= uf_8 #6055)
+#6057 := (not #6056)
+#6054 := (not #6053)
+#6046 := (+ #5775 #6045)
+#6047 := (<= #6046 0::int)
+#6063 := (or #6047 #6054 #6057)
+#6066 := (not #6063)
+#6060 := (+ uf_9 #5810)
+#6061 := (<= #6060 0::int)
+#24508 := (not #6061)
+#24510 := (or #24508 #24509 #2367)
+#24505 := [hypothesis]: #6061
+#24507 := [th-lemma #24506 #24505 #24500]: false
+#24511 := [lemma #24507]: #24510
+#23125 := [unit-resolution #24511 #24506 #24500]: #24508
+#23139 := (or #6061 #6066)
+#23138 := [hypothesis]: #2937
+#19063 := (or #4344 #2934 #6061 #6066)
+#6058 := (or #6057 #6054 #6047)
+#6059 := (not #6058)
+#6062 := (or #2369 #6061 #6059)
+#19066 := (or #4344 #6062)
+#18390 := (iff #19066 #19063)
+#6069 := (or #2934 #6061 #6066)
+#19050 := (or #4344 #6069)
+#19090 := (iff #19050 #19063)
+#19045 := [rewrite]: #19090
+#19051 := (iff #19066 #19050)
+#6070 := (iff #6062 #6069)
+#6067 := (iff #6059 #6066)
+#6064 := (iff #6058 #6063)
+#6065 := [rewrite]: #6064
+#6068 := [monotonicity #6065]: #6067
+#6071 := [monotonicity #2936 #6068]: #6070
+#19061 := [monotonicity #6071]: #19051
+#18720 := [trans #19061 #19045]: #18390
+#18371 := [quant-inst]: #19066
+#19065 := [mp #18371 #18720]: #19063
+#23137 := [unit-resolution #19065 #9243 #23138]: #23139
+#23140 := [unit-resolution #23137 #23125]: #6066
+#19081 := (or #6063 #6053)
+#12850 := [def-axiom]: #19081
+#23135 := [unit-resolution #12850 #23140]: #6053
+#23141 := (or #6054 #18721)
+#23143 := [th-lemma]: #23141
+#23144 := [unit-resolution #23143 #23135]: #18721
+#25978 := [hypothesis]: #4487
+#23633 := (<= #6052 0::int)
+#23142 := (or #6054 #23633)
+#23145 := [th-lemma]: #23142
+#23147 := [unit-resolution #23145 #23135]: #23633
+#19055 := (not #6047)
+#18317 := (or #6063 #19055)
+#19075 := [def-axiom]: #18317
+#23148 := [unit-resolution #19075 #23140]: #19055
+#30651 := (not #18721)
+#30650 := (not #23633)
+#30652 := (or #24998 #6047 #30650 #4492 #30651 #24509)
+#28637 := (uf_1 #24986 ?x75!20)
+#28638 := (uf_10 #28637)
+#28651 := (* -1::int #28638)
+#24990 := (uf_24 #24986)
+#24991 := (* -1::int #24990)
+#28652 := (+ #24991 #28651)
+#28653 := (+ #2355 #28652)
+#28682 := (>= #28653 0::int)
+#28654 := (= #28653 0::int)
+#19910 := (uf_3 #15125)
+#22479 := (uf_1 #24986 #19910)
+#22480 := (uf_10 #22479)
+#22498 := (* -1::int #22480)
+#22603 := (+ #22498 #24991)
+#21494 := (uf_24 #19910)
+#22604 := (+ #21494 #22603)
+#30636 := (= #22604 0::int)
+#30564 := [hypothesis]: #23633
+#29534 := [hypothesis]: #18721
+#29010 := (+ #6049 #28651)
+#21152 := (<= #29010 0::int)
+#21012 := (= #6049 #28638)
+#30043 := (= #6048 #28637)
+#24987 := (= #6043 #24986)
+#20827 := (or #7310 #24987)
+#20849 := [quant-inst]: #20827
+#30089 := [unit-resolution #20849 #4208]: #24987
+#30044 := [monotonicity #30089]: #30043
+#30097 := [monotonicity #30044]: #21012
+#30102 := (not #21012)
+#30581 := (or #30102 #21152)
+#30588 := [th-lemma]: #30581
+#30589 := [unit-resolution #30588 #30097]: #21152
+#29012 := (>= #29010 0::int)
+#30590 := (or #30102 #29012)
+#30591 := [th-lemma]: #30590
+#30592 := [unit-resolution #30591 #30097]: #29012
+#19879 := (+ #22480 #28651)
+#21287 := (<= #19879 0::int)
+#21209 := (= #22480 #28638)
+#30596 := (= #22479 #28637)
+#30594 := (= #19910 ?x75!20)
+#19950 := (= ?x75!20 #19910)
+#19896 := (or #8139 #19950)
+#19953 := [quant-inst]: #19896
+#30593 := [unit-resolution #19953 #4202]: #19950
+#30595 := [symm #30593]: #30594
+#30597 := [monotonicity #30595]: #30596
+#30598 := [monotonicity #30597]: #21209
+#30599 := (not #21209)
+#30600 := (or #30599 #21287)
+#30601 := [th-lemma]: #30600
+#30602 := [unit-resolution #30601 #30598]: #21287
+#20127 := (>= #19879 0::int)
+#30603 := (or #30599 #20127)
+#30604 := [th-lemma]: #30603
+#30605 := [unit-resolution #30604 #30598]: #20127
+#22047 := (* -1::int #21494)
+#20392 := (+ #2355 #22047)
+#20387 := (<= #20392 0::int)
+#19773 := (= #2355 #21494)
+#30606 := (= #21494 #2355)
+#30607 := [monotonicity #30595]: #30606
+#30608 := [symm #30607]: #19773
+#30609 := (not #19773)
+#30610 := (or #30609 #20387)
+#30611 := [th-lemma]: #30610
+#30612 := [unit-resolution #30611 #30608]: #20387
+#20393 := (>= #20392 0::int)
+#30613 := (or #30609 #20393)
+#30614 := [th-lemma]: #30613
+#30615 := [unit-resolution #30614 #30608]: #20393
+#25833 := (uf_4 uf_14 #24986)
+#25834 := (* -1::int #25833)
+#21068 := (+ #6044 #25834)
+#21067 := (<= #21068 0::int)
+#21078 := (= #6044 #25833)
+#30618 := (= #25833 #6044)
+#30616 := (= #24986 #6043)
+#30617 := [symm #30089]: #30616
+#30619 := [monotonicity #30617]: #30618
+#30620 := [symm #30619]: #21078
+#30621 := (not #21078)
+#30622 := (or #30621 #21067)
+#30623 := [th-lemma]: #30622
+#30624 := [unit-resolution #30623 #30620]: #21067
+#21183 := (>= #21068 0::int)
+#30625 := (or #30621 #21183)
+#30626 := [th-lemma]: #30625
+#30627 := [unit-resolution #30626 #30620]: #21183
+#28762 := (+ #24990 #25834)
+#28763 := (<= #28762 0::int)
+#22244 := (or #4449 #28763)
+#28754 := (+ #25833 #24991)
+#28755 := (>= #28754 0::int)
+#22245 := (or #4449 #28755)
+#22246 := (iff #22245 #22244)
+#22240 := (iff #22244 #22244)
+#22286 := [rewrite]: #22240
+#28766 := (iff #28755 #28763)
+#28756 := (+ #24991 #25833)
+#28759 := (>= #28756 0::int)
+#28764 := (iff #28759 #28763)
+#28765 := [rewrite]: #28764
+#28760 := (iff #28755 #28759)
+#28757 := (= #28754 #28756)
+#28758 := [rewrite]: #28757
+#28761 := [monotonicity #28758]: #28760
+#28767 := [trans #28761 #28765]: #28766
+#22285 := [monotonicity #28767]: #22246
+#22287 := [trans #22285 #22286]: #22246
+#22187 := [quant-inst]: #22245
+#22288 := [mp #22187 #22287]: #22244
+#30628 := [unit-resolution #22288 #10788]: #28763
+#30563 := (>= #28762 0::int)
+#28732 := (= #24990 #25833)
+#30629 := [hypothesis]: #24997
+#28738 := (or #24998 #28732)
+#22151 := (or #4458 #24998 #28732)
+#28728 := (= #25833 #24990)
+#28729 := (or #28728 #24998)
+#22180 := (or #4458 #28729)
+#22189 := (iff #22180 #22151)
+#22183 := (or #4458 #28738)
+#22186 := (iff #22183 #22151)
+#22188 := [rewrite]: #22186
+#22179 := (iff #22180 #22183)
+#28741 := (iff #28729 #28738)
+#28735 := (or #28732 #24998)
+#28739 := (iff #28735 #28738)
+#28740 := [rewrite]: #28739
+#28736 := (iff #28729 #28735)
+#28733 := (iff #28728 #28732)
+#28734 := [rewrite]: #28733
+#28737 := [monotonicity #28734]: #28736
+#28742 := [trans #28737 #28740]: #28741
+#22185 := [monotonicity #28742]: #22179
+#22184 := [trans #22185 #22188]: #22189
+#22154 := [quant-inst]: #22180
+#22243 := [mp #22154 #22184]: #22151
+#30630 := [unit-resolution #22243 #25699]: #28738
+#30631 := [unit-resolution #30630 #30629]: #28732
+#30632 := (not #28732)
+#30633 := (or #30632 #30563)
+#30634 := [th-lemma]: #30633
+#30635 := [unit-resolution #30634 #30631]: #30563
+#30637 := [th-lemma #30635 #30628 #30627 #30624 #30615 #30612 #30605 #30602 #30592 #30589 #29534 #30564 #24506 #25723]: #30636
+#30640 := (= #28653 #22604)
+#30638 := (= #22604 #28653)
+#30639 := [th-lemma #30615 #30612 #30605 #30602]: #30638
+#30641 := [symm #30639]: #30640
+#30642 := [trans #30641 #30637]: #28654
+#28659 := (not #28654)
+#30643 := (or #28659 #28682)
+#30644 := [th-lemma]: #30643
+#30645 := [unit-resolution #30644 #30642]: #28682
+#16155 := (+ #2355 #24991)
+#15436 := (<= #16155 0::int)
+#28665 := (or #15436 #24998 #28659)
+#21333 := (or #4492 #15436 #24998 #28659)
+#28639 := (+ #2356 #28638)
+#28640 := (+ #24990 #28639)
+#28641 := (= #28640 0::int)
+#28642 := (not #28641)
+#15907 := (+ #24990 #2356)
+#16051 := (>= #15907 0::int)
+#28643 := (or #24998 #16051 #28642)
+#21024 := (or #4492 #28643)
+#20975 := (iff #21024 #21333)
+#21318 := (or #4492 #28665)
+#21314 := (iff #21318 #21333)
+#21310 := [rewrite]: #21314
+#21153 := (iff #21024 #21318)
+#28668 := (iff #28643 #28665)
+#28662 := (or #24998 #15436 #28659)
+#28666 := (iff #28662 #28665)
+#28667 := [rewrite]: #28666
+#28663 := (iff #28643 #28662)
+#28660 := (iff #28642 #28659)
+#28657 := (iff #28641 #28654)
+#28644 := (+ #24990 #28638)
+#28645 := (+ #2356 #28644)
+#28648 := (= #28645 0::int)
+#28655 := (iff #28648 #28654)
+#28656 := [rewrite]: #28655
+#28649 := (iff #28641 #28648)
+#28646 := (= #28640 #28645)
+#28647 := [rewrite]: #28646
+#28650 := [monotonicity #28647]: #28649
+#28658 := [trans #28650 #28656]: #28657
+#28661 := [monotonicity #28658]: #28660
+#15965 := (iff #16051 #15436)
+#13744 := (+ #2356 #24990)
+#15070 := (>= #13744 0::int)
+#14692 := (iff #15070 #15436)
+#16264 := [rewrite]: #14692
+#16123 := (iff #16051 #15070)
+#16156 := (= #15907 #13744)
+#15494 := [rewrite]: #16156
+#15349 := [monotonicity #15494]: #16123
+#16187 := [trans #15349 #16264]: #15965
+#28664 := [monotonicity #16187 #28661]: #28663
+#28669 := [trans #28664 #28667]: #28668
+#21320 := [monotonicity #28669]: #21153
+#21319 := [trans #21320 #21310]: #20975
+#21323 := [quant-inst]: #21024
+#20612 := [mp #21323 #21319]: #21333
+#30646 := [unit-resolution #20612 #25978]: #28665
+#30647 := [unit-resolution #30646 #30642 #30629]: #15436
+#30648 := [hypothesis]: #19055
+#30649 := [th-lemma #30648 #30589 #30564 #30647 #30645]: false
+#30653 := [lemma #30649]: #30652
+#23150 := [unit-resolution #30653 #23148 #23147 #25978 #23144 #24506]: #24998
+#23131 := [mp #23150 #23124]: #23057
+#23056 := (not #22242)
+#23047 := (or #23056 #21622 #23044)
+#23051 := [def-axiom]: #23047
+#23132 := [unit-resolution #23051 #23131 #23122]: #23044
+#23045 := (not #21703)
+#23130 := (or #22526 #23045)
+#3924 := (not #3895)
+#23054 := (or #22526 #23045 #3924)
+#23050 := [def-axiom]: #23054
+#23157 := [unit-resolution #23050 #7677]: #23130
+#23158 := [unit-resolution #23157 #23132]: #23045
+#23164 := (or #22526 #21703)
+#23162 := (= #6055 #25837)
+#23129 := (= #25837 #6055)
+#23156 := [monotonicity #30617]: #23129
+#23128 := [symm #23156]: #23162
+#19077 := (or #6063 #6056)
+#19078 := [def-axiom]: #19077
+#23133 := [unit-resolution #19078 #23140]: #6056
+#23163 := [trans #23133 #23128]: #25838
+#25839 := (not #25838)
+#23055 := (or #22526 #21703 #25839)
+#23053 := [def-axiom]: #23055
+#23165 := [unit-resolution #23053 #23163]: #23164
+#23169 := [unit-resolution #23165 #23158 #23132]: false
+#23168 := [lemma #23169]: #23167
+#19986 := [unit-resolution #23168 #20068 #20016 #20064]: #24509
+#20023 := (or #20062 #24414)
+#20453 := [th-lemma]: #20023
+#20441 := [unit-resolution #20453 #19986]: #20062
+#5884 := (or #5780 #5881)
+#18349 := (or #4433 #5780 #5881)
+#5875 := (or #5836 #5834)
+#5876 := (not #5875)
+#5776 := (= #5775 #2355)
+#5877 := (or #5776 #5876)
+#18388 := (or #4433 #5877)
+#18375 := (iff #18388 #18349)
+#18374 := (or #4433 #5884)
+#18380 := (iff #18374 #18349)
+#18414 := [rewrite]: #18380
+#18370 := (iff #18388 #18374)
+#5885 := (iff #5877 #5884)
+#5882 := (iff #5876 #5881)
+#5879 := (iff #5875 #5878)
+#5880 := [monotonicity #5851]: #5879
+#5883 := [monotonicity #5880]: #5882
+#5781 := (iff #5776 #5780)
+#5782 := [rewrite]: #5781
+#5886 := [monotonicity #5782 #5883]: #5885
+#18411 := [monotonicity #5886]: #18370
+#18381 := [trans #18411 #18414]: #18375
+#18415 := [quant-inst]: #18388
+#18379 := [mp #18415 #18381]: #18349
+#20748 := [unit-resolution #18379 #10727]: #5884
+#20750 := [unit-resolution #20748 #20441]: #5881
+#18373 := (or #5878 #23313)
+#18372 := [def-axiom]: #18373
+#20751 := [unit-resolution #18372 #20750]: #23313
+#18384 := (or #5878 #23316)
+#18417 := [def-axiom]: #18384
+#20753 := [unit-resolution #18417 #20750]: #23316
+#20775 := [unit-resolution #25727 #20753 #20751]: #5856
+#25938 := (or #25937 #23300)
+#25939 := [th-lemma]: #25938
+#20664 := [unit-resolution #25939 #20775]: #23300
+#20698 := [unit-resolution #25959 #20664 #20756 #25935 #9311]: #23340
+#25974 := (not #23340)
+#25973 := (not #23339)
+#25975 := (or #15161 #25973 #25974)
+#25976 := [th-lemma]: #25975
+#20700 := [unit-resolution #25976 #20698 #20530]: #15161
+#15166 := (not #15161)
+#14623 := (not #14622)
+#15169 := (or #14623 #15146 #15166)
+#23321 := (or #4492 #14623 #15146 #15166)
+#15133 := (+ #2356 #15126)
+#15134 := (+ #11895 #15133)
+#15135 := (= #15134 0::int)
+#15136 := (not #15135)
+#15137 := (+ #11895 #2356)
+#15138 := (>= #15137 0::int)
+#15139 := (or #14623 #15138 #15136)
+#23322 := (or #4492 #15139)
+#23336 := (iff #23322 #23321)
+#23331 := (or #4492 #15169)
+#23334 := (iff #23331 #23321)
+#23335 := [rewrite]: #23334
+#23332 := (iff #23322 #23331)
+#15170 := (iff #15139 #15169)
+#15167 := (iff #15136 #15166)
+#15164 := (iff #15135 #15161)
+#15151 := (+ #11895 #15126)
+#15152 := (+ #2356 #15151)
+#15155 := (= #15152 0::int)
+#15162 := (iff #15155 #15161)
+#15163 := [rewrite]: #15162
+#15156 := (iff #15135 #15155)
+#15153 := (= #15134 #15152)
+#15154 := [rewrite]: #15153
+#15157 := [monotonicity #15154]: #15156
+#15165 := [trans #15157 #15163]: #15164
+#15168 := [monotonicity #15165]: #15167
+#15149 := (iff #15138 #15146)
+#15140 := (+ #2356 #11895)
+#15143 := (>= #15140 0::int)
+#15147 := (iff #15143 #15146)
+#15148 := [rewrite]: #15147
+#15144 := (iff #15138 #15143)
+#15141 := (= #15137 #15140)
+#15142 := [rewrite]: #15141
+#15145 := [monotonicity #15142]: #15144
+#15150 := [trans #15145 #15148]: #15149
+#15171 := [monotonicity #15150 #15168]: #15170
+#23333 := [monotonicity #15171]: #23332
+#23337 := [trans #23333 #23335]: #23336
+#23330 := [quant-inst]: #23322
+#23338 := [mp #23330 #23337]: #23321
+#20754 := [unit-resolution #23338 #20068]: #15169
+#20663 := [unit-resolution #20754 #20700 #21305]: #15146
+#25941 := (not #15146)
+#20620 := (or #19741 #25957 #25944 #25941 #25942 #8759)
+#20724 := [th-lemma]: #20620
+#20713 := [unit-resolution #20724 #20664 #25935 #20756 #20663 #9311]: #19741
+#19738 := (not #19741)
+#20001 := (or #10302 #19738 #21786)
+#19729 := (= #9695 ?x75!20)
+#19725 := (or #19729 #19738)
+#19974 := (or #10302 #19725)
+#19977 := (iff #19974 #20001)
+#19723 := (or #19738 #21786)
+#19976 := (or #10302 #19723)
+#19980 := (iff #19976 #20001)
+#19985 := [rewrite]: #19980
+#19981 := (iff #19974 #19976)
+#19759 := (iff #19725 #19723)
+#19727 := (or #21786 #19738)
+#19755 := (iff #19727 #19723)
+#19757 := [rewrite]: #19755
+#19728 := (iff #19725 #19727)
+#19742 := (iff #19729 #21786)
+#19724 := [rewrite]: #19742
+#19726 := [monotonicity #19724]: #19728
+#19753 := [trans #19726 #19757]: #19759
+#19982 := [monotonicity #19753]: #19981
+#19947 := [trans #19982 #19985]: #19977
+#20005 := [quant-inst]: #19974
+#19997 := [mp #20005 #19947]: #20001
+#20716 := [unit-resolution #19997 #4249 #20713]: #21786
+#19787 := (not #21786)
+#20752 := (or #21794 #19787)
+#19745 := (or #21794 #19787 #3924)
+#19739 := [def-axiom]: #19745
+#20774 := [unit-resolution #19739 #7677]: #20752
+#20858 := [unit-resolution #20774 #20716]: #21794
+#19746 := (not #21794)
+#19695 := (not #21797)
+#19694 := (or #19695 #21791 #19746)
+#19761 := [def-axiom]: #19694
+#20783 := [unit-resolution #19761 #20858 #20449]: #21791
+#20859 := [trans #20783 #20877]: #5170
+#5171 := (not #5170)
+#5786 := (or #5171 #5780)
+#18330 := (or #4458 #5171 #5780)
+#5779 := (or #5776 #5171)
+#18283 := (or #4458 #5779)
+#18352 := (iff #18283 #18330)
+#18337 := (or #4458 #5786)
+#18335 := (iff #18337 #18330)
+#18351 := [rewrite]: #18335
+#18336 := (iff #18283 #18337)
+#5789 := (iff #5779 #5786)
+#5783 := (or #5780 #5171)
+#5787 := (iff #5783 #5786)
+#5788 := [rewrite]: #5787
+#5784 := (iff #5779 #5783)
+#5785 := [monotonicity #5782]: #5784
+#5790 := [trans #5785 #5788]: #5789
+#18331 := [monotonicity #5790]: #18336
+#18358 := [trans #18331 #18351]: #18352
+#18350 := [quant-inst]: #18283
+#18412 := [mp #18350 #18358]: #18330
+#20455 := [unit-resolution #18412 #25699]: #5786
+#20452 := [unit-resolution #20455 #20441]: #5171
+#20896 := [unit-resolution #20452 #20859]: false
+#20973 := [lemma #20896]: #4495
+#4006 := (or #4504 #3499 #4498)
+#4021 := [def-axiom]: #4006
+#19204 := [unit-resolution #4021 #20973 #16349]: #4504
+#4017 := (or #4507 #4501)
+#4025 := [def-axiom]: #4017
+#19217 := [unit-resolution #4025 #19204]: #4507
+#11869 := (or #2283 #4458)
+#8633 := (uf_1 uf_22 ?x65!15)
+#8634 := (uf_10 #8633)
+#5075 := (* -1::int #2282)
+#8695 := (+ #5075 #8634)
+#8696 := (+ #188 #8695)
+#13182 := (<= #8696 0::int)
+#8699 := (= #8696 0::int)
+#8635 := (* -1::int #8634)
+#8639 := (+ uf_9 #8635)
+#8640 := (<= #8639 0::int)
+#13547 := (not #8640)
+#8579 := (uf_4 uf_14 ?x65!15)
+#8589 := (* -1::int #8579)
+#8655 := (+ #8589 #8634)
+#8656 := (+ #188 #8655)
+#8657 := (>= #8656 0::int)
+#8662 := (or #8640 #8657)
+#8665 := (not #8662)
+#8645 := (= #2282 #8579)
+#13653 := (not #8645)
+#8618 := (+ #2282 #8589)
+#13938 := (>= #8618 0::int)
+#14032 := (not #13938)
+#8826 := [hypothesis]: #2284
+#14033 := (or #14032 #2283)
+#14029 := [hypothesis]: #13938
+#8778 := (>= #8579 0::int)
+#13651 := (or #4311 #8778)
+#13643 := [quant-inst]: #13651
+#14030 := [unit-resolution #13643 #10596]: #8778
+#14031 := [th-lemma #8826 #14030 #14029]: false
+#14034 := [lemma #14031]: #14033
+#14041 := [unit-resolution #14034 #8826]: #14032
+#13631 := (or #13653 #13938)
+#13654 := [th-lemma]: #13631
+#11935 := [unit-resolution #13654 #14041]: #13653
+#13403 := (or #4433 #8645 #8665)
+#8636 := (+ #1455 #8635)
+#8637 := (+ #8579 #8636)
+#8638 := (<= #8637 0::int)
+#8641 := (or #8640 #8638)
+#8642 := (not #8641)
+#8643 := (= #8579 #2282)
+#8644 := (or #8643 #8642)
+#13406 := (or #4433 #8644)
+#13514 := (iff #13406 #13403)
+#8668 := (or #8645 #8665)
+#12773 := (or #4433 #8668)
+#13027 := (iff #12773 #13403)
+#13487 := [rewrite]: #13027
+#12976 := (iff #13406 #12773)
+#8669 := (iff #8644 #8668)
+#8666 := (iff #8642 #8665)
+#8663 := (iff #8641 #8662)
+#8660 := (iff #8638 #8657)
+#8648 := (+ #8579 #8635)
+#8649 := (+ #1455 #8648)
+#8652 := (<= #8649 0::int)
+#8658 := (iff #8652 #8657)
+#8659 := [rewrite]: #8658
+#8653 := (iff #8638 #8652)
+#8650 := (= #8637 #8649)
+#8651 := [rewrite]: #8650
+#8654 := [monotonicity #8651]: #8653
+#8661 := [trans #8654 #8659]: #8660
+#8664 := [monotonicity #8661]: #8663
+#8667 := [monotonicity #8664]: #8666
+#8646 := (iff #8643 #8645)
+#8647 := [rewrite]: #8646
+#8670 := [monotonicity #8647 #8667]: #8669
+#13475 := [monotonicity #8670]: #12976
+#13534 := [trans #13475 #13487]: #13514
+#12762 := [quant-inst]: #13406
+#13535 := [mp #12762 #13534]: #13403
+#11121 := [unit-resolution #13535 #10727 #11935]: #8665
+#13548 := (or #8662 #13547)
+#13558 := [def-axiom]: #13548
+#11762 := [unit-resolution #13558 #11121]: #13547
+#13559 := (not #8657)
+#13562 := (or #8662 #13559)
+#13563 := [def-axiom]: #13562
+#11759 := [unit-resolution #13563 #11121]: #13559
+#8702 := (or #8640 #8657 #8699)
+#13329 := (or #4441 #8640 #8657 #8699)
+#8691 := (+ #8634 #5075)
+#8692 := (+ #188 #8691)
+#8693 := (= #8692 0::int)
+#8694 := (or #8640 #8638 #8693)
+#13330 := (or #4441 #8694)
+#13187 := (iff #13330 #13329)
+#13332 := (or #4441 #8702)
+#13183 := (iff #13332 #13329)
+#13184 := [rewrite]: #13183
+#13355 := (iff #13330 #13332)
+#8703 := (iff #8694 #8702)
+#8700 := (iff #8693 #8699)
+#8697 := (= #8692 #8696)
+#8698 := [rewrite]: #8697
+#8701 := [monotonicity #8698]: #8700
+#8704 := [monotonicity #8661 #8701]: #8703
+#13107 := [monotonicity #8704]: #13355
+#13265 := [trans #13107 #13184]: #13187
+#13331 := [quant-inst]: #13330
+#13285 := [mp #13331 #13265]: #13329
+#14047 := [unit-resolution #13285 #10785]: #8702
+#11757 := [unit-resolution #14047 #11759 #11762]: #8699
+#14049 := (not #8699)
+#14050 := (or #14049 #13182)
+#14051 := [th-lemma]: #14050
+#11817 := [unit-resolution #14051 #11757]: #13182
+#13904 := (uf_1 #9695 ?x65!15)
+#13630 := (uf_10 #13904)
+#13902 := (* -1::int #13630)
+#13836 := (+ #8634 #13902)
+#14015 := (>= #13836 0::int)
+#13832 := (= #8634 #13630)
+#14026 := (= #13630 #8634)
+#14022 := (= #13904 #8633)
+#14023 := [monotonicity #10708]: #14022
+#14027 := [monotonicity #14023]: #14026
+#14028 := [symm #14027]: #13832
+#14035 := (not #13832)
+#14036 := (or #14035 #14015)
+#14037 := [th-lemma]: #14036
+#14038 := [unit-resolution #14037 #14028]: #14015
+#13835 := (>= #13630 0::int)
+#13660 := (<= #13630 0::int)
+#13692 := (not #13660)
+#13628 := (= ?x65!15 #9695)
+#13668 := (not #13628)
+#8269 := (uf_6 uf_15 ?x65!15)
+#8270 := (= uf_8 #8269)
+#13741 := (ite #13628 #3895 #8270)
+#13822 := (not #13741)
+#13691 := (uf_6 #10323 ?x65!15)
+#13734 := (= uf_8 #13691)
+#13768 := (iff #13734 #13741)
+#13775 := (or #4987 #13768)
+#13690 := (ite #13628 #4958 #8270)
+#13689 := (= #13691 uf_8)
+#13739 := (iff #13689 #13690)
+#13769 := (or #4987 #13739)
+#13699 := (iff #13769 #13775)
+#13700 := (iff #13775 #13775)
+#13746 := [rewrite]: #13700
+#13770 := (iff #13739 #13768)
+#13772 := (iff #13690 #13741)
+#13773 := [monotonicity #4971]: #13772
+#13738 := (iff #13689 #13734)
+#13740 := [rewrite]: #13738
+#13774 := [monotonicity #13740 #13773]: #13770
+#13776 := [monotonicity #13774]: #13699
+#13747 := [trans #13776 #13746]: #13699
+#13777 := [quant-inst]: #13769
+#13821 := [mp #13777 #13747]: #13775
+#14053 := [unit-resolution #13821 #4222]: #13768
+#13869 := (not #13734)
+#5078 := (uf_6 uf_23 ?x65!15)
+#5079 := (= uf_8 #5078)
+#5080 := (not #5079)
+#14062 := (iff #5080 #13869)
+#14060 := (iff #5079 #13734)
+#14058 := (iff #13734 #5079)
+#14056 := (= #13691 #5078)
+#14057 := [monotonicity #13583]: #14056
+#14059 := [monotonicity #14057]: #14058
+#14061 := [symm #14059]: #14060
+#14063 := [monotonicity #14061]: #14062
+#12807 := (or #4458 #5080 #8645)
+#12793 := (or #8643 #5080)
+#12815 := (or #4458 #12793)
+#12826 := (iff #12815 #12807)
+#12790 := (or #5080 #8645)
+#12845 := (or #4458 #12790)
+#12847 := (iff #12845 #12807)
+#12848 := [rewrite]: #12847
+#12846 := (iff #12815 #12845)
+#12791 := (iff #12793 #12790)
+#12794 := (or #8645 #5080)
+#12785 := (iff #12794 #12790)
+#12787 := [rewrite]: #12785
+#12788 := (iff #12793 #12794)
+#12789 := [monotonicity #8647]: #12788
+#12814 := [trans #12789 #12787]: #12791
+#12844 := [monotonicity #12814]: #12846
+#12827 := [trans #12844 #12848]: #12826
+#12816 := [quant-inst]: #12815
+#12828 := [mp #12816 #12827]: #12807
+#10280 := [unit-resolution #12828 #7708 #11935]: #5080
+#10395 := [mp #10280 #14063]: #13869
+#13829 := (not #13768)
+#13844 := (or #13829 #13734 #13822)
+#13874 := [def-axiom]: #13844
+#11835 := [unit-resolution #13874 #10395 #14053]: #13822
+#14066 := (or #13741 #13668)
+#13827 := (or #13741 #13668 #3924)
+#13840 := [def-axiom]: #13827
+#14067 := [unit-resolution #13840 #7677]: #14066
+#12190 := [unit-resolution #14067 #11835]: #13668
+#13657 := (or #13628 #13692)
+#14009 := (or #10302 #13628 #13692)
+#13626 := (= #9695 ?x65!15)
+#13627 := (or #13626 #13692)
+#14004 := (or #10302 #13627)
+#14021 := (iff #14004 #14009)
+#14011 := (or #10302 #13657)
+#14014 := (iff #14011 #14009)
+#14020 := [rewrite]: #14014
+#14012 := (iff #14004 #14011)
+#13742 := (iff #13627 #13657)
+#13642 := (iff #13626 #13628)
+#13640 := [rewrite]: #13642
+#13743 := [monotonicity #13640]: #13742
+#14013 := [monotonicity #13743]: #14012
+#14024 := [trans #14013 #14020]: #14021
+#14010 := [quant-inst]: #14004
+#14025 := [mp #14010 #14024]: #14009
+#14069 := [unit-resolution #14025 #4249]: #13657
+#12191 := [unit-resolution #14069 #12190]: #13692
+#14071 := (or #13835 #13660)
+#14072 := [th-lemma]: #14071
+#12192 := [unit-resolution #14072 #12191]: #13835
+#11148 := [th-lemma #12192 #14038 #8826 #11817 #12530]: false
+#11885 := [lemma #11148]: #11869
+#19815 := [unit-resolution #11885 #25699]: #2283
+#4090 := (or #4543 #4537)
+#4091 := [def-axiom]: #4090
+#19829 := [unit-resolution #4091 #25698]: #4537
+#19826 := (or #4540 #4534)
+#10106 := (uf_1 #9695 uf_11)
+#10107 := (uf_10 #10106)
+#10111 := (* -1::int #10107)
+#4883 := (uf_1 uf_22 uf_11)
+#4884 := (uf_10 #4883)
+#10686 := (+ #4884 #10111)
+#10690 := (>= #10686 0::int)
+#10685 := (= #4884 #10107)
+#10711 := (= #10107 #4884)
+#10709 := (= #10106 #4883)
+#10710 := [monotonicity #10708]: #10709
+#10712 := [monotonicity #10710]: #10711
+#10713 := [symm #10712]: #10685
+#10714 := (not #10685)
+#10715 := (or #10714 #10690)
+#10716 := [th-lemma]: #10715
+#10717 := [unit-resolution #10716 #10713]: #10690
+#3952 := (<= #108 0::int)
+#5799 := (or #1749 #3952)
+#5800 := [th-lemma]: #5799
+#6367 := [unit-resolution #5800 #5498]: #3952
+#4802 := (?x47!7 uf_22)
+#4803 := (uf_4 uf_14 #4802)
+#4804 := (* -1::int #4803)
+#4805 := (+ #188 #4804)
+#4806 := (<= #4805 0::int)
+#9262 := (not #4806)
+#4814 := (uf_6 uf_15 #4802)
+#4815 := (= uf_8 #4814)
+#4816 := (not #4815)
+#4807 := (uf_1 #4802 uf_22)
+#4808 := (uf_10 #4807)
+#4809 := (* -1::int #4808)
+#4810 := (+ #4804 #4809)
+#4811 := (+ #188 #4810)
+#4812 := (= #4811 0::int)
+#4813 := (not #4812)
+#4824 := (or #4806 #4813 #4816)
+#4827 := (not #4824)
+#4821 := (= uf_11 uf_22)
+#8243 := (not #4821)
+#10613 := [hypothesis]: #1492
+#10629 := (or #8243 #217 #10190)
+#10625 := (= #216 #108)
+#10621 := (= #188 #108)
+#4819 := (= uf_22 uf_11)
+#10614 := [hypothesis]: #4821
+#10615 := [symm #10614]: #4819
+#10622 := [monotonicity #10615]: #10621
+#10623 := (= #216 #188)
+#10616 := [hypothesis]: #4741
+#10620 := [symm #10616]: #10619
+#10617 := (= #216 #4740)
+#10618 := [monotonicity #10614]: #10617
+#10624 := [trans #10618 #10620]: #10623
+#10626 := [trans #10624 #10622]: #10625
+#10627 := [trans #10626 #5498]: #217
+#10628 := [unit-resolution #10613 #10627]: false
+#10630 := [lemma #10628]: #10629
+#10730 := [unit-resolution #10630 #10613 #10729]: #8243
+#10732 := (or #4821 #4827)
+#4053 := (or #4567 #1657)
+#4054 := [def-axiom]: #4053
+#10731 := [unit-resolution #4054 #10726]: #1657
+#8960 := (or #4344 #1656 #4821 #4827)
+#4817 := (or #4816 #4813 #4806)
+#4818 := (not #4817)
+#4820 := (or #4819 #1656 #4818)
+#8966 := (or #4344 #4820)
+#9267 := (iff #8966 #8960)
+#4833 := (or #1656 #4821 #4827)
+#9153 := (or #4344 #4833)
+#8906 := (iff #9153 #8960)
+#9205 := [rewrite]: #8906
+#9156 := (iff #8966 #9153)
+#4836 := (iff #4820 #4833)
+#4830 := (or #4821 #1656 #4827)
+#4834 := (iff #4830 #4833)
+#4835 := [rewrite]: #4834
+#4831 := (iff #4820 #4830)
+#4828 := (iff #4818 #4827)
+#4825 := (iff #4817 #4824)
+#4826 := [rewrite]: #4825
+#4829 := [monotonicity #4826]: #4828
+#4822 := (iff #4819 #4821)
+#4823 := [rewrite]: #4822
+#4832 := [monotonicity #4823 #4829]: #4831
+#4837 := [trans #4832 #4835]: #4836
+#9157 := [monotonicity #4837]: #9156
+#9268 := [trans #9157 #9205]: #9267
+#9217 := [quant-inst]: #8966
+#9238 := [mp #9217 #9268]: #8960
+#10733 := [unit-resolution #9238 #9243 #10731]: #10732
+#10734 := [unit-resolution #10733 #10730]: #4827
+#9269 := (or #4824 #9262)
+#9261 := [def-axiom]: #9269
+#10735 := [unit-resolution #9261 #10734]: #9262
+#6905 := (>= #4803 0::int)
+#10502 := (not #6905)
+#10503 := [hypothesis]: #10502
+#10442 := (or #4311 #6905)
+#10443 := [quant-inst]: #10442
+#10607 := [unit-resolution #10443 #10596 #10503]: false
+#10608 := [lemma #10607]: #6905
+#4888 := (* -1::int #4884)
+#4889 := (+ #1455 #4888)
+#4890 := (+ #108 #4889)
+#4891 := (<= #4890 0::int)
+#9338 := (not #4891)
+#4892 := (+ uf_9 #4888)
+#4893 := (<= #4892 0::int)
+#4927 := (or #4891 #4893)
+#4930 := (not #4927)
+#4925 := (= #108 #216)
+#10743 := (not #4925)
+#10744 := (iff #1492 #10743)
+#10741 := (iff #217 #4925)
+#10739 := (iff #4925 #217)
+#10738 := [commutativity]: #1490
+#10736 := (iff #4925 #788)
+#10737 := [monotonicity #5498]: #10736
+#10740 := [trans #10737 #10738]: #10739
+#10742 := [symm #10740]: #10741
+#10745 := [monotonicity #10742]: #10744
+#10746 := [mp #10613 #10745]: #10743
+#4933 := (or #4925 #4930)
+#9308 := (or #4433 #4925 #4930)
+#4923 := (or #4893 #4891)
+#4924 := (not #4923)
+#4926 := (or #4925 #4924)
+#9309 := (or #4433 #4926)
+#9334 := (iff #9309 #9308)
+#9329 := (or #4433 #4933)
+#9332 := (iff #9329 #9308)
+#9333 := [rewrite]: #9332
+#9330 := (iff #9309 #9329)
+#4934 := (iff #4926 #4933)
+#4931 := (iff #4924 #4930)
+#4928 := (iff #4923 #4927)
+#4929 := [rewrite]: #4928
+#4932 := [monotonicity #4929]: #4931
+#4935 := [monotonicity #4932]: #4934
+#9331 := [monotonicity #4935]: #9330
+#9335 := [trans #9331 #9333]: #9334
+#9310 := [quant-inst]: #9309
+#9336 := [mp #9310 #9335]: #9308
+#10747 := [unit-resolution #9336 #10727]: #4933
+#10748 := [unit-resolution #10747 #10746]: #4930
+#9321 := (or #4927 #9338)
+#9322 := [def-axiom]: #9321
+#10749 := [unit-resolution #9322 #10748]: #9338
+#10647 := (>= #10107 0::int)
+#9978 := (<= #10107 0::int)
+#9979 := (not #9978)
+#10042 := (= uf_11 #9695)
+#10207 := (not #10042)
+#10754 := (iff #8243 #10207)
+#10752 := (iff #4821 #10042)
+#10750 := (iff #10042 #4821)
+#10751 := [monotonicity #10708]: #10750
+#10753 := [symm #10751]: #10752
+#10755 := [monotonicity #10753]: #10754
+#10756 := [mp #10730 #10755]: #10207
+#10049 := (or #9979 #10042)
+#10397 := (or #10302 #9979 #10042)
+#10035 := (= #9695 uf_11)
+#10036 := (or #10035 #9979)
+#10418 := (or #10302 #10036)
+#10633 := (iff #10418 #10397)
+#10308 := (or #10302 #10049)
+#10631 := (iff #10308 #10397)
+#10632 := [rewrite]: #10631
+#10609 := (iff #10418 #10308)
+#10065 := (iff #10036 #10049)
+#10046 := (or #10042 #9979)
+#10050 := (iff #10046 #10049)
+#10051 := [rewrite]: #10050
+#10047 := (iff #10036 #10046)
+#10044 := (iff #10035 #10042)
+#10045 := [rewrite]: #10044
+#10048 := [monotonicity #10045]: #10047
+#10165 := [trans #10048 #10051]: #10065
+#10612 := [monotonicity #10165]: #10609
+#10634 := [trans #10612 #10632]: #10633
+#10413 := [quant-inst]: #10418
+#10635 := [mp #10413 #10634]: #10397
+#10757 := [unit-resolution #10635 #4249]: #10049
+#10758 := [unit-resolution #10757 #10756]: #9979
+#10759 := (or #10647 #9978)
+#10760 := [th-lemma]: #10759
+#10761 := [unit-resolution #10760 #10758]: #10647
+#10762 := [th-lemma #10761 #10749 #10608 #10735 #6367 #10717]: false
+#10763 := [lemma #10762]: #217
+#4100 := (or #4540 #1492 #4534)
+#4086 := [def-axiom]: #4100
+#19860 := [unit-resolution #4086 #10763]: #19826
+#19861 := [unit-resolution #19860 #19829]: #4534
+#4109 := (or #4531 #4525)
+#4093 := [def-axiom]: #4109
+#19854 := [unit-resolution #4093 #19861]: #4525
+#4106 := (or #4528 #2284 #4522)
+#4107 := [def-axiom]: #4106
+#19851 := [unit-resolution #4107 #19854 #19815]: #4522
+#4101 := (or #4519 #4513)
+#4103 := [def-axiom]: #4101
+#19863 := [unit-resolution #4103 #19851]: #4513
+#4123 := (or #4516 #3453 #4510)
+#4110 := [def-axiom]: #4123
+#19864 := [unit-resolution #4110 #19863]: #4513
+#19859 := [unit-resolution #19864 #19217]: #3453
+#4134 := (or #3448 #4133)
+#4135 := [def-axiom]: #4134
+#19869 := [unit-resolution #4135 #19859]: #4133
+#4148 := (or #3448 #2304)
+#3989 := [def-axiom]: #4148
+#19866 := [unit-resolution #3989 #19859]: #2304
+#3990 := (or #3448 #2307)
+#3991 := [def-axiom]: #3990
+#19868 := [unit-resolution #3991 #19859]: #2307
+#17736 := (or #3433 #2896 #2306)
+#12004 := [hypothesis]: #4133
+#6675 := (uf_1 uf_22 ?x68!16)
+#6676 := (uf_10 #6675)
+#6701 := (+ #2894 #6676)
+#6702 := (+ #188 #6701)
+#16997 := (<= #6702 0::int)
+#6705 := (= #6702 0::int)
+#6642 := (uf_4 uf_14 ?x68!16)
+#6659 := (* -1::int #6642)
+#6694 := (+ #6659 #6676)
+#6695 := (+ #188 #6694)
+#6696 := (>= #6695 0::int)
+#6680 := (* -1::int #6676)
+#6684 := (+ uf_9 #6680)
+#6685 := (<= #6684 0::int)
+#6731 := (or #6685 #6696)
+#6734 := (not #6731)
+#6728 := (= #2300 #6642)
+#14098 := (not #6728)
+#6660 := (+ #2300 #6659)
+#17022 := (>= #6660 0::int)
+#14117 := (not #17022)
+#6472 := (+ #188 #6659)
+#6473 := (<= #6472 0::int)
+#6496 := (uf_6 uf_15 ?x68!16)
+#6497 := (= uf_8 #6496)
+#16679 := (not #6497)
+#13671 := (= ?x68!16 #9695)
+#13592 := (ite #13671 #3895 #6497)
+#15564 := (not #13592)
+#13670 := (uf_6 #10323 ?x68!16)
+#13649 := (= uf_8 #13670)
+#13820 := (iff #13592 #13649)
+#14101 := (or #4987 #13820)
+#13645 := (ite #13671 #4958 #6497)
+#13647 := (= #13670 uf_8)
+#13648 := (iff #13647 #13645)
+#15296 := (or #4987 #13648)
+#15178 := (iff #15296 #14101)
+#15561 := (iff #14101 #14101)
+#15556 := [rewrite]: #15561
+#13826 := (iff #13648 #13820)
+#13663 := (iff #13649 #13592)
+#13819 := (iff #13663 #13820)
+#13825 := [rewrite]: #13819
+#13664 := (iff #13648 #13663)
+#13638 := (iff #13645 #13592)
+#13662 := [monotonicity #4971]: #13638
+#13655 := (iff #13647 #13649)
+#13661 := [rewrite]: #13655
+#13665 := [monotonicity #13661 #13662]: #13664
+#13828 := [trans #13665 #13825]: #13826
+#15560 := [monotonicity #13828]: #15178
+#15558 := [trans #15560 #15556]: #15178
+#15177 := [quant-inst]: #15296
+#15563 := [mp #15177 #15558]: #14101
+#17427 := [unit-resolution #15563 #4222]: #13820
+#16690 := (not #13649)
+#17349 := (iff #2307 #16690)
+#17657 := (iff #2306 #13649)
+#17654 := (iff #13649 #2306)
+#17353 := (= #13670 #2305)
+#17653 := [monotonicity #13583]: #17353
+#17655 := [monotonicity #17653]: #17654
+#17300 := [symm #17655]: #17657
+#17434 := [monotonicity #17300]: #17349
+#17656 := [hypothesis]: #2307
+#17463 := [mp #17656 #17434]: #16690
+#16689 := (not #13820)
+#16795 := (or #16689 #15564 #13649)
+#16793 := [def-axiom]: #16795
+#17402 := [unit-resolution #16793 #17463 #17427]: #15564
+#15565 := (not #13671)
+#17466 := (or #13592 #15565)
+#15618 := (or #13592 #15565 #3924)
+#15814 := [def-axiom]: #15618
+#17660 := [unit-resolution #15814 #7677]: #17466
+#17661 := [unit-resolution #17660 #17402]: #15565
+#16681 := (or #13592 #13671 #16679)
+#16685 := [def-axiom]: #16681
+#17658 := [unit-resolution #16685 #17661 #17402]: #16679
+#6530 := (or #6473 #6497)
+#17091 := (or #4423 #6473 #6497)
+#6493 := (+ #6642 #1455)
+#6494 := (>= #6493 0::int)
+#6495 := (or #6497 #6494)
+#17092 := (or #4423 #6495)
+#16354 := (iff #17092 #17091)
+#17099 := (or #4423 #6530)
+#16352 := (iff #17099 #17091)
+#16353 := [rewrite]: #16352
+#16351 := (iff #17092 #17099)
+#6533 := (iff #6495 #6530)
+#6527 := (or #6497 #6473)
+#6531 := (iff #6527 #6530)
+#6532 := [rewrite]: #6531
+#6528 := (iff #6495 #6527)
+#6525 := (iff #6494 #6473)
+#6467 := (+ #1455 #6642)
+#6469 := (>= #6467 0::int)
+#6474 := (iff #6469 #6473)
+#6524 := [rewrite]: #6474
+#6470 := (iff #6494 #6469)
+#6468 := (= #6493 #6467)
+#6466 := [rewrite]: #6468
+#6471 := [monotonicity #6466]: #6470
+#6526 := [trans #6471 #6524]: #6525
+#6529 := [monotonicity #6526]: #6528
+#6534 := [trans #6529 #6532]: #6533
+#17076 := [monotonicity #6534]: #16351
+#16356 := [trans #17076 #16353]: #16354
+#17101 := [quant-inst]: #17092
+#16358 := [mp #17101 #16356]: #17091
+#17669 := [unit-resolution #16358 #17666]: #6530
+#17659 := [unit-resolution #17669 #17658]: #6473
+#6393 := (+ #2298 #4781)
+#18006 := (<= #6393 0::int)
+#17296 := (= #2298 #4740)
+#6449 := (= ?x67!17 uf_22)
+#14077 := (= ?x67!17 #9695)
+#6439 := (uf_6 uf_15 ?x67!17)
+#6440 := (= uf_8 #6439)
+#14085 := (ite #14077 #3895 #6440)
+#14079 := (uf_6 #10323 ?x67!17)
+#14082 := (= uf_8 #14079)
+#14088 := (iff #14082 #14085)
+#16842 := (or #4987 #14088)
+#14078 := (ite #14077 #4958 #6440)
+#14080 := (= #14079 uf_8)
+#14081 := (iff #14080 #14078)
+#16843 := (or #4987 #14081)
+#16827 := (iff #16843 #16842)
+#16829 := (iff #16842 #16842)
+#16830 := [rewrite]: #16829
+#14089 := (iff #14081 #14088)
+#14086 := (iff #14078 #14085)
+#14087 := [monotonicity #4971]: #14086
+#14083 := (iff #14080 #14082)
+#14084 := [rewrite]: #14083
+#14090 := [monotonicity #14084 #14087]: #14089
+#16828 := [monotonicity #14090]: #16827
+#16825 := [trans #16828 #16830]: #16827
+#16822 := [quant-inst]: #16843
+#16780 := [mp #16822 #16825]: #16842
+#17670 := [unit-resolution #16780 #4222]: #14088
+#17684 := (= #2303 #14079)
+#17672 := (= #14079 #2303)
+#17688 := [monotonicity #13583]: #17672
+#17680 := [symm #17688]: #17684
+#17671 := [hypothesis]: #2304
+#17705 := [trans #17671 #17680]: #14082
+#16844 := (not #14082)
+#16848 := (not #14088)
+#16851 := (or #16848 #16844 #14085)
+#16852 := [def-axiom]: #16851
+#17703 := [unit-resolution #16852 #17705 #17670]: #14085
+#16816 := (not #6440)
+#6405 := (uf_4 uf_14 ?x67!17)
+#17321 := (+ #6405 #9707)
+#17316 := (<= #17321 0::int)
+#14110 := (not #17316)
+#14118 := (not #6473)
+#17620 := (or #14110 #2896 #13671 #14118)
+#17021 := (not #6685)
+#5574 := (* -1::int #6405)
+#5674 := (+ #2298 #5574)
+#5698 := (<= #5674 0::int)
+#16850 := (or #4449 #5698)
+#5667 := (+ #6405 #2299)
+#5668 := (>= #5667 0::int)
+#16871 := (or #4449 #5668)
+#16875 := (iff #16871 #16850)
+#16878 := (iff #16850 #16850)
+#16872 := [rewrite]: #16878
+#5701 := (iff #5668 #5698)
+#5669 := (+ #2299 #6405)
+#5671 := (>= #5669 0::int)
+#5699 := (iff #5671 #5698)
+#5700 := [rewrite]: #5699
+#5672 := (iff #5668 #5671)
+#5664 := (= #5667 #5669)
+#5670 := [rewrite]: #5664
+#5673 := [monotonicity #5670]: #5672
+#5702 := [trans #5673 #5700]: #5701
+#16877 := [monotonicity #5702]: #16875
+#16845 := [trans #16877 #16872]: #16875
+#16831 := [quant-inst]: #16871
+#16858 := [mp #16831 #16845]: #16850
+#12150 := [unit-resolution #16858 #10788]: #5698
+#14116 := [hypothesis]: #6473
+#14115 := [hypothesis]: #17316
+#14119 := (not #10581)
+#14113 := (not #5698)
+#14120 := (or #14117 #14118 #14113 #2896 #14110 #14119)
+#14127 := [th-lemma]: #14120
+#14128 := [unit-resolution #14127 #14115 #14116 #12150 #12004 #12925]: #14117
+#14167 := (or #14098 #17022)
+#14099 := [th-lemma]: #14167
+#14170 := [unit-resolution #14099 #14128]: #14098
+#6737 := (or #6728 #6734)
+#17003 := (or #4433 #6728 #6734)
+#6681 := (+ #1455 #6680)
+#6682 := (+ #6642 #6681)
+#6683 := (<= #6682 0::int)
+#6724 := (or #6685 #6683)
+#6725 := (not #6724)
+#6726 := (= #6642 #2300)
+#6727 := (or #6726 #6725)
+#17006 := (or #4433 #6727)
+#17015 := (iff #17006 #17003)
+#16994 := (or #4433 #6737)
+#17013 := (iff #16994 #17003)
+#17012 := [rewrite]: #17013
+#17007 := (iff #17006 #16994)
+#6738 := (iff #6727 #6737)
+#6735 := (iff #6725 #6734)
+#6732 := (iff #6724 #6731)
+#6699 := (iff #6683 #6696)
+#6687 := (+ #6642 #6680)
+#6688 := (+ #1455 #6687)
+#6691 := (<= #6688 0::int)
+#6697 := (iff #6691 #6696)
+#6698 := [rewrite]: #6697
+#6692 := (iff #6683 #6691)
+#6689 := (= #6682 #6688)
+#6690 := [rewrite]: #6689
+#6693 := [monotonicity #6690]: #6692
+#6700 := [trans #6693 #6698]: #6699
+#6733 := [monotonicity #6700]: #6732
+#6736 := [monotonicity #6733]: #6735
+#6729 := (iff #6726 #6728)
+#6730 := [rewrite]: #6729
+#6739 := [monotonicity #6730 #6736]: #6738
+#17008 := [monotonicity #6739]: #17007
+#17016 := [trans #17008 #17012]: #17015
+#17005 := [quant-inst]: #17006
+#17017 := [mp #17005 #17016]: #17003
+#14323 := [unit-resolution #17017 #10727]: #6737
+#14462 := [unit-resolution #14323 #14170]: #6734
+#17024 := (or #6731 #17021)
+#17014 := [def-axiom]: #17024
+#14131 := [unit-resolution #17014 #14462]: #17021
+#17023 := (not #6696)
+#17025 := (or #6731 #17023)
+#17026 := [def-axiom]: #17025
+#14463 := [unit-resolution #17026 #14462]: #17023
+#6708 := (or #6685 #6696 #6705)
+#16986 := (or #4441 #6685 #6696 #6705)
+#6677 := (+ #6676 #2894)
+#6678 := (+ #188 #6677)
+#6679 := (= #6678 0::int)
+#6686 := (or #6685 #6683 #6679)
+#16942 := (or #4441 #6686)
+#16967 := (iff #16942 #16986)
+#16939 := (or #4441 #6708)
+#16965 := (iff #16939 #16986)
+#16966 := [rewrite]: #16965
+#16958 := (iff #16942 #16939)
+#6709 := (iff #6686 #6708)
+#6706 := (iff #6679 #6705)
+#6703 := (= #6678 #6702)
+#6704 := [rewrite]: #6703
+#6707 := [monotonicity #6704]: #6706
+#6710 := [monotonicity #6700 #6707]: #6709
+#16981 := [monotonicity #6710]: #16958
+#16968 := [trans #16981 #16966]: #16967
+#16943 := [quant-inst]: #16942
+#16957 := [mp #16943 #16968]: #16986
+#14091 := [unit-resolution #16957 #10785]: #6708
+#15021 := [unit-resolution #14091 #14463 #14131]: #6705
+#15016 := (not #6705)
+#15301 := (or #15016 #16997)
+#16191 := [th-lemma]: #15301
+#16210 := [unit-resolution #16191 #15021]: #16997
+#17555 := (uf_1 #9695 ?x68!16)
+#17556 := (uf_10 #17555)
+#11882 := (* -1::int #17556)
+#11971 := (+ #6676 #11882)
+#12082 := (>= #11971 0::int)
+#12012 := (= #6676 #17556)
+#16213 := (= #17556 #6676)
+#15939 := (= #17555 #6675)
+#16211 := [monotonicity #10708]: #15939
+#16214 := [monotonicity #16211]: #16213
+#16541 := [symm #16214]: #12012
+#16559 := (not #12012)
+#16520 := (or #16559 #12082)
+#16540 := [th-lemma]: #16520
+#16560 := [unit-resolution #16540 #16541]: #12082
+#17561 := (<= #17556 0::int)
+#17562 := (not #17561)
+#16607 := [hypothesis]: #15565
+#17589 := (or #10302 #13671 #17562)
+#17574 := (= #9695 ?x68!16)
+#17571 := (or #17574 #17562)
+#17590 := (or #10302 #17571)
+#11861 := (iff #17590 #17589)
+#17587 := (or #13671 #17562)
+#17606 := (or #10302 #17587)
+#17600 := (iff #17606 #17589)
+#17601 := [rewrite]: #17600
+#17593 := (iff #17590 #17606)
+#17569 := (iff #17571 #17587)
+#17585 := (iff #17574 #13671)
+#17586 := [rewrite]: #17585
+#17588 := [monotonicity #17586]: #17569
+#17599 := [monotonicity #17588]: #17593
+#17598 := [trans #17599 #17601]: #11861
+#17583 := [quant-inst]: #17590
+#11866 := [mp #17583 #17598]: #17589
+#17621 := [unit-resolution #11866 #4249 #16607]: #17562
+#17166 := [th-lemma #12150 #12004 #14115 #12925 #17621 #16560 #16210]: false
+#17622 := [lemma #17166]: #17620
+#17722 := [unit-resolution #17622 #17661 #12004 #17659]: #14110
+#18133 := (or #16816 #17316)
+#18126 := [hypothesis]: #14110
+#18130 := [hypothesis]: #6440
+#18002 := (or #4328 #16816 #9686 #17316)
+#17278 := (+ #9701 #5574)
+#17277 := (>= #17278 0::int)
+#17276 := (or #9686 #16816 #17277)
+#18007 := (or #4328 #17276)
+#17984 := (iff #18007 #18002)
+#17337 := (or #16816 #9686 #17316)
+#17982 := (or #4328 #17337)
+#17989 := (iff #17982 #18002)
+#17990 := [rewrite]: #17989
+#17983 := (iff #18007 #17982)
+#17345 := (iff #17276 #17337)
+#17333 := (or #9686 #16816 #17316)
+#17346 := (iff #17333 #17337)
+#17341 := [rewrite]: #17346
+#17336 := (iff #17276 #17333)
+#17332 := (iff #17277 #17316)
+#17303 := (+ #5574 #9701)
+#17297 := (>= #17303 0::int)
+#17320 := (iff #17297 #17316)
+#17326 := [rewrite]: #17320
+#17306 := (iff #17277 #17297)
+#17304 := (= #17278 #17303)
+#17305 := [rewrite]: #17304
+#17317 := [monotonicity #17305]: #17306
+#17325 := [trans #17317 #17326]: #17332
+#17324 := [monotonicity #17325]: #17336
+#17347 := [trans #17324 #17341]: #17345
+#17971 := [monotonicity #17347]: #17983
+#17988 := [trans #17971 #17990]: #17984
+#17980 := [quant-inst]: #18007
+#17991 := [mp #17980 #17988]: #18002
+#18132 := [unit-resolution #17991 #13967 #13969 #18130 #18126]: false
+#18134 := [lemma #18132]: #18133
+#17723 := [unit-resolution #18134 #17722]: #16816
+#16801 := (not #14085)
+#16815 := (or #16801 #14077 #6440)
+#16832 := [def-axiom]: #16815
+#17724 := [unit-resolution #16832 #17723 #17703]: #14077
+#17720 := [trans #17724 #10708]: #6449
+#17697 := [monotonicity #17720]: #17296
+#17700 := (not #17296)
+#17701 := (or #17700 #18006)
+#17693 := [th-lemma]: #17701
+#17673 := [unit-resolution #17693 #17697]: #18006
+#18044 := (not #18006)
+#18045 := (or #18044 #14117 #2896 #14118)
+#18043 := [hypothesis]: #18006
+#18041 := [hypothesis]: #17022
+#18042 := [th-lemma #18041 #12004 #14116 #9311 #18043]: false
+#18046 := [lemma #18042]: #18045
+#17699 := [unit-resolution #18046 #17673 #12004 #17659]: #14117
+#17676 := [unit-resolution #14099 #17699]: #14098
+#17677 := [unit-resolution #14323 #17676]: #6734
+#17164 := (or #6731 #6705)
+#17180 := [hypothesis]: #15016
+#17209 := [hypothesis]: #6734
+#17210 := [unit-resolution #17014 #17209]: #17021
+#17207 := [unit-resolution #17026 #17209]: #17023
+#17212 := [unit-resolution #14091 #17207 #17210 #17180]: false
+#17211 := [lemma #17212]: #17164
+#17678 := [unit-resolution #17211 #17677]: #6705
+#17681 := [unit-resolution #16191 #17678]: #16997
+#17675 := [unit-resolution #11866 #4249 #17661]: #17562
+#17735 := [th-lemma #17673 #9311 #17675 #16560 #17681 #12004]: false
+#17721 := [lemma #17735]: #17736
+[unit-resolution #17721 #19868 #19866 #19869]: false
unsat
--- a/src/HOL/Boogie/Examples/cert/Boogie_max Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Boogie/Examples/cert/Boogie_max Sat Nov 14 09:40:27 2009 +0100
@@ -1,19 +1,19 @@
(benchmark Isabelle
:extrafuns (
- (uf_5 Int)
- (uf_7 Int)
+ (uf_4 Int)
(uf_11 Int)
- (uf_4 Int)
+ (uf_7 Int)
+ (uf_5 Int)
+ (uf_13 Int)
(uf_9 Int)
- (uf_13 Int)
(uf_2 Int)
(uf_6 Int)
(uf_10 Int)
+ (uf_12 Int)
(uf_8 Int)
- (uf_12 Int)
(uf_3 Int Int)
(uf_1 Int)
)
-:assumption (not (implies true (implies (< 0 uf_1) (implies true (implies (= uf_2 (uf_3 0)) (implies (and (<= 1 1) (and (<= 1 1) (and (<= 0 0) (<= 0 0)))) (and (implies (forall (?x1 Int) (implies (and (< ?x1 1) (<= 0 ?x1)) (<= (uf_3 ?x1) uf_2))) (and (implies (= (uf_3 0) uf_2) (implies true (implies (and (<= 1 uf_4) (<= 0 uf_5)) (implies (forall (?x2 Int) (implies (and (< ?x2 uf_4) (<= 0 ?x2)) (<= (uf_3 ?x2) uf_6))) (implies (= (uf_3 uf_5) uf_6) (implies (and (<= 1 uf_4) (<= 0 uf_5)) (and (implies true (implies (and (<= 1 uf_4) (<= 0 uf_5)) (implies (< uf_4 uf_1) (implies (and (<= 1 uf_4) (<= 0 uf_5)) (and (implies true (implies (and (<= 1 uf_4) (<= 0 uf_5)) (implies (<= (uf_3 uf_4) uf_6) (implies (and (<= 1 uf_4) (<= 0 uf_5)) (implies true (implies (= uf_7 uf_5) (implies (= uf_8 uf_6) (implies true (implies (and (<= 1 uf_4) (<= 0 uf_7)) (implies (= uf_9 (+ uf_4 1)) (implies (and (<= 2 uf_9) (<= 0 uf_7)) (implies true (and (implies (forall (?x3 Int) (implies (and (< ?x3 uf_9) (<= 0 ?x3)) (<= (uf_3 ?x3) uf_8))) (and (implies (= (uf_3 uf_7) uf_8) (implies false true)) (= (uf_3 uf_7) uf_8))) (forall (?x4 Int) (implies (and (< ?x4 uf_9) (<= 0 ?x4)) (<= (uf_3 ?x4) uf_8)))))))))))))))) (implies true (implies (and (<= 1 uf_4) (<= 0 uf_5)) (implies (< uf_6 (uf_3 uf_4)) (implies (= uf_10 (uf_3 uf_4)) (implies (and (<= 1 uf_4) (<= 1 uf_4)) (implies true (implies (= uf_7 uf_4) (implies (= uf_8 uf_10) (implies true (implies (and (<= 1 uf_4) (<= 0 uf_7)) (implies (= uf_9 (+ uf_4 1)) (implies (and (<= 2 uf_9) (<= 0 uf_7)) (implies true (and (implies (forall (?x5 Int) (implies (and (< ?x5 uf_9) (<= 0 ?x5)) (<= (uf_3 ?x5) uf_8))) (and (implies (= (uf_3 uf_7) uf_8) (implies false true)) (= (uf_3 uf_7) uf_8))) (forall (?x6 Int) (implies (and (< ?x6 uf_9) (<= 0 ?x6)) (<= (uf_3 ?x6) uf_8)))))))))))))))))))))) (implies true (implies (and (<= 1 uf_4) (<= 0 uf_5)) (implies (<= uf_1 uf_4) (implies (and (<= 1 uf_4) (<= 0 uf_5)) (implies true (implies (= uf_11 uf_5) (implies (= uf_12 uf_6) (implies (= uf_13 uf_4) (implies true (and (implies (exists (?x7 Int) (implies (and (< ?x7 uf_1) (<= 0 ?x7)) (= (uf_3 ?x7) uf_12))) (and (implies (forall (?x8 Int) (implies (and (< ?x8 uf_1) (<= 0 ?x8)) (<= (uf_3 ?x8) uf_12))) true) (forall (?x9 Int) (implies (and (< ?x9 uf_1) (<= 0 ?x9)) (<= (uf_3 ?x9) uf_12))))) (exists (?x10 Int) (implies (and (< ?x10 uf_1) (<= 0 ?x10)) (= (uf_3 ?x10) uf_12)))))))))))))))))))) (= (uf_3 0) uf_2))) (forall (?x11 Int) (implies (and (< ?x11 1) (<= 0 ?x11)) (<= (uf_3 ?x11) uf_2))))))))))
+:assumption (not (implies true (implies (< 0 uf_1) (implies true (implies (= uf_2 (uf_3 0)) (implies (and (<= 0 0) (and (<= 0 0) (and (<= 1 1) (<= 1 1)))) (and (forall (?x1 Int) (implies (and (<= 0 ?x1) (< ?x1 1)) (<= (uf_3 ?x1) uf_2))) (implies (forall (?x2 Int) (implies (and (<= 0 ?x2) (< ?x2 1)) (<= (uf_3 ?x2) uf_2))) (and (= (uf_3 0) uf_2) (implies (= (uf_3 0) uf_2) (implies true (implies (and (<= 0 uf_4) (<= 1 uf_5)) (implies (forall (?x3 Int) (implies (and (<= 0 ?x3) (< ?x3 uf_5)) (<= (uf_3 ?x3) uf_6))) (implies (= (uf_3 uf_4) uf_6) (implies (and (<= 0 uf_4) (<= 1 uf_5)) (and (implies true (implies (and (<= 0 uf_4) (<= 1 uf_5)) (implies (<= uf_1 uf_5) (implies (and (<= 0 uf_4) (<= 1 uf_5)) (implies true (implies (= uf_7 uf_4) (implies (= uf_8 uf_6) (implies (= uf_9 uf_5) (implies true (and (exists (?x4 Int) (implies (and (<= 0 ?x4) (< ?x4 uf_1)) (= (uf_3 ?x4) uf_8))) (implies (exists (?x5 Int) (implies (and (<= 0 ?x5) (< ?x5 uf_1)) (= (uf_3 ?x5) uf_8))) (and (forall (?x6 Int) (implies (and (<= 0 ?x6) (< ?x6 uf_1)) (<= (uf_3 ?x6) uf_8))) (implies (forall (?x7 Int) (implies (and (<= 0 ?x7) (< ?x7 uf_1)) (<= (uf_3 ?x7) uf_8))) true))))))))))))) (implies true (implies (and (<= 0 uf_4) (<= 1 uf_5)) (implies (< uf_5 uf_1) (implies (and (<= 0 uf_4) (<= 1 uf_5)) (and (implies true (implies (and (<= 0 uf_4) (<= 1 uf_5)) (implies (< uf_6 (uf_3 uf_5)) (implies (= uf_10 (uf_3 uf_5)) (implies (and (<= 1 uf_5) (<= 1 uf_5)) (implies true (implies (= uf_11 uf_5) (implies (= uf_12 uf_10) (implies true (implies (and (<= 0 uf_11) (<= 1 uf_5)) (implies (= uf_13 (+ uf_5 1)) (implies (and (<= 0 uf_11) (<= 2 uf_13)) (implies true (and (forall (?x8 Int) (implies (and (<= 0 ?x8) (< ?x8 uf_13)) (<= (uf_3 ?x8) uf_12))) (implies (forall (?x9 Int) (implies (and (<= 0 ?x9) (< ?x9 uf_13)) (<= (uf_3 ?x9) uf_12))) (and (= (uf_3 uf_11) uf_12) (implies (= (uf_3 uf_11) uf_12) (implies false true)))))))))))))))))) (implies true (implies (and (<= 0 uf_4) (<= 1 uf_5)) (implies (<= (uf_3 uf_5) uf_6) (implies (and (<= 0 uf_4) (<= 1 uf_5)) (implies true (implies (= uf_11 uf_4) (implies (= uf_12 uf_6) (implies true (implies (and (<= 0 uf_11) (<= 1 uf_5)) (implies (= uf_13 (+ uf_5 1)) (implies (and (<= 0 uf_11) (<= 2 uf_13)) (implies true (and (forall (?x10 Int) (implies (and (<= 0 ?x10) (< ?x10 uf_13)) (<= (uf_3 ?x10) uf_12))) (implies (forall (?x11 Int) (implies (and (<= 0 ?x11) (< ?x11 uf_13)) (<= (uf_3 ?x11) uf_12))) (and (= (uf_3 uf_11) uf_12) (implies (= (uf_3 uf_11) uf_12) (implies false true))))))))))))))))))))))))))))))))))))))
:formula true
)
--- a/src/HOL/Boogie/Examples/cert/Boogie_max.proof Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Boogie/Examples/cert/Boogie_max.proof Sat Nov 14 09:40:27 2009 +0100
@@ -1,361 +1,258 @@
#2 := false
#4 := 0::int
decl uf_3 :: (-> int int)
-decl ?x3!1 :: int
-#1188 := ?x3!1
-#1195 := (uf_3 ?x3!1)
-#760 := -1::int
-#1381 := (* -1::int #1195)
-decl uf_4 :: int
-#25 := uf_4
-#39 := (uf_3 uf_4)
-#2763 := (+ #39 #1381)
-#2765 := (>= #2763 0::int)
-#2762 := (= #39 #1195)
-#2631 := (= uf_4 ?x3!1)
-#1394 := (* -1::int ?x3!1)
-#2564 := (+ uf_4 #1394)
-#2628 := (>= #2564 0::int)
-decl uf_9 :: int
-#47 := uf_9
-#806 := (* -1::int uf_9)
-#838 := (+ uf_4 #806)
-#1977 := (>= #838 -1::int)
-#837 := (= #838 -1::int)
-#1395 := (+ uf_9 #1394)
-#1396 := (<= #1395 0::int)
-decl uf_8 :: int
-#43 := uf_8
-#1382 := (+ uf_8 #1381)
-#1383 := (>= #1382 0::int)
-#1192 := (>= ?x3!1 0::int)
-#1625 := (not #1192)
-#1640 := (or #1625 #1383 #1396)
-#1645 := (not #1640)
-#16 := (:var 0 int)
-#20 := (uf_3 #16)
-#2303 := (pattern #20)
-#807 := (+ #16 #806)
-#805 := (>= #807 0::int)
-#799 := (* -1::int uf_8)
-#800 := (+ #20 #799)
-#801 := (<= #800 0::int)
-#753 := (>= #16 0::int)
-#1548 := (not #753)
-#1607 := (or #1548 #801 #805)
-#2320 := (forall (vars (?x3 int)) (:pat #2303) #1607)
-#2325 := (not #2320)
-decl uf_7 :: int
-#41 := uf_7
-#58 := (uf_3 uf_7)
-#221 := (= uf_8 #58)
-#2328 := (or #221 #2325)
-#2331 := (not #2328)
-#2334 := (or #2331 #1645)
-#2337 := (not #2334)
-#851 := (* -1::int #39)
-decl uf_6 :: int
-#32 := uf_6
-#852 := (+ uf_6 #851)
-#850 := (>= #852 0::int)
-#840 := (not #837)
-#50 := 2::int
-#791 := (>= uf_9 2::int)
-#1656 := (not #791)
-#788 := (>= uf_7 0::int)
-#1655 := (not #788)
-decl uf_5 :: int
-#27 := uf_5
-#779 := (>= uf_5 0::int)
-#1654 := (not #779)
-#10 := 1::int
-#776 := (>= uf_4 1::int)
-#886 := (not #776)
-#361 := (= uf_4 uf_7)
-#376 := (not #361)
-decl uf_10 :: int
-#78 := uf_10
-#356 := (= #39 uf_10)
-#401 := (not #356)
-#82 := (= uf_8 uf_10)
-#367 := (not #82)
-#2346 := (or #367 #401 #376 #886 #1654 #1655 #1656 #840 #850 #2337)
-#2349 := (not #2346)
-#854 := (not #850)
-#194 := (= uf_6 uf_8)
-#301 := (not #194)
-#191 := (= uf_5 uf_7)
-#310 := (not #191)
-#2340 := (or #310 #301 #886 #1654 #1655 #1656 #840 #854 #2337)
-#2343 := (not #2340)
-#2352 := (or #2343 #2349)
-#2355 := (not #2352)
-#924 := (* -1::int uf_4)
-decl uf_1 :: int
-#5 := uf_1
-#925 := (+ uf_1 #924)
-#926 := (<= #925 0::int)
-#2358 := (or #886 #1654 #926 #2355)
-#2361 := (not #2358)
-decl ?x7!2 :: int
-#1279 := ?x7!2
-#1287 := (uf_3 ?x7!2)
-decl uf_12 :: int
-#99 := uf_12
-#1469 := (= uf_12 #1287)
-#1284 := (>= ?x7!2 0::int)
-#1711 := (not #1284)
-#1280 := (* -1::int ?x7!2)
-#1281 := (+ uf_1 #1280)
-#1282 := (<= #1281 0::int)
-#1726 := (or #1282 #1711 #1469)
-#1757 := (not #1726)
-decl ?x8!3 :: int
-#1297 := ?x8!3
-#1298 := (uf_3 ?x8!3)
-#1493 := (* -1::int #1298)
-#1494 := (+ uf_12 #1493)
-#1495 := (>= #1494 0::int)
-#1305 := (>= ?x8!3 0::int)
-#1731 := (not #1305)
-#1301 := (* -1::int ?x8!3)
-#1302 := (+ uf_1 #1301)
-#1303 := (<= #1302 0::int)
-#1795 := (or #1303 #1731 #1495 #1757)
-#1798 := (not #1795)
-#951 := (* -1::int #16)
-#952 := (+ uf_1 #951)
-#953 := (<= #952 0::int)
-#105 := (= #20 uf_12)
-#1700 := (or #105 #1548 #953)
-#1705 := (not #1700)
-#2364 := (forall (vars (?x7 int)) (:pat #2303) #1705)
-#2369 := (or #2364 #1798)
-#2372 := (not #2369)
-#927 := (not #926)
-decl uf_13 :: int
-#101 := uf_13
-#472 := (= uf_4 uf_13)
-#542 := (not #472)
-#469 := (= uf_6 uf_12)
-#551 := (not #469)
-decl uf_11 :: int
-#97 := uf_11
-#466 := (= uf_5 uf_11)
-#560 := (not #466)
-#2375 := (or #560 #551 #542 #886 #1654 #927 #2372)
-#2378 := (not #2375)
-#2381 := (or #2361 #2378)
-#2384 := (not #2381)
-#1030 := (+ #16 #924)
-#1029 := (>= #1030 0::int)
-#1024 := (* -1::int uf_6)
-#1025 := (+ #20 #1024)
-#1026 := (<= #1025 0::int)
-#1585 := (or #1548 #1026 #1029)
-#2312 := (forall (vars (?x2 int)) (:pat #2303) #1585)
-#2317 := (not #2312)
-#763 := (* -1::int #20)
+#8 := (uf_3 0::int)
+#714 := -1::int
+#2117 := (* -1::int #8)
decl uf_2 :: int
#7 := uf_2
-#764 := (+ uf_2 #763)
-#762 := (>= #764 0::int)
-#749 := (>= #16 1::int)
-#1563 := (or #749 #1548 #762)
-#2304 := (forall (vars (?x1 int)) (:pat #2303) #1563)
-#2309 := (not #2304)
-#36 := (uf_3 uf_5)
-#188 := (= uf_6 #36)
-#619 := (not #188)
-#2387 := (or #619 #886 #1654 #2309 #2317 #2384)
-#2390 := (not #2387)
-decl ?x1!0 :: int
-#1152 := ?x1!0
-#1156 := (>= ?x1!0 1::int)
-#1155 := (>= ?x1!0 0::int)
-#1164 := (not #1155)
-#1153 := (uf_3 ?x1!0)
-#1150 := (* -1::int #1153)
-#1151 := (+ uf_2 #1150)
-#1154 := (>= #1151 0::int)
-#1540 := (or #1154 #1164 #1156)
-#2202 := (= uf_2 #1153)
-#8 := (uf_3 0::int)
-#2191 := (= #8 #1153)
-#2188 := (= #1153 #8)
-#2207 := (= ?x1!0 0::int)
-#1157 := (not #1156)
-#1545 := (not #1540)
-#2205 := [hypothesis]: #1545
-#1976 := (or #1540 #1157)
-#1967 := [def-axiom]: #1976
-#2206 := [unit-resolution #1967 #2205]: #1157
-#1975 := (or #1540 #1155)
-#1890 := [def-axiom]: #1975
-#2203 := [unit-resolution #1890 #2205]: #1155
-#2187 := [th-lemma #2203 #2206]: #2207
-#2190 := [monotonicity #2187]: #2188
-#2192 := [symm #2190]: #2191
+#2122 := (+ uf_2 #2117)
+#2118 := (>= #2122 0::int)
#9 := (= uf_2 #8)
-#1078 := (<= uf_1 0::int)
-#1031 := (not #1029)
-#1034 := (and #753 #1031)
-#1037 := (not #1034)
-#1040 := (or #1026 #1037)
-#1043 := (forall (vars (?x2 int)) #1040)
-#1046 := (not #1043)
-#972 := (* -1::int uf_12)
-#973 := (+ #20 #972)
-#974 := (<= #973 0::int)
-#954 := (not #953)
-#957 := (and #753 #954)
-#960 := (not #957)
-#980 := (or #960 #974)
-#985 := (forall (vars (?x8 int)) #980)
-#963 := (or #105 #960)
-#966 := (exists (vars (?x7 int)) #963)
-#969 := (not #966)
-#988 := (or #969 #985)
-#991 := (and #966 #988)
-#781 := (and #776 #779)
-#784 := (not #781)
-#1016 := (or #560 #551 #542 #784 #927 #991)
-#843 := (and #776 #788)
-#846 := (not #843)
-#804 := (not #805)
-#810 := (and #753 #804)
-#813 := (not #810)
-#816 := (or #801 #813)
-#819 := (forall (vars (?x3 int)) #816)
-#822 := (not #819)
-#828 := (or #221 #822)
-#833 := (and #819 #828)
-#793 := (and #788 #791)
-#796 := (not #793)
-#916 := (or #367 #401 #376 #886 #784 #796 #833 #840 #846 #850)
-#881 := (or #310 #301 #784 #796 #833 #840 #846 #854)
-#921 := (and #881 #916)
-#946 := (or #784 #921 #926)
-#1021 := (and #946 #1016)
-#652 := (not #9)
-#1064 := (or #652 #619 #784 #1021 #1046)
-#1069 := (and #9 #1064)
-#747 := (not #749)
-#754 := (and #747 #753)
-#757 := (not #754)
-#766 := (or #757 #762)
-#769 := (forall (vars (?x1 int)) #766)
-#772 := (not #769)
-#1072 := (or #772 #1069)
-#1075 := (and #769 #1072)
-#1098 := (or #652 #1075 #1078)
-#1103 := (not #1098)
-#21 := (<= #20 uf_2)
-#18 := (<= 0::int #16)
-#17 := (< #16 1::int)
-#19 := (and #17 #18)
-#22 := (implies #19 #21)
-#23 := (forall (vars (?x1 int)) #22)
-#24 := (= #8 uf_2)
-#103 := (< #16 uf_1)
-#104 := (and #103 #18)
-#106 := (implies #104 #105)
-#107 := (exists (vars (?x7 int)) #106)
-#108 := (<= #20 uf_12)
-#109 := (implies #104 #108)
-#110 := (forall (vars (?x8 int)) #109)
+decl uf_1 :: int
+#5 := uf_1
+#1032 := (<= uf_1 0::int)
+decl uf_6 :: int
+#32 := uf_6
+#989 := (* -1::int uf_6)
+#16 := (:var 0 int)
+#20 := (uf_3 #16)
+#990 := (+ #20 #989)
+#991 := (<= #990 0::int)
+decl uf_5 :: int
+#27 := uf_5
+#784 := (* -1::int uf_5)
+#979 := (+ #16 #784)
+#978 := (>= #979 0::int)
+#980 := (not #978)
+#703 := (>= #16 0::int)
+#983 := (and #703 #980)
+#986 := (not #983)
+#994 := (or #986 #991)
+#997 := (forall (vars (?x3 int)) #994)
+#1000 := (not #997)
+#67 := (uf_3 uf_5)
+#882 := (* -1::int #67)
+#883 := (+ uf_6 #882)
+#881 := (>= #883 0::int)
+#880 := (not #881)
+decl uf_11 :: int
+#72 := uf_11
+#816 := (>= uf_11 0::int)
+#11 := 1::int
+#733 := (>= uf_5 1::int)
+#871 := (and #733 #816)
+#874 := (not #871)
+decl uf_13 :: int
+#78 := uf_13
+#828 := (* -1::int uf_13)
+#865 := (+ uf_5 #828)
+#864 := (= #865 -1::int)
+#868 := (not #864)
+decl uf_12 :: int
+#74 := uf_12
+#839 := (* -1::int uf_12)
+#840 := (+ #20 #839)
+#841 := (<= #840 0::int)
+#829 := (+ #16 #828)
+#827 := (>= #829 0::int)
+#830 := (not #827)
+#833 := (and #703 #830)
+#836 := (not #833)
+#844 := (or #836 #841)
+#847 := (forall (vars (?x8 int)) #844)
+#850 := (not #847)
+#89 := (uf_3 uf_11)
+#332 := (= uf_12 #89)
+#856 := (or #332 #850)
+#861 := (and #847 #856)
+#81 := 2::int
+#819 := (>= uf_13 2::int)
+#821 := (and #816 #819)
+#824 := (not #821)
+decl uf_4 :: int
+#25 := uf_4
+#730 := (>= uf_4 0::int)
+#735 := (and #730 #733)
+#738 := (not #735)
+#474 := (= uf_6 uf_12)
+#480 := (not #474)
+#471 := (= uf_4 uf_11)
+#489 := (not #471)
+#944 := (or #489 #480 #738 #824 #861 #868 #874 #880)
+#877 := (not #733)
+decl uf_10 :: int
+#69 := uf_10
+#313 := (= uf_10 uf_12)
+#407 := (not #313)
+#310 := (= uf_5 uf_11)
+#416 := (not #310)
+#305 := (= #67 uf_10)
+#441 := (not #305)
+#920 := (or #441 #416 #407 #877 #738 #824 #861 #868 #874 #881)
+#949 := (and #920 #944)
+#785 := (+ uf_1 #784)
+#786 := (<= #785 0::int)
+#970 := (or #738 #786 #949)
+#789 := (not #786)
+decl uf_8 :: int
+#41 := uf_8
+#767 := (* -1::int uf_8)
+#768 := (+ #20 #767)
+#769 := (<= #768 0::int)
+#741 := (* -1::int #16)
+#742 := (+ uf_1 #741)
+#743 := (<= #742 0::int)
+#744 := (not #743)
+#747 := (and #703 #744)
+#750 := (not #747)
+#772 := (or #750 #769)
+#775 := (forall (vars (?x6 int)) #772)
+#47 := (= #20 uf_8)
+#756 := (or #47 #750)
+#761 := (exists (vars (?x4 int)) #756)
+#764 := (not #761)
+#778 := (or #764 #775)
+#781 := (and #761 #778)
+decl uf_9 :: int
+#43 := uf_9
+#189 := (= uf_5 uf_9)
+#241 := (not #189)
+#186 := (= uf_6 uf_8)
+#250 := (not #186)
+decl uf_7 :: int
+#39 := uf_7
+#183 := (= uf_4 uf_7)
+#259 := (not #183)
+#810 := (or #259 #250 #241 #738 #781 #789)
+#975 := (and #810 #970)
+#36 := (uf_3 uf_4)
+#180 := (= uf_6 #36)
+#583 := (not #180)
+#616 := (not #9)
+#1018 := (or #616 #583 #738 #975 #1000)
+#1023 := (and #9 #1018)
+#717 := (* -1::int #20)
+#718 := (+ uf_2 #717)
+#716 := (>= #718 0::int)
+#706 := (>= #16 1::int)
+#704 := (not #706)
+#708 := (and #703 #704)
+#711 := (not #708)
+#720 := (or #711 #716)
+#723 := (forall (vars (?x1 int)) #720)
+#726 := (not #723)
+#1026 := (or #726 #1023)
+#1029 := (and #723 #1026)
+#1052 := (or #616 #1029 #1032)
+#1057 := (not #1052)
#1 := true
-#111 := (implies #110 true)
-#112 := (and #111 #110)
-#113 := (implies #107 #112)
-#114 := (and #113 #107)
-#115 := (implies true #114)
-#102 := (= uf_13 uf_4)
-#116 := (implies #102 #115)
-#100 := (= uf_12 uf_6)
-#117 := (implies #100 #116)
-#98 := (= uf_11 uf_5)
-#118 := (implies #98 #117)
-#119 := (implies true #118)
-#28 := (<= 0::int uf_5)
-#26 := (<= 1::int uf_4)
+#91 := (implies false true)
+#90 := (= #89 uf_12)
+#92 := (implies #90 #91)
+#93 := (and #90 #92)
+#86 := (<= #20 uf_12)
+#84 := (< #16 uf_13)
+#17 := (<= 0::int #16)
+#85 := (and #17 #84)
+#87 := (implies #85 #86)
+#88 := (forall (vars (?x8 int)) #87)
+#94 := (implies #88 #93)
+#95 := (and #88 #94)
+#96 := (implies true #95)
+#82 := (<= 2::int uf_13)
+#76 := (<= 0::int uf_11)
+#83 := (and #76 #82)
+#97 := (implies #83 #96)
+#79 := (+ uf_5 1::int)
+#80 := (= uf_13 #79)
+#98 := (implies #80 #97)
+#28 := (<= 1::int uf_5)
+#77 := (and #76 #28)
+#99 := (implies #77 #98)
+#100 := (implies true #99)
+#111 := (= uf_12 uf_6)
+#112 := (implies #111 #100)
+#110 := (= uf_11 uf_4)
+#113 := (implies #110 #112)
+#114 := (implies true #113)
+#26 := (<= 0::int uf_4)
#29 := (and #26 #28)
+#115 := (implies #29 #114)
+#109 := (<= #67 uf_6)
+#116 := (implies #109 #115)
+#117 := (implies #29 #116)
+#118 := (implies true #117)
+#75 := (= uf_12 uf_10)
+#101 := (implies #75 #100)
+#73 := (= uf_11 uf_5)
+#102 := (implies #73 #101)
+#103 := (implies true #102)
+#71 := (and #28 #28)
+#104 := (implies #71 #103)
+#70 := (= uf_10 #67)
+#105 := (implies #70 #104)
+#68 := (< uf_6 #67)
+#106 := (implies #68 #105)
+#107 := (implies #29 #106)
+#108 := (implies true #107)
+#119 := (and #108 #118)
#120 := (implies #29 #119)
-#96 := (<= uf_1 uf_4)
-#121 := (implies #96 #120)
+#66 := (< uf_5 uf_1)
+#121 := (implies #66 #120)
#122 := (implies #29 #121)
#123 := (implies true #122)
-#55 := (<= #20 uf_8)
-#53 := (< #16 uf_9)
-#54 := (and #53 #18)
-#56 := (implies #54 #55)
-#57 := (forall (vars (?x3 int)) #56)
-#59 := (= #58 uf_8)
-#60 := (implies false true)
-#61 := (implies #59 #60)
-#62 := (and #61 #59)
-#63 := (implies #57 #62)
-#64 := (and #63 #57)
+#50 := (<= #20 uf_8)
+#45 := (< #16 uf_1)
+#46 := (and #17 #45)
+#51 := (implies #46 #50)
+#52 := (forall (vars (?x6 int)) #51)
+#53 := (implies #52 true)
+#54 := (and #52 #53)
+#48 := (implies #46 #47)
+#49 := (exists (vars (?x4 int)) #48)
+#55 := (implies #49 #54)
+#56 := (and #49 #55)
+#57 := (implies true #56)
+#44 := (= uf_9 uf_5)
+#58 := (implies #44 #57)
+#42 := (= uf_8 uf_6)
+#59 := (implies #42 #58)
+#40 := (= uf_7 uf_4)
+#60 := (implies #40 #59)
+#61 := (implies true #60)
+#62 := (implies #29 #61)
+#38 := (<= uf_1 uf_5)
+#63 := (implies #38 #62)
+#64 := (implies #29 #63)
#65 := (implies true #64)
-#45 := (<= 0::int uf_7)
-#51 := (<= 2::int uf_9)
-#52 := (and #51 #45)
-#66 := (implies #52 #65)
-#48 := (+ uf_4 1::int)
-#49 := (= uf_9 #48)
-#67 := (implies #49 #66)
-#46 := (and #26 #45)
-#68 := (implies #46 #67)
-#69 := (implies true #68)
-#83 := (implies #82 #69)
-#81 := (= uf_7 uf_4)
-#84 := (implies #81 #83)
-#85 := (implies true #84)
-#80 := (and #26 #26)
-#86 := (implies #80 #85)
-#79 := (= uf_10 #39)
-#87 := (implies #79 #86)
-#77 := (< uf_6 #39)
-#88 := (implies #77 #87)
-#89 := (implies #29 #88)
-#90 := (implies true #89)
-#44 := (= uf_8 uf_6)
-#70 := (implies #44 #69)
-#42 := (= uf_7 uf_5)
-#71 := (implies #42 #70)
-#72 := (implies true #71)
-#73 := (implies #29 #72)
-#40 := (<= #39 uf_6)
-#74 := (implies #40 #73)
-#75 := (implies #29 #74)
-#76 := (implies true #75)
-#91 := (and #76 #90)
-#92 := (implies #29 #91)
-#38 := (< uf_4 uf_1)
-#93 := (implies #38 #92)
-#94 := (implies #29 #93)
-#95 := (implies true #94)
-#124 := (and #95 #123)
+#124 := (and #65 #123)
#125 := (implies #29 #124)
#37 := (= #36 uf_6)
#126 := (implies #37 #125)
#33 := (<= #20 uf_6)
-#30 := (< #16 uf_4)
-#31 := (and #30 #18)
+#30 := (< #16 uf_5)
+#31 := (and #17 #30)
#34 := (implies #31 #33)
-#35 := (forall (vars (?x2 int)) #34)
+#35 := (forall (vars (?x3 int)) #34)
#127 := (implies #35 #126)
#128 := (implies #29 #127)
#129 := (implies true #128)
+#24 := (= #8 uf_2)
#130 := (implies #24 #129)
-#131 := (and #130 #24)
+#131 := (and #24 #130)
+#21 := (<= #20 uf_2)
+#18 := (< #16 1::int)
+#19 := (and #17 #18)
+#22 := (implies #19 #21)
+#23 := (forall (vars (?x1 int)) #22)
#132 := (implies #23 #131)
-#133 := (and #132 #23)
-#12 := (<= 0::int 0::int)
+#133 := (and #23 #132)
+#12 := (<= 1::int 1::int)
#13 := (and #12 #12)
-#11 := (<= 1::int 1::int)
-#14 := (and #11 #13)
-#15 := (and #11 #14)
+#10 := (<= 0::int 0::int)
+#14 := (and #10 #13)
+#15 := (and #10 #14)
#134 := (implies #15 #133)
#135 := (implies #9 #134)
#136 := (implies true #135)
@@ -363,1967 +260,2032 @@
#137 := (implies #6 #136)
#138 := (implies true #137)
#139 := (not #138)
-#1106 := (iff #139 #1103)
-#475 := (and #18 #103)
-#481 := (not #475)
-#493 := (or #108 #481)
-#498 := (forall (vars (?x8 int)) #493)
-#482 := (or #105 #481)
-#487 := (exists (vars (?x7 int)) #482)
-#518 := (not #487)
-#519 := (or #518 #498)
-#527 := (and #487 #519)
-#543 := (or #542 #527)
-#552 := (or #551 #543)
-#561 := (or #560 #552)
-#326 := (not #29)
-#576 := (or #326 #561)
-#584 := (not #96)
-#585 := (or #584 #576)
-#593 := (or #326 #585)
-#206 := (and #18 #53)
-#212 := (not #206)
-#213 := (or #55 #212)
-#218 := (forall (vars (?x3 int)) #213)
-#243 := (not #218)
-#244 := (or #243 #221)
-#252 := (and #218 #244)
-#203 := (and #45 #51)
-#267 := (not #203)
-#268 := (or #267 #252)
-#197 := (+ 1::int uf_4)
-#200 := (= uf_9 #197)
-#276 := (not #200)
-#277 := (or #276 #268)
-#285 := (not #46)
-#286 := (or #285 #277)
-#368 := (or #367 #286)
-#377 := (or #376 #368)
-#392 := (not #26)
-#393 := (or #392 #377)
-#402 := (or #401 #393)
-#410 := (not #77)
-#411 := (or #410 #402)
-#419 := (or #326 #411)
-#302 := (or #301 #286)
-#311 := (or #310 #302)
-#327 := (or #326 #311)
-#335 := (not #40)
-#336 := (or #335 #327)
-#344 := (or #326 #336)
-#431 := (and #344 #419)
-#437 := (or #326 #431)
-#445 := (not #38)
-#446 := (or #445 #437)
-#454 := (or #326 #446)
-#605 := (and #454 #593)
-#611 := (or #326 #605)
-#620 := (or #619 #611)
-#173 := (and #18 #30)
-#179 := (not #173)
-#180 := (or #33 #179)
-#185 := (forall (vars (?x2 int)) #180)
-#628 := (not #185)
-#629 := (or #628 #620)
-#637 := (or #326 #629)
-#653 := (or #652 #637)
-#661 := (and #9 #653)
+#1060 := (iff #139 #1057)
+#325 := (not #85)
+#326 := (or #325 #86)
+#329 := (forall (vars (?x8 int)) #326)
+#354 := (not #329)
+#355 := (or #354 #332)
+#360 := (and #329 #355)
+#373 := (not #83)
+#374 := (or #373 #360)
+#319 := (+ 1::int uf_5)
+#322 := (= uf_13 #319)
+#382 := (not #322)
+#383 := (or #382 #374)
+#316 := (and #28 #76)
+#391 := (not #316)
+#392 := (or #391 #383)
+#481 := (or #392 #480)
+#490 := (or #489 #481)
+#275 := (not #29)
+#505 := (or #275 #490)
+#513 := (not #109)
+#514 := (or #513 #505)
+#522 := (or #275 #514)
+#408 := (or #407 #392)
+#417 := (or #416 #408)
+#432 := (not #28)
+#433 := (or #432 #417)
+#442 := (or #441 #433)
+#450 := (not #68)
+#451 := (or #450 #442)
+#459 := (or #275 #451)
+#534 := (and #459 #522)
+#540 := (or #275 #534)
+#548 := (not #66)
+#549 := (or #548 #540)
+#557 := (or #275 #549)
+#192 := (not #46)
+#199 := (or #192 #50)
+#202 := (forall (vars (?x6 int)) #199)
+#193 := (or #192 #47)
+#196 := (exists (vars (?x4 int)) #193)
+#222 := (not #196)
+#223 := (or #222 #202)
+#228 := (and #196 #223)
+#242 := (or #241 #228)
+#251 := (or #250 #242)
+#260 := (or #259 #251)
+#276 := (or #275 #260)
+#284 := (not #38)
+#285 := (or #284 #276)
+#293 := (or #275 #285)
+#569 := (and #293 #557)
+#575 := (or #275 #569)
+#584 := (or #583 #575)
+#173 := (not #31)
+#174 := (or #173 #33)
+#177 := (forall (vars (?x3 int)) #174)
+#592 := (not #177)
+#593 := (or #592 #584)
+#601 := (or #275 #593)
+#617 := (or #616 #601)
+#622 := (and #9 #617)
#164 := (not #19)
#165 := (or #164 #21)
#168 := (forall (vars (?x1 int)) #165)
-#669 := (not #168)
-#670 := (or #669 #661)
-#678 := (and #168 #670)
-#158 := (and #11 #12)
-#161 := (and #11 #158)
-#686 := (not #161)
-#687 := (or #686 #678)
-#695 := (or #652 #687)
-#710 := (not #6)
-#711 := (or #710 #695)
-#723 := (not #711)
-#1104 := (iff #723 #1103)
-#1101 := (iff #711 #1098)
-#1089 := (or false #1075)
-#1092 := (or #652 #1089)
-#1095 := (or #1078 #1092)
-#1099 := (iff #1095 #1098)
-#1100 := [rewrite]: #1099
-#1096 := (iff #711 #1095)
-#1093 := (iff #695 #1092)
-#1090 := (iff #687 #1089)
-#1076 := (iff #678 #1075)
-#1073 := (iff #670 #1072)
-#1070 := (iff #661 #1069)
-#1067 := (iff #653 #1064)
-#1049 := (or #784 #1021)
-#1052 := (or #619 #1049)
-#1055 := (or #1046 #1052)
-#1058 := (or #784 #1055)
-#1061 := (or #652 #1058)
-#1065 := (iff #1061 #1064)
-#1066 := [rewrite]: #1065
-#1062 := (iff #653 #1061)
-#1059 := (iff #637 #1058)
-#1056 := (iff #629 #1055)
-#1053 := (iff #620 #1052)
-#1050 := (iff #611 #1049)
-#1022 := (iff #605 #1021)
-#1019 := (iff #593 #1016)
-#998 := (or #542 #991)
-#1001 := (or #551 #998)
-#1004 := (or #560 #1001)
-#1007 := (or #784 #1004)
-#1010 := (or #927 #1007)
-#1013 := (or #784 #1010)
-#1017 := (iff #1013 #1016)
-#1018 := [rewrite]: #1017
-#1014 := (iff #593 #1013)
-#1011 := (iff #585 #1010)
-#1008 := (iff #576 #1007)
-#1005 := (iff #561 #1004)
-#1002 := (iff #552 #1001)
-#999 := (iff #543 #998)
-#992 := (iff #527 #991)
-#989 := (iff #519 #988)
-#986 := (iff #498 #985)
-#983 := (iff #493 #980)
-#977 := (or #974 #960)
-#981 := (iff #977 #980)
+#628 := (not #168)
+#629 := (or #628 #622)
+#634 := (and #168 #629)
+#158 := (and #10 #12)
+#161 := (and #10 #158)
+#640 := (not #161)
+#641 := (or #640 #634)
+#649 := (or #616 #641)
+#664 := (not #6)
+#665 := (or #664 #649)
+#677 := (not #665)
+#1058 := (iff #677 #1057)
+#1055 := (iff #665 #1052)
+#1043 := (or false #1029)
+#1046 := (or #616 #1043)
+#1049 := (or #1032 #1046)
+#1053 := (iff #1049 #1052)
+#1054 := [rewrite]: #1053
+#1050 := (iff #665 #1049)
+#1047 := (iff #649 #1046)
+#1044 := (iff #641 #1043)
+#1030 := (iff #634 #1029)
+#1027 := (iff #629 #1026)
+#1024 := (iff #622 #1023)
+#1021 := (iff #617 #1018)
+#1003 := (or #738 #975)
+#1006 := (or #583 #1003)
+#1009 := (or #1000 #1006)
+#1012 := (or #738 #1009)
+#1015 := (or #616 #1012)
+#1019 := (iff #1015 #1018)
+#1020 := [rewrite]: #1019
+#1016 := (iff #617 #1015)
+#1013 := (iff #601 #1012)
+#1010 := (iff #593 #1009)
+#1007 := (iff #584 #1006)
+#1004 := (iff #575 #1003)
+#976 := (iff #569 #975)
+#973 := (iff #557 #970)
+#961 := (or #738 #949)
+#964 := (or #786 #961)
+#967 := (or #738 #964)
+#971 := (iff #967 #970)
+#972 := [rewrite]: #971
+#968 := (iff #557 #967)
+#965 := (iff #549 #964)
+#962 := (iff #540 #961)
+#950 := (iff #534 #949)
+#947 := (iff #522 #944)
+#893 := (or #824 #861)
+#896 := (or #868 #893)
+#899 := (or #874 #896)
+#929 := (or #899 #480)
+#932 := (or #489 #929)
+#935 := (or #738 #932)
+#938 := (or #880 #935)
+#941 := (or #738 #938)
+#945 := (iff #941 #944)
+#946 := [rewrite]: #945
+#942 := (iff #522 #941)
+#939 := (iff #514 #938)
+#936 := (iff #505 #935)
+#933 := (iff #490 #932)
+#930 := (iff #481 #929)
+#900 := (iff #392 #899)
+#897 := (iff #383 #896)
+#894 := (iff #374 #893)
+#862 := (iff #360 #861)
+#859 := (iff #355 #856)
+#853 := (or #850 #332)
+#857 := (iff #853 #856)
+#858 := [rewrite]: #857
+#854 := (iff #355 #853)
+#851 := (iff #354 #850)
+#848 := (iff #329 #847)
+#845 := (iff #326 #844)
+#842 := (iff #86 #841)
+#843 := [rewrite]: #842
+#837 := (iff #325 #836)
+#834 := (iff #85 #833)
+#831 := (iff #84 #830)
+#832 := [rewrite]: #831
+#701 := (iff #17 #703)
+#702 := [rewrite]: #701
+#835 := [monotonicity #702 #832]: #834
+#838 := [monotonicity #835]: #837
+#846 := [monotonicity #838 #843]: #845
+#849 := [quant-intro #846]: #848
+#852 := [monotonicity #849]: #851
+#855 := [monotonicity #852]: #854
+#860 := [trans #855 #858]: #859
+#863 := [monotonicity #849 #860]: #862
+#825 := (iff #373 #824)
+#822 := (iff #83 #821)
+#818 := (iff #82 #819)
+#820 := [rewrite]: #818
+#815 := (iff #76 #816)
+#817 := [rewrite]: #815
+#823 := [monotonicity #817 #820]: #822
+#826 := [monotonicity #823]: #825
+#895 := [monotonicity #826 #863]: #894
+#869 := (iff #382 #868)
+#866 := (iff #322 #864)
+#867 := [rewrite]: #866
+#870 := [monotonicity #867]: #869
+#898 := [monotonicity #870 #895]: #897
+#875 := (iff #391 #874)
+#872 := (iff #316 #871)
+#732 := (iff #28 #733)
+#734 := [rewrite]: #732
+#873 := [monotonicity #734 #817]: #872
+#876 := [monotonicity #873]: #875
+#901 := [monotonicity #876 #898]: #900
+#931 := [monotonicity #901]: #930
+#934 := [monotonicity #931]: #933
+#739 := (iff #275 #738)
+#736 := (iff #29 #735)
+#729 := (iff #26 #730)
+#731 := [rewrite]: #729
+#737 := [monotonicity #731 #734]: #736
+#740 := [monotonicity #737]: #739
+#937 := [monotonicity #740 #934]: #936
+#927 := (iff #513 #880)
+#925 := (iff #109 #881)
+#926 := [rewrite]: #925
+#928 := [monotonicity #926]: #927
+#940 := [monotonicity #928 #937]: #939
+#943 := [monotonicity #740 #940]: #942
+#948 := [trans #943 #946]: #947
+#923 := (iff #459 #920)
+#902 := (or #407 #899)
+#905 := (or #416 #902)
+#908 := (or #877 #905)
+#911 := (or #441 #908)
+#914 := (or #881 #911)
+#917 := (or #738 #914)
+#921 := (iff #917 #920)
+#922 := [rewrite]: #921
+#918 := (iff #459 #917)
+#915 := (iff #451 #914)
+#912 := (iff #442 #911)
+#909 := (iff #433 #908)
+#906 := (iff #417 #905)
+#903 := (iff #408 #902)
+#904 := [monotonicity #901]: #903
+#907 := [monotonicity #904]: #906
+#878 := (iff #432 #877)
+#879 := [monotonicity #734]: #878
+#910 := [monotonicity #879 #907]: #909
+#913 := [monotonicity #910]: #912
+#891 := (iff #450 #881)
+#886 := (not #880)
+#889 := (iff #886 #881)
+#890 := [rewrite]: #889
+#887 := (iff #450 #886)
+#884 := (iff #68 #880)
+#885 := [rewrite]: #884
+#888 := [monotonicity #885]: #887
+#892 := [trans #888 #890]: #891
+#916 := [monotonicity #892 #913]: #915
+#919 := [monotonicity #740 #916]: #918
+#924 := [trans #919 #922]: #923
+#951 := [monotonicity #924 #948]: #950
+#963 := [monotonicity #740 #951]: #962
+#959 := (iff #548 #786)
+#954 := (not #789)
+#957 := (iff #954 #786)
+#958 := [rewrite]: #957
+#955 := (iff #548 #954)
+#952 := (iff #66 #789)
+#953 := [rewrite]: #952
+#956 := [monotonicity #953]: #955
+#960 := [trans #956 #958]: #959
+#966 := [monotonicity #960 #963]: #965
+#969 := [monotonicity #740 #966]: #968
+#974 := [trans #969 #972]: #973
+#813 := (iff #293 #810)
+#792 := (or #241 #781)
+#795 := (or #250 #792)
+#798 := (or #259 #795)
+#801 := (or #738 #798)
+#804 := (or #789 #801)
+#807 := (or #738 #804)
+#811 := (iff #807 #810)
+#812 := [rewrite]: #811
+#808 := (iff #293 #807)
+#805 := (iff #285 #804)
+#802 := (iff #276 #801)
+#799 := (iff #260 #798)
+#796 := (iff #251 #795)
+#793 := (iff #242 #792)
+#782 := (iff #228 #781)
+#779 := (iff #223 #778)
+#776 := (iff #202 #775)
+#773 := (iff #199 #772)
+#770 := (iff #50 #769)
+#771 := [rewrite]: #770
+#751 := (iff #192 #750)
+#748 := (iff #46 #747)
+#745 := (iff #45 #744)
+#746 := [rewrite]: #745
+#749 := [monotonicity #702 #746]: #748
+#752 := [monotonicity #749]: #751
+#774 := [monotonicity #752 #771]: #773
+#777 := [quant-intro #774]: #776
+#765 := (iff #222 #764)
+#762 := (iff #196 #761)
+#759 := (iff #193 #756)
+#753 := (or #750 #47)
+#757 := (iff #753 #756)
+#758 := [rewrite]: #757
+#754 := (iff #193 #753)
+#755 := [monotonicity #752]: #754
+#760 := [trans #755 #758]: #759
+#763 := [quant-intro #760]: #762
+#766 := [monotonicity #763]: #765
+#780 := [monotonicity #766 #777]: #779
+#783 := [monotonicity #763 #780]: #782
+#794 := [monotonicity #783]: #793
+#797 := [monotonicity #794]: #796
+#800 := [monotonicity #797]: #799
+#803 := [monotonicity #740 #800]: #802
+#790 := (iff #284 #789)
+#787 := (iff #38 #786)
+#788 := [rewrite]: #787
+#791 := [monotonicity #788]: #790
+#806 := [monotonicity #791 #803]: #805
+#809 := [monotonicity #740 #806]: #808
+#814 := [trans #809 #812]: #813
+#977 := [monotonicity #814 #974]: #976
+#1005 := [monotonicity #740 #977]: #1004
+#1008 := [monotonicity #1005]: #1007
+#1001 := (iff #592 #1000)
+#998 := (iff #177 #997)
+#995 := (iff #174 #994)
+#992 := (iff #33 #991)
+#993 := [rewrite]: #992
+#987 := (iff #173 #986)
+#984 := (iff #31 #983)
+#981 := (iff #30 #980)
#982 := [rewrite]: #981
-#978 := (iff #493 #977)
-#961 := (iff #481 #960)
-#958 := (iff #475 #957)
-#955 := (iff #103 #954)
-#956 := [rewrite]: #955
-#751 := (iff #18 #753)
-#752 := [rewrite]: #751
-#959 := [monotonicity #752 #956]: #958
-#962 := [monotonicity #959]: #961
-#975 := (iff #108 #974)
-#976 := [rewrite]: #975
-#979 := [monotonicity #976 #962]: #978
-#984 := [trans #979 #982]: #983
-#987 := [quant-intro #984]: #986
-#970 := (iff #518 #969)
-#967 := (iff #487 #966)
-#964 := (iff #482 #963)
-#965 := [monotonicity #962]: #964
-#968 := [quant-intro #965]: #967
-#971 := [monotonicity #968]: #970
-#990 := [monotonicity #971 #987]: #989
-#993 := [monotonicity #968 #990]: #992
-#1000 := [monotonicity #993]: #999
-#1003 := [monotonicity #1000]: #1002
-#1006 := [monotonicity #1003]: #1005
-#785 := (iff #326 #784)
-#782 := (iff #29 #781)
-#778 := (iff #28 #779)
-#780 := [rewrite]: #778
-#775 := (iff #26 #776)
-#777 := [rewrite]: #775
-#783 := [monotonicity #777 #780]: #782
-#786 := [monotonicity #783]: #785
-#1009 := [monotonicity #786 #1006]: #1008
-#996 := (iff #584 #927)
-#994 := (iff #96 #926)
-#995 := [rewrite]: #994
-#997 := [monotonicity #995]: #996
-#1012 := [monotonicity #997 #1009]: #1011
-#1015 := [monotonicity #786 #1012]: #1014
-#1020 := [trans #1015 #1018]: #1019
-#949 := (iff #454 #946)
-#937 := (or #784 #921)
-#940 := (or #926 #937)
-#943 := (or #784 #940)
-#947 := (iff #943 #946)
-#948 := [rewrite]: #947
-#944 := (iff #454 #943)
-#941 := (iff #446 #940)
-#938 := (iff #437 #937)
-#922 := (iff #431 #921)
-#919 := (iff #419 #916)
-#857 := (or #796 #833)
-#860 := (or #840 #857)
-#863 := (or #846 #860)
-#898 := (or #367 #863)
-#901 := (or #376 #898)
-#904 := (or #886 #901)
-#907 := (or #401 #904)
-#910 := (or #850 #907)
-#913 := (or #784 #910)
-#917 := (iff #913 #916)
-#918 := [rewrite]: #917
-#914 := (iff #419 #913)
-#911 := (iff #411 #910)
-#908 := (iff #402 #907)
-#905 := (iff #393 #904)
-#902 := (iff #377 #901)
-#899 := (iff #368 #898)
-#864 := (iff #286 #863)
-#861 := (iff #277 #860)
-#858 := (iff #268 #857)
-#834 := (iff #252 #833)
-#831 := (iff #244 #828)
-#825 := (or #822 #221)
-#829 := (iff #825 #828)
-#830 := [rewrite]: #829
-#826 := (iff #244 #825)
-#823 := (iff #243 #822)
-#820 := (iff #218 #819)
-#817 := (iff #213 #816)
-#814 := (iff #212 #813)
-#811 := (iff #206 #810)
-#808 := (iff #53 #804)
-#809 := [rewrite]: #808
-#812 := [monotonicity #752 #809]: #811
-#815 := [monotonicity #812]: #814
-#802 := (iff #55 #801)
-#803 := [rewrite]: #802
-#818 := [monotonicity #803 #815]: #817
-#821 := [quant-intro #818]: #820
-#824 := [monotonicity #821]: #823
-#827 := [monotonicity #824]: #826
-#832 := [trans #827 #830]: #831
-#835 := [monotonicity #821 #832]: #834
-#797 := (iff #267 #796)
-#794 := (iff #203 #793)
-#790 := (iff #51 #791)
-#792 := [rewrite]: #790
-#787 := (iff #45 #788)
-#789 := [rewrite]: #787
-#795 := [monotonicity #789 #792]: #794
-#798 := [monotonicity #795]: #797
-#859 := [monotonicity #798 #835]: #858
-#841 := (iff #276 #840)
-#836 := (iff #200 #837)
-#839 := [rewrite]: #836
-#842 := [monotonicity #839]: #841
-#862 := [monotonicity #842 #859]: #861
-#847 := (iff #285 #846)
-#844 := (iff #46 #843)
-#845 := [monotonicity #777 #789]: #844
-#848 := [monotonicity #845]: #847
-#865 := [monotonicity #848 #862]: #864
-#900 := [monotonicity #865]: #899
-#903 := [monotonicity #900]: #902
-#887 := (iff #392 #886)
-#888 := [monotonicity #777]: #887
-#906 := [monotonicity #888 #903]: #905
-#909 := [monotonicity #906]: #908
-#896 := (iff #410 #850)
-#891 := (not #854)
-#894 := (iff #891 #850)
-#895 := [rewrite]: #894
-#892 := (iff #410 #891)
-#889 := (iff #77 #854)
-#890 := [rewrite]: #889
-#893 := [monotonicity #890]: #892
-#897 := [trans #893 #895]: #896
-#912 := [monotonicity #897 #909]: #911
-#915 := [monotonicity #786 #912]: #914
-#920 := [trans #915 #918]: #919
-#884 := (iff #344 #881)
-#866 := (or #301 #863)
-#869 := (or #310 #866)
-#872 := (or #784 #869)
-#875 := (or #854 #872)
-#878 := (or #784 #875)
-#882 := (iff #878 #881)
-#883 := [rewrite]: #882
-#879 := (iff #344 #878)
-#876 := (iff #336 #875)
-#873 := (iff #327 #872)
-#870 := (iff #311 #869)
-#867 := (iff #302 #866)
-#868 := [monotonicity #865]: #867
-#871 := [monotonicity #868]: #870
-#874 := [monotonicity #786 #871]: #873
-#855 := (iff #335 #854)
-#849 := (iff #40 #850)
-#853 := [rewrite]: #849
-#856 := [monotonicity #853]: #855
-#877 := [monotonicity #856 #874]: #876
-#880 := [monotonicity #786 #877]: #879
-#885 := [trans #880 #883]: #884
-#923 := [monotonicity #885 #920]: #922
-#939 := [monotonicity #786 #923]: #938
-#935 := (iff #445 #926)
-#930 := (not #927)
-#933 := (iff #930 #926)
-#934 := [rewrite]: #933
-#931 := (iff #445 #930)
-#928 := (iff #38 #927)
-#929 := [rewrite]: #928
-#932 := [monotonicity #929]: #931
-#936 := [trans #932 #934]: #935
-#942 := [monotonicity #936 #939]: #941
-#945 := [monotonicity #786 #942]: #944
-#950 := [trans #945 #948]: #949
-#1023 := [monotonicity #950 #1020]: #1022
-#1051 := [monotonicity #786 #1023]: #1050
-#1054 := [monotonicity #1051]: #1053
-#1047 := (iff #628 #1046)
-#1044 := (iff #185 #1043)
-#1041 := (iff #180 #1040)
-#1038 := (iff #179 #1037)
-#1035 := (iff #173 #1034)
-#1032 := (iff #30 #1031)
-#1033 := [rewrite]: #1032
-#1036 := [monotonicity #752 #1033]: #1035
-#1039 := [monotonicity #1036]: #1038
-#1027 := (iff #33 #1026)
-#1028 := [rewrite]: #1027
-#1042 := [monotonicity #1028 #1039]: #1041
-#1045 := [quant-intro #1042]: #1044
+#985 := [monotonicity #702 #982]: #984
+#988 := [monotonicity #985]: #987
+#996 := [monotonicity #988 #993]: #995
+#999 := [quant-intro #996]: #998
+#1002 := [monotonicity #999]: #1001
+#1011 := [monotonicity #1002 #1008]: #1010
+#1014 := [monotonicity #740 #1011]: #1013
+#1017 := [monotonicity #1014]: #1016
+#1022 := [trans #1017 #1020]: #1021
+#1025 := [monotonicity #1022]: #1024
+#727 := (iff #628 #726)
+#724 := (iff #168 #723)
+#721 := (iff #165 #720)
+#715 := (iff #21 #716)
+#719 := [rewrite]: #715
+#712 := (iff #164 #711)
+#709 := (iff #19 #708)
+#705 := (iff #18 #704)
+#707 := [rewrite]: #705
+#710 := [monotonicity #702 #707]: #709
+#713 := [monotonicity #710]: #712
+#722 := [monotonicity #713 #719]: #721
+#725 := [quant-intro #722]: #724
+#728 := [monotonicity #725]: #727
+#1028 := [monotonicity #728 #1025]: #1027
+#1031 := [monotonicity #725 #1028]: #1030
+#699 := (iff #640 false)
+#694 := (not true)
+#697 := (iff #694 false)
+#698 := [rewrite]: #697
+#695 := (iff #640 #694)
+#692 := (iff #161 true)
+#684 := (and true true)
+#687 := (and true #684)
+#690 := (iff #687 true)
+#691 := [rewrite]: #690
+#688 := (iff #161 #687)
+#685 := (iff #158 #684)
+#682 := (iff #12 true)
+#683 := [rewrite]: #682
+#680 := (iff #10 true)
+#681 := [rewrite]: #680
+#686 := [monotonicity #681 #683]: #685
+#689 := [monotonicity #681 #686]: #688
+#693 := [trans #689 #691]: #692
+#696 := [monotonicity #693]: #695
+#700 := [trans #696 #698]: #699
+#1045 := [monotonicity #700 #1031]: #1044
#1048 := [monotonicity #1045]: #1047
-#1057 := [monotonicity #1048 #1054]: #1056
-#1060 := [monotonicity #786 #1057]: #1059
-#1063 := [monotonicity #1060]: #1062
-#1068 := [trans #1063 #1066]: #1067
-#1071 := [monotonicity #1068]: #1070
-#773 := (iff #669 #772)
-#770 := (iff #168 #769)
-#767 := (iff #165 #766)
-#761 := (iff #21 #762)
-#765 := [rewrite]: #761
-#758 := (iff #164 #757)
-#755 := (iff #19 #754)
-#748 := (iff #17 #747)
-#750 := [rewrite]: #748
-#756 := [monotonicity #750 #752]: #755
-#759 := [monotonicity #756]: #758
-#768 := [monotonicity #759 #765]: #767
-#771 := [quant-intro #768]: #770
-#774 := [monotonicity #771]: #773
-#1074 := [monotonicity #774 #1071]: #1073
-#1077 := [monotonicity #771 #1074]: #1076
-#745 := (iff #686 false)
-#740 := (not true)
-#743 := (iff #740 false)
-#744 := [rewrite]: #743
-#741 := (iff #686 #740)
-#738 := (iff #161 true)
-#730 := (and true true)
-#733 := (and true #730)
-#736 := (iff #733 true)
-#737 := [rewrite]: #736
-#734 := (iff #161 #733)
-#731 := (iff #158 #730)
-#728 := (iff #12 true)
-#729 := [rewrite]: #728
-#726 := (iff #11 true)
-#727 := [rewrite]: #726
-#732 := [monotonicity #727 #729]: #731
-#735 := [monotonicity #727 #732]: #734
-#739 := [trans #735 #737]: #738
-#742 := [monotonicity #739]: #741
-#746 := [trans #742 #744]: #745
-#1091 := [monotonicity #746 #1077]: #1090
-#1094 := [monotonicity #1091]: #1093
-#1087 := (iff #710 #1078)
-#1079 := (not #1078)
-#1082 := (not #1079)
-#1085 := (iff #1082 #1078)
-#1086 := [rewrite]: #1085
-#1083 := (iff #710 #1082)
-#1080 := (iff #6 #1079)
-#1081 := [rewrite]: #1080
-#1084 := [monotonicity #1081]: #1083
-#1088 := [trans #1084 #1086]: #1087
-#1097 := [monotonicity #1088 #1094]: #1096
-#1102 := [trans #1097 #1100]: #1101
-#1105 := [monotonicity #1102]: #1104
-#724 := (iff #139 #723)
-#721 := (iff #138 #711)
-#716 := (implies true #711)
-#719 := (iff #716 #711)
-#720 := [rewrite]: #719
-#717 := (iff #138 #716)
-#714 := (iff #137 #711)
-#707 := (implies #6 #695)
-#712 := (iff #707 #711)
-#713 := [rewrite]: #712
-#708 := (iff #137 #707)
-#705 := (iff #136 #695)
-#700 := (implies true #695)
-#703 := (iff #700 #695)
-#704 := [rewrite]: #703
-#701 := (iff #136 #700)
-#698 := (iff #135 #695)
-#692 := (implies #9 #687)
-#696 := (iff #692 #695)
-#697 := [rewrite]: #696
-#693 := (iff #135 #692)
-#690 := (iff #134 #687)
-#683 := (implies #161 #678)
-#688 := (iff #683 #687)
-#689 := [rewrite]: #688
-#684 := (iff #134 #683)
-#681 := (iff #133 #678)
-#675 := (and #670 #168)
-#679 := (iff #675 #678)
-#680 := [rewrite]: #679
-#676 := (iff #133 #675)
+#1041 := (iff #664 #1032)
+#1033 := (not #1032)
+#1036 := (not #1033)
+#1039 := (iff #1036 #1032)
+#1040 := [rewrite]: #1039
+#1037 := (iff #664 #1036)
+#1034 := (iff #6 #1033)
+#1035 := [rewrite]: #1034
+#1038 := [monotonicity #1035]: #1037
+#1042 := [trans #1038 #1040]: #1041
+#1051 := [monotonicity #1042 #1048]: #1050
+#1056 := [trans #1051 #1054]: #1055
+#1059 := [monotonicity #1056]: #1058
+#678 := (iff #139 #677)
+#675 := (iff #138 #665)
+#670 := (implies true #665)
+#673 := (iff #670 #665)
+#674 := [rewrite]: #673
+#671 := (iff #138 #670)
+#668 := (iff #137 #665)
+#661 := (implies #6 #649)
+#666 := (iff #661 #665)
+#667 := [rewrite]: #666
+#662 := (iff #137 #661)
+#659 := (iff #136 #649)
+#654 := (implies true #649)
+#657 := (iff #654 #649)
+#658 := [rewrite]: #657
+#655 := (iff #136 #654)
+#652 := (iff #135 #649)
+#646 := (implies #9 #641)
+#650 := (iff #646 #649)
+#651 := [rewrite]: #650
+#647 := (iff #135 #646)
+#644 := (iff #134 #641)
+#637 := (implies #161 #634)
+#642 := (iff #637 #641)
+#643 := [rewrite]: #642
+#638 := (iff #134 #637)
+#635 := (iff #133 #634)
+#632 := (iff #132 #629)
+#625 := (implies #168 #622)
+#630 := (iff #625 #629)
+#631 := [rewrite]: #630
+#626 := (iff #132 #625)
+#623 := (iff #131 #622)
+#620 := (iff #130 #617)
+#613 := (implies #9 #601)
+#618 := (iff #613 #617)
+#619 := [rewrite]: #618
+#614 := (iff #130 #613)
+#611 := (iff #129 #601)
+#606 := (implies true #601)
+#609 := (iff #606 #601)
+#610 := [rewrite]: #609
+#607 := (iff #129 #606)
+#604 := (iff #128 #601)
+#598 := (implies #29 #593)
+#602 := (iff #598 #601)
+#603 := [rewrite]: #602
+#599 := (iff #128 #598)
+#596 := (iff #127 #593)
+#589 := (implies #177 #584)
+#594 := (iff #589 #593)
+#595 := [rewrite]: #594
+#590 := (iff #127 #589)
+#587 := (iff #126 #584)
+#580 := (implies #180 #575)
+#585 := (iff #580 #584)
+#586 := [rewrite]: #585
+#581 := (iff #126 #580)
+#578 := (iff #125 #575)
+#572 := (implies #29 #569)
+#576 := (iff #572 #575)
+#577 := [rewrite]: #576
+#573 := (iff #125 #572)
+#570 := (iff #124 #569)
+#567 := (iff #123 #557)
+#562 := (implies true #557)
+#565 := (iff #562 #557)
+#566 := [rewrite]: #565
+#563 := (iff #123 #562)
+#560 := (iff #122 #557)
+#554 := (implies #29 #549)
+#558 := (iff #554 #557)
+#559 := [rewrite]: #558
+#555 := (iff #122 #554)
+#552 := (iff #121 #549)
+#545 := (implies #66 #540)
+#550 := (iff #545 #549)
+#551 := [rewrite]: #550
+#546 := (iff #121 #545)
+#543 := (iff #120 #540)
+#537 := (implies #29 #534)
+#541 := (iff #537 #540)
+#542 := [rewrite]: #541
+#538 := (iff #120 #537)
+#535 := (iff #119 #534)
+#532 := (iff #118 #522)
+#527 := (implies true #522)
+#530 := (iff #527 #522)
+#531 := [rewrite]: #530
+#528 := (iff #118 #527)
+#525 := (iff #117 #522)
+#519 := (implies #29 #514)
+#523 := (iff #519 #522)
+#524 := [rewrite]: #523
+#520 := (iff #117 #519)
+#517 := (iff #116 #514)
+#510 := (implies #109 #505)
+#515 := (iff #510 #514)
+#516 := [rewrite]: #515
+#511 := (iff #116 #510)
+#508 := (iff #115 #505)
+#502 := (implies #29 #490)
+#506 := (iff #502 #505)
+#507 := [rewrite]: #506
+#503 := (iff #115 #502)
+#500 := (iff #114 #490)
+#495 := (implies true #490)
+#498 := (iff #495 #490)
+#499 := [rewrite]: #498
+#496 := (iff #114 #495)
+#493 := (iff #113 #490)
+#486 := (implies #471 #481)
+#491 := (iff #486 #490)
+#492 := [rewrite]: #491
+#487 := (iff #113 #486)
+#484 := (iff #112 #481)
+#477 := (implies #474 #392)
+#482 := (iff #477 #481)
+#483 := [rewrite]: #482
+#478 := (iff #112 #477)
+#402 := (iff #100 #392)
+#397 := (implies true #392)
+#400 := (iff #397 #392)
+#401 := [rewrite]: #400
+#398 := (iff #100 #397)
+#395 := (iff #99 #392)
+#388 := (implies #316 #383)
+#393 := (iff #388 #392)
+#394 := [rewrite]: #393
+#389 := (iff #99 #388)
+#386 := (iff #98 #383)
+#379 := (implies #322 #374)
+#384 := (iff #379 #383)
+#385 := [rewrite]: #384
+#380 := (iff #98 #379)
+#377 := (iff #97 #374)
+#370 := (implies #83 #360)
+#375 := (iff #370 #374)
+#376 := [rewrite]: #375
+#371 := (iff #97 #370)
+#368 := (iff #96 #360)
+#363 := (implies true #360)
+#366 := (iff #363 #360)
+#367 := [rewrite]: #366
+#364 := (iff #96 #363)
+#361 := (iff #95 #360)
+#358 := (iff #94 #355)
+#351 := (implies #329 #332)
+#356 := (iff #351 #355)
+#357 := [rewrite]: #356
+#352 := (iff #94 #351)
+#349 := (iff #93 #332)
+#344 := (and #332 true)
+#347 := (iff #344 #332)
+#348 := [rewrite]: #347
+#345 := (iff #93 #344)
+#342 := (iff #92 true)
+#337 := (implies #332 true)
+#340 := (iff #337 true)
+#341 := [rewrite]: #340
+#338 := (iff #92 #337)
+#335 := (iff #91 true)
+#336 := [rewrite]: #335
+#333 := (iff #90 #332)
+#334 := [rewrite]: #333
+#339 := [monotonicity #334 #336]: #338
+#343 := [trans #339 #341]: #342
+#346 := [monotonicity #334 #343]: #345
+#350 := [trans #346 #348]: #349
+#330 := (iff #88 #329)
+#327 := (iff #87 #326)
+#328 := [rewrite]: #327
+#331 := [quant-intro #328]: #330
+#353 := [monotonicity #331 #350]: #352
+#359 := [trans #353 #357]: #358
+#362 := [monotonicity #331 #359]: #361
+#365 := [monotonicity #362]: #364
+#369 := [trans #365 #367]: #368
+#372 := [monotonicity #369]: #371
+#378 := [trans #372 #376]: #377
+#323 := (iff #80 #322)
+#320 := (= #79 #319)
+#321 := [rewrite]: #320
+#324 := [monotonicity #321]: #323
+#381 := [monotonicity #324 #378]: #380
+#387 := [trans #381 #385]: #386
+#317 := (iff #77 #316)
+#318 := [rewrite]: #317
+#390 := [monotonicity #318 #387]: #389
+#396 := [trans #390 #394]: #395
+#399 := [monotonicity #396]: #398
+#403 := [trans #399 #401]: #402
+#475 := (iff #111 #474)
+#476 := [rewrite]: #475
+#479 := [monotonicity #476 #403]: #478
+#485 := [trans #479 #483]: #484
+#472 := (iff #110 #471)
+#473 := [rewrite]: #472
+#488 := [monotonicity #473 #485]: #487
+#494 := [trans #488 #492]: #493
+#497 := [monotonicity #494]: #496
+#501 := [trans #497 #499]: #500
+#504 := [monotonicity #501]: #503
+#509 := [trans #504 #507]: #508
+#512 := [monotonicity #509]: #511
+#518 := [trans #512 #516]: #517
+#521 := [monotonicity #518]: #520
+#526 := [trans #521 #524]: #525
+#529 := [monotonicity #526]: #528
+#533 := [trans #529 #531]: #532
+#469 := (iff #108 #459)
+#464 := (implies true #459)
+#467 := (iff #464 #459)
+#468 := [rewrite]: #467
+#465 := (iff #108 #464)
+#462 := (iff #107 #459)
+#456 := (implies #29 #451)
+#460 := (iff #456 #459)
+#461 := [rewrite]: #460
+#457 := (iff #107 #456)
+#454 := (iff #106 #451)
+#447 := (implies #68 #442)
+#452 := (iff #447 #451)
+#453 := [rewrite]: #452
+#448 := (iff #106 #447)
+#445 := (iff #105 #442)
+#438 := (implies #305 #433)
+#443 := (iff #438 #442)
+#444 := [rewrite]: #443
+#439 := (iff #105 #438)
+#436 := (iff #104 #433)
+#429 := (implies #28 #417)
+#434 := (iff #429 #433)
+#435 := [rewrite]: #434
+#430 := (iff #104 #429)
+#427 := (iff #103 #417)
+#422 := (implies true #417)
+#425 := (iff #422 #417)
+#426 := [rewrite]: #425
+#423 := (iff #103 #422)
+#420 := (iff #102 #417)
+#413 := (implies #310 #408)
+#418 := (iff #413 #417)
+#419 := [rewrite]: #418
+#414 := (iff #102 #413)
+#411 := (iff #101 #408)
+#404 := (implies #313 #392)
+#409 := (iff #404 #408)
+#410 := [rewrite]: #409
+#405 := (iff #101 #404)
+#314 := (iff #75 #313)
+#315 := [rewrite]: #314
+#406 := [monotonicity #315 #403]: #405
+#412 := [trans #406 #410]: #411
+#311 := (iff #73 #310)
+#312 := [rewrite]: #311
+#415 := [monotonicity #312 #412]: #414
+#421 := [trans #415 #419]: #420
+#424 := [monotonicity #421]: #423
+#428 := [trans #424 #426]: #427
+#308 := (iff #71 #28)
+#309 := [rewrite]: #308
+#431 := [monotonicity #309 #428]: #430
+#437 := [trans #431 #435]: #436
+#306 := (iff #70 #305)
+#307 := [rewrite]: #306
+#440 := [monotonicity #307 #437]: #439
+#446 := [trans #440 #444]: #445
+#449 := [monotonicity #446]: #448
+#455 := [trans #449 #453]: #454
+#458 := [monotonicity #455]: #457
+#463 := [trans #458 #461]: #462
+#466 := [monotonicity #463]: #465
+#470 := [trans #466 #468]: #469
+#536 := [monotonicity #470 #533]: #535
+#539 := [monotonicity #536]: #538
+#544 := [trans #539 #542]: #543
+#547 := [monotonicity #544]: #546
+#553 := [trans #547 #551]: #552
+#556 := [monotonicity #553]: #555
+#561 := [trans #556 #559]: #560
+#564 := [monotonicity #561]: #563
+#568 := [trans #564 #566]: #567
+#303 := (iff #65 #293)
+#298 := (implies true #293)
+#301 := (iff #298 #293)
+#302 := [rewrite]: #301
+#299 := (iff #65 #298)
+#296 := (iff #64 #293)
+#290 := (implies #29 #285)
+#294 := (iff #290 #293)
+#295 := [rewrite]: #294
+#291 := (iff #64 #290)
+#288 := (iff #63 #285)
+#281 := (implies #38 #276)
+#286 := (iff #281 #285)
+#287 := [rewrite]: #286
+#282 := (iff #63 #281)
+#279 := (iff #62 #276)
+#272 := (implies #29 #260)
+#277 := (iff #272 #276)
+#278 := [rewrite]: #277
+#273 := (iff #62 #272)
+#270 := (iff #61 #260)
+#265 := (implies true #260)
+#268 := (iff #265 #260)
+#269 := [rewrite]: #268
+#266 := (iff #61 #265)
+#263 := (iff #60 #260)
+#256 := (implies #183 #251)
+#261 := (iff #256 #260)
+#262 := [rewrite]: #261
+#257 := (iff #60 #256)
+#254 := (iff #59 #251)
+#247 := (implies #186 #242)
+#252 := (iff #247 #251)
+#253 := [rewrite]: #252
+#248 := (iff #59 #247)
+#245 := (iff #58 #242)
+#238 := (implies #189 #228)
+#243 := (iff #238 #242)
+#244 := [rewrite]: #243
+#239 := (iff #58 #238)
+#236 := (iff #57 #228)
+#231 := (implies true #228)
+#234 := (iff #231 #228)
+#235 := [rewrite]: #234
+#232 := (iff #57 #231)
+#229 := (iff #56 #228)
+#226 := (iff #55 #223)
+#219 := (implies #196 #202)
+#224 := (iff #219 #223)
+#225 := [rewrite]: #224
+#220 := (iff #55 #219)
+#217 := (iff #54 #202)
+#212 := (and #202 true)
+#215 := (iff #212 #202)
+#216 := [rewrite]: #215
+#213 := (iff #54 #212)
+#210 := (iff #53 true)
+#205 := (implies #202 true)
+#208 := (iff #205 true)
+#209 := [rewrite]: #208
+#206 := (iff #53 #205)
+#203 := (iff #52 #202)
+#200 := (iff #51 #199)
+#201 := [rewrite]: #200
+#204 := [quant-intro #201]: #203
+#207 := [monotonicity #204]: #206
+#211 := [trans #207 #209]: #210
+#214 := [monotonicity #204 #211]: #213
+#218 := [trans #214 #216]: #217
+#197 := (iff #49 #196)
+#194 := (iff #48 #193)
+#195 := [rewrite]: #194
+#198 := [quant-intro #195]: #197
+#221 := [monotonicity #198 #218]: #220
+#227 := [trans #221 #225]: #226
+#230 := [monotonicity #198 #227]: #229
+#233 := [monotonicity #230]: #232
+#237 := [trans #233 #235]: #236
+#190 := (iff #44 #189)
+#191 := [rewrite]: #190
+#240 := [monotonicity #191 #237]: #239
+#246 := [trans #240 #244]: #245
+#187 := (iff #42 #186)
+#188 := [rewrite]: #187
+#249 := [monotonicity #188 #246]: #248
+#255 := [trans #249 #253]: #254
+#184 := (iff #40 #183)
+#185 := [rewrite]: #184
+#258 := [monotonicity #185 #255]: #257
+#264 := [trans #258 #262]: #263
+#267 := [monotonicity #264]: #266
+#271 := [trans #267 #269]: #270
+#274 := [monotonicity #271]: #273
+#280 := [trans #274 #278]: #279
+#283 := [monotonicity #280]: #282
+#289 := [trans #283 #287]: #288
+#292 := [monotonicity #289]: #291
+#297 := [trans #292 #295]: #296
+#300 := [monotonicity #297]: #299
+#304 := [trans #300 #302]: #303
+#571 := [monotonicity #304 #568]: #570
+#574 := [monotonicity #571]: #573
+#579 := [trans #574 #577]: #578
+#181 := (iff #37 #180)
+#182 := [rewrite]: #181
+#582 := [monotonicity #182 #579]: #581
+#588 := [trans #582 #586]: #587
+#178 := (iff #35 #177)
+#175 := (iff #34 #174)
+#176 := [rewrite]: #175
+#179 := [quant-intro #176]: #178
+#591 := [monotonicity #179 #588]: #590
+#597 := [trans #591 #595]: #596
+#600 := [monotonicity #597]: #599
+#605 := [trans #600 #603]: #604
+#608 := [monotonicity #605]: #607
+#612 := [trans #608 #610]: #611
+#171 := (iff #24 #9)
+#172 := [rewrite]: #171
+#615 := [monotonicity #172 #612]: #614
+#621 := [trans #615 #619]: #620
+#624 := [monotonicity #172 #621]: #623
#169 := (iff #23 #168)
#166 := (iff #22 #165)
#167 := [rewrite]: #166
#170 := [quant-intro #167]: #169
-#673 := (iff #132 #670)
-#666 := (implies #168 #661)
-#671 := (iff #666 #670)
-#672 := [rewrite]: #671
-#667 := (iff #132 #666)
-#664 := (iff #131 #661)
-#658 := (and #653 #9)
-#662 := (iff #658 #661)
-#663 := [rewrite]: #662
-#659 := (iff #131 #658)
-#171 := (iff #24 #9)
-#172 := [rewrite]: #171
-#656 := (iff #130 #653)
-#649 := (implies #9 #637)
-#654 := (iff #649 #653)
-#655 := [rewrite]: #654
-#650 := (iff #130 #649)
-#647 := (iff #129 #637)
-#642 := (implies true #637)
-#645 := (iff #642 #637)
-#646 := [rewrite]: #645
-#643 := (iff #129 #642)
-#640 := (iff #128 #637)
-#634 := (implies #29 #629)
-#638 := (iff #634 #637)
-#639 := [rewrite]: #638
-#635 := (iff #128 #634)
-#632 := (iff #127 #629)
-#625 := (implies #185 #620)
-#630 := (iff #625 #629)
-#631 := [rewrite]: #630
-#626 := (iff #127 #625)
-#623 := (iff #126 #620)
-#616 := (implies #188 #611)
-#621 := (iff #616 #620)
-#622 := [rewrite]: #621
-#617 := (iff #126 #616)
-#614 := (iff #125 #611)
-#608 := (implies #29 #605)
-#612 := (iff #608 #611)
-#613 := [rewrite]: #612
-#609 := (iff #125 #608)
-#606 := (iff #124 #605)
-#603 := (iff #123 #593)
-#598 := (implies true #593)
-#601 := (iff #598 #593)
-#602 := [rewrite]: #601
-#599 := (iff #123 #598)
-#596 := (iff #122 #593)
-#590 := (implies #29 #585)
-#594 := (iff #590 #593)
-#595 := [rewrite]: #594
-#591 := (iff #122 #590)
-#588 := (iff #121 #585)
-#581 := (implies #96 #576)
-#586 := (iff #581 #585)
-#587 := [rewrite]: #586
-#582 := (iff #121 #581)
-#579 := (iff #120 #576)
-#573 := (implies #29 #561)
-#577 := (iff #573 #576)
-#578 := [rewrite]: #577
-#574 := (iff #120 #573)
-#571 := (iff #119 #561)
-#566 := (implies true #561)
-#569 := (iff #566 #561)
-#570 := [rewrite]: #569
-#567 := (iff #119 #566)
-#564 := (iff #118 #561)
-#557 := (implies #466 #552)
-#562 := (iff #557 #561)
-#563 := [rewrite]: #562
-#558 := (iff #118 #557)
-#555 := (iff #117 #552)
-#548 := (implies #469 #543)
-#553 := (iff #548 #552)
-#554 := [rewrite]: #553
-#549 := (iff #117 #548)
-#546 := (iff #116 #543)
-#539 := (implies #472 #527)
-#544 := (iff #539 #543)
-#545 := [rewrite]: #544
-#540 := (iff #116 #539)
-#537 := (iff #115 #527)
-#532 := (implies true #527)
-#535 := (iff #532 #527)
-#536 := [rewrite]: #535
-#533 := (iff #115 #532)
-#530 := (iff #114 #527)
-#524 := (and #519 #487)
-#528 := (iff #524 #527)
-#529 := [rewrite]: #528
-#525 := (iff #114 #524)
-#488 := (iff #107 #487)
-#485 := (iff #106 #482)
-#478 := (implies #475 #105)
-#483 := (iff #478 #482)
-#484 := [rewrite]: #483
-#479 := (iff #106 #478)
-#476 := (iff #104 #475)
-#477 := [rewrite]: #476
-#480 := [monotonicity #477]: #479
-#486 := [trans #480 #484]: #485
-#489 := [quant-intro #486]: #488
-#522 := (iff #113 #519)
-#515 := (implies #487 #498)
-#520 := (iff #515 #519)
-#521 := [rewrite]: #520
-#516 := (iff #113 #515)
-#513 := (iff #112 #498)
-#508 := (and true #498)
-#511 := (iff #508 #498)
-#512 := [rewrite]: #511
-#509 := (iff #112 #508)
-#499 := (iff #110 #498)
-#496 := (iff #109 #493)
-#490 := (implies #475 #108)
-#494 := (iff #490 #493)
-#495 := [rewrite]: #494
-#491 := (iff #109 #490)
-#492 := [monotonicity #477]: #491
-#497 := [trans #492 #495]: #496
-#500 := [quant-intro #497]: #499
-#506 := (iff #111 true)
-#501 := (implies #498 true)
-#504 := (iff #501 true)
-#505 := [rewrite]: #504
-#502 := (iff #111 #501)
-#503 := [monotonicity #500]: #502
-#507 := [trans #503 #505]: #506
-#510 := [monotonicity #507 #500]: #509
-#514 := [trans #510 #512]: #513
-#517 := [monotonicity #489 #514]: #516
-#523 := [trans #517 #521]: #522
-#526 := [monotonicity #523 #489]: #525
-#531 := [trans #526 #529]: #530
-#534 := [monotonicity #531]: #533
-#538 := [trans #534 #536]: #537
-#473 := (iff #102 #472)
-#474 := [rewrite]: #473
-#541 := [monotonicity #474 #538]: #540
-#547 := [trans #541 #545]: #546
-#470 := (iff #100 #469)
-#471 := [rewrite]: #470
-#550 := [monotonicity #471 #547]: #549
-#556 := [trans #550 #554]: #555
-#467 := (iff #98 #466)
-#468 := [rewrite]: #467
-#559 := [monotonicity #468 #556]: #558
-#565 := [trans #559 #563]: #564
-#568 := [monotonicity #565]: #567
-#572 := [trans #568 #570]: #571
-#575 := [monotonicity #572]: #574
-#580 := [trans #575 #578]: #579
-#583 := [monotonicity #580]: #582
-#589 := [trans #583 #587]: #588
-#592 := [monotonicity #589]: #591
-#597 := [trans #592 #595]: #596
-#600 := [monotonicity #597]: #599
-#604 := [trans #600 #602]: #603
-#464 := (iff #95 #454)
-#459 := (implies true #454)
-#462 := (iff #459 #454)
-#463 := [rewrite]: #462
-#460 := (iff #95 #459)
-#457 := (iff #94 #454)
-#451 := (implies #29 #446)
-#455 := (iff #451 #454)
-#456 := [rewrite]: #455
-#452 := (iff #94 #451)
-#449 := (iff #93 #446)
-#442 := (implies #38 #437)
-#447 := (iff #442 #446)
-#448 := [rewrite]: #447
-#443 := (iff #93 #442)
-#440 := (iff #92 #437)
-#434 := (implies #29 #431)
-#438 := (iff #434 #437)
-#439 := [rewrite]: #438
-#435 := (iff #92 #434)
-#432 := (iff #91 #431)
-#429 := (iff #90 #419)
-#424 := (implies true #419)
-#427 := (iff #424 #419)
-#428 := [rewrite]: #427
-#425 := (iff #90 #424)
-#422 := (iff #89 #419)
-#416 := (implies #29 #411)
-#420 := (iff #416 #419)
-#421 := [rewrite]: #420
-#417 := (iff #89 #416)
-#414 := (iff #88 #411)
-#407 := (implies #77 #402)
-#412 := (iff #407 #411)
-#413 := [rewrite]: #412
-#408 := (iff #88 #407)
-#405 := (iff #87 #402)
-#398 := (implies #356 #393)
-#403 := (iff #398 #402)
-#404 := [rewrite]: #403
-#399 := (iff #87 #398)
-#396 := (iff #86 #393)
-#389 := (implies #26 #377)
-#394 := (iff #389 #393)
-#395 := [rewrite]: #394
-#390 := (iff #86 #389)
-#387 := (iff #85 #377)
-#382 := (implies true #377)
-#385 := (iff #382 #377)
-#386 := [rewrite]: #385
-#383 := (iff #85 #382)
-#380 := (iff #84 #377)
-#373 := (implies #361 #368)
-#378 := (iff #373 #377)
-#379 := [rewrite]: #378
-#374 := (iff #84 #373)
-#371 := (iff #83 #368)
-#364 := (implies #82 #286)
-#369 := (iff #364 #368)
-#370 := [rewrite]: #369
-#365 := (iff #83 #364)
-#296 := (iff #69 #286)
-#291 := (implies true #286)
-#294 := (iff #291 #286)
-#295 := [rewrite]: #294
-#292 := (iff #69 #291)
-#289 := (iff #68 #286)
-#282 := (implies #46 #277)
-#287 := (iff #282 #286)
-#288 := [rewrite]: #287
-#283 := (iff #68 #282)
-#280 := (iff #67 #277)
-#273 := (implies #200 #268)
-#278 := (iff #273 #277)
-#279 := [rewrite]: #278
-#274 := (iff #67 #273)
-#271 := (iff #66 #268)
-#264 := (implies #203 #252)
-#269 := (iff #264 #268)
-#270 := [rewrite]: #269
-#265 := (iff #66 #264)
-#262 := (iff #65 #252)
-#257 := (implies true #252)
-#260 := (iff #257 #252)
-#261 := [rewrite]: #260
-#258 := (iff #65 #257)
-#255 := (iff #64 #252)
-#249 := (and #244 #218)
-#253 := (iff #249 #252)
-#254 := [rewrite]: #253
-#250 := (iff #64 #249)
-#219 := (iff #57 #218)
-#216 := (iff #56 #213)
-#209 := (implies #206 #55)
-#214 := (iff #209 #213)
-#215 := [rewrite]: #214
-#210 := (iff #56 #209)
-#207 := (iff #54 #206)
-#208 := [rewrite]: #207
-#211 := [monotonicity #208]: #210
-#217 := [trans #211 #215]: #216
-#220 := [quant-intro #217]: #219
-#247 := (iff #63 #244)
-#240 := (implies #218 #221)
-#245 := (iff #240 #244)
-#246 := [rewrite]: #245
-#241 := (iff #63 #240)
-#238 := (iff #62 #221)
-#233 := (and true #221)
-#236 := (iff #233 #221)
-#237 := [rewrite]: #236
-#234 := (iff #62 #233)
-#222 := (iff #59 #221)
-#223 := [rewrite]: #222
-#231 := (iff #61 true)
-#226 := (implies #221 true)
-#229 := (iff #226 true)
-#230 := [rewrite]: #229
-#227 := (iff #61 #226)
-#224 := (iff #60 true)
-#225 := [rewrite]: #224
-#228 := [monotonicity #223 #225]: #227
-#232 := [trans #228 #230]: #231
-#235 := [monotonicity #232 #223]: #234
-#239 := [trans #235 #237]: #238
-#242 := [monotonicity #220 #239]: #241
-#248 := [trans #242 #246]: #247
-#251 := [monotonicity #248 #220]: #250
-#256 := [trans #251 #254]: #255
-#259 := [monotonicity #256]: #258
-#263 := [trans #259 #261]: #262
-#204 := (iff #52 #203)
-#205 := [rewrite]: #204
-#266 := [monotonicity #205 #263]: #265
-#272 := [trans #266 #270]: #271
-#201 := (iff #49 #200)
-#198 := (= #48 #197)
-#199 := [rewrite]: #198
-#202 := [monotonicity #199]: #201
-#275 := [monotonicity #202 #272]: #274
-#281 := [trans #275 #279]: #280
-#284 := [monotonicity #281]: #283
-#290 := [trans #284 #288]: #289
-#293 := [monotonicity #290]: #292
-#297 := [trans #293 #295]: #296
-#366 := [monotonicity #297]: #365
-#372 := [trans #366 #370]: #371
-#362 := (iff #81 #361)
-#363 := [rewrite]: #362
-#375 := [monotonicity #363 #372]: #374
-#381 := [trans #375 #379]: #380
-#384 := [monotonicity #381]: #383
-#388 := [trans #384 #386]: #387
-#359 := (iff #80 #26)
-#360 := [rewrite]: #359
-#391 := [monotonicity #360 #388]: #390
-#397 := [trans #391 #395]: #396
-#357 := (iff #79 #356)
-#358 := [rewrite]: #357
-#400 := [monotonicity #358 #397]: #399
-#406 := [trans #400 #404]: #405
-#409 := [monotonicity #406]: #408
-#415 := [trans #409 #413]: #414
-#418 := [monotonicity #415]: #417
-#423 := [trans #418 #421]: #422
-#426 := [monotonicity #423]: #425
-#430 := [trans #426 #428]: #429
-#354 := (iff #76 #344)
-#349 := (implies true #344)
-#352 := (iff #349 #344)
-#353 := [rewrite]: #352
-#350 := (iff #76 #349)
-#347 := (iff #75 #344)
-#341 := (implies #29 #336)
-#345 := (iff #341 #344)
-#346 := [rewrite]: #345
-#342 := (iff #75 #341)
-#339 := (iff #74 #336)
-#332 := (implies #40 #327)
-#337 := (iff #332 #336)
-#338 := [rewrite]: #337
-#333 := (iff #74 #332)
-#330 := (iff #73 #327)
-#323 := (implies #29 #311)
-#328 := (iff #323 #327)
-#329 := [rewrite]: #328
-#324 := (iff #73 #323)
-#321 := (iff #72 #311)
-#316 := (implies true #311)
-#319 := (iff #316 #311)
-#320 := [rewrite]: #319
-#317 := (iff #72 #316)
-#314 := (iff #71 #311)
-#307 := (implies #191 #302)
-#312 := (iff #307 #311)
-#313 := [rewrite]: #312
-#308 := (iff #71 #307)
-#305 := (iff #70 #302)
-#298 := (implies #194 #286)
-#303 := (iff #298 #302)
-#304 := [rewrite]: #303
-#299 := (iff #70 #298)
-#195 := (iff #44 #194)
-#196 := [rewrite]: #195
-#300 := [monotonicity #196 #297]: #299
-#306 := [trans #300 #304]: #305
-#192 := (iff #42 #191)
-#193 := [rewrite]: #192
-#309 := [monotonicity #193 #306]: #308
-#315 := [trans #309 #313]: #314
-#318 := [monotonicity #315]: #317
-#322 := [trans #318 #320]: #321
-#325 := [monotonicity #322]: #324
-#331 := [trans #325 #329]: #330
-#334 := [monotonicity #331]: #333
-#340 := [trans #334 #338]: #339
-#343 := [monotonicity #340]: #342
-#348 := [trans #343 #346]: #347
-#351 := [monotonicity #348]: #350
-#355 := [trans #351 #353]: #354
-#433 := [monotonicity #355 #430]: #432
-#436 := [monotonicity #433]: #435
-#441 := [trans #436 #439]: #440
-#444 := [monotonicity #441]: #443
-#450 := [trans #444 #448]: #449
-#453 := [monotonicity #450]: #452
-#458 := [trans #453 #456]: #457
-#461 := [monotonicity #458]: #460
-#465 := [trans #461 #463]: #464
-#607 := [monotonicity #465 #604]: #606
-#610 := [monotonicity #607]: #609
-#615 := [trans #610 #613]: #614
-#189 := (iff #37 #188)
-#190 := [rewrite]: #189
-#618 := [monotonicity #190 #615]: #617
-#624 := [trans #618 #622]: #623
-#186 := (iff #35 #185)
-#183 := (iff #34 #180)
-#176 := (implies #173 #33)
-#181 := (iff #176 #180)
-#182 := [rewrite]: #181
-#177 := (iff #34 #176)
-#174 := (iff #31 #173)
-#175 := [rewrite]: #174
-#178 := [monotonicity #175]: #177
-#184 := [trans #178 #182]: #183
-#187 := [quant-intro #184]: #186
-#627 := [monotonicity #187 #624]: #626
+#627 := [monotonicity #170 #624]: #626
#633 := [trans #627 #631]: #632
-#636 := [monotonicity #633]: #635
-#641 := [trans #636 #639]: #640
-#644 := [monotonicity #641]: #643
-#648 := [trans #644 #646]: #647
-#651 := [monotonicity #172 #648]: #650
-#657 := [trans #651 #655]: #656
-#660 := [monotonicity #657 #172]: #659
-#665 := [trans #660 #663]: #664
-#668 := [monotonicity #170 #665]: #667
-#674 := [trans #668 #672]: #673
-#677 := [monotonicity #674 #170]: #676
-#682 := [trans #677 #680]: #681
+#636 := [monotonicity #170 #633]: #635
#162 := (iff #15 #161)
#159 := (iff #14 #158)
#156 := (iff #13 #12)
#157 := [rewrite]: #156
#160 := [monotonicity #157]: #159
#163 := [monotonicity #160]: #162
-#685 := [monotonicity #163 #682]: #684
-#691 := [trans #685 #689]: #690
-#694 := [monotonicity #691]: #693
-#699 := [trans #694 #697]: #698
-#702 := [monotonicity #699]: #701
-#706 := [trans #702 #704]: #705
-#709 := [monotonicity #706]: #708
-#715 := [trans #709 #713]: #714
-#718 := [monotonicity #715]: #717
-#722 := [trans #718 #720]: #721
-#725 := [monotonicity #722]: #724
-#1107 := [trans #725 #1105]: #1106
+#639 := [monotonicity #163 #636]: #638
+#645 := [trans #639 #643]: #644
+#648 := [monotonicity #645]: #647
+#653 := [trans #648 #651]: #652
+#656 := [monotonicity #653]: #655
+#660 := [trans #656 #658]: #659
+#663 := [monotonicity #660]: #662
+#669 := [trans #663 #667]: #668
+#672 := [monotonicity #669]: #671
+#676 := [trans #672 #674]: #675
+#679 := [monotonicity #676]: #678
+#1061 := [trans #679 #1059]: #1060
#155 := [asserted]: #139
-#1108 := [mp #155 #1107]: #1103
-#1109 := [not-or-elim #1108]: #9
-#2193 := [trans #1109 #2192]: #2202
-#1888 := (not #1154)
-#1974 := (or #1540 #1888)
-#1889 := [def-axiom]: #1974
-#2194 := [unit-resolution #1889 #2205]: #1888
-#2195 := (not #2202)
-#2196 := (or #2195 #1154)
-#2197 := [th-lemma]: #2196
-#2198 := [unit-resolution #2197 #2194 #2193]: false
-#2199 := [lemma #2198]: #1540
-#2393 := (or #1545 #2390)
-#1708 := (forall (vars (?x7 int)) #1705)
-#1801 := (or #1708 #1798)
-#1804 := (not #1801)
-#1807 := (or #560 #551 #542 #886 #1654 #927 #1804)
-#1810 := (not #1807)
-#1612 := (forall (vars (?x3 int)) #1607)
-#1618 := (not #1612)
-#1619 := (or #221 #1618)
-#1620 := (not #1619)
-#1648 := (or #1620 #1645)
-#1657 := (not #1648)
-#1667 := (or #367 #401 #376 #886 #1654 #1655 #1656 #840 #850 #1657)
-#1668 := (not #1667)
-#1658 := (or #310 #301 #886 #1654 #1655 #1656 #840 #854 #1657)
-#1659 := (not #1658)
-#1673 := (or #1659 #1668)
-#1679 := (not #1673)
-#1680 := (or #886 #1654 #926 #1679)
-#1681 := (not #1680)
-#1813 := (or #1681 #1810)
-#1816 := (not #1813)
-#1590 := (forall (vars (?x2 int)) #1585)
-#1784 := (not #1590)
-#1568 := (forall (vars (?x1 int)) #1563)
-#1783 := (not #1568)
-#1819 := (or #619 #886 #1654 #1783 #1784 #1816)
-#1822 := (not #1819)
-#1825 := (or #1545 #1822)
-#2394 := (iff #1825 #2393)
-#2391 := (iff #1822 #2390)
-#2388 := (iff #1819 #2387)
-#2385 := (iff #1816 #2384)
-#2382 := (iff #1813 #2381)
-#2379 := (iff #1810 #2378)
-#2376 := (iff #1807 #2375)
-#2373 := (iff #1804 #2372)
-#2370 := (iff #1801 #2369)
-#2367 := (iff #1708 #2364)
-#2365 := (iff #1705 #1705)
-#2366 := [refl]: #2365
-#2368 := [quant-intro #2366]: #2367
+#1062 := [mp #155 #1061]: #1057
+#1063 := [not-or-elim #1062]: #9
+#2109 := (or #616 #2118)
+#2133 := [th-lemma]: #2109
+#2110 := [unit-resolution #2133 #1063]: #2118
+decl ?x1!0 :: int
+#1106 := ?x1!0
+#1107 := (uf_3 ?x1!0)
+#1104 := (* -1::int #1107)
+#1105 := (+ uf_2 #1104)
+#1108 := (>= #1105 0::int)
+#1847 := (not #1108)
+#1111 := (>= ?x1!0 0::int)
+#1229 := (not #1111)
+#1109 := (>= ?x1!0 1::int)
+#1494 := (or #1108 #1109 #1229)
+#1499 := (not #1494)
+decl ?x4!1 :: int
+#1148 := ?x4!1
+#1156 := (uf_3 ?x4!1)
+#1329 := (= uf_8 #1156)
+#1153 := (>= ?x4!1 0::int)
+#1572 := (not #1153)
+#1149 := (* -1::int ?x4!1)
+#1150 := (+ uf_1 #1149)
+#1151 := (<= #1150 0::int)
+#1587 := (or #1151 #1572 #1329)
+#1618 := (not #1587)
+decl ?x6!2 :: int
+#1166 := ?x6!2
+#1167 := (uf_3 ?x6!2)
+#1353 := (* -1::int #1167)
+#1354 := (+ uf_8 #1353)
+#1355 := (>= #1354 0::int)
+#1174 := (>= ?x6!2 0::int)
+#1592 := (not #1174)
+#1170 := (* -1::int ?x6!2)
+#1171 := (+ uf_1 #1170)
+#1172 := (<= #1171 0::int)
+#1749 := (or #1172 #1592 #1355 #1618)
+#1752 := (not #1749)
+#2262 := (pattern #20)
+#1502 := (not #703)
+#1561 := (or #47 #1502 #743)
+#1566 := (not #1561)
+#2323 := (forall (vars (?x4 int)) (:pat #2262) #1566)
+#2328 := (or #2323 #1752)
+#2331 := (not #2328)
+#1631 := (not #730)
+#2334 := (or #259 #250 #241 #1631 #877 #789 #2331)
+#2337 := (not #2334)
+decl ?x8!3 :: int
+#1215 := ?x8!3
+#1216 := (uf_3 ?x8!3)
+#1418 := (* -1::int #1216)
+#1419 := (+ uf_12 #1418)
+#1420 := (>= #1419 0::int)
+#1396 := (* -1::int ?x8!3)
+#1397 := (+ uf_13 #1396)
+#1398 := (<= #1397 0::int)
+#1222 := (>= ?x8!3 0::int)
+#1671 := (not #1222)
+#1686 := (or #1671 #1398 #1420)
+#1691 := (not #1686)
+#1653 := (or #1502 #827 #841)
+#2279 := (forall (vars (?x8 int)) (:pat #2262) #1653)
+#2284 := (not #2279)
+#2287 := (or #332 #2284)
+#2290 := (not #2287)
+#2293 := (or #2290 #1691)
+#2296 := (not #2293)
+#1701 := (not #819)
+#1700 := (not #816)
+#2305 := (or #489 #480 #1631 #877 #1700 #1701 #868 #880 #2296)
+#2308 := (not #2305)
+#2299 := (or #441 #416 #407 #1631 #877 #1700 #1701 #868 #881 #2296)
+#2302 := (not #2299)
+#2311 := (or #2302 #2308)
+#2314 := (not #2311)
+#2317 := (or #1631 #877 #786 #2314)
+#2320 := (not #2317)
+#2340 := (or #2320 #2337)
+#2343 := (not #2340)
+#1539 := (or #1502 #978 #991)
+#2271 := (forall (vars (?x3 int)) (:pat #2262) #1539)
+#2276 := (not #2271)
+#1517 := (or #1502 #706 #716)
+#2263 := (forall (vars (?x1 int)) (:pat #2262) #1517)
+#2268 := (not #2263)
+#2346 := (or #583 #1631 #877 #2268 #2276 #2343)
+#1403 := (not #1398)
+#2349 := (not #2346)
+#2592 := [hypothesis]: #2349
+#2176 := (or #2346 #180)
+#2183 := [def-axiom]: #2176
+#2593 := [unit-resolution #2183 #2592]: #180
+#2160 := (or #2346 #2340)
+#2161 := [def-axiom]: #2160
+#2594 := [unit-resolution #2161 #2592]: #2340
+#2169 := (or #2346 #2271)
+#2174 := [def-axiom]: #2169
+#2595 := [unit-resolution #2174 #2592]: #2271
+#2414 := (or #2334 #583 #2276)
+#1851 := (uf_3 uf_7)
+#2358 := (= uf_8 #1851)
+#2408 := (= #36 #1851)
+#2406 := (= #1851 #36)
+#2391 := [hypothesis]: #2337
+#2099 := (or #2334 #183)
+#2100 := [def-axiom]: #2099
+#2402 := [unit-resolution #2100 #2391]: #183
+#2403 := [symm #2402]: #40
+#2407 := [monotonicity #2403]: #2406
+#2409 := [symm #2407]: #2408
+#2410 := (= uf_8 #36)
+#2404 := [hypothesis]: #180
+#2101 := (or #2334 #186)
+#2102 := [def-axiom]: #2101
+#2393 := [unit-resolution #2102 #2391]: #186
+#2405 := [symm #2393]: #42
+#2411 := [trans #2405 #2404]: #2410
+#2412 := [trans #2411 #2409]: #2358
+#2386 := (not #2358)
+#1852 := (>= uf_7 0::int)
+#1853 := (not #1852)
+#1858 := (* -1::int uf_7)
+#1863 := (+ uf_1 #1858)
+#1850 := (<= #1863 0::int)
+#2364 := (or #1850 #1853 #2358)
+#2369 := (not #2364)
+#2177 := (or #2334 #2328)
+#2187 := [def-axiom]: #2177
+#2392 := [unit-resolution #2187 #2391]: #2328
+#2019 := (+ uf_6 #767)
+#2021 := (<= #2019 0::int)
+#2394 := (or #250 #2021)
+#2395 := [th-lemma]: #2394
+#2396 := [unit-resolution #2395 #2393]: #2021
+#1897 := [hypothesis]: #2271
+#2178 := (or #2334 #786)
+#2175 := [def-axiom]: #2178
+#2397 := [unit-resolution #2175 #2391]: #786
+#1929 := (not #2021)
+#1908 := (or #1749 #789 #2276 #1929)
+#1921 := [hypothesis]: #786
+#2008 := (+ uf_5 #1170)
+#2011 := (<= #2008 0::int)
+#1989 := (+ uf_6 #1353)
+#1990 := (>= #1989 0::int)
+#1928 := (not #1990)
+#1922 := [hypothesis]: #2021
+#2085 := (not #1355)
+#1932 := [hypothesis]: #1752
+#2086 := (or #1749 #2085)
+#2087 := [def-axiom]: #2086
+#1915 := [unit-resolution #2087 #1932]: #2085
+#1930 := (or #1928 #1355 #1929)
+#1923 := [hypothesis]: #2085
+#1914 := [hypothesis]: #1990
+#1927 := [th-lemma #1914 #1923 #1922]: false
+#1931 := [lemma #1927]: #1930
+#1917 := [unit-resolution #1931 #1915 #1922]: #1928
+#1899 := (or #1990 #2011)
+#2200 := (or #1749 #1174)
+#2203 := [def-axiom]: #2200
+#1918 := [unit-resolution #2203 #1932]: #1174
+#1979 := (or #2276 #1592 #1990 #2011)
+#2018 := (+ #1167 #989)
+#2023 := (<= #2018 0::int)
+#2013 := (+ ?x6!2 #784)
+#2003 := (>= #2013 0::int)
+#2005 := (or #1592 #2003 #2023)
+#1980 := (or #2276 #2005)
+#1970 := (iff #1980 #1979)
+#1997 := (or #1592 #1990 #2011)
+#1982 := (or #2276 #1997)
+#1968 := (iff #1982 #1979)
+#1969 := [rewrite]: #1968
+#1975 := (iff #1980 #1982)
+#1977 := (iff #2005 #1997)
+#1995 := (or #1592 #2011 #1990)
+#1974 := (iff #1995 #1997)
+#1976 := [rewrite]: #1974
+#1996 := (iff #2005 #1995)
+#1993 := (iff #2023 #1990)
+#1999 := (+ #989 #1167)
+#1986 := (<= #1999 0::int)
+#1991 := (iff #1986 #1990)
+#1992 := [rewrite]: #1991
+#1987 := (iff #2023 #1986)
+#2002 := (= #2018 #1999)
+#1984 := [rewrite]: #2002
+#1988 := [monotonicity #1984]: #1987
+#1994 := [trans #1988 #1992]: #1993
+#2000 := (iff #2003 #2011)
+#2006 := (+ #784 ?x6!2)
+#2014 := (>= #2006 0::int)
+#2012 := (iff #2014 #2011)
+#1998 := [rewrite]: #2012
+#2007 := (iff #2003 #2014)
+#2009 := (= #2013 #2006)
+#2010 := [rewrite]: #2009
+#2015 := [monotonicity #2010]: #2007
+#2001 := [trans #2015 #1998]: #2000
+#1985 := [monotonicity #2001 #1994]: #1996
+#1978 := [trans #1985 #1976]: #1977
+#1983 := [monotonicity #1978]: #1975
+#1972 := [trans #1983 #1969]: #1970
+#1981 := [quant-inst]: #1980
+#1971 := [mp #1981 #1972]: #1979
+#1904 := [unit-resolution #1971 #1897 #1918]: #1899
+#1905 := [unit-resolution #1904 #1917]: #2011
+#1173 := (not #1172)
+#2201 := (or #1749 #1173)
+#2202 := [def-axiom]: #2201
+#1906 := [unit-resolution #2202 #1932]: #1173
+#1907 := [th-lemma #1906 #1905 #1921]: false
+#1909 := [lemma #1907]: #1908
+#2398 := [unit-resolution #1909 #2397 #1897 #2396]: #1749
+#2098 := (or #2331 #2323 #1752)
+#2091 := [def-axiom]: #2098
+#2399 := [unit-resolution #2091 #2398 #2392]: #2323
+#2192 := (not #2323)
+#2372 := (or #2192 #2369)
+#1854 := (= #1851 uf_8)
+#2356 := (or #1854 #1853 #1850)
+#2357 := (not #2356)
+#2373 := (or #2192 #2357)
+#2375 := (iff #2373 #2372)
+#2377 := (iff #2372 #2372)
+#2378 := [rewrite]: #2377
+#2370 := (iff #2357 #2369)
+#2367 := (iff #2356 #2364)
+#2361 := (or #2358 #1853 #1850)
+#2365 := (iff #2361 #2364)
+#2366 := [rewrite]: #2365
+#2362 := (iff #2356 #2361)
+#2359 := (iff #1854 #2358)
+#2360 := [rewrite]: #2359
+#2363 := [monotonicity #2360]: #2362
+#2368 := [trans #2363 #2366]: #2367
#2371 := [monotonicity #2368]: #2370
-#2374 := [monotonicity #2371]: #2373
-#2377 := [monotonicity #2374]: #2376
-#2380 := [monotonicity #2377]: #2379
-#2362 := (iff #1681 #2361)
-#2359 := (iff #1680 #2358)
-#2356 := (iff #1679 #2355)
-#2353 := (iff #1673 #2352)
-#2350 := (iff #1668 #2349)
-#2347 := (iff #1667 #2346)
-#2338 := (iff #1657 #2337)
-#2335 := (iff #1648 #2334)
-#2332 := (iff #1620 #2331)
-#2329 := (iff #1619 #2328)
-#2326 := (iff #1618 #2325)
-#2323 := (iff #1612 #2320)
-#2321 := (iff #1607 #1607)
-#2322 := [refl]: #2321
-#2324 := [quant-intro #2322]: #2323
-#2327 := [monotonicity #2324]: #2326
+#2376 := [monotonicity #2371]: #2375
+#2379 := [trans #2376 #2378]: #2375
+#2374 := [quant-inst]: #2373
+#2380 := [mp #2374 #2379]: #2372
+#2400 := [unit-resolution #2380 #2399]: #2369
+#2387 := (or #2364 #2386)
+#2388 := [def-axiom]: #2387
+#2401 := [unit-resolution #2388 #2400]: #2386
+#2413 := [unit-resolution #2401 #2412]: false
+#2415 := [lemma #2413]: #2414
+#2596 := [unit-resolution #2415 #2593 #2595]: #2334
+#2181 := (or #2343 #2320 #2337)
+#2182 := [def-axiom]: #2181
+#2615 := [unit-resolution #2182 #2596 #2594]: #2320
+#2209 := (or #2317 #2311)
+#2210 := [def-axiom]: #2209
+#2681 := [unit-resolution #2210 #2615]: #2311
+#2422 := (or #332 #2314 #583)
+#2416 := (= #67 #89)
+#2022 := (= #89 #67)
+#2381 := [hypothesis]: #2311
+#1231 := (not #332)
+#1874 := [hypothesis]: #1231
+#1868 := (or #2305 #332 #583)
+#1880 := (= #36 #89)
+#1862 := (= #89 #36)
+#1859 := [hypothesis]: #2308
+#2232 := (or #2305 #471)
+#1954 := [def-axiom]: #2232
+#1856 := [unit-resolution #1954 #1859]: #471
+#1857 := [symm #1856]: #110
+#1878 := [monotonicity #1857]: #1862
+#1877 := [symm #1878]: #1880
+#1876 := (= uf_12 #36)
+#1955 := (or #2305 #474)
+#2229 := [def-axiom]: #1955
+#1860 := [unit-resolution #2229 #1859]: #474
+#1861 := [symm #1860]: #111
+#1881 := [trans #1861 #2404]: #1876
+#1864 := [trans #1881 #1877]: #332
+#1867 := [unit-resolution #1874 #1864]: false
+#1871 := [lemma #1867]: #1868
+#2382 := [unit-resolution #1871 #1874 #2404]: #2305
+#2221 := (or #2314 #2302 #2308)
+#2216 := [def-axiom]: #2221
+#2383 := [unit-resolution #2216 #2382 #2381]: #2302
+#1900 := (or #2299 #310)
+#1901 := [def-axiom]: #1900
+#2389 := [unit-resolution #1901 #2383]: #310
+#2390 := [symm #2389]: #73
+#1872 := [monotonicity #2390]: #2022
+#2417 := [symm #1872]: #2416
+#2418 := (= uf_12 #67)
+#1896 := (or #2299 #305)
+#2237 := [def-axiom]: #1896
+#2385 := [unit-resolution #2237 #2383]: #305
+#1866 := [symm #2385]: #70
+#1902 := (or #2299 #313)
+#1903 := [def-axiom]: #1902
+#2384 := [unit-resolution #1903 #2383]: #313
+#1873 := [symm #2384]: #75
+#2419 := [trans #1873 #1866]: #2418
+#2420 := [trans #2419 #2417]: #332
+#2421 := [unit-resolution #1874 #2420]: false
+#2423 := [lemma #2421]: #2422
+#2682 := [unit-resolution #2423 #2681 #2593]: #332
+#1940 := (or #2287 #1231)
+#1919 := [def-axiom]: #1940
+#2683 := [unit-resolution #1919 #2682]: #2287
+#2679 := (or #2305 #2276 #2290)
+#2650 := [hypothesis]: #2287
+#2224 := (or #2305 #2293)
+#2228 := [def-axiom]: #2224
+#2651 := [unit-resolution #2228 #1859]: #2293
+#1912 := (or #2296 #2290 #1691)
+#2253 := [def-axiom]: #1912
+#2652 := [unit-resolution #2253 #2651 #2650]: #1691
+#1925 := (or #1686 #1403)
+#2257 := [def-axiom]: #1925
+#2653 := [unit-resolution #2257 #2652]: #1403
+#2482 := (+ uf_5 #1396)
+#2627 := (>= #2482 0::int)
+#2668 := (not #2627)
+#2616 := (= uf_5 ?x8!3)
+#2647 := (not #2616)
+#2626 := (= #67 #1216)
+#2631 := (not #2626)
+#2630 := (+ #67 #1418)
+#2632 := (>= #2630 0::int)
+#2636 := (not #2632)
+#2223 := (or #2305 #881)
+#2227 := [def-axiom]: #2223
+#2654 := [unit-resolution #2227 #1859]: #881
+#2258 := (not #1420)
+#2259 := (or #1686 #2258)
+#2260 := [def-axiom]: #2259
+#2655 := [unit-resolution #2260 #2652]: #2258
+#1961 := (+ uf_6 #839)
+#1855 := (<= #1961 0::int)
+#2656 := (or #480 #1855)
+#2657 := [th-lemma]: #2656
+#2658 := [unit-resolution #2657 #1860]: #1855
+#2606 := (not #1855)
+#2637 := (or #2636 #2606 #1420 #880)
+#2633 := [hypothesis]: #881
+#2598 := [hypothesis]: #2258
+#2600 := [hypothesis]: #1855
+#2634 := [hypothesis]: #2632
+#2635 := [th-lemma #2634 #2600 #2598 #2633]: false
+#2638 := [lemma #2635]: #2637
+#2659 := [unit-resolution #2638 #2658 #2655 #2654]: #2636
+#2639 := (or #2631 #2632)
+#2640 := [th-lemma]: #2639
+#2660 := [unit-resolution #2640 #2659]: #2631
+#2648 := (or #2647 #2626)
+#2644 := [hypothesis]: #2616
+#2645 := [monotonicity #2644]: #2626
+#2643 := [hypothesis]: #2631
+#2646 := [unit-resolution #2643 #2645]: false
+#2649 := [lemma #2646]: #2648
+#2661 := [unit-resolution #2649 #2660]: #2647
+#2671 := (or #2616 #2668)
+#2483 := (<= #2482 0::int)
+#2494 := (+ uf_6 #1418)
+#2495 := (>= #2494 0::int)
+#2612 := (not #2495)
+#2613 := (or #2612 #2606 #1420)
+#2610 := [hypothesis]: #2495
+#2611 := [th-lemma #2600 #2598 #2610]: false
+#2614 := [lemma #2611]: #2613
+#2662 := [unit-resolution #2614 #2658 #2655]: #2612
+#2664 := (or #2483 #2495)
+#2250 := (or #1686 #1222)
+#1924 := [def-axiom]: #2250
+#2663 := [unit-resolution #1924 #2652]: #1222
+#2503 := (or #2276 #1671 #2483 #2495)
+#2471 := (+ #1216 #989)
+#2472 := (<= #2471 0::int)
+#2473 := (+ ?x8!3 #784)
+#2474 := (>= #2473 0::int)
+#2475 := (or #1671 #2474 #2472)
+#2504 := (or #2276 #2475)
+#2511 := (iff #2504 #2503)
+#2500 := (or #1671 #2483 #2495)
+#2506 := (or #2276 #2500)
+#2509 := (iff #2506 #2503)
+#2510 := [rewrite]: #2509
+#2507 := (iff #2504 #2506)
+#2501 := (iff #2475 #2500)
+#2498 := (iff #2472 #2495)
+#2488 := (+ #989 #1216)
+#2491 := (<= #2488 0::int)
+#2496 := (iff #2491 #2495)
+#2497 := [rewrite]: #2496
+#2492 := (iff #2472 #2491)
+#2489 := (= #2471 #2488)
+#2490 := [rewrite]: #2489
+#2493 := [monotonicity #2490]: #2492
+#2499 := [trans #2493 #2497]: #2498
+#2486 := (iff #2474 #2483)
+#2476 := (+ #784 ?x8!3)
+#2479 := (>= #2476 0::int)
+#2484 := (iff #2479 #2483)
+#2485 := [rewrite]: #2484
+#2480 := (iff #2474 #2479)
+#2477 := (= #2473 #2476)
+#2478 := [rewrite]: #2477
+#2481 := [monotonicity #2478]: #2480
+#2487 := [trans #2481 #2485]: #2486
+#2502 := [monotonicity #2487 #2499]: #2501
+#2508 := [monotonicity #2502]: #2507
+#2512 := [trans #2508 #2510]: #2511
+#2505 := [quant-inst]: #2504
+#2513 := [mp #2505 #2512]: #2503
+#2665 := [unit-resolution #2513 #1897 #2663]: #2664
+#2666 := [unit-resolution #2665 #2662]: #2483
+#2667 := (not #2483)
+#2669 := (or #2616 #2667 #2668)
+#2670 := [th-lemma]: #2669
+#2672 := [unit-resolution #2670 #2666]: #2671
+#2673 := [unit-resolution #2672 #2661]: #2668
+#1936 := (>= #865 -1::int)
+#2226 := (or #2305 #864)
+#1941 := [def-axiom]: #2226
+#2674 := [unit-resolution #1941 #1859]: #864
+#2675 := (or #868 #1936)
+#2676 := [th-lemma]: #2675
+#2677 := [unit-resolution #2676 #2674]: #1936
+#2678 := [th-lemma #2677 #2673 #2653]: false
+#2680 := [lemma #2678]: #2679
+#2684 := [unit-resolution #2680 #2595 #2683]: #2305
+#2685 := [unit-resolution #2216 #2684 #2681]: #2302
+#2248 := (or #2299 #2293)
+#2246 := [def-axiom]: #2248
+#2686 := [unit-resolution #2246 #2685]: #2293
+#2687 := [unit-resolution #2253 #2686 #2683]: #1691
+#2688 := [unit-resolution #2257 #2687]: #1403
+#2464 := (+ #67 #839)
+#2465 := (<= #2464 0::int)
+#2463 := (= #67 uf_12)
+#2689 := [unit-resolution #1903 #2685]: #313
+#2690 := [unit-resolution #2237 #2685]: #305
+#2691 := [trans #2690 #2689]: #2463
+#2692 := (not #2463)
+#2693 := (or #2692 #2465)
+#2694 := [th-lemma]: #2693
+#2695 := [unit-resolution #2694 #2691]: #2465
+#1887 := (or #2299 #880)
+#1888 := [def-axiom]: #1887
+#2696 := [unit-resolution #1888 #2685]: #880
+#2697 := [unit-resolution #2260 #2687]: #2258
+#2698 := (not #2465)
+#2699 := (or #2612 #1420 #2698 #881)
+#2700 := [th-lemma]: #2699
+#2701 := [unit-resolution #2700 #2697 #2696 #2695]: #2612
+#2702 := [unit-resolution #1924 #2687]: #1222
+#2703 := [unit-resolution #2513 #2595 #2702]: #2664
+#2704 := [unit-resolution #2703 #2701]: #2483
+#2705 := (or #2636 #1420 #2698)
+#2706 := [th-lemma]: #2705
+#2707 := [unit-resolution #2706 #2697 #2695]: #2636
+#2708 := [unit-resolution #2640 #2707]: #2631
+#2709 := [unit-resolution #2649 #2708]: #2647
+#2710 := [unit-resolution #2670 #2709 #2704]: #2668
+#2245 := (or #2299 #864)
+#2247 := [def-axiom]: #2245
+#2711 := [unit-resolution #2247 #2685]: #864
+#2712 := [unit-resolution #2676 #2711]: #1936
+#2713 := [th-lemma #2712 #2710 #2688]: false
+#2714 := [lemma #2713]: #2346
+#2352 := (or #1499 #2349)
+#1569 := (forall (vars (?x4 int)) #1566)
+#1755 := (or #1569 #1752)
+#1758 := (not #1755)
+#1761 := (or #259 #250 #241 #1631 #877 #789 #1758)
+#1764 := (not #1761)
+#1658 := (forall (vars (?x8 int)) #1653)
+#1664 := (not #1658)
+#1665 := (or #332 #1664)
+#1666 := (not #1665)
+#1694 := (or #1666 #1691)
+#1702 := (not #1694)
+#1712 := (or #489 #480 #1631 #877 #1700 #1701 #868 #880 #1702)
+#1713 := (not #1712)
+#1703 := (or #441 #416 #407 #1631 #877 #1700 #1701 #868 #881 #1702)
+#1704 := (not #1703)
+#1718 := (or #1704 #1713)
+#1724 := (not #1718)
+#1725 := (or #1631 #877 #786 #1724)
+#1726 := (not #1725)
+#1770 := (or #1726 #1764)
+#1775 := (not #1770)
+#1544 := (forall (vars (?x3 int)) #1539)
+#1738 := (not #1544)
+#1522 := (forall (vars (?x1 int)) #1517)
+#1737 := (not #1522)
+#1778 := (or #583 #1631 #877 #1737 #1738 #1775)
+#1781 := (not #1778)
+#1784 := (or #1499 #1781)
+#2353 := (iff #1784 #2352)
+#2350 := (iff #1781 #2349)
+#2347 := (iff #1778 #2346)
+#2344 := (iff #1775 #2343)
+#2341 := (iff #1770 #2340)
+#2338 := (iff #1764 #2337)
+#2335 := (iff #1761 #2334)
+#2332 := (iff #1758 #2331)
+#2329 := (iff #1755 #2328)
+#2326 := (iff #1569 #2323)
+#2324 := (iff #1566 #1566)
+#2325 := [refl]: #2324
+#2327 := [quant-intro #2325]: #2326
#2330 := [monotonicity #2327]: #2329
#2333 := [monotonicity #2330]: #2332
#2336 := [monotonicity #2333]: #2335
#2339 := [monotonicity #2336]: #2338
-#2348 := [monotonicity #2339]: #2347
-#2351 := [monotonicity #2348]: #2350
-#2344 := (iff #1659 #2343)
-#2341 := (iff #1658 #2340)
-#2342 := [monotonicity #2339]: #2341
-#2345 := [monotonicity #2342]: #2344
-#2354 := [monotonicity #2345 #2351]: #2353
-#2357 := [monotonicity #2354]: #2356
-#2360 := [monotonicity #2357]: #2359
-#2363 := [monotonicity #2360]: #2362
-#2383 := [monotonicity #2363 #2380]: #2382
-#2386 := [monotonicity #2383]: #2385
-#2318 := (iff #1784 #2317)
-#2315 := (iff #1590 #2312)
-#2313 := (iff #1585 #1585)
-#2314 := [refl]: #2313
-#2316 := [quant-intro #2314]: #2315
+#2321 := (iff #1726 #2320)
+#2318 := (iff #1725 #2317)
+#2315 := (iff #1724 #2314)
+#2312 := (iff #1718 #2311)
+#2309 := (iff #1713 #2308)
+#2306 := (iff #1712 #2305)
+#2297 := (iff #1702 #2296)
+#2294 := (iff #1694 #2293)
+#2291 := (iff #1666 #2290)
+#2288 := (iff #1665 #2287)
+#2285 := (iff #1664 #2284)
+#2282 := (iff #1658 #2279)
+#2280 := (iff #1653 #1653)
+#2281 := [refl]: #2280
+#2283 := [quant-intro #2281]: #2282
+#2286 := [monotonicity #2283]: #2285
+#2289 := [monotonicity #2286]: #2288
+#2292 := [monotonicity #2289]: #2291
+#2295 := [monotonicity #2292]: #2294
+#2298 := [monotonicity #2295]: #2297
+#2307 := [monotonicity #2298]: #2306
+#2310 := [monotonicity #2307]: #2309
+#2303 := (iff #1704 #2302)
+#2300 := (iff #1703 #2299)
+#2301 := [monotonicity #2298]: #2300
+#2304 := [monotonicity #2301]: #2303
+#2313 := [monotonicity #2304 #2310]: #2312
+#2316 := [monotonicity #2313]: #2315
#2319 := [monotonicity #2316]: #2318
-#2310 := (iff #1783 #2309)
-#2307 := (iff #1568 #2304)
-#2305 := (iff #1563 #1563)
-#2306 := [refl]: #2305
-#2308 := [quant-intro #2306]: #2307
-#2311 := [monotonicity #2308]: #2310
-#2389 := [monotonicity #2311 #2319 #2386]: #2388
-#2392 := [monotonicity #2389]: #2391
-#2395 := [monotonicity #2392]: #2394
-#1304 := (not #1303)
-#1481 := (and #1304 #1305)
-#1484 := (not #1481)
-#1500 := (or #1484 #1495)
-#1503 := (not #1500)
-#1283 := (not #1282)
-#1472 := (and #1283 #1284)
-#1475 := (not #1472)
-#1478 := (or #1469 #1475)
-#1506 := (and #1478 #1503)
-#1273 := (not #963)
-#1276 := (forall (vars (?x7 int)) #1273)
-#1509 := (or #1276 #1506)
-#1515 := (and #466 #469 #472 #776 #779 #926 #1509)
-#1401 := (not #1396)
-#1404 := (and #1192 #1401)
-#1407 := (not #1404)
-#1410 := (or #1383 #1407)
-#1413 := (not #1410)
-#1204 := (not #221)
-#1214 := (and #1204 #819)
-#1419 := (or #1214 #1413)
-#1447 := (and #82 #356 #361 #776 #779 #788 #791 #837 #854 #1419)
-#1431 := (and #191 #194 #776 #779 #788 #791 #837 #850 #1419)
-#1452 := (or #1431 #1447)
-#1458 := (and #776 #779 #927 #1452)
-#1520 := (or #1458 #1515)
-#1526 := (and #188 #769 #776 #779 #1043 #1520)
-#1348 := (and #1155 #1157)
-#1351 := (not #1348)
-#1357 := (or #1154 #1351)
-#1362 := (not #1357)
-#1531 := (or #1362 #1526)
-#1828 := (iff #1531 #1825)
-#1746 := (or #1303 #1731 #1495)
-#1758 := (or #1757 #1746)
-#1759 := (not #1758)
-#1764 := (or #1708 #1759)
-#1770 := (not #1764)
-#1771 := (or #560 #551 #542 #886 #1654 #927 #1770)
-#1772 := (not #1771)
-#1777 := (or #1681 #1772)
-#1785 := (not #1777)
-#1786 := (or #619 #886 #1654 #1783 #1784 #1785)
-#1787 := (not #1786)
-#1792 := (or #1545 #1787)
-#1826 := (iff #1792 #1825)
-#1823 := (iff #1787 #1822)
-#1820 := (iff #1786 #1819)
-#1817 := (iff #1785 #1816)
-#1814 := (iff #1777 #1813)
-#1811 := (iff #1772 #1810)
-#1808 := (iff #1771 #1807)
-#1805 := (iff #1770 #1804)
-#1802 := (iff #1764 #1801)
-#1799 := (iff #1759 #1798)
-#1796 := (iff #1758 #1795)
-#1797 := [rewrite]: #1796
-#1800 := [monotonicity #1797]: #1799
-#1803 := [monotonicity #1800]: #1802
-#1806 := [monotonicity #1803]: #1805
-#1809 := [monotonicity #1806]: #1808
-#1812 := [monotonicity #1809]: #1811
-#1815 := [monotonicity #1812]: #1814
-#1818 := [monotonicity #1815]: #1817
-#1821 := [monotonicity #1818]: #1820
-#1824 := [monotonicity #1821]: #1823
-#1827 := [monotonicity #1824]: #1826
-#1793 := (iff #1531 #1792)
-#1790 := (iff #1526 #1787)
-#1780 := (and #188 #1568 #776 #779 #1590 #1777)
-#1788 := (iff #1780 #1787)
-#1789 := [rewrite]: #1788
-#1781 := (iff #1526 #1780)
-#1778 := (iff #1520 #1777)
-#1775 := (iff #1515 #1772)
-#1767 := (and #466 #469 #472 #776 #779 #926 #1764)
-#1773 := (iff #1767 #1772)
-#1774 := [rewrite]: #1773
-#1768 := (iff #1515 #1767)
-#1765 := (iff #1509 #1764)
-#1762 := (iff #1506 #1759)
-#1751 := (not #1746)
-#1754 := (and #1726 #1751)
-#1760 := (iff #1754 #1759)
-#1761 := [rewrite]: #1760
-#1755 := (iff #1506 #1754)
-#1752 := (iff #1503 #1751)
-#1749 := (iff #1500 #1746)
-#1732 := (or #1303 #1731)
-#1743 := (or #1732 #1495)
-#1747 := (iff #1743 #1746)
-#1748 := [rewrite]: #1747
-#1744 := (iff #1500 #1743)
-#1741 := (iff #1484 #1732)
-#1733 := (not #1732)
-#1736 := (not #1733)
-#1739 := (iff #1736 #1732)
-#1740 := [rewrite]: #1739
-#1737 := (iff #1484 #1736)
-#1734 := (iff #1481 #1733)
-#1735 := [rewrite]: #1734
-#1738 := [monotonicity #1735]: #1737
-#1742 := [trans #1738 #1740]: #1741
-#1745 := [monotonicity #1742]: #1744
-#1750 := [trans #1745 #1748]: #1749
-#1753 := [monotonicity #1750]: #1752
-#1729 := (iff #1478 #1726)
-#1712 := (or #1282 #1711)
-#1723 := (or #1469 #1712)
-#1727 := (iff #1723 #1726)
+#2322 := [monotonicity #2319]: #2321
+#2342 := [monotonicity #2322 #2339]: #2341
+#2345 := [monotonicity #2342]: #2344
+#2277 := (iff #1738 #2276)
+#2274 := (iff #1544 #2271)
+#2272 := (iff #1539 #1539)
+#2273 := [refl]: #2272
+#2275 := [quant-intro #2273]: #2274
+#2278 := [monotonicity #2275]: #2277
+#2269 := (iff #1737 #2268)
+#2266 := (iff #1522 #2263)
+#2264 := (iff #1517 #1517)
+#2265 := [refl]: #2264
+#2267 := [quant-intro #2265]: #2266
+#2270 := [monotonicity #2267]: #2269
+#2348 := [monotonicity #2270 #2278 #2345]: #2347
+#2351 := [monotonicity #2348]: #2350
+#2354 := [monotonicity #2351]: #2353
+#1406 := (and #1222 #1403)
+#1409 := (not #1406)
+#1425 := (or #1409 #1420)
+#1428 := (not #1425)
+#1241 := (and #1231 #847)
+#1434 := (or #1241 #1428)
+#1458 := (and #471 #474 #730 #733 #816 #819 #864 #881 #1434)
+#1446 := (and #305 #310 #313 #730 #733 #816 #819 #864 #880 #1434)
+#1463 := (or #1446 #1458)
+#1469 := (and #730 #733 #789 #1463)
+#1341 := (and #1173 #1174)
+#1344 := (not #1341)
+#1360 := (or #1344 #1355)
+#1363 := (not #1360)
+#1152 := (not #1151)
+#1332 := (and #1152 #1153)
+#1335 := (not #1332)
+#1338 := (or #1329 #1335)
+#1366 := (and #1338 #1363)
+#1142 := (not #756)
+#1145 := (forall (vars (?x4 int)) #1142)
+#1369 := (or #1145 #1366)
+#1375 := (and #183 #186 #189 #730 #733 #786 #1369)
+#1474 := (or #1375 #1469)
+#1480 := (and #180 #723 #730 #733 #997 #1474)
+#1110 := (not #1109)
+#1302 := (and #1110 #1111)
+#1305 := (not #1302)
+#1311 := (or #1108 #1305)
+#1316 := (not #1311)
+#1485 := (or #1316 #1480)
+#1787 := (iff #1485 #1784)
+#1607 := (or #1172 #1592 #1355)
+#1619 := (or #1618 #1607)
+#1620 := (not #1619)
+#1625 := (or #1569 #1620)
+#1632 := (not #1625)
+#1633 := (or #259 #250 #241 #1631 #877 #789 #1632)
+#1634 := (not #1633)
+#1731 := (or #1634 #1726)
+#1739 := (not #1731)
+#1740 := (or #583 #1631 #877 #1737 #1738 #1739)
+#1741 := (not #1740)
+#1746 := (or #1499 #1741)
+#1785 := (iff #1746 #1784)
+#1782 := (iff #1741 #1781)
+#1779 := (iff #1740 #1778)
+#1776 := (iff #1739 #1775)
+#1773 := (iff #1731 #1770)
+#1767 := (or #1764 #1726)
+#1771 := (iff #1767 #1770)
+#1772 := [rewrite]: #1771
+#1768 := (iff #1731 #1767)
+#1765 := (iff #1634 #1764)
+#1762 := (iff #1633 #1761)
+#1759 := (iff #1632 #1758)
+#1756 := (iff #1625 #1755)
+#1753 := (iff #1620 #1752)
+#1750 := (iff #1619 #1749)
+#1751 := [rewrite]: #1750
+#1754 := [monotonicity #1751]: #1753
+#1757 := [monotonicity #1754]: #1756
+#1760 := [monotonicity #1757]: #1759
+#1763 := [monotonicity #1760]: #1762
+#1766 := [monotonicity #1763]: #1765
+#1769 := [monotonicity #1766]: #1768
+#1774 := [trans #1769 #1772]: #1773
+#1777 := [monotonicity #1774]: #1776
+#1780 := [monotonicity #1777]: #1779
+#1783 := [monotonicity #1780]: #1782
+#1786 := [monotonicity #1783]: #1785
+#1747 := (iff #1485 #1746)
+#1744 := (iff #1480 #1741)
+#1734 := (and #180 #1522 #730 #733 #1544 #1731)
+#1742 := (iff #1734 #1741)
+#1743 := [rewrite]: #1742
+#1735 := (iff #1480 #1734)
+#1732 := (iff #1474 #1731)
+#1729 := (iff #1469 #1726)
+#1721 := (and #730 #733 #789 #1718)
+#1727 := (iff #1721 #1726)
#1728 := [rewrite]: #1727
-#1724 := (iff #1478 #1723)
-#1721 := (iff #1475 #1712)
-#1713 := (not #1712)
-#1716 := (not #1713)
-#1719 := (iff #1716 #1712)
-#1720 := [rewrite]: #1719
-#1717 := (iff #1475 #1716)
-#1714 := (iff #1472 #1713)
+#1722 := (iff #1469 #1721)
+#1719 := (iff #1463 #1718)
+#1716 := (iff #1458 #1713)
+#1709 := (and #471 #474 #730 #733 #816 #819 #864 #881 #1694)
+#1714 := (iff #1709 #1713)
#1715 := [rewrite]: #1714
-#1718 := [monotonicity #1715]: #1717
-#1722 := [trans #1718 #1720]: #1721
-#1725 := [monotonicity #1722]: #1724
-#1730 := [trans #1725 #1728]: #1729
-#1756 := [monotonicity #1730 #1753]: #1755
-#1763 := [trans #1756 #1761]: #1762
-#1709 := (iff #1276 #1708)
-#1706 := (iff #1273 #1705)
-#1703 := (iff #963 #1700)
-#1686 := (or #1548 #953)
-#1697 := (or #105 #1686)
-#1701 := (iff #1697 #1700)
-#1702 := [rewrite]: #1701
-#1698 := (iff #963 #1697)
-#1695 := (iff #960 #1686)
-#1687 := (not #1686)
-#1690 := (not #1687)
-#1693 := (iff #1690 #1686)
-#1694 := [rewrite]: #1693
-#1691 := (iff #960 #1690)
-#1688 := (iff #957 #1687)
-#1689 := [rewrite]: #1688
-#1692 := [monotonicity #1689]: #1691
-#1696 := [trans #1692 #1694]: #1695
+#1710 := (iff #1458 #1709)
+#1695 := (iff #1434 #1694)
+#1692 := (iff #1428 #1691)
+#1689 := (iff #1425 #1686)
+#1672 := (or #1671 #1398)
+#1683 := (or #1672 #1420)
+#1687 := (iff #1683 #1686)
+#1688 := [rewrite]: #1687
+#1684 := (iff #1425 #1683)
+#1681 := (iff #1409 #1672)
+#1673 := (not #1672)
+#1676 := (not #1673)
+#1679 := (iff #1676 #1672)
+#1680 := [rewrite]: #1679
+#1677 := (iff #1409 #1676)
+#1674 := (iff #1406 #1673)
+#1675 := [rewrite]: #1674
+#1678 := [monotonicity #1675]: #1677
+#1682 := [trans #1678 #1680]: #1681
+#1685 := [monotonicity #1682]: #1684
+#1690 := [trans #1685 #1688]: #1689
+#1693 := [monotonicity #1690]: #1692
+#1669 := (iff #1241 #1666)
+#1661 := (and #1231 #1658)
+#1667 := (iff #1661 #1666)
+#1668 := [rewrite]: #1667
+#1662 := (iff #1241 #1661)
+#1659 := (iff #847 #1658)
+#1656 := (iff #844 #1653)
+#1639 := (or #1502 #827)
+#1650 := (or #1639 #841)
+#1654 := (iff #1650 #1653)
+#1655 := [rewrite]: #1654
+#1651 := (iff #844 #1650)
+#1648 := (iff #836 #1639)
+#1640 := (not #1639)
+#1643 := (not #1640)
+#1646 := (iff #1643 #1639)
+#1647 := [rewrite]: #1646
+#1644 := (iff #836 #1643)
+#1641 := (iff #833 #1640)
+#1642 := [rewrite]: #1641
+#1645 := [monotonicity #1642]: #1644
+#1649 := [trans #1645 #1647]: #1648
+#1652 := [monotonicity #1649]: #1651
+#1657 := [trans #1652 #1655]: #1656
+#1660 := [quant-intro #1657]: #1659
+#1663 := [monotonicity #1660]: #1662
+#1670 := [trans #1663 #1668]: #1669
+#1696 := [monotonicity #1670 #1693]: #1695
+#1711 := [monotonicity #1696]: #1710
+#1717 := [trans #1711 #1715]: #1716
+#1707 := (iff #1446 #1704)
+#1697 := (and #305 #310 #313 #730 #733 #816 #819 #864 #880 #1694)
+#1705 := (iff #1697 #1704)
+#1706 := [rewrite]: #1705
+#1698 := (iff #1446 #1697)
#1699 := [monotonicity #1696]: #1698
-#1704 := [trans #1699 #1702]: #1703
-#1707 := [monotonicity #1704]: #1706
-#1710 := [quant-intro #1707]: #1709
-#1766 := [monotonicity #1710 #1763]: #1765
-#1769 := [monotonicity #1766]: #1768
-#1776 := [trans #1769 #1774]: #1775
-#1684 := (iff #1458 #1681)
-#1676 := (and #776 #779 #927 #1673)
-#1682 := (iff #1676 #1681)
-#1683 := [rewrite]: #1682
-#1677 := (iff #1458 #1676)
-#1674 := (iff #1452 #1673)
-#1671 := (iff #1447 #1668)
-#1664 := (and #82 #356 #361 #776 #779 #788 #791 #837 #854 #1648)
-#1669 := (iff #1664 #1668)
-#1670 := [rewrite]: #1669
-#1665 := (iff #1447 #1664)
-#1649 := (iff #1419 #1648)
-#1646 := (iff #1413 #1645)
-#1643 := (iff #1410 #1640)
-#1626 := (or #1625 #1396)
-#1637 := (or #1383 #1626)
-#1641 := (iff #1637 #1640)
-#1642 := [rewrite]: #1641
-#1638 := (iff #1410 #1637)
-#1635 := (iff #1407 #1626)
-#1627 := (not #1626)
-#1630 := (not #1627)
-#1633 := (iff #1630 #1626)
-#1634 := [rewrite]: #1633
-#1631 := (iff #1407 #1630)
-#1628 := (iff #1404 #1627)
-#1629 := [rewrite]: #1628
-#1632 := [monotonicity #1629]: #1631
-#1636 := [trans #1632 #1634]: #1635
-#1639 := [monotonicity #1636]: #1638
-#1644 := [trans #1639 #1642]: #1643
-#1647 := [monotonicity #1644]: #1646
-#1623 := (iff #1214 #1620)
-#1615 := (and #1204 #1612)
+#1708 := [trans #1699 #1706]: #1707
+#1720 := [monotonicity #1708 #1717]: #1719
+#1723 := [monotonicity #1720]: #1722
+#1730 := [trans #1723 #1728]: #1729
+#1637 := (iff #1375 #1634)
+#1628 := (and #183 #186 #189 #730 #733 #786 #1625)
+#1635 := (iff #1628 #1634)
+#1636 := [rewrite]: #1635
+#1629 := (iff #1375 #1628)
+#1626 := (iff #1369 #1625)
+#1623 := (iff #1366 #1620)
+#1612 := (not #1607)
+#1615 := (and #1587 #1612)
#1621 := (iff #1615 #1620)
#1622 := [rewrite]: #1621
-#1616 := (iff #1214 #1615)
-#1613 := (iff #819 #1612)
-#1610 := (iff #816 #1607)
-#1593 := (or #1548 #805)
-#1604 := (or #801 #1593)
+#1616 := (iff #1366 #1615)
+#1613 := (iff #1363 #1612)
+#1610 := (iff #1360 #1607)
+#1593 := (or #1172 #1592)
+#1604 := (or #1593 #1355)
#1608 := (iff #1604 #1607)
#1609 := [rewrite]: #1608
-#1605 := (iff #816 #1604)
-#1602 := (iff #813 #1593)
+#1605 := (iff #1360 #1604)
+#1602 := (iff #1344 #1593)
#1594 := (not #1593)
#1597 := (not #1594)
#1600 := (iff #1597 #1593)
#1601 := [rewrite]: #1600
-#1598 := (iff #813 #1597)
-#1595 := (iff #810 #1594)
+#1598 := (iff #1344 #1597)
+#1595 := (iff #1341 #1594)
#1596 := [rewrite]: #1595
#1599 := [monotonicity #1596]: #1598
#1603 := [trans #1599 #1601]: #1602
#1606 := [monotonicity #1603]: #1605
#1611 := [trans #1606 #1609]: #1610
-#1614 := [quant-intro #1611]: #1613
-#1617 := [monotonicity #1614]: #1616
+#1614 := [monotonicity #1611]: #1613
+#1590 := (iff #1338 #1587)
+#1573 := (or #1151 #1572)
+#1584 := (or #1329 #1573)
+#1588 := (iff #1584 #1587)
+#1589 := [rewrite]: #1588
+#1585 := (iff #1338 #1584)
+#1582 := (iff #1335 #1573)
+#1574 := (not #1573)
+#1577 := (not #1574)
+#1580 := (iff #1577 #1573)
+#1581 := [rewrite]: #1580
+#1578 := (iff #1335 #1577)
+#1575 := (iff #1332 #1574)
+#1576 := [rewrite]: #1575
+#1579 := [monotonicity #1576]: #1578
+#1583 := [trans #1579 #1581]: #1582
+#1586 := [monotonicity #1583]: #1585
+#1591 := [trans #1586 #1589]: #1590
+#1617 := [monotonicity #1591 #1614]: #1616
#1624 := [trans #1617 #1622]: #1623
-#1650 := [monotonicity #1624 #1647]: #1649
-#1666 := [monotonicity #1650]: #1665
-#1672 := [trans #1666 #1670]: #1671
-#1662 := (iff #1431 #1659)
-#1651 := (and #191 #194 #776 #779 #788 #791 #837 #850 #1648)
-#1660 := (iff #1651 #1659)
-#1661 := [rewrite]: #1660
-#1652 := (iff #1431 #1651)
-#1653 := [monotonicity #1650]: #1652
-#1663 := [trans #1653 #1661]: #1662
-#1675 := [monotonicity #1663 #1672]: #1674
-#1678 := [monotonicity #1675]: #1677
-#1685 := [trans #1678 #1683]: #1684
-#1779 := [monotonicity #1685 #1776]: #1778
-#1591 := (iff #1043 #1590)
-#1588 := (iff #1040 #1585)
-#1571 := (or #1548 #1029)
-#1582 := (or #1026 #1571)
-#1586 := (iff #1582 #1585)
-#1587 := [rewrite]: #1586
-#1583 := (iff #1040 #1582)
-#1580 := (iff #1037 #1571)
-#1572 := (not #1571)
-#1575 := (not #1572)
-#1578 := (iff #1575 #1571)
-#1579 := [rewrite]: #1578
-#1576 := (iff #1037 #1575)
-#1573 := (iff #1034 #1572)
-#1574 := [rewrite]: #1573
-#1577 := [monotonicity #1574]: #1576
-#1581 := [trans #1577 #1579]: #1580
-#1584 := [monotonicity #1581]: #1583
-#1589 := [trans #1584 #1587]: #1588
-#1592 := [quant-intro #1589]: #1591
-#1569 := (iff #769 #1568)
-#1566 := (iff #766 #1563)
-#1549 := (or #749 #1548)
-#1560 := (or #1549 #762)
-#1564 := (iff #1560 #1563)
-#1565 := [rewrite]: #1564
-#1561 := (iff #766 #1560)
-#1558 := (iff #757 #1549)
-#1550 := (not #1549)
-#1553 := (not #1550)
-#1556 := (iff #1553 #1549)
-#1557 := [rewrite]: #1556
-#1554 := (iff #757 #1553)
-#1551 := (iff #754 #1550)
-#1552 := [rewrite]: #1551
-#1555 := [monotonicity #1552]: #1554
-#1559 := [trans #1555 #1557]: #1558
-#1562 := [monotonicity #1559]: #1561
-#1567 := [trans #1562 #1565]: #1566
-#1570 := [quant-intro #1567]: #1569
-#1782 := [monotonicity #1570 #1592 #1779]: #1781
-#1791 := [trans #1782 #1789]: #1790
-#1546 := (iff #1362 #1545)
-#1543 := (iff #1357 #1540)
-#1165 := (or #1164 #1156)
-#1537 := (or #1154 #1165)
-#1541 := (iff #1537 #1540)
-#1542 := [rewrite]: #1541
-#1538 := (iff #1357 #1537)
-#1535 := (iff #1351 #1165)
-#1292 := (not #1165)
-#1314 := (not #1292)
-#1347 := (iff #1314 #1165)
-#1534 := [rewrite]: #1347
-#1202 := (iff #1351 #1314)
-#1293 := (iff #1348 #1292)
-#1313 := [rewrite]: #1293
-#1203 := [monotonicity #1313]: #1202
-#1536 := [trans #1203 #1534]: #1535
-#1539 := [monotonicity #1536]: #1538
-#1544 := [trans #1539 #1542]: #1543
-#1547 := [monotonicity #1544]: #1546
-#1794 := [monotonicity #1547 #1791]: #1793
-#1829 := [trans #1794 #1827]: #1828
-#1299 := (+ #1298 #972)
-#1300 := (<= #1299 0::int)
-#1306 := (and #1305 #1304)
-#1307 := (not #1306)
-#1308 := (or #1307 #1300)
-#1309 := (not #1308)
-#1285 := (and #1284 #1283)
-#1286 := (not #1285)
-#1288 := (= #1287 uf_12)
-#1289 := (or #1288 #1286)
-#1315 := (and #1289 #1309)
-#1319 := (or #1276 #1315)
-#1176 := (not #784)
-#1268 := (not #542)
-#1265 := (not #551)
-#1262 := (not #560)
-#1323 := (and #1262 #1265 #1268 #1176 #930 #1319)
-#1225 := (not #846)
-#1222 := (not #840)
-#1189 := (+ ?x3!1 #806)
-#1190 := (>= #1189 0::int)
-#1191 := (not #1190)
-#1193 := (and #1192 #1191)
-#1194 := (not #1193)
-#1196 := (+ #1195 #799)
-#1197 := (<= #1196 0::int)
-#1198 := (or #1197 #1194)
-#1199 := (not #1198)
-#1218 := (or #1199 #1214)
-#1185 := (not #796)
-#1243 := (not #886)
-#1240 := (not #376)
-#1237 := (not #401)
-#1234 := (not #367)
-#1248 := (and #1234 #1237 #1240 #1243 #1176 #1185 #1218 #1222 #1225 #854)
-#1182 := (not #301)
-#1179 := (not #310)
-#1230 := (and #1179 #1182 #1176 #1185 #1218 #1222 #1225 #891)
-#1252 := (or #1230 #1248)
-#1258 := (and #1176 #1252 #927)
-#1327 := (or #1258 #1323)
-#1166 := (not #619)
-#1338 := (and #1166 #769 #1176 #1327 #1043)
-#1158 := (and #1157 #1155)
-#1159 := (not #1158)
-#1160 := (or #1159 #1154)
-#1161 := (not #1160)
-#1342 := (or #1161 #1338)
-#1532 := (iff #1342 #1531)
-#1529 := (iff #1338 #1526)
-#1523 := (and #188 #769 #781 #1520 #1043)
-#1527 := (iff #1523 #1526)
+#1570 := (iff #1145 #1569)
+#1567 := (iff #1142 #1566)
+#1564 := (iff #756 #1561)
+#1547 := (or #1502 #743)
+#1558 := (or #47 #1547)
+#1562 := (iff #1558 #1561)
+#1563 := [rewrite]: #1562
+#1559 := (iff #756 #1558)
+#1556 := (iff #750 #1547)
+#1548 := (not #1547)
+#1551 := (not #1548)
+#1554 := (iff #1551 #1547)
+#1555 := [rewrite]: #1554
+#1552 := (iff #750 #1551)
+#1549 := (iff #747 #1548)
+#1550 := [rewrite]: #1549
+#1553 := [monotonicity #1550]: #1552
+#1557 := [trans #1553 #1555]: #1556
+#1560 := [monotonicity #1557]: #1559
+#1565 := [trans #1560 #1563]: #1564
+#1568 := [monotonicity #1565]: #1567
+#1571 := [quant-intro #1568]: #1570
+#1627 := [monotonicity #1571 #1624]: #1626
+#1630 := [monotonicity #1627]: #1629
+#1638 := [trans #1630 #1636]: #1637
+#1733 := [monotonicity #1638 #1730]: #1732
+#1545 := (iff #997 #1544)
+#1542 := (iff #994 #1539)
+#1525 := (or #1502 #978)
+#1536 := (or #1525 #991)
+#1540 := (iff #1536 #1539)
+#1541 := [rewrite]: #1540
+#1537 := (iff #994 #1536)
+#1534 := (iff #986 #1525)
+#1526 := (not #1525)
+#1529 := (not #1526)
+#1532 := (iff #1529 #1525)
+#1533 := [rewrite]: #1532
+#1530 := (iff #986 #1529)
+#1527 := (iff #983 #1526)
#1528 := [rewrite]: #1527
-#1524 := (iff #1338 #1523)
-#1521 := (iff #1327 #1520)
-#1518 := (iff #1323 #1515)
-#1512 := (and #466 #469 #472 #781 #926 #1509)
-#1516 := (iff #1512 #1515)
-#1517 := [rewrite]: #1516
-#1513 := (iff #1323 #1512)
-#1510 := (iff #1319 #1509)
-#1507 := (iff #1315 #1506)
-#1504 := (iff #1309 #1503)
-#1501 := (iff #1308 #1500)
-#1498 := (iff #1300 #1495)
-#1487 := (+ #972 #1298)
-#1490 := (<= #1487 0::int)
-#1496 := (iff #1490 #1495)
-#1497 := [rewrite]: #1496
-#1491 := (iff #1300 #1490)
-#1488 := (= #1299 #1487)
-#1489 := [rewrite]: #1488
-#1492 := [monotonicity #1489]: #1491
-#1499 := [trans #1492 #1497]: #1498
-#1485 := (iff #1307 #1484)
-#1482 := (iff #1306 #1481)
-#1483 := [rewrite]: #1482
-#1486 := [monotonicity #1483]: #1485
-#1502 := [monotonicity #1486 #1499]: #1501
-#1505 := [monotonicity #1502]: #1504
-#1479 := (iff #1289 #1478)
-#1476 := (iff #1286 #1475)
-#1473 := (iff #1285 #1472)
-#1474 := [rewrite]: #1473
-#1477 := [monotonicity #1474]: #1476
-#1470 := (iff #1288 #1469)
+#1531 := [monotonicity #1528]: #1530
+#1535 := [trans #1531 #1533]: #1534
+#1538 := [monotonicity #1535]: #1537
+#1543 := [trans #1538 #1541]: #1542
+#1546 := [quant-intro #1543]: #1545
+#1523 := (iff #723 #1522)
+#1520 := (iff #720 #1517)
+#1503 := (or #1502 #706)
+#1514 := (or #1503 #716)
+#1518 := (iff #1514 #1517)
+#1519 := [rewrite]: #1518
+#1515 := (iff #720 #1514)
+#1512 := (iff #711 #1503)
+#1504 := (not #1503)
+#1507 := (not #1504)
+#1510 := (iff #1507 #1503)
+#1511 := [rewrite]: #1510
+#1508 := (iff #711 #1507)
+#1505 := (iff #708 #1504)
+#1506 := [rewrite]: #1505
+#1509 := [monotonicity #1506]: #1508
+#1513 := [trans #1509 #1511]: #1512
+#1516 := [monotonicity #1513]: #1515
+#1521 := [trans #1516 #1519]: #1520
+#1524 := [quant-intro #1521]: #1523
+#1736 := [monotonicity #1524 #1546 #1733]: #1735
+#1745 := [trans #1736 #1743]: #1744
+#1500 := (iff #1316 #1499)
+#1497 := (iff #1311 #1494)
+#1230 := (or #1109 #1229)
+#1491 := (or #1108 #1230)
+#1495 := (iff #1491 #1494)
+#1496 := [rewrite]: #1495
+#1492 := (iff #1311 #1491)
+#1489 := (iff #1305 #1230)
+#1182 := (not #1230)
+#1162 := (not #1182)
+#1301 := (iff #1162 #1230)
+#1488 := [rewrite]: #1301
+#1118 := (iff #1305 #1162)
+#1183 := (iff #1302 #1182)
+#1161 := [rewrite]: #1183
+#1119 := [monotonicity #1161]: #1118
+#1490 := [trans #1119 #1488]: #1489
+#1493 := [monotonicity #1490]: #1492
+#1498 := [trans #1493 #1496]: #1497
+#1501 := [monotonicity #1498]: #1500
+#1748 := [monotonicity #1501 #1745]: #1747
+#1788 := [trans #1748 #1786]: #1787
+#1252 := (not #874)
+#1249 := (not #868)
+#1217 := (+ #1216 #839)
+#1218 := (<= #1217 0::int)
+#1219 := (+ ?x8!3 #828)
+#1220 := (>= #1219 0::int)
+#1221 := (not #1220)
+#1223 := (and #1222 #1221)
+#1224 := (not #1223)
+#1225 := (or #1224 #1218)
+#1226 := (not #1225)
+#1245 := (or #1226 #1241)
+#1212 := (not #824)
+#1130 := (not #738)
+#1264 := (not #480)
+#1261 := (not #489)
+#1269 := (and #1261 #1264 #1130 #1212 #1245 #1249 #1252 #886)
+#1209 := (not #877)
+#1206 := (not #407)
+#1203 := (not #416)
+#1200 := (not #441)
+#1257 := (and #1200 #1203 #1206 #1209 #1130 #1212 #1245 #1249 #1252 #880)
+#1273 := (or #1257 #1269)
+#1277 := (and #1130 #789 #1273)
+#1168 := (+ #1167 #767)
+#1169 := (<= #1168 0::int)
+#1175 := (and #1174 #1173)
+#1176 := (not #1175)
+#1177 := (or #1176 #1169)
+#1178 := (not #1177)
+#1154 := (and #1153 #1152)
+#1155 := (not #1154)
+#1157 := (= #1156 uf_8)
+#1158 := (or #1157 #1155)
+#1184 := (and #1158 #1178)
+#1188 := (or #1145 #1184)
+#1139 := (not #241)
+#1136 := (not #250)
+#1133 := (not #259)
+#1194 := (and #1133 #1136 #1139 #1130 #1188 #954)
+#1281 := (or #1194 #1277)
+#1120 := (not #583)
+#1292 := (and #1120 #723 #1130 #1281 #997)
+#1112 := (and #1111 #1110)
+#1113 := (not #1112)
+#1114 := (or #1113 #1108)
+#1115 := (not #1114)
+#1296 := (or #1115 #1292)
+#1486 := (iff #1296 #1485)
+#1483 := (iff #1292 #1480)
+#1477 := (and #180 #723 #735 #1474 #997)
+#1481 := (iff #1477 #1480)
+#1482 := [rewrite]: #1481
+#1478 := (iff #1292 #1477)
+#1475 := (iff #1281 #1474)
+#1472 := (iff #1277 #1469)
+#1466 := (and #735 #789 #1463)
+#1470 := (iff #1466 #1469)
#1471 := [rewrite]: #1470
-#1480 := [monotonicity #1471 #1477]: #1479
-#1508 := [monotonicity #1480 #1505]: #1507
-#1511 := [monotonicity #1508]: #1510
-#1367 := (iff #1176 #781)
-#1368 := [rewrite]: #1367
-#1467 := (iff #1268 #472)
-#1468 := [rewrite]: #1467
-#1465 := (iff #1265 #469)
-#1466 := [rewrite]: #1465
-#1463 := (iff #1262 #466)
-#1464 := [rewrite]: #1463
-#1514 := [monotonicity #1464 #1466 #1468 #1368 #934 #1511]: #1513
-#1519 := [trans #1514 #1517]: #1518
-#1461 := (iff #1258 #1458)
-#1455 := (and #781 #1452 #927)
+#1467 := (iff #1277 #1466)
+#1464 := (iff #1273 #1463)
+#1461 := (iff #1269 #1458)
+#1455 := (and #471 #474 #735 #821 #1434 #864 #871 #881)
#1459 := (iff #1455 #1458)
#1460 := [rewrite]: #1459
-#1456 := (iff #1258 #1455)
-#1453 := (iff #1252 #1452)
-#1450 := (iff #1248 #1447)
-#1444 := (and #82 #356 #361 #776 #781 #793 #1419 #837 #843 #854)
-#1448 := (iff #1444 #1447)
-#1449 := [rewrite]: #1448
-#1445 := (iff #1248 #1444)
-#1426 := (iff #1225 #843)
-#1427 := [rewrite]: #1426
-#1424 := (iff #1222 #837)
-#1425 := [rewrite]: #1424
-#1422 := (iff #1218 #1419)
-#1416 := (or #1413 #1214)
-#1420 := (iff #1416 #1419)
-#1421 := [rewrite]: #1420
-#1417 := (iff #1218 #1416)
-#1414 := (iff #1199 #1413)
-#1411 := (iff #1198 #1410)
-#1408 := (iff #1194 #1407)
-#1405 := (iff #1193 #1404)
-#1402 := (iff #1191 #1401)
-#1399 := (iff #1190 #1396)
-#1388 := (+ #806 ?x3!1)
-#1391 := (>= #1388 0::int)
-#1397 := (iff #1391 #1396)
-#1398 := [rewrite]: #1397
-#1392 := (iff #1190 #1391)
-#1389 := (= #1189 #1388)
-#1390 := [rewrite]: #1389
-#1393 := [monotonicity #1390]: #1392
-#1400 := [trans #1393 #1398]: #1399
-#1403 := [monotonicity #1400]: #1402
-#1406 := [monotonicity #1403]: #1405
-#1409 := [monotonicity #1406]: #1408
-#1386 := (iff #1197 #1383)
-#1375 := (+ #799 #1195)
-#1378 := (<= #1375 0::int)
-#1384 := (iff #1378 #1383)
-#1385 := [rewrite]: #1384
-#1379 := (iff #1197 #1378)
-#1376 := (= #1196 #1375)
-#1377 := [rewrite]: #1376
-#1380 := [monotonicity #1377]: #1379
-#1387 := [trans #1380 #1385]: #1386
-#1412 := [monotonicity #1387 #1409]: #1411
-#1415 := [monotonicity #1412]: #1414
-#1418 := [monotonicity #1415]: #1417
-#1423 := [trans #1418 #1421]: #1422
-#1373 := (iff #1185 #793)
-#1374 := [rewrite]: #1373
-#1442 := (iff #1243 #776)
-#1443 := [rewrite]: #1442
-#1440 := (iff #1240 #361)
-#1441 := [rewrite]: #1440
-#1438 := (iff #1237 #356)
-#1439 := [rewrite]: #1438
-#1436 := (iff #1234 #82)
-#1437 := [rewrite]: #1436
-#1446 := [monotonicity #1437 #1439 #1441 #1443 #1368 #1374 #1423 #1425 #1427]: #1445
-#1451 := [trans #1446 #1449]: #1450
-#1434 := (iff #1230 #1431)
-#1428 := (and #191 #194 #781 #793 #1419 #837 #843 #850)
-#1432 := (iff #1428 #1431)
-#1433 := [rewrite]: #1432
-#1429 := (iff #1230 #1428)
-#1371 := (iff #1182 #194)
-#1372 := [rewrite]: #1371
-#1369 := (iff #1179 #191)
-#1370 := [rewrite]: #1369
-#1430 := [monotonicity #1370 #1372 #1368 #1374 #1423 #1425 #1427 #895]: #1429
-#1435 := [trans #1430 #1433]: #1434
-#1454 := [monotonicity #1435 #1451]: #1453
-#1457 := [monotonicity #1368 #1454]: #1456
+#1456 := (iff #1269 #1455)
+#1441 := (iff #1252 #871)
+#1442 := [rewrite]: #1441
+#1439 := (iff #1249 #864)
+#1440 := [rewrite]: #1439
+#1437 := (iff #1245 #1434)
+#1431 := (or #1428 #1241)
+#1435 := (iff #1431 #1434)
+#1436 := [rewrite]: #1435
+#1432 := (iff #1245 #1431)
+#1429 := (iff #1226 #1428)
+#1426 := (iff #1225 #1425)
+#1423 := (iff #1218 #1420)
+#1412 := (+ #839 #1216)
+#1415 := (<= #1412 0::int)
+#1421 := (iff #1415 #1420)
+#1422 := [rewrite]: #1421
+#1416 := (iff #1218 #1415)
+#1413 := (= #1217 #1412)
+#1414 := [rewrite]: #1413
+#1417 := [monotonicity #1414]: #1416
+#1424 := [trans #1417 #1422]: #1423
+#1410 := (iff #1224 #1409)
+#1407 := (iff #1223 #1406)
+#1404 := (iff #1221 #1403)
+#1401 := (iff #1220 #1398)
+#1390 := (+ #828 ?x8!3)
+#1393 := (>= #1390 0::int)
+#1399 := (iff #1393 #1398)
+#1400 := [rewrite]: #1399
+#1394 := (iff #1220 #1393)
+#1391 := (= #1219 #1390)
+#1392 := [rewrite]: #1391
+#1395 := [monotonicity #1392]: #1394
+#1402 := [trans #1395 #1400]: #1401
+#1405 := [monotonicity #1402]: #1404
+#1408 := [monotonicity #1405]: #1407
+#1411 := [monotonicity #1408]: #1410
+#1427 := [monotonicity #1411 #1424]: #1426
+#1430 := [monotonicity #1427]: #1429
+#1433 := [monotonicity #1430]: #1432
+#1438 := [trans #1433 #1436]: #1437
+#1388 := (iff #1212 #821)
+#1389 := [rewrite]: #1388
+#1321 := (iff #1130 #735)
+#1322 := [rewrite]: #1321
+#1453 := (iff #1264 #474)
+#1454 := [rewrite]: #1453
+#1451 := (iff #1261 #471)
+#1452 := [rewrite]: #1451
+#1457 := [monotonicity #1452 #1454 #1322 #1389 #1438 #1440 #1442 #890]: #1456
#1462 := [trans #1457 #1460]: #1461
-#1522 := [monotonicity #1462 #1519]: #1521
-#1365 := (iff #1166 #188)
-#1366 := [rewrite]: #1365
-#1525 := [monotonicity #1366 #1368 #1522]: #1524
-#1530 := [trans #1525 #1528]: #1529
-#1363 := (iff #1161 #1362)
-#1360 := (iff #1160 #1357)
-#1354 := (or #1351 #1154)
-#1358 := (iff #1354 #1357)
-#1359 := [rewrite]: #1358
-#1355 := (iff #1160 #1354)
-#1352 := (iff #1159 #1351)
-#1349 := (iff #1158 #1348)
-#1350 := [rewrite]: #1349
-#1353 := [monotonicity #1350]: #1352
-#1356 := [monotonicity #1353]: #1355
-#1361 := [trans #1356 #1359]: #1360
-#1364 := [monotonicity #1361]: #1363
-#1533 := [monotonicity #1364 #1530]: #1532
-#1138 := (or #619 #772 #784 #1021 #1046)
-#1143 := (and #769 #1138)
-#1146 := (not #1143)
-#1343 := (~ #1146 #1342)
-#1339 := (not #1138)
-#1340 := (~ #1339 #1338)
-#1335 := (not #1046)
-#1336 := (~ #1335 #1043)
-#1333 := (~ #1043 #1043)
-#1331 := (~ #1040 #1040)
-#1332 := [refl]: #1331
-#1334 := [nnf-pos #1332]: #1333
-#1337 := [nnf-neg #1334]: #1336
-#1328 := (not #1021)
-#1329 := (~ #1328 #1327)
-#1324 := (not #1016)
-#1325 := (~ #1324 #1323)
-#1320 := (not #991)
-#1321 := (~ #1320 #1319)
-#1316 := (not #988)
-#1317 := (~ #1316 #1315)
-#1310 := (not #985)
-#1311 := (~ #1310 #1309)
-#1312 := [sk]: #1311
-#1294 := (not #969)
-#1295 := (~ #1294 #1289)
-#1290 := (~ #966 #1289)
-#1291 := [sk]: #1290
-#1296 := [nnf-neg #1291]: #1295
-#1318 := [nnf-neg #1296 #1312]: #1317
-#1277 := (~ #969 #1276)
-#1274 := (~ #1273 #1273)
-#1275 := [refl]: #1274
-#1278 := [nnf-neg #1275]: #1277
-#1322 := [nnf-neg #1278 #1318]: #1321
-#1271 := (~ #930 #930)
-#1272 := [refl]: #1271
-#1177 := (~ #1176 #1176)
-#1178 := [refl]: #1177
-#1269 := (~ #1268 #1268)
-#1270 := [refl]: #1269
-#1266 := (~ #1265 #1265)
-#1267 := [refl]: #1266
-#1263 := (~ #1262 #1262)
-#1264 := [refl]: #1263
-#1326 := [nnf-neg #1264 #1267 #1270 #1178 #1272 #1322]: #1325
-#1259 := (not #946)
-#1260 := (~ #1259 #1258)
-#1256 := (~ #927 #927)
-#1257 := [refl]: #1256
-#1253 := (not #921)
-#1254 := (~ #1253 #1252)
-#1249 := (not #916)
-#1250 := (~ #1249 #1248)
-#1246 := (~ #854 #854)
-#1247 := [refl]: #1246
-#1226 := (~ #1225 #1225)
-#1227 := [refl]: #1226
-#1223 := (~ #1222 #1222)
-#1224 := [refl]: #1223
-#1219 := (not #833)
-#1220 := (~ #1219 #1218)
-#1215 := (not #828)
-#1216 := (~ #1215 #1214)
-#1211 := (not #822)
-#1212 := (~ #1211 #819)
-#1209 := (~ #819 #819)
-#1207 := (~ #816 #816)
+#1449 := (iff #1257 #1446)
+#1443 := (and #305 #310 #313 #733 #735 #821 #1434 #864 #871 #880)
+#1447 := (iff #1443 #1446)
+#1448 := [rewrite]: #1447
+#1444 := (iff #1257 #1443)
+#1386 := (iff #1209 #733)
+#1387 := [rewrite]: #1386
+#1384 := (iff #1206 #313)
+#1385 := [rewrite]: #1384
+#1382 := (iff #1203 #310)
+#1383 := [rewrite]: #1382
+#1380 := (iff #1200 #305)
+#1381 := [rewrite]: #1380
+#1445 := [monotonicity #1381 #1383 #1385 #1387 #1322 #1389 #1438 #1440 #1442]: #1444
+#1450 := [trans #1445 #1448]: #1449
+#1465 := [monotonicity #1450 #1462]: #1464
+#1468 := [monotonicity #1322 #1465]: #1467
+#1473 := [trans #1468 #1471]: #1472
+#1378 := (iff #1194 #1375)
+#1372 := (and #183 #186 #189 #735 #1369 #786)
+#1376 := (iff #1372 #1375)
+#1377 := [rewrite]: #1376
+#1373 := (iff #1194 #1372)
+#1370 := (iff #1188 #1369)
+#1367 := (iff #1184 #1366)
+#1364 := (iff #1178 #1363)
+#1361 := (iff #1177 #1360)
+#1358 := (iff #1169 #1355)
+#1347 := (+ #767 #1167)
+#1350 := (<= #1347 0::int)
+#1356 := (iff #1350 #1355)
+#1357 := [rewrite]: #1356
+#1351 := (iff #1169 #1350)
+#1348 := (= #1168 #1347)
+#1349 := [rewrite]: #1348
+#1352 := [monotonicity #1349]: #1351
+#1359 := [trans #1352 #1357]: #1358
+#1345 := (iff #1176 #1344)
+#1342 := (iff #1175 #1341)
+#1343 := [rewrite]: #1342
+#1346 := [monotonicity #1343]: #1345
+#1362 := [monotonicity #1346 #1359]: #1361
+#1365 := [monotonicity #1362]: #1364
+#1339 := (iff #1158 #1338)
+#1336 := (iff #1155 #1335)
+#1333 := (iff #1154 #1332)
+#1334 := [rewrite]: #1333
+#1337 := [monotonicity #1334]: #1336
+#1330 := (iff #1157 #1329)
+#1331 := [rewrite]: #1330
+#1340 := [monotonicity #1331 #1337]: #1339
+#1368 := [monotonicity #1340 #1365]: #1367
+#1371 := [monotonicity #1368]: #1370
+#1327 := (iff #1139 #189)
+#1328 := [rewrite]: #1327
+#1325 := (iff #1136 #186)
+#1326 := [rewrite]: #1325
+#1323 := (iff #1133 #183)
+#1324 := [rewrite]: #1323
+#1374 := [monotonicity #1324 #1326 #1328 #1322 #1371 #958]: #1373
+#1379 := [trans #1374 #1377]: #1378
+#1476 := [monotonicity #1379 #1473]: #1475
+#1319 := (iff #1120 #180)
+#1320 := [rewrite]: #1319
+#1479 := [monotonicity #1320 #1322 #1476]: #1478
+#1484 := [trans #1479 #1482]: #1483
+#1317 := (iff #1115 #1316)
+#1314 := (iff #1114 #1311)
+#1308 := (or #1305 #1108)
+#1312 := (iff #1308 #1311)
+#1313 := [rewrite]: #1312
+#1309 := (iff #1114 #1308)
+#1306 := (iff #1113 #1305)
+#1303 := (iff #1112 #1302)
+#1304 := [rewrite]: #1303
+#1307 := [monotonicity #1304]: #1306
+#1310 := [monotonicity #1307]: #1309
+#1315 := [trans #1310 #1313]: #1314
+#1318 := [monotonicity #1315]: #1317
+#1487 := [monotonicity #1318 #1484]: #1486
+#1092 := (or #583 #726 #738 #975 #1000)
+#1097 := (and #723 #1092)
+#1100 := (not #1097)
+#1297 := (~ #1100 #1296)
+#1293 := (not #1092)
+#1294 := (~ #1293 #1292)
+#1289 := (not #1000)
+#1290 := (~ #1289 #997)
+#1287 := (~ #997 #997)
+#1285 := (~ #994 #994)
+#1286 := [refl]: #1285
+#1288 := [nnf-pos #1286]: #1287
+#1291 := [nnf-neg #1288]: #1290
+#1282 := (not #975)
+#1283 := (~ #1282 #1281)
+#1278 := (not #970)
+#1279 := (~ #1278 #1277)
+#1274 := (not #949)
+#1275 := (~ #1274 #1273)
+#1270 := (not #944)
+#1271 := (~ #1270 #1269)
+#1267 := (~ #886 #886)
+#1268 := [refl]: #1267
+#1253 := (~ #1252 #1252)
+#1254 := [refl]: #1253
+#1250 := (~ #1249 #1249)
+#1251 := [refl]: #1250
+#1246 := (not #861)
+#1247 := (~ #1246 #1245)
+#1242 := (not #856)
+#1243 := (~ #1242 #1241)
+#1238 := (not #850)
+#1239 := (~ #1238 #847)
+#1236 := (~ #847 #847)
+#1234 := (~ #844 #844)
+#1235 := [refl]: #1234
+#1237 := [nnf-pos #1235]: #1236
+#1240 := [nnf-neg #1237]: #1239
+#1232 := (~ #1231 #1231)
+#1233 := [refl]: #1232
+#1244 := [nnf-neg #1233 #1240]: #1243
+#1227 := (~ #850 #1226)
+#1228 := [sk]: #1227
+#1248 := [nnf-neg #1228 #1244]: #1247
+#1213 := (~ #1212 #1212)
+#1214 := [refl]: #1213
+#1131 := (~ #1130 #1130)
+#1132 := [refl]: #1131
+#1265 := (~ #1264 #1264)
+#1266 := [refl]: #1265
+#1262 := (~ #1261 #1261)
+#1263 := [refl]: #1262
+#1272 := [nnf-neg #1263 #1266 #1132 #1214 #1248 #1251 #1254 #1268]: #1271
+#1258 := (not #920)
+#1259 := (~ #1258 #1257)
+#1255 := (~ #880 #880)
+#1256 := [refl]: #1255
+#1210 := (~ #1209 #1209)
+#1211 := [refl]: #1210
+#1207 := (~ #1206 #1206)
#1208 := [refl]: #1207
-#1210 := [nnf-pos #1208]: #1209
-#1213 := [nnf-neg #1210]: #1212
-#1205 := (~ #1204 #1204)
-#1206 := [refl]: #1205
-#1217 := [nnf-neg #1206 #1213]: #1216
-#1200 := (~ #822 #1199)
-#1201 := [sk]: #1200
-#1221 := [nnf-neg #1201 #1217]: #1220
-#1186 := (~ #1185 #1185)
-#1187 := [refl]: #1186
-#1244 := (~ #1243 #1243)
-#1245 := [refl]: #1244
-#1241 := (~ #1240 #1240)
-#1242 := [refl]: #1241
-#1238 := (~ #1237 #1237)
-#1239 := [refl]: #1238
-#1235 := (~ #1234 #1234)
-#1236 := [refl]: #1235
-#1251 := [nnf-neg #1236 #1239 #1242 #1245 #1178 #1187 #1221 #1224 #1227 #1247]: #1250
-#1231 := (not #881)
-#1232 := (~ #1231 #1230)
-#1228 := (~ #891 #891)
-#1229 := [refl]: #1228
-#1183 := (~ #1182 #1182)
-#1184 := [refl]: #1183
-#1180 := (~ #1179 #1179)
-#1181 := [refl]: #1180
-#1233 := [nnf-neg #1181 #1184 #1178 #1187 #1221 #1224 #1227 #1229]: #1232
-#1255 := [nnf-neg #1233 #1251]: #1254
-#1261 := [nnf-neg #1178 #1255 #1257]: #1260
-#1330 := [nnf-neg #1261 #1326]: #1329
-#1173 := (not #772)
-#1174 := (~ #1173 #769)
-#1171 := (~ #769 #769)
-#1169 := (~ #766 #766)
-#1170 := [refl]: #1169
-#1172 := [nnf-pos #1170]: #1171
-#1175 := [nnf-neg #1172]: #1174
-#1167 := (~ #1166 #1166)
-#1168 := [refl]: #1167
-#1341 := [nnf-neg #1168 #1175 #1178 #1330 #1337]: #1340
-#1162 := (~ #772 #1161)
-#1163 := [sk]: #1162
-#1344 := [nnf-neg #1163 #1341]: #1343
-#1110 := (not #1075)
-#1147 := (iff #1110 #1146)
-#1144 := (iff #1075 #1143)
-#1141 := (iff #1072 #1138)
-#1123 := (or #619 #784 #1021 #1046)
-#1135 := (or #772 #1123)
-#1139 := (iff #1135 #1138)
-#1140 := [rewrite]: #1139
-#1136 := (iff #1072 #1135)
-#1133 := (iff #1069 #1123)
-#1128 := (and true #1123)
-#1131 := (iff #1128 #1123)
-#1132 := [rewrite]: #1131
-#1129 := (iff #1069 #1128)
-#1126 := (iff #1064 #1123)
-#1120 := (or false #619 #784 #1021 #1046)
-#1124 := (iff #1120 #1123)
-#1125 := [rewrite]: #1124
-#1121 := (iff #1064 #1120)
-#1118 := (iff #652 false)
-#1116 := (iff #652 #740)
-#1115 := (iff #9 true)
-#1113 := [iff-true #1109]: #1115
-#1117 := [monotonicity #1113]: #1116
-#1119 := [trans #1117 #744]: #1118
-#1122 := [monotonicity #1119]: #1121
-#1127 := [trans #1122 #1125]: #1126
-#1130 := [monotonicity #1113 #1127]: #1129
-#1134 := [trans #1130 #1132]: #1133
-#1137 := [monotonicity #1134]: #1136
-#1142 := [trans #1137 #1140]: #1141
-#1145 := [monotonicity #1142]: #1144
-#1148 := [monotonicity #1145]: #1147
-#1111 := [not-or-elim #1108]: #1110
-#1149 := [mp #1111 #1148]: #1146
-#1345 := [mp~ #1149 #1344]: #1342
-#1346 := [mp #1345 #1533]: #1531
-#1830 := [mp #1346 #1829]: #1825
-#2396 := [mp #1830 #2395]: #2393
-#1909 := [unit-resolution #2396 #2199]: #2390
-#2214 := (or #2387 #2381)
-#2210 := [def-axiom]: #2214
-#2414 := [unit-resolution #2210 #1909]: #2381
-#2426 := (uf_3 uf_11)
-#2430 := (= uf_12 #2426)
-#2480 := (= #36 #2426)
-#2478 := (= #2426 #36)
-#2463 := [hypothesis]: #2378
-#2138 := (or #2375 #466)
-#2139 := [def-axiom]: #2138
-#2474 := [unit-resolution #2139 #2463]: #466
-#2475 := [symm #2474]: #98
-#2479 := [monotonicity #2475]: #2478
-#2481 := [symm #2479]: #2480
-#2482 := (= uf_12 #36)
-#2221 := (or #2387 #188)
-#2222 := [def-axiom]: #2221
-#2476 := [unit-resolution #2222 #1909]: #188
-#2132 := (or #2375 #469)
-#2140 := [def-axiom]: #2132
-#2466 := [unit-resolution #2140 #2463]: #469
-#2477 := [symm #2466]: #100
-#2483 := [trans #2477 #2476]: #2482
-#2484 := [trans #2483 #2481]: #2430
-#2458 := (not #2430)
-#2424 := (>= uf_11 0::int)
-#2425 := (not #2424)
-#2421 := (* -1::int uf_11)
-#2422 := (+ uf_1 #2421)
-#2423 := (<= #2422 0::int)
-#2436 := (or #2423 #2425 #2430)
-#2441 := (not #2436)
-#2227 := (or #2375 #2369)
-#2219 := [def-axiom]: #2227
-#2464 := [unit-resolution #2219 #2463]: #2369
-#2238 := (or #2375 #926)
-#2225 := [def-axiom]: #2238
-#2465 := [unit-resolution #2225 #2463]: #926
-#2031 := (+ uf_6 #972)
-#2032 := (<= #2031 0::int)
-#2467 := (or #551 #2032)
-#2468 := [th-lemma]: #2467
-#2469 := [unit-resolution #2468 #2466]: #2032
-#1925 := (not #2032)
-#1915 := (or #1795 #1925 #927)
-#2004 := (+ uf_4 #1301)
-#2005 := (<= #2004 0::int)
-#1918 := (not #2005)
-#1910 := [hypothesis]: #926
-#1911 := [hypothesis]: #1798
-#2086 := (or #1795 #1304)
-#2239 := [def-axiom]: #2086
-#1916 := [unit-resolution #2239 #1911]: #1304
-#1919 := (or #1918 #927 #1303)
-#1921 := [th-lemma]: #1919
-#1917 := [unit-resolution #1921 #1916 #1910]: #1918
-#2021 := (+ uf_6 #1493)
-#2022 := (>= #2021 0::int)
-#1930 := (not #2022)
-#1936 := [hypothesis]: #2032
-#2243 := (not #1495)
-#2241 := (or #1795 #2243)
-#2244 := [def-axiom]: #2241
-#1922 := [unit-resolution #2244 #1911]: #2243
-#1931 := (or #1930 #1495 #1925)
-#1924 := [hypothesis]: #2243
-#1926 := [hypothesis]: #2022
-#1927 := [th-lemma #1926 #1924 #1936]: false
-#1906 := [lemma #1927]: #1931
-#1905 := [unit-resolution #1906 #1922 #1936]: #1930
-#1913 := (or #2005 #2022)
-#2240 := (or #1795 #1305)
-#2242 := [def-axiom]: #2240
-#1908 := [unit-resolution #2242 #1911]: #1305
-#2212 := (or #2387 #2312)
-#2213 := [def-axiom]: #2212
-#1912 := [unit-resolution #2213 #1909]: #2312
-#1994 := (or #2317 #1731 #2005 #2022)
-#2034 := (+ ?x8!3 #924)
-#2035 := (>= #2034 0::int)
-#2036 := (+ #1298 #1024)
-#2037 := (<= #2036 0::int)
-#2026 := (or #1731 #2037 #2035)
-#1961 := (or #2317 #2026)
-#1971 := (iff #1961 #1994)
-#1991 := (or #1731 #2005 #2022)
-#1964 := (or #2317 #1991)
-#1969 := (iff #1964 #1994)
-#1970 := [rewrite]: #1969
-#1955 := (iff #1961 #1964)
-#1993 := (iff #2026 #1991)
-#2008 := (or #1731 #2022 #2005)
-#1983 := (iff #2008 #1991)
-#1992 := [rewrite]: #1983
-#1989 := (iff #2026 #2008)
-#2007 := (iff #2035 #2005)
-#2010 := (+ #924 ?x8!3)
-#2012 := (>= #2010 0::int)
-#1997 := (iff #2012 #2005)
-#2006 := [rewrite]: #1997
-#2014 := (iff #2035 #2012)
-#2011 := (= #2034 #2010)
-#2013 := [rewrite]: #2011
-#2003 := [monotonicity #2013]: #2014
-#1998 := [trans #2003 #2006]: #2007
-#2024 := (iff #2037 #2022)
-#2038 := (+ #1024 #1298)
-#2018 := (<= #2038 0::int)
-#2023 := (iff #2018 #2022)
-#2016 := [rewrite]: #2023
-#2019 := (iff #2037 #2018)
-#2015 := (= #2036 #2038)
-#2017 := [rewrite]: #2015
-#2020 := [monotonicity #2017]: #2019
-#2009 := [trans #2020 #2016]: #2024
-#1990 := [monotonicity #2009 #1998]: #1989
-#1984 := [trans #1990 #1992]: #1993
-#1968 := [monotonicity #1984]: #1955
-#1972 := [trans #1968 #1970]: #1971
-#1963 := [quant-inst]: #1961
-#1962 := [mp #1963 #1972]: #1994
-#1914 := [unit-resolution #1962 #1912 #1908]: #1913
-#1907 := [unit-resolution #1914 #1905 #1917]: false
-#1900 := [lemma #1907]: #1915
-#2470 := [unit-resolution #1900 #2469 #2465]: #1795
-#2121 := (or #2372 #2364 #1798)
-#2136 := [def-axiom]: #2121
-#2471 := [unit-resolution #2136 #2470 #2464]: #2364
-#2235 := (not #2364)
-#2444 := (or #2235 #2441)
-#2427 := (= #2426 uf_12)
-#2428 := (or #2427 #2425 #2423)
-#2429 := (not #2428)
-#2445 := (or #2235 #2429)
-#2447 := (iff #2445 #2444)
-#2449 := (iff #2444 #2444)
-#2450 := [rewrite]: #2449
-#2442 := (iff #2429 #2441)
-#2439 := (iff #2428 #2436)
-#2433 := (or #2430 #2425 #2423)
-#2437 := (iff #2433 #2436)
-#2438 := [rewrite]: #2437
-#2434 := (iff #2428 #2433)
-#2431 := (iff #2427 #2430)
-#2432 := [rewrite]: #2431
-#2435 := [monotonicity #2432]: #2434
-#2440 := [trans #2435 #2438]: #2439
-#2443 := [monotonicity #2440]: #2442
-#2448 := [monotonicity #2443]: #2447
-#2451 := [trans #2448 #2450]: #2447
-#2446 := [quant-inst]: #2445
-#2452 := [mp #2446 #2451]: #2444
-#2472 := [unit-resolution #2452 #2471]: #2441
-#2459 := (or #2436 #2458)
-#2460 := [def-axiom]: #2459
-#2473 := [unit-resolution #2460 #2472]: #2458
-#2485 := [unit-resolution #2473 #2484]: false
-#2486 := [lemma #2485]: #2375
-#2231 := (or #2384 #2361 #2378)
-#2220 := [def-axiom]: #2231
-#2415 := [unit-resolution #2220 #2486 #2414]: #2361
-#2106 := (or #2358 #2352)
-#2248 := [def-axiom]: #2106
-#2416 := [unit-resolution #2248 #2415]: #2352
-#2417 := [hypothesis]: #840
-#2285 := (or #2340 #837)
-#1923 := [def-axiom]: #2285
-#2418 := [unit-resolution #1923 #2417]: #2340
-#1987 := (or #2346 #837)
-#1988 := [def-axiom]: #1987
-#2419 := [unit-resolution #1988 #2417]: #2346
-#2255 := (or #2355 #2343 #2349)
-#2256 := [def-axiom]: #2255
-#2420 := [unit-resolution #2256 #2419 #2418 #2416]: false
-#2403 := [lemma #2420]: #837
-#2690 := (or #840 #1977)
-#2691 := [th-lemma]: #2690
-#2692 := [unit-resolution #2691 #2403]: #1977
-#2661 := [hypothesis]: #2349
-#2272 := (or #2346 #361)
-#2273 := [def-axiom]: #2272
-#2662 := [unit-resolution #2273 #2661]: #361
-#2629 := (= #58 #1195)
-#2642 := (not #2629)
-#2630 := (+ #58 #1381)
-#2632 := (>= #2630 0::int)
-#2636 := (not #2632)
-#2402 := (+ #39 #799)
-#2405 := (<= #2402 0::int)
-#2404 := (= #39 uf_8)
-#2665 := (= uf_10 uf_8)
-#2000 := (or #2346 #82)
-#2001 := [def-axiom]: #2000
-#2663 := [unit-resolution #2001 #2661]: #82
-#2666 := [symm #2663]: #2665
-#2002 := (or #2346 #356)
-#1896 := [def-axiom]: #2002
-#2664 := [unit-resolution #1896 #2661]: #356
-#2667 := [trans #2664 #2666]: #2404
-#2668 := (not #2404)
-#2669 := (or #2668 #2405)
-#2670 := [th-lemma]: #2669
-#2671 := [unit-resolution #2670 #2667]: #2405
-#1966 := (not #1383)
-#1982 := (or #2346 #2334)
-#2264 := [def-axiom]: #1982
-#2672 := [unit-resolution #2264 #2661]: #2334
-#2537 := (= #39 #58)
-#2674 := (= #58 #39)
-#2673 := [symm #2662]: #81
-#2675 := [monotonicity #2673]: #2674
-#2677 := [symm #2675]: #2537
-#2678 := (= uf_8 #39)
-#2676 := [symm #2664]: #79
-#2679 := [trans #2663 #2676]: #2678
-#2680 := [trans #2679 #2677]: #221
-#1981 := (or #2328 #1204)
-#1960 := [def-axiom]: #1981
-#2681 := [unit-resolution #1960 #2680]: #2328
-#1953 := (or #2337 #2331 #1645)
-#2294 := [def-axiom]: #1953
-#2682 := [unit-resolution #2294 #2681 #2672]: #1645
-#2298 := (or #1640 #1966)
-#2299 := [def-axiom]: #2298
-#2683 := [unit-resolution #2299 #2682]: #1966
-#2033 := (* -1::int #58)
-#2538 := (+ #39 #2033)
-#2540 := (>= #2538 0::int)
-#2684 := (not #2537)
-#2685 := (or #2684 #2540)
-#2686 := [th-lemma]: #2685
-#2687 := [unit-resolution #2686 #2677]: #2540
-#2617 := (not #2405)
-#2637 := (not #2540)
-#2638 := (or #2636 #2637 #1383 #2617)
-#2633 := [hypothesis]: #2632
-#2609 := [hypothesis]: #2405
-#2610 := [hypothesis]: #1966
-#2634 := [hypothesis]: #2540
-#2635 := [th-lemma #2634 #2610 #2609 #2633]: false
-#2639 := [lemma #2635]: #2638
-#2688 := [unit-resolution #2639 #2687 #2683 #2671]: #2636
-#2643 := (or #2642 #2632)
-#2644 := [th-lemma]: #2643
-#2689 := [unit-resolution #2644 #2688]: #2642
-#2300 := (or #1640 #1401)
-#2301 := [def-axiom]: #2300
-#2693 := [unit-resolution #2301 #2682]: #1401
-#2694 := (not #1977)
-#2695 := (or #2628 #1396 #2694)
-#2696 := [th-lemma]: #2695
-#2697 := [unit-resolution #2696 #2693 #2692]: #2628
-#2565 := (<= #2564 0::int)
-#2552 := (+ uf_6 #1381)
-#2553 := (>= #2552 0::int)
-#2699 := (not #2553)
-#2266 := (or #2346 #854)
-#2267 := [def-axiom]: #2266
-#2698 := [unit-resolution #2267 #2661]: #854
-#2700 := (or #2699 #1383 #2617 #850)
-#2701 := [th-lemma]: #2700
-#2702 := [unit-resolution #2701 #2683 #2671 #2698]: #2699
-#2704 := (or #2553 #2565)
-#2291 := (or #1640 #1192)
-#1965 := [def-axiom]: #2291
-#2703 := [unit-resolution #1965 #2682]: #1192
-#2573 := (or #2317 #1625 #2553 #2565)
-#2541 := (+ ?x3!1 #924)
-#2542 := (>= #2541 0::int)
-#2543 := (+ #1195 #1024)
-#2544 := (<= #2543 0::int)
-#2545 := (or #1625 #2544 #2542)
-#2574 := (or #2317 #2545)
-#2581 := (iff #2574 #2573)
-#2570 := (or #1625 #2553 #2565)
-#2576 := (or #2317 #2570)
-#2579 := (iff #2576 #2573)
-#2580 := [rewrite]: #2579
-#2577 := (iff #2574 #2576)
-#2571 := (iff #2545 #2570)
-#2568 := (iff #2542 #2565)
-#2558 := (+ #924 ?x3!1)
-#2561 := (>= #2558 0::int)
-#2566 := (iff #2561 #2565)
-#2567 := [rewrite]: #2566
-#2562 := (iff #2542 #2561)
-#2559 := (= #2541 #2558)
-#2560 := [rewrite]: #2559
-#2563 := [monotonicity #2560]: #2562
-#2569 := [trans #2563 #2567]: #2568
-#2556 := (iff #2544 #2553)
-#2546 := (+ #1024 #1195)
-#2549 := (<= #2546 0::int)
-#2554 := (iff #2549 #2553)
-#2555 := [rewrite]: #2554
-#2550 := (iff #2544 #2549)
-#2547 := (= #2543 #2546)
-#2548 := [rewrite]: #2547
-#2551 := [monotonicity #2548]: #2550
-#2557 := [trans #2551 #2555]: #2556
-#2572 := [monotonicity #2557 #2569]: #2571
-#2578 := [monotonicity #2572]: #2577
-#2582 := [trans #2578 #2580]: #2581
-#2575 := [quant-inst]: #2574
-#2583 := [mp #2575 #2582]: #2573
-#2705 := [unit-resolution #2583 #1912 #2703]: #2704
-#2706 := [unit-resolution #2705 #2702]: #2565
-#2708 := (not #2628)
-#2707 := (not #2565)
-#2709 := (or #2631 #2707 #2708)
-#2710 := [th-lemma]: #2709
-#2711 := [unit-resolution #2710 #2706 #2697]: #2631
-#2658 := (not #2631)
-#2659 := (or #2658 #2629 #376)
-#2654 := (= #1195 #58)
-#2652 := (= ?x3!1 uf_7)
-#2648 := [hypothesis]: #361
-#2650 := (= ?x3!1 uf_4)
-#2649 := [hypothesis]: #2631
-#2651 := [symm #2649]: #2650
-#2653 := [trans #2651 #2648]: #2652
-#2655 := [monotonicity #2653]: #2654
-#2656 := [symm #2655]: #2629
-#2647 := [hypothesis]: #2642
-#2657 := [unit-resolution #2647 #2656]: false
-#2660 := [lemma #2657]: #2659
-#2712 := [unit-resolution #2660 #2711 #2689 #2662]: false
-#2713 := [lemma #2712]: #2346
-#2766 := [unit-resolution #2256 #2713 #2416]: #2343
-#1928 := (or #2340 #2334)
-#1929 := [def-axiom]: #1928
-#2767 := [unit-resolution #1929 #2766]: #2334
-#2515 := (= #36 #58)
-#2772 := (= #58 #36)
-#1937 := (or #2340 #191)
-#2278 := [def-axiom]: #1937
-#2768 := [unit-resolution #2278 #2766]: #191
-#2769 := [symm #2768]: #42
-#2773 := [monotonicity #2769]: #2772
-#2774 := [symm #2773]: #2515
-#2775 := (= uf_8 #36)
-#1941 := (or #2340 #194)
-#1942 := [def-axiom]: #1941
-#2770 := [unit-resolution #1942 #2766]: #194
-#2771 := [symm #2770]: #44
-#2776 := [trans #2771 #2476]: #2775
-#2777 := [trans #2776 #2774]: #221
-#2778 := [unit-resolution #1960 #2777]: #2328
-#2779 := [unit-resolution #2294 #2778 #2767]: #1645
-#2780 := [unit-resolution #2301 #2779]: #1401
-#2781 := [unit-resolution #2696 #2780 #2692]: #2628
-#2510 := (+ uf_6 #799)
-#2511 := (<= #2510 0::int)
-#2782 := (or #301 #2511)
-#2783 := [th-lemma]: #2782
-#2784 := [unit-resolution #2783 #2770]: #2511
-#2785 := [unit-resolution #2299 #2779]: #1966
-#2786 := (not #2511)
-#2787 := (or #2699 #1383 #2786)
-#2788 := [th-lemma]: #2787
-#2789 := [unit-resolution #2788 #2785 #2784]: #2699
-#2790 := [unit-resolution #1965 #2779]: #1192
-#2791 := [unit-resolution #2583 #1912 #2790 #2789]: #2565
-#2792 := [unit-resolution #2710 #2791 #2781]: #2631
-#2793 := [monotonicity #2792]: #2762
-#2794 := (not #2762)
-#2795 := (or #2794 #2765)
-#2796 := [th-lemma]: #2795
-#2797 := [unit-resolution #2796 #2793]: #2765
-#2286 := (or #2340 #850)
-#2288 := [def-axiom]: #2286
-#2798 := [unit-resolution #2288 #2766]: #850
-[th-lemma #2798 #2785 #2784 #2797]: false
+#1204 := (~ #1203 #1203)
+#1205 := [refl]: #1204
+#1201 := (~ #1200 #1200)
+#1202 := [refl]: #1201
+#1260 := [nnf-neg #1202 #1205 #1208 #1211 #1132 #1214 #1248 #1251 #1254 #1256]: #1259
+#1276 := [nnf-neg #1260 #1272]: #1275
+#1198 := (~ #789 #789)
+#1199 := [refl]: #1198
+#1280 := [nnf-neg #1132 #1199 #1276]: #1279
+#1195 := (not #810)
+#1196 := (~ #1195 #1194)
+#1192 := (~ #954 #954)
+#1193 := [refl]: #1192
+#1189 := (not #781)
+#1190 := (~ #1189 #1188)
+#1185 := (not #778)
+#1186 := (~ #1185 #1184)
+#1179 := (not #775)
+#1180 := (~ #1179 #1178)
+#1181 := [sk]: #1180
+#1163 := (not #764)
+#1164 := (~ #1163 #1158)
+#1159 := (~ #761 #1158)
+#1160 := [sk]: #1159
+#1165 := [nnf-neg #1160]: #1164
+#1187 := [nnf-neg #1165 #1181]: #1186
+#1146 := (~ #764 #1145)
+#1143 := (~ #1142 #1142)
+#1144 := [refl]: #1143
+#1147 := [nnf-neg #1144]: #1146
+#1191 := [nnf-neg #1147 #1187]: #1190
+#1140 := (~ #1139 #1139)
+#1141 := [refl]: #1140
+#1137 := (~ #1136 #1136)
+#1138 := [refl]: #1137
+#1134 := (~ #1133 #1133)
+#1135 := [refl]: #1134
+#1197 := [nnf-neg #1135 #1138 #1141 #1132 #1191 #1193]: #1196
+#1284 := [nnf-neg #1197 #1280]: #1283
+#1127 := (not #726)
+#1128 := (~ #1127 #723)
+#1125 := (~ #723 #723)
+#1123 := (~ #720 #720)
+#1124 := [refl]: #1123
+#1126 := [nnf-pos #1124]: #1125
+#1129 := [nnf-neg #1126]: #1128
+#1121 := (~ #1120 #1120)
+#1122 := [refl]: #1121
+#1295 := [nnf-neg #1122 #1129 #1132 #1284 #1291]: #1294
+#1116 := (~ #726 #1115)
+#1117 := [sk]: #1116
+#1298 := [nnf-neg #1117 #1295]: #1297
+#1064 := (not #1029)
+#1101 := (iff #1064 #1100)
+#1098 := (iff #1029 #1097)
+#1095 := (iff #1026 #1092)
+#1077 := (or #583 #738 #975 #1000)
+#1089 := (or #726 #1077)
+#1093 := (iff #1089 #1092)
+#1094 := [rewrite]: #1093
+#1090 := (iff #1026 #1089)
+#1087 := (iff #1023 #1077)
+#1082 := (and true #1077)
+#1085 := (iff #1082 #1077)
+#1086 := [rewrite]: #1085
+#1083 := (iff #1023 #1082)
+#1080 := (iff #1018 #1077)
+#1074 := (or false #583 #738 #975 #1000)
+#1078 := (iff #1074 #1077)
+#1079 := [rewrite]: #1078
+#1075 := (iff #1018 #1074)
+#1072 := (iff #616 false)
+#1070 := (iff #616 #694)
+#1069 := (iff #9 true)
+#1067 := [iff-true #1063]: #1069
+#1071 := [monotonicity #1067]: #1070
+#1073 := [trans #1071 #698]: #1072
+#1076 := [monotonicity #1073]: #1075
+#1081 := [trans #1076 #1079]: #1080
+#1084 := [monotonicity #1067 #1081]: #1083
+#1088 := [trans #1084 #1086]: #1087
+#1091 := [monotonicity #1088]: #1090
+#1096 := [trans #1091 #1094]: #1095
+#1099 := [monotonicity #1096]: #1098
+#1102 := [monotonicity #1099]: #1101
+#1065 := [not-or-elim #1062]: #1064
+#1103 := [mp #1065 #1102]: #1100
+#1299 := [mp~ #1103 #1298]: #1296
+#1300 := [mp #1299 #1487]: #1485
+#1789 := [mp #1300 #1788]: #1784
+#2355 := [mp #1789 #2354]: #2352
+#2111 := [unit-resolution #2355 #2714]: #1499
+#1933 := (or #1494 #1847)
+#1848 := [def-axiom]: #1933
+#2004 := [unit-resolution #1848 #2111]: #1847
+#2135 := (+ #8 #1104)
+#2136 := (>= #2135 0::int)
+#2134 := (= #8 #1107)
+#2112 := (= #1107 #8)
+#2113 := (= ?x1!0 0::int)
+#1934 := (or #1494 #1110)
+#1849 := [def-axiom]: #1934
+#2115 := [unit-resolution #1849 #2111]: #1110
+#1935 := (or #1494 #1111)
+#1926 := [def-axiom]: #1935
+#2116 := [unit-resolution #1926 #2111]: #1111
+#2108 := [th-lemma #2116 #2115]: #2113
+#2114 := [monotonicity #2108]: #2112
+#2082 := [symm #2114]: #2134
+#2089 := (not #2134)
+#2048 := (or #2089 #2136)
+#2079 := [th-lemma]: #2048
+#2081 := [unit-resolution #2079 #2082]: #2136
+[th-lemma #2081 #2004 #2110]: false
unsat
--- a/src/HOL/Boogie/Examples/cert/VCC_maximum Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Boogie/Examples/cert/VCC_maximum Sat Nov 14 09:40:27 2009 +0100
@@ -8,7 +8,7 @@
(uf_66 T5 Int T3 T5)
(uf_43 T3 Int T5)
(uf_116 T5 Int)
- (uf_15 T5 T3)
+ (uf_13 T5 T3)
(uf_81 Int Int Int)
(uf_80 Int Int Int)
(uf_46 T4 T4 T5 T3 T2)
@@ -18,7 +18,7 @@
(uf_72 T3 Int Int Int)
(uf_124 T3 Int T3)
(uf_25 T4 T5 T5)
- (uf_27 T4 T5 T2)
+ (uf_24 T4 T5 T2)
(uf_255 T3)
(uf_254 T3)
(uf_94 T3)
@@ -35,11 +35,11 @@
(uf_101 T3 Int Int Int)
(uf_100 Int Int Int)
(uf_71 T3 Int Int Int)
- (uf_24 T4 T5 T2)
- (uf_10 T4 T5 T6)
+ (uf_27 T4 T5 T2)
+ (uf_16 T4 T5 T6)
(uf_128 T4 T5 T6)
(uf_20 T4 T9)
- (uf_138 T3 Int)
+ (uf_139 T3 Int)
(uf_5 T3)
(uf_291 T1)
(uf_79 Int Int)
@@ -51,31 +51,31 @@
(uf_258 T3)
(uf_240 T3)
(uf_284 T16)
- (uf_95 Int)
- (uf_92 Int)
- (uf_88 Int)
- (uf_85 Int)
+ (uf_96 Int)
+ (uf_93 Int)
+ (uf_89 Int)
+ (uf_86 Int)
(uf_78 Int)
(uf_77 Int)
(uf_76 Int)
(uf_75 Int)
(uf_253 Int)
- (uf_96 Int)
- (uf_93 Int)
- (uf_89 Int)
- (uf_86 Int)
+ (uf_95 Int)
+ (uf_92 Int)
+ (uf_88 Int)
+ (uf_85 Int)
(uf_6 T3 T3)
(uf_224 T17 T17 T2)
- (uf_173 T4 T5 T5 T11)
+ (uf_171 T4 T5 T5 T11)
(uf_153 T6 T6 T2)
- (uf_13 T5 T6 T2)
- (uf_136 T14 T5)
+ (uf_15 T5 T6 T2)
+ (uf_135 T14 T5)
(uf_37 T3)
(uf_279 T1)
(uf_281 T1)
(uf_287 T1)
(uf_122 T2 T2)
- (uf_14 T3 T8)
+ (uf_12 T3 T8)
(uf_114 T4 T5 Int)
(uf_113 T4 T5 Int)
(uf_112 T4 T5 Int)
@@ -88,7 +88,7 @@
(uf_145 T5 T6 T2)
(uf_147 T5 T6 T2)
(uf_41 T4 T12)
- (uf_170 T4 T5 Int)
+ (uf_172 T4 T5 Int)
(uf_82 T3 Int Int)
(uf_232 T4 T5 T18)
(uf_188 T4 T5 T5 T5 T5)
@@ -97,15 +97,15 @@
(uf_230 T17)
(uf_179 T4 T4 T5 T3 T2)
(uf_215 T11 T5)
- (uf_172 T12 T5 T11 T12)
+ (uf_170 T12 T5 T11 T12)
(uf_251 T13 T5 T14 T13)
(uf_266 T3 T3)
- (uf_233 T18 T4)
+ (uf_234 T18 T4)
(uf_257 T3)
(uf_99 Int Int Int Int Int Int)
(uf_55 T4 T2)
(uf_60 Int T3 T5)
- (uf_246 Int T5)
+ (uf_245 Int T5)
(uf_220 T5 T15 Int)
(uf_196 T4 T5 T5 T2)
(uf_264 T3 T3)
@@ -115,7 +115,7 @@
(uf_58 T13 T5 T14)
(uf_152 T6)
(uf_157 T6 T6 T6)
- (uf_178 T9 T5 Int T9)
+ (uf_177 T9 T5 Int T9)
(uf_174 T4 T5 T5 T4)
(uf_106 T3 Int Int Int)
(uf_103 T3 Int Int Int)
@@ -124,7 +124,7 @@
(uf_105 T3 Int Int Int)
(uf_241 T15 Int T15)
(uf_50 T5 T5 T2)
- (uf_245 Int T15)
+ (uf_246 Int T15)
(uf_51 T4 T2)
(uf_195 T4 T5 T5 T2)
(uf_262 T8)
@@ -141,12 +141,12 @@
(uf_268 T3)
(uf_289 T1)
(uf_132 T5 T3 Int T6)
- (uf_139 T5 T5 T2)
+ (uf_138 T5 T5 T2)
(uf_276 T19 Int)
(uf_130 T5 T6)
(uf_44 T4 T2)
(uf_261 T8)
- (uf_248 T3 T3 Int)
+ (uf_250 T3 T3 Int)
(uf_249 T3 T3 Int)
(uf_181 T4 T4 T2)
(uf_117 T5 Int)
@@ -166,16 +166,16 @@
(uf_28 Int T5)
(uf_141 T3 T2)
(uf_260 T3 T2)
- (uf_23 T3 T2)
+ (uf_22 T3 T2)
(uf_159 T5 T5 T5)
(uf_29 T5 Int)
(uf_201 T4 T5 T3 T5)
- (uf_12 T4 T5 T7)
+ (uf_11 T4 T5 T7)
(uf_131 T6 T6 T2)
(uf_149 T6)
(uf_39 T11 Int)
(uf_217 T11 Int)
- (uf_67 T4 T5 T2)
+ (uf_68 T4 T5 T2)
(uf_275 T1)
(uf_134 T5 T3 Int T6)
(uf_189 T5 T7)
@@ -184,26 +184,26 @@
(uf_221 Int Int T2)
(uf_151 T5 T6)
(uf_162 T4 T5 T6)
- (uf_234 T18 Int)
+ (uf_233 T18 Int)
(uf_256 T3)
(uf_286 T1)
(uf_288 T1)
(uf_295 T1)
(uf_290 T1)
- (uf_305 T1)
+ (uf_301 T1)
(uf_243 T15 T15)
- (uf_242 T15 Int)
+ (uf_244 T15 Int)
(uf_45 T4 T5 T2)
(uf_203 T4 T2)
(uf_148 T5 T2)
(uf_283 Int T5 T2)
(uf_57 T3 T2)
(uf_263 T8)
- (uf_16 T8)
+ (uf_14 T8)
(uf_156 T6 T6 T6)
- (uf_303 T1)
(uf_306 T1)
- (uf_177 T4 T4 T2)
+ (uf_302 T1)
+ (uf_178 T4 T4 T2)
(uf_183 T10 T5 Int)
(uf_62 Int Int)
(uf_63 Int Int)
@@ -225,20 +225,20 @@
(uf_214 T3 T15)
(uf_155 T6 T6 T6)
(uf_206 T4 T4 T5 T3 T2)
- (uf_135 T14 T2)
+ (uf_136 T14 T2)
(uf_33 T7 Int)
(uf_236 T5 T15 T5)
- (uf_171 T4 Int)
+ (uf_173 T4 Int)
(uf_133 T5 T6 T6 Int)
(uf_186 T5 T5 T2)
(uf_247 T3 T3 Int Int T2)
(uf_227 T3 T15 T3 T2)
(uf_127 T4 T5 T6)
- (uf_22 T3 T2)
+ (uf_23 T3 T2)
(uf_184 T4 T5 T10)
(uf_97 Int Int Int Int Int)
(uf_8 T4 T4 T5 T6 T2)
- (uf_11 T7 T5 Int)
+ (uf_10 T7 T5 Int)
(uf_238 T15 T3)
(uf_210 T4 T5 T2)
(uf_180 T3 T15 T2)
@@ -270,21 +270,21 @@
(uf_273 T4)
(uf_270 Int)
(uf_294 Int)
- (uf_302 Int)
+ (uf_305 Int)
(uf_297 Int)
(uf_269 Int)
(uf_274 Int)
(uf_272 Int)
(uf_285 Int)
(uf_292 Int)
- (uf_304 Int)
(uf_300 Int)
+ (uf_303 Int)
(uf_296 Int)
(uf_299 Int)
(uf_271 Int)
(uf_282 Int)
(uf_293 Int)
- (uf_301 Int)
+ (uf_304 Int)
(uf_298 Int)
)
:extrapreds (
@@ -292,20 +292,20 @@
(up_146 T5 T6)
(up_213 T14)
(up_209 T4 T5 T3)
- (up_250 T3 T3)
+ (up_248 T3 T3)
(up_218 T11)
(up_36 T3)
(up_1 Int T1)
(up_212 T11)
(up_3 Int T3)
(up_182 Int)
- (up_244 T15)
+ (up_242 T15)
(up_216)
(up_193 T2)
- (up_280 T4 T1 T1 Int T3)
+ (up_278 T4 T1 T1 Int T3)
(up_52 T6)
- (up_68 T14)
- (up_278 T4 T1 T1 T5 T3)
+ (up_67 T14)
+ (up_280 T4 T1 T1 T5 T3)
(up_197 T3)
(up_165 T4)
(up_205 T4 T4 T5 T3)
@@ -313,9 +313,9 @@
:assumption (up_1 1 uf_2)
:assumption (up_3 1 uf_4)
:assumption (= uf_5 (uf_6 uf_7))
-:assumption (forall (?x1 T4) (?x2 T4) (?x3 T5) (?x4 T6) (iff (= (uf_8 ?x1 ?x2 ?x3 ?x4) uf_9) (and (= (uf_10 ?x1 ?x3) (uf_10 ?x2 ?x3)) (forall (?x5 T5) (implies (and (not (= (uf_13 ?x5 ?x4) uf_9)) (= (uf_14 (uf_15 ?x5)) uf_16)) (= (uf_11 (uf_12 ?x1 ?x3) ?x5) (uf_11 (uf_12 ?x2 ?x3) ?x5))) :pat { (uf_11 (uf_12 ?x2 ?x3) ?x5) }))) :pat { (uf_8 ?x1 ?x2 ?x3 ?x4) })
-:assumption (forall (?x6 T4) (?x7 T4) (?x8 T6) (implies (forall (?x9 T5) (implies (and (not (= (uf_14 (uf_15 ?x9)) uf_16)) (= (uf_13 ?x9 ?x8) uf_9)) (or (= (uf_8 ?x6 ?x7 ?x9 ?x8) uf_9) (= (uf_19 (uf_20 ?x6) ?x9) (uf_19 (uf_20 ?x7) ?x9)))) :pat { (uf_18 ?x9) }) (= (uf_17 ?x6 ?x7 ?x8) uf_9)) :pat { (uf_17 ?x6 ?x7 ?x8) })
-:assumption (forall (?x10 T4) (?x11 T4) (?x12 T6) (implies (forall (?x13 T5) (implies (or (= (uf_22 (uf_15 ?x13)) uf_9) (= (uf_23 (uf_15 ?x13)) uf_9)) (implies (and (not (or (and (= (uf_24 ?x10 ?x13) uf_9) (= (uf_14 (uf_15 ?x13)) uf_16)) (not (= (uf_25 ?x10 ?x13) uf_26)))) (= (uf_27 ?x10 ?x13) uf_9)) (or (= (uf_13 ?x13 ?x12) uf_9) (= (uf_19 (uf_20 ?x10) ?x13) (uf_19 (uf_20 ?x11) ?x13))))) :pat { (uf_18 ?x13) }) (= (uf_21 ?x10 ?x11 ?x12) uf_9)) :pat { (uf_21 ?x10 ?x11 ?x12) })
+:assumption (forall (?x1 T4) (?x2 T4) (?x3 T5) (?x4 T6) (iff (= (uf_8 ?x1 ?x2 ?x3 ?x4) uf_9) (and (forall (?x5 T5) (implies (and (= (uf_12 (uf_13 ?x5)) uf_14) (not (= (uf_15 ?x5 ?x4) uf_9))) (= (uf_10 (uf_11 ?x1 ?x3) ?x5) (uf_10 (uf_11 ?x2 ?x3) ?x5))) :pat { (uf_10 (uf_11 ?x2 ?x3) ?x5) }) (= (uf_16 ?x1 ?x3) (uf_16 ?x2 ?x3)))) :pat { (uf_8 ?x1 ?x2 ?x3 ?x4) })
+:assumption (forall (?x6 T4) (?x7 T4) (?x8 T6) (implies (forall (?x9 T5) (implies (and (= (uf_15 ?x9 ?x8) uf_9) (not (= (uf_12 (uf_13 ?x9)) uf_14))) (or (= (uf_19 (uf_20 ?x6) ?x9) (uf_19 (uf_20 ?x7) ?x9)) (= (uf_8 ?x6 ?x7 ?x9 ?x8) uf_9))) :pat { (uf_18 ?x9) }) (= (uf_17 ?x6 ?x7 ?x8) uf_9)) :pat { (uf_17 ?x6 ?x7 ?x8) })
+:assumption (forall (?x10 T4) (?x11 T4) (?x12 T6) (implies (forall (?x13 T5) (implies (or (= (uf_22 (uf_13 ?x13)) uf_9) (= (uf_23 (uf_13 ?x13)) uf_9)) (implies (and (= (uf_24 ?x10 ?x13) uf_9) (not (or (not (= (uf_25 ?x10 ?x13) uf_26)) (and (= (uf_12 (uf_13 ?x13)) uf_14) (= (uf_27 ?x10 ?x13) uf_9))))) (or (= (uf_19 (uf_20 ?x10) ?x13) (uf_19 (uf_20 ?x11) ?x13)) (= (uf_15 ?x13 ?x12) uf_9)))) :pat { (uf_18 ?x13) }) (= (uf_21 ?x10 ?x11 ?x12) uf_9)) :pat { (uf_21 ?x10 ?x11 ?x12) })
:assumption (forall (?x14 T5) (= (uf_28 (uf_29 ?x14)) ?x14))
:assumption (forall (?x15 T10) (= (uf_30 (uf_31 ?x15)) ?x15))
:assumption (forall (?x16 T7) (= (uf_32 (uf_33 ?x16)) ?x16))
@@ -323,24 +323,24 @@
:assumption (up_36 uf_37)
:assumption (forall (?x18 T4) (?x19 T5) (= (uf_38 ?x18 ?x19) (uf_39 (uf_40 (uf_41 ?x18) ?x19))) :pat { (uf_38 ?x18 ?x19) })
:assumption (= uf_42 (uf_43 uf_37 0))
-:assumption (forall (?x20 T4) (?x21 T5) (implies (and (= (uf_45 ?x20 ?x21) uf_9) (= (uf_44 ?x20) uf_9)) (= (uf_46 ?x20 ?x20 ?x21 (uf_15 ?x21)) uf_9)) :pat { (uf_44 ?x20) (uf_45 ?x20 ?x21) })
-:assumption (forall (?x22 T4) (?x23 T5) (iff (= (uf_45 ?x22 ?x23) uf_9) (= (uf_24 ?x22 ?x23) uf_9)) :pat { (uf_45 ?x22 ?x23) })
-:assumption (forall (?x24 T4) (?x25 T5) (iff (= (uf_47 ?x24 ?x25) uf_9) (and (or (= (uf_38 ?x24 ?x25) 0) (not (up_36 (uf_15 ?x25)))) (and (= (uf_22 (uf_15 ?x25)) uf_9) (and (not (= (uf_14 (uf_15 ?x25)) uf_16)) (and (= (uf_27 ?x24 ?x25) uf_9) (and (= (uf_48 ?x25 (uf_15 ?x25)) uf_9) (and (= (uf_25 ?x24 ?x25) uf_26) (= (uf_24 ?x24 ?x25) uf_9)))))))) :pat { (uf_47 ?x24 ?x25) })
-:assumption (forall (?x26 T4) (?x27 T5) (?x28 Int) (implies (and (= (uf_50 ?x27 (uf_43 uf_37 ?x28)) uf_9) (= (uf_49 ?x26 ?x27) uf_9)) (= (uf_49 ?x26 (uf_43 uf_37 ?x28)) uf_9)) :pat { (uf_49 ?x26 ?x27) (uf_50 ?x27 (uf_43 uf_37 ?x28)) })
-:assumption (forall (?x29 T4) (?x30 T5) (?x31 T5) (implies (and (= (uf_50 ?x30 ?x31) uf_9) (= (uf_49 ?x29 ?x30) uf_9)) (= (uf_46 ?x29 ?x29 ?x31 (uf_15 ?x31)) uf_9)) :pat { (uf_49 ?x29 ?x30) (uf_50 ?x30 ?x31) })
-:assumption (forall (?x32 T4) (?x33 T5) (?x34 T5) (implies (= (uf_51 ?x32) uf_9) (implies (and (= (uf_24 ?x32 ?x33) uf_9) (= (uf_50 ?x33 ?x34) uf_9)) (and (< 0 (uf_38 ?x32 ?x34)) (and (= (uf_24 ?x32 ?x34) uf_9) (up_52 (uf_53 ?x32 ?x34)))))) :pat { (uf_24 ?x32 ?x33) (uf_50 ?x33 ?x34) })
-:assumption (forall (?x35 T4) (?x36 T5) (?x37 T5) (implies (and (= (uf_54 ?x36 ?x37) uf_9) (= (uf_49 ?x35 ?x36) uf_9)) (= (uf_49 ?x35 ?x37) uf_9)) :pat { (uf_49 ?x35 ?x36) (uf_54 ?x36 ?x37) })
-:assumption (forall (?x38 T5) (?x39 T5) (implies (and (forall (?x40 T4) (implies (= (uf_49 ?x40 ?x38) uf_9) (= (uf_24 ?x40 ?x39) uf_9))) (and (= (uf_48 ?x39 uf_37) uf_9) (= (uf_48 ?x38 uf_37) uf_9))) (= (uf_54 ?x38 ?x39) uf_9)) :pat { (uf_54 ?x38 ?x39) })
-:assumption (forall (?x41 T4) (?x42 T5) (implies (= (uf_49 ?x41 ?x42) uf_9) (and (= (uf_44 ?x41) uf_9) (= (uf_24 ?x41 ?x42) uf_9))) :pat { (uf_49 ?x41 ?x42) })
-:assumption (forall (?x43 T4) (?x44 T5) (implies (and (= (uf_24 ?x43 ?x44) uf_9) (= (uf_55 ?x43) uf_9)) (= (uf_49 ?x43 ?x44) uf_9)) :pat { (uf_55 ?x43) (uf_49 ?x43 ?x44) })
-:assumption (forall (?x45 T3) (implies (= (uf_56 ?x45) uf_9) (= (uf_23 ?x45) uf_9)) :pat { (uf_56 ?x45) })
-:assumption (forall (?x46 T3) (implies (= (uf_57 ?x46) uf_9) (= (uf_23 ?x46) uf_9)) :pat { (uf_57 ?x46) })
-:assumption (forall (?x47 T4) (?x48 Int) (?x49 T3) (implies (and (= (uf_51 ?x47) uf_9) (= (uf_56 ?x49) uf_9)) (= (uf_61 ?x47 (uf_60 ?x48 ?x49)) uf_9)) :pat { (uf_58 (uf_59 ?x47) (uf_60 ?x48 ?x49)) } :pat { (uf_40 (uf_41 ?x47) (uf_60 ?x48 ?x49)) })
+:assumption (forall (?x20 T4) (?x21 T5) (implies (and (= (uf_44 ?x20) uf_9) (= (uf_45 ?x20 ?x21) uf_9)) (= (uf_46 ?x20 ?x20 ?x21 (uf_13 ?x21)) uf_9)) :pat { (uf_44 ?x20) (uf_45 ?x20 ?x21) })
+:assumption (forall (?x22 T4) (?x23 T5) (iff (= (uf_45 ?x22 ?x23) uf_9) (= (uf_27 ?x22 ?x23) uf_9)) :pat { (uf_45 ?x22 ?x23) })
+:assumption (forall (?x24 T4) (?x25 T5) (iff (= (uf_47 ?x24 ?x25) uf_9) (and (= (uf_27 ?x24 ?x25) uf_9) (and (= (uf_25 ?x24 ?x25) uf_26) (and (= (uf_48 ?x25 (uf_13 ?x25)) uf_9) (and (= (uf_24 ?x24 ?x25) uf_9) (and (not (= (uf_12 (uf_13 ?x25)) uf_14)) (and (= (uf_23 (uf_13 ?x25)) uf_9) (or (not (up_36 (uf_13 ?x25))) (= (uf_38 ?x24 ?x25) 0))))))))) :pat { (uf_47 ?x24 ?x25) })
+:assumption (forall (?x26 T4) (?x27 T5) (?x28 Int) (implies (and (= (uf_49 ?x26 ?x27) uf_9) (= (uf_50 ?x27 (uf_43 uf_37 ?x28)) uf_9)) (= (uf_49 ?x26 (uf_43 uf_37 ?x28)) uf_9)) :pat { (uf_49 ?x26 ?x27) (uf_50 ?x27 (uf_43 uf_37 ?x28)) })
+:assumption (forall (?x29 T4) (?x30 T5) (?x31 T5) (implies (and (= (uf_49 ?x29 ?x30) uf_9) (= (uf_50 ?x30 ?x31) uf_9)) (= (uf_46 ?x29 ?x29 ?x31 (uf_13 ?x31)) uf_9)) :pat { (uf_49 ?x29 ?x30) (uf_50 ?x30 ?x31) })
+:assumption (forall (?x32 T4) (?x33 T5) (?x34 T5) (implies (= (uf_51 ?x32) uf_9) (implies (and (= (uf_50 ?x33 ?x34) uf_9) (= (uf_27 ?x32 ?x33) uf_9)) (and (up_52 (uf_53 ?x32 ?x34)) (and (= (uf_27 ?x32 ?x34) uf_9) (< 0 (uf_38 ?x32 ?x34)))))) :pat { (uf_27 ?x32 ?x33) (uf_50 ?x33 ?x34) })
+:assumption (forall (?x35 T4) (?x36 T5) (?x37 T5) (implies (and (= (uf_49 ?x35 ?x36) uf_9) (= (uf_54 ?x36 ?x37) uf_9)) (= (uf_49 ?x35 ?x37) uf_9)) :pat { (uf_49 ?x35 ?x36) (uf_54 ?x36 ?x37) })
+:assumption (forall (?x38 T5) (?x39 T5) (implies (and (= (uf_48 ?x38 uf_37) uf_9) (and (= (uf_48 ?x39 uf_37) uf_9) (forall (?x40 T4) (implies (= (uf_49 ?x40 ?x38) uf_9) (= (uf_27 ?x40 ?x39) uf_9))))) (= (uf_54 ?x38 ?x39) uf_9)) :pat { (uf_54 ?x38 ?x39) })
+:assumption (forall (?x41 T4) (?x42 T5) (implies (= (uf_49 ?x41 ?x42) uf_9) (and (= (uf_27 ?x41 ?x42) uf_9) (= (uf_44 ?x41) uf_9))) :pat { (uf_49 ?x41 ?x42) })
+:assumption (forall (?x43 T4) (?x44 T5) (implies (and (= (uf_55 ?x43) uf_9) (= (uf_27 ?x43 ?x44) uf_9)) (= (uf_49 ?x43 ?x44) uf_9)) :pat { (uf_55 ?x43) (uf_49 ?x43 ?x44) })
+:assumption (forall (?x45 T3) (implies (= (uf_56 ?x45) uf_9) (= (uf_22 ?x45) uf_9)) :pat { (uf_56 ?x45) })
+:assumption (forall (?x46 T3) (implies (= (uf_57 ?x46) uf_9) (= (uf_22 ?x46) uf_9)) :pat { (uf_57 ?x46) })
+:assumption (forall (?x47 T4) (?x48 Int) (?x49 T3) (implies (and (= (uf_56 ?x49) uf_9) (= (uf_51 ?x47) uf_9)) (= (uf_61 ?x47 (uf_60 ?x48 ?x49)) uf_9)) :pat { (uf_58 (uf_59 ?x47) (uf_60 ?x48 ?x49)) } :pat { (uf_40 (uf_41 ?x47) (uf_60 ?x48 ?x49)) })
:assumption (forall (?x50 Int) (= (uf_62 (uf_63 ?x50)) ?x50))
:assumption (forall (?x51 Int) (?x52 T3) (= (uf_60 ?x51 ?x52) (uf_43 ?x52 (uf_63 ?x51))) :pat { (uf_60 ?x51 ?x52) })
-:assumption (forall (?x53 Int) (?x54 Int) (?x55 T4) (implies (= (uf_51 ?x55) uf_9) (and (forall (?x56 Int) (implies (and (< ?x56 ?x54) (<= 0 ?x56)) (and (= (uf_67 ?x55 (uf_66 (uf_64 ?x53 ?x54) ?x56 uf_7)) uf_9) (and (= (uf_48 (uf_66 (uf_64 ?x53 ?x54) ?x56 uf_7) uf_7) uf_9) (up_68 (uf_58 (uf_59 ?x55) (uf_66 (uf_64 ?x53 ?x54) ?x56 uf_7)))))) :pat { (uf_40 (uf_41 ?x55) (uf_66 (uf_64 ?x53 ?x54) ?x56 uf_7)) } :pat { (uf_58 (uf_59 ?x55) (uf_66 (uf_64 ?x53 ?x54) ?x56 uf_7)) }) (= (uf_27 ?x55 (uf_64 ?x53 ?x54)) uf_9))) :pat { (uf_27 ?x55 (uf_64 ?x53 ?x54)) } :pat { (uf_65 ?x55 (uf_64 ?x53 ?x54) uf_7 ?x54) })
+:assumption (forall (?x53 Int) (?x54 Int) (?x55 T4) (implies (= (uf_51 ?x55) uf_9) (and (= (uf_24 ?x55 (uf_64 ?x53 ?x54)) uf_9) (forall (?x56 Int) (implies (and (<= 0 ?x56) (< ?x56 ?x54)) (and (up_67 (uf_58 (uf_59 ?x55) (uf_66 (uf_64 ?x53 ?x54) ?x56 uf_7))) (and (= (uf_48 (uf_66 (uf_64 ?x53 ?x54) ?x56 uf_7) uf_7) uf_9) (= (uf_68 ?x55 (uf_66 (uf_64 ?x53 ?x54) ?x56 uf_7)) uf_9)))) :pat { (uf_40 (uf_41 ?x55) (uf_66 (uf_64 ?x53 ?x54) ?x56 uf_7)) } :pat { (uf_58 (uf_59 ?x55) (uf_66 (uf_64 ?x53 ?x54) ?x56 uf_7)) }))) :pat { (uf_24 ?x55 (uf_64 ?x53 ?x54)) } :pat { (uf_65 ?x55 (uf_64 ?x53 ?x54) uf_7 ?x54) })
:assumption (forall (?x57 Int) (?x58 Int) (= (uf_48 (uf_64 ?x57 ?x58) uf_7) uf_9) :pat { (uf_64 ?x57 ?x58) })
-:assumption (forall (?x59 Int) (?x60 Int) (= (uf_69 ?x59 ?x60) (+ ?x59 ?x60)) :pat { (uf_69 ?x59 ?x60) })
+:assumption (forall (?x59 Int) (?x60 Int) (= (uf_69 ?x59 ?x60) (* ?x59 ?x60)) :pat { (uf_69 ?x59 ?x60) })
:assumption (forall (?x61 T3) (?x62 Int) (?x63 Int) (= (uf_70 ?x61 ?x62 ?x63) (uf_70 ?x61 ?x63 ?x62)) :pat { (uf_70 ?x61 ?x62 ?x63) })
:assumption (forall (?x64 T3) (?x65 Int) (?x66 Int) (= (uf_71 ?x64 ?x65 ?x66) (uf_71 ?x64 ?x66 ?x65)) :pat { (uf_71 ?x64 ?x65 ?x66) })
:assumption (forall (?x67 T3) (?x68 Int) (?x69 Int) (= (uf_72 ?x67 ?x68 ?x69) (uf_72 ?x67 ?x69 ?x68)) :pat { (uf_72 ?x67 ?x68 ?x69) })
@@ -359,84 +359,84 @@
:assumption (forall (?x96 T3) (?x97 Int) (= (uf_70 ?x96 ?x97 (uf_73 ?x96 ?x97)) 0) :pat { (uf_70 ?x96 ?x97 (uf_73 ?x96 ?x97)) })
:assumption (forall (?x98 T3) (?x99 Int) (= (uf_72 ?x98 ?x99 (uf_73 ?x98 ?x99)) (uf_73 ?x98 0)) :pat { (uf_72 ?x98 ?x99 (uf_73 ?x98 ?x99)) })
:assumption (forall (?x100 T3) (?x101 Int) (= (uf_74 ?x100 (uf_73 ?x100 ?x101)) uf_9) :pat { (uf_73 ?x100 ?x101) })
-:assumption (forall (?x102 T3) (?x103 Int) (?x104 Int) (implies (and (<= ?x104 uf_75) (and (<= 0 ?x104) (and (<= ?x103 uf_75) (<= 0 ?x103)))) (and (<= (uf_71 ?x102 ?x103 ?x104) uf_75) (<= 0 (uf_71 ?x102 ?x103 ?x104)))) :pat { (uf_71 ?x102 ?x103 ?x104) })
-:assumption (forall (?x105 T3) (?x106 Int) (?x107 Int) (implies (and (<= ?x107 uf_76) (and (<= 0 ?x107) (and (<= ?x106 uf_76) (<= 0 ?x106)))) (and (<= (uf_71 ?x105 ?x106 ?x107) uf_76) (<= 0 (uf_71 ?x105 ?x106 ?x107)))) :pat { (uf_71 ?x105 ?x106 ?x107) })
-:assumption (forall (?x108 T3) (?x109 Int) (?x110 Int) (implies (and (<= ?x110 uf_77) (and (<= 0 ?x110) (and (<= ?x109 uf_77) (<= 0 ?x109)))) (and (<= (uf_71 ?x108 ?x109 ?x110) uf_77) (<= 0 (uf_71 ?x108 ?x109 ?x110)))) :pat { (uf_71 ?x108 ?x109 ?x110) })
-:assumption (forall (?x111 T3) (?x112 Int) (?x113 Int) (implies (and (<= ?x113 uf_78) (and (<= 0 ?x113) (and (<= ?x112 uf_78) (<= 0 ?x112)))) (and (<= (uf_71 ?x111 ?x112 ?x113) uf_78) (<= 0 (uf_71 ?x111 ?x112 ?x113)))) :pat { (uf_71 ?x111 ?x112 ?x113) })
-:assumption (forall (?x114 T3) (?x115 Int) (?x116 Int) (implies (and (<= ?x116 uf_75) (and (<= 0 ?x116) (and (<= ?x115 uf_75) (<= 0 ?x115)))) (and (<= (uf_70 ?x114 ?x115 ?x116) uf_75) (<= 0 (uf_70 ?x114 ?x115 ?x116)))) :pat { (uf_70 ?x114 ?x115 ?x116) })
-:assumption (forall (?x117 T3) (?x118 Int) (?x119 Int) (implies (and (<= ?x119 uf_76) (and (<= 0 ?x119) (and (<= ?x118 uf_76) (<= 0 ?x118)))) (and (<= (uf_70 ?x117 ?x118 ?x119) uf_76) (<= 0 (uf_70 ?x117 ?x118 ?x119)))) :pat { (uf_70 ?x117 ?x118 ?x119) })
-:assumption (forall (?x120 T3) (?x121 Int) (?x122 Int) (implies (and (<= ?x122 uf_77) (and (<= 0 ?x122) (and (<= ?x121 uf_77) (<= 0 ?x121)))) (and (<= (uf_70 ?x120 ?x121 ?x122) uf_77) (<= 0 (uf_70 ?x120 ?x121 ?x122)))) :pat { (uf_70 ?x120 ?x121 ?x122) })
-:assumption (forall (?x123 T3) (?x124 Int) (?x125 Int) (implies (and (<= ?x125 uf_78) (and (<= 0 ?x125) (and (<= ?x124 uf_78) (<= 0 ?x124)))) (and (<= (uf_70 ?x123 ?x124 ?x125) uf_78) (<= 0 (uf_70 ?x123 ?x124 ?x125)))) :pat { (uf_70 ?x123 ?x124 ?x125) })
-:assumption (forall (?x126 T3) (?x127 Int) (?x128 Int) (implies (and (<= ?x128 uf_75) (and (<= 0 ?x128) (and (<= ?x127 uf_75) (<= 0 ?x127)))) (and (<= (uf_72 ?x126 ?x127 ?x128) uf_75) (<= 0 (uf_72 ?x126 ?x127 ?x128)))) :pat { (uf_72 ?x126 ?x127 ?x128) })
-:assumption (forall (?x129 T3) (?x130 Int) (?x131 Int) (implies (and (<= ?x131 uf_76) (and (<= 0 ?x131) (and (<= ?x130 uf_76) (<= 0 ?x130)))) (and (<= (uf_72 ?x129 ?x130 ?x131) uf_76) (<= 0 (uf_72 ?x129 ?x130 ?x131)))) :pat { (uf_72 ?x129 ?x130 ?x131) })
-:assumption (forall (?x132 T3) (?x133 Int) (?x134 Int) (implies (and (<= ?x134 uf_77) (and (<= 0 ?x134) (and (<= ?x133 uf_77) (<= 0 ?x133)))) (and (<= (uf_72 ?x132 ?x133 ?x134) uf_77) (<= 0 (uf_72 ?x132 ?x133 ?x134)))) :pat { (uf_72 ?x132 ?x133 ?x134) })
-:assumption (forall (?x135 T3) (?x136 Int) (?x137 Int) (implies (and (<= ?x137 uf_78) (and (<= 0 ?x137) (and (<= ?x136 uf_78) (<= 0 ?x136)))) (and (<= (uf_72 ?x135 ?x136 ?x137) uf_78) (<= 0 (uf_72 ?x135 ?x136 ?x137)))) :pat { (uf_72 ?x135 ?x136 ?x137) })
-:assumption (forall (?x138 T3) (?x139 Int) (?x140 Int) (?x141 Int) (implies (and (= (uf_74 ?x138 ?x140) uf_9) (and (= (uf_74 ?x138 ?x139) uf_9) (and (< ?x140 (uf_79 ?x141)) (and (< ?x139 (uf_79 ?x141)) (and (< ?x141 64) (and (<= 0 ?x141) (and (<= 0 ?x140) (<= 0 ?x139)))))))) (< (uf_72 ?x138 ?x139 ?x140) (uf_79 ?x141))) :pat { (uf_72 ?x138 ?x139 ?x140) (uf_79 ?x141) })
-:assumption (forall (?x142 T3) (?x143 Int) (?x144 Int) (implies (and (= (uf_74 ?x142 ?x144) uf_9) (and (= (uf_74 ?x142 ?x143) uf_9) (and (<= 0 ?x144) (<= 0 ?x143)))) (and (<= ?x144 (uf_72 ?x142 ?x143 ?x144)) (<= ?x143 (uf_72 ?x142 ?x143 ?x144)))) :pat { (uf_72 ?x142 ?x143 ?x144) })
-:assumption (forall (?x145 T3) (?x146 Int) (?x147 Int) (implies (and (= (uf_74 ?x145 ?x147) uf_9) (and (= (uf_74 ?x145 ?x146) uf_9) (and (<= 0 ?x147) (<= 0 ?x146)))) (and (<= (uf_72 ?x145 ?x146 ?x147) (+ ?x146 ?x147)) (<= 0 (uf_72 ?x145 ?x146 ?x147)))) :pat { (uf_72 ?x145 ?x146 ?x147) })
-:assumption (forall (?x148 T3) (?x149 Int) (?x150 Int) (implies (and (= (uf_74 ?x148 ?x150) uf_9) (and (= (uf_74 ?x148 ?x149) uf_9) (and (<= 0 ?x150) (<= 0 ?x149)))) (and (<= (uf_70 ?x148 ?x149 ?x150) ?x150) (<= (uf_70 ?x148 ?x149 ?x150) ?x149))) :pat { (uf_70 ?x148 ?x149 ?x150) })
-:assumption (forall (?x151 T3) (?x152 Int) (?x153 Int) (implies (and (= (uf_74 ?x151 ?x152) uf_9) (<= 0 ?x152)) (and (<= (uf_70 ?x151 ?x152 ?x153) ?x152) (<= 0 (uf_70 ?x151 ?x152 ?x153)))) :pat { (uf_70 ?x151 ?x152 ?x153) })
-:assumption (forall (?x154 Int) (?x155 Int) (implies (and (< ?x155 0) (<= ?x154 0)) (and (<= (uf_80 ?x154 ?x155) 0) (< ?x155 (uf_80 ?x154 ?x155)))) :pat { (uf_80 ?x154 ?x155) })
-:assumption (forall (?x156 Int) (?x157 Int) (implies (and (< 0 ?x157) (<= ?x156 0)) (and (<= (uf_80 ?x156 ?x157) 0) (< (+ 0 ?x157) (uf_80 ?x156 ?x157)))) :pat { (uf_80 ?x156 ?x157) })
-:assumption (forall (?x158 Int) (?x159 Int) (implies (and (< ?x159 0) (<= 0 ?x158)) (and (< (uf_80 ?x158 ?x159) (+ 0 ?x159)) (<= 0 (uf_80 ?x158 ?x159)))) :pat { (uf_80 ?x158 ?x159) })
-:assumption (forall (?x160 Int) (?x161 Int) (implies (and (< 0 ?x161) (<= 0 ?x160)) (and (< (uf_80 ?x160 ?x161) ?x161) (<= 0 (uf_80 ?x160 ?x161)))) :pat { (uf_80 ?x160 ?x161) })
-:assumption (forall (?x162 Int) (?x163 Int) (= (uf_80 ?x162 ?x163) (+ ?x162 (+ (uf_81 ?x162 ?x163) ?x163))) :pat { (uf_80 ?x162 ?x163) } :pat { (uf_81 ?x162 ?x163) })
+:assumption (forall (?x102 T3) (?x103 Int) (?x104 Int) (implies (and (<= 0 ?x103) (and (<= ?x103 uf_75) (and (<= 0 ?x104) (<= ?x104 uf_75)))) (and (<= 0 (uf_71 ?x102 ?x103 ?x104)) (<= (uf_71 ?x102 ?x103 ?x104) uf_75))) :pat { (uf_71 ?x102 ?x103 ?x104) })
+:assumption (forall (?x105 T3) (?x106 Int) (?x107 Int) (implies (and (<= 0 ?x106) (and (<= ?x106 uf_76) (and (<= 0 ?x107) (<= ?x107 uf_76)))) (and (<= 0 (uf_71 ?x105 ?x106 ?x107)) (<= (uf_71 ?x105 ?x106 ?x107) uf_76))) :pat { (uf_71 ?x105 ?x106 ?x107) })
+:assumption (forall (?x108 T3) (?x109 Int) (?x110 Int) (implies (and (<= 0 ?x109) (and (<= ?x109 uf_77) (and (<= 0 ?x110) (<= ?x110 uf_77)))) (and (<= 0 (uf_71 ?x108 ?x109 ?x110)) (<= (uf_71 ?x108 ?x109 ?x110) uf_77))) :pat { (uf_71 ?x108 ?x109 ?x110) })
+:assumption (forall (?x111 T3) (?x112 Int) (?x113 Int) (implies (and (<= 0 ?x112) (and (<= ?x112 uf_78) (and (<= 0 ?x113) (<= ?x113 uf_78)))) (and (<= 0 (uf_71 ?x111 ?x112 ?x113)) (<= (uf_71 ?x111 ?x112 ?x113) uf_78))) :pat { (uf_71 ?x111 ?x112 ?x113) })
+:assumption (forall (?x114 T3) (?x115 Int) (?x116 Int) (implies (and (<= 0 ?x115) (and (<= ?x115 uf_75) (and (<= 0 ?x116) (<= ?x116 uf_75)))) (and (<= 0 (uf_70 ?x114 ?x115 ?x116)) (<= (uf_70 ?x114 ?x115 ?x116) uf_75))) :pat { (uf_70 ?x114 ?x115 ?x116) })
+:assumption (forall (?x117 T3) (?x118 Int) (?x119 Int) (implies (and (<= 0 ?x118) (and (<= ?x118 uf_76) (and (<= 0 ?x119) (<= ?x119 uf_76)))) (and (<= 0 (uf_70 ?x117 ?x118 ?x119)) (<= (uf_70 ?x117 ?x118 ?x119) uf_76))) :pat { (uf_70 ?x117 ?x118 ?x119) })
+:assumption (forall (?x120 T3) (?x121 Int) (?x122 Int) (implies (and (<= 0 ?x121) (and (<= ?x121 uf_77) (and (<= 0 ?x122) (<= ?x122 uf_77)))) (and (<= 0 (uf_70 ?x120 ?x121 ?x122)) (<= (uf_70 ?x120 ?x121 ?x122) uf_77))) :pat { (uf_70 ?x120 ?x121 ?x122) })
+:assumption (forall (?x123 T3) (?x124 Int) (?x125 Int) (implies (and (<= 0 ?x124) (and (<= ?x124 uf_78) (and (<= 0 ?x125) (<= ?x125 uf_78)))) (and (<= 0 (uf_70 ?x123 ?x124 ?x125)) (<= (uf_70 ?x123 ?x124 ?x125) uf_78))) :pat { (uf_70 ?x123 ?x124 ?x125) })
+:assumption (forall (?x126 T3) (?x127 Int) (?x128 Int) (implies (and (<= 0 ?x127) (and (<= ?x127 uf_75) (and (<= 0 ?x128) (<= ?x128 uf_75)))) (and (<= 0 (uf_72 ?x126 ?x127 ?x128)) (<= (uf_72 ?x126 ?x127 ?x128) uf_75))) :pat { (uf_72 ?x126 ?x127 ?x128) })
+:assumption (forall (?x129 T3) (?x130 Int) (?x131 Int) (implies (and (<= 0 ?x130) (and (<= ?x130 uf_76) (and (<= 0 ?x131) (<= ?x131 uf_76)))) (and (<= 0 (uf_72 ?x129 ?x130 ?x131)) (<= (uf_72 ?x129 ?x130 ?x131) uf_76))) :pat { (uf_72 ?x129 ?x130 ?x131) })
+:assumption (forall (?x132 T3) (?x133 Int) (?x134 Int) (implies (and (<= 0 ?x133) (and (<= ?x133 uf_77) (and (<= 0 ?x134) (<= ?x134 uf_77)))) (and (<= 0 (uf_72 ?x132 ?x133 ?x134)) (<= (uf_72 ?x132 ?x133 ?x134) uf_77))) :pat { (uf_72 ?x132 ?x133 ?x134) })
+:assumption (forall (?x135 T3) (?x136 Int) (?x137 Int) (implies (and (<= 0 ?x136) (and (<= ?x136 uf_78) (and (<= 0 ?x137) (<= ?x137 uf_78)))) (and (<= 0 (uf_72 ?x135 ?x136 ?x137)) (<= (uf_72 ?x135 ?x136 ?x137) uf_78))) :pat { (uf_72 ?x135 ?x136 ?x137) })
+:assumption (forall (?x138 T3) (?x139 Int) (?x140 Int) (?x141 Int) (implies (and (<= 0 ?x139) (and (<= 0 ?x140) (and (<= 0 ?x141) (and (< ?x141 64) (and (< ?x139 (uf_79 ?x141)) (and (< ?x140 (uf_79 ?x141)) (and (= (uf_74 ?x138 ?x139) uf_9) (= (uf_74 ?x138 ?x140) uf_9)))))))) (< (uf_72 ?x138 ?x139 ?x140) (uf_79 ?x141))) :pat { (uf_72 ?x138 ?x139 ?x140) (uf_79 ?x141) })
+:assumption (forall (?x142 T3) (?x143 Int) (?x144 Int) (implies (and (<= 0 ?x143) (and (<= 0 ?x144) (and (= (uf_74 ?x142 ?x143) uf_9) (= (uf_74 ?x142 ?x144) uf_9)))) (and (<= ?x143 (uf_72 ?x142 ?x143 ?x144)) (<= ?x144 (uf_72 ?x142 ?x143 ?x144)))) :pat { (uf_72 ?x142 ?x143 ?x144) })
+:assumption (forall (?x145 T3) (?x146 Int) (?x147 Int) (implies (and (<= 0 ?x146) (and (<= 0 ?x147) (and (= (uf_74 ?x145 ?x146) uf_9) (= (uf_74 ?x145 ?x147) uf_9)))) (and (<= 0 (uf_72 ?x145 ?x146 ?x147)) (<= (uf_72 ?x145 ?x146 ?x147) (+ ?x146 ?x147)))) :pat { (uf_72 ?x145 ?x146 ?x147) })
+:assumption (forall (?x148 T3) (?x149 Int) (?x150 Int) (implies (and (<= 0 ?x149) (and (<= 0 ?x150) (and (= (uf_74 ?x148 ?x149) uf_9) (= (uf_74 ?x148 ?x150) uf_9)))) (and (<= (uf_70 ?x148 ?x149 ?x150) ?x149) (<= (uf_70 ?x148 ?x149 ?x150) ?x150))) :pat { (uf_70 ?x148 ?x149 ?x150) })
+:assumption (forall (?x151 T3) (?x152 Int) (?x153 Int) (implies (and (<= 0 ?x152) (= (uf_74 ?x151 ?x152) uf_9)) (and (<= 0 (uf_70 ?x151 ?x152 ?x153)) (<= (uf_70 ?x151 ?x152 ?x153) ?x152))) :pat { (uf_70 ?x151 ?x152 ?x153) })
+:assumption (forall (?x154 Int) (?x155 Int) (implies (and (<= ?x154 0) (< ?x155 0)) (and (< ?x155 (uf_80 ?x154 ?x155)) (<= (uf_80 ?x154 ?x155) 0))) :pat { (uf_80 ?x154 ?x155) })
+:assumption (forall (?x156 Int) (?x157 Int) (implies (and (<= ?x156 0) (< 0 ?x157)) (and (< (- 0 ?x157) (uf_80 ?x156 ?x157)) (<= (uf_80 ?x156 ?x157) 0))) :pat { (uf_80 ?x156 ?x157) })
+:assumption (forall (?x158 Int) (?x159 Int) (implies (and (<= 0 ?x158) (< ?x159 0)) (and (<= 0 (uf_80 ?x158 ?x159)) (< (uf_80 ?x158 ?x159) (- 0 ?x159)))) :pat { (uf_80 ?x158 ?x159) })
+:assumption (forall (?x160 Int) (?x161 Int) (implies (and (<= 0 ?x160) (< 0 ?x161)) (and (<= 0 (uf_80 ?x160 ?x161)) (< (uf_80 ?x160 ?x161) ?x161))) :pat { (uf_80 ?x160 ?x161) })
+:assumption (forall (?x162 Int) (?x163 Int) (= (uf_80 ?x162 ?x163) (- ?x162 (* (uf_81 ?x162 ?x163) ?x163))) :pat { (uf_80 ?x162 ?x163) } :pat { (uf_81 ?x162 ?x163) })
:assumption (forall (?x164 Int) (implies (not (= ?x164 0)) (= (uf_81 ?x164 ?x164) 1)) :pat { (uf_81 ?x164 ?x164) })
-:assumption (forall (?x165 Int) (?x166 Int) (implies (and (< 0 ?x166) (< 0 ?x165)) (and (<= (+ (uf_81 ?x165 ?x166) ?x166) ?x165) (< (+ ?x165 ?x166) (+ (uf_81 ?x165 ?x166) ?x166)))) :pat { (uf_81 ?x165 ?x166) })
-:assumption (forall (?x167 Int) (?x168 Int) (implies (and (< 0 ?x168) (<= 0 ?x167)) (<= (uf_81 ?x167 ?x168) ?x167)) :pat { (uf_81 ?x167 ?x168) })
-:assumption (forall (?x169 T3) (?x170 Int) (?x171 Int) (?x172 Int) (implies (and (<= 0 ?x170) (and (= (uf_74 ?x169 (+ (uf_79 ?x171) 1)) uf_9) (= (uf_74 ?x169 ?x170) uf_9))) (= (uf_80 ?x170 (uf_79 ?x171)) (uf_70 ?x169 ?x170 (+ (uf_79 ?x171) 1)))) :pat { (uf_80 ?x170 (uf_79 ?x171)) (uf_70 ?x169 ?x170 ?x172) })
-:assumption (forall (?x173 Int) (implies (and (<= ?x173 uf_85) (<= uf_86 ?x173)) (= (uf_82 uf_83 (uf_82 uf_84 ?x173)) ?x173)) :pat { (uf_82 uf_83 (uf_82 uf_84 ?x173)) })
-:assumption (forall (?x174 Int) (implies (and (<= ?x174 uf_88) (<= uf_89 ?x174)) (= (uf_82 uf_87 (uf_82 uf_4 ?x174)) ?x174)) :pat { (uf_82 uf_87 (uf_82 uf_4 ?x174)) })
-:assumption (forall (?x175 Int) (implies (and (<= ?x175 uf_92) (<= uf_93 ?x175)) (= (uf_82 uf_90 (uf_82 uf_91 ?x175)) ?x175)) :pat { (uf_82 uf_90 (uf_82 uf_91 ?x175)) })
-:assumption (forall (?x176 Int) (implies (and (<= ?x176 uf_95) (<= uf_96 ?x176)) (= (uf_82 uf_94 (uf_82 uf_7 ?x176)) ?x176)) :pat { (uf_82 uf_94 (uf_82 uf_7 ?x176)) })
-:assumption (forall (?x177 Int) (implies (and (<= ?x177 uf_75) (<= 0 ?x177)) (= (uf_82 uf_84 (uf_82 uf_83 ?x177)) ?x177)) :pat { (uf_82 uf_84 (uf_82 uf_83 ?x177)) })
-:assumption (forall (?x178 Int) (implies (and (<= ?x178 uf_76) (<= 0 ?x178)) (= (uf_82 uf_4 (uf_82 uf_87 ?x178)) ?x178)) :pat { (uf_82 uf_4 (uf_82 uf_87 ?x178)) })
-:assumption (forall (?x179 Int) (implies (and (<= ?x179 uf_77) (<= 0 ?x179)) (= (uf_82 uf_91 (uf_82 uf_90 ?x179)) ?x179)) :pat { (uf_82 uf_91 (uf_82 uf_90 ?x179)) })
-:assumption (forall (?x180 Int) (implies (and (<= ?x180 uf_78) (<= 0 ?x180)) (= (uf_82 uf_7 (uf_82 uf_94 ?x180)) ?x180)) :pat { (uf_82 uf_7 (uf_82 uf_94 ?x180)) })
+:assumption (forall (?x165 Int) (?x166 Int) (implies (and (< 0 ?x165) (< 0 ?x166)) (and (< (- ?x165 ?x166) (* (uf_81 ?x165 ?x166) ?x166)) (<= (* (uf_81 ?x165 ?x166) ?x166) ?x165))) :pat { (uf_81 ?x165 ?x166) })
+:assumption (forall (?x167 Int) (?x168 Int) (implies (and (<= 0 ?x167) (< 0 ?x168)) (<= (uf_81 ?x167 ?x168) ?x167)) :pat { (uf_81 ?x167 ?x168) })
+:assumption (forall (?x169 T3) (?x170 Int) (?x171 Int) (?x172 Int) (implies (and (= (uf_74 ?x169 ?x170) uf_9) (and (= (uf_74 ?x169 (- (uf_79 ?x171) 1)) uf_9) (<= 0 ?x170))) (= (uf_80 ?x170 (uf_79 ?x171)) (uf_70 ?x169 ?x170 (- (uf_79 ?x171) 1)))) :pat { (uf_80 ?x170 (uf_79 ?x171)) (uf_70 ?x169 ?x170 ?x172) })
+:assumption (forall (?x173 Int) (implies (and (<= uf_85 ?x173) (<= ?x173 uf_86)) (= (uf_82 uf_83 (uf_82 uf_84 ?x173)) ?x173)) :pat { (uf_82 uf_83 (uf_82 uf_84 ?x173)) })
+:assumption (forall (?x174 Int) (implies (and (<= uf_88 ?x174) (<= ?x174 uf_89)) (= (uf_82 uf_87 (uf_82 uf_4 ?x174)) ?x174)) :pat { (uf_82 uf_87 (uf_82 uf_4 ?x174)) })
+:assumption (forall (?x175 Int) (implies (and (<= uf_92 ?x175) (<= ?x175 uf_93)) (= (uf_82 uf_90 (uf_82 uf_91 ?x175)) ?x175)) :pat { (uf_82 uf_90 (uf_82 uf_91 ?x175)) })
+:assumption (forall (?x176 Int) (implies (and (<= uf_95 ?x176) (<= ?x176 uf_96)) (= (uf_82 uf_94 (uf_82 uf_7 ?x176)) ?x176)) :pat { (uf_82 uf_94 (uf_82 uf_7 ?x176)) })
+:assumption (forall (?x177 Int) (implies (and (<= 0 ?x177) (<= ?x177 uf_75)) (= (uf_82 uf_84 (uf_82 uf_83 ?x177)) ?x177)) :pat { (uf_82 uf_84 (uf_82 uf_83 ?x177)) })
+:assumption (forall (?x178 Int) (implies (and (<= 0 ?x178) (<= ?x178 uf_76)) (= (uf_82 uf_4 (uf_82 uf_87 ?x178)) ?x178)) :pat { (uf_82 uf_4 (uf_82 uf_87 ?x178)) })
+:assumption (forall (?x179 Int) (implies (and (<= 0 ?x179) (<= ?x179 uf_77)) (= (uf_82 uf_91 (uf_82 uf_90 ?x179)) ?x179)) :pat { (uf_82 uf_91 (uf_82 uf_90 ?x179)) })
+:assumption (forall (?x180 Int) (implies (and (<= 0 ?x180) (<= ?x180 uf_78)) (= (uf_82 uf_7 (uf_82 uf_94 ?x180)) ?x180)) :pat { (uf_82 uf_7 (uf_82 uf_94 ?x180)) })
:assumption (forall (?x181 T3) (?x182 Int) (= (uf_74 ?x181 (uf_82 ?x181 ?x182)) uf_9) :pat { (uf_82 ?x181 ?x182) })
:assumption (forall (?x183 T3) (?x184 Int) (implies (= (uf_74 ?x183 ?x184) uf_9) (= (uf_82 ?x183 ?x184) ?x184)) :pat { (uf_82 ?x183 ?x184) })
-:assumption (forall (?x185 Int) (iff (= (uf_74 uf_84 ?x185) uf_9) (and (<= ?x185 uf_75) (<= 0 ?x185))) :pat { (uf_74 uf_84 ?x185) })
-:assumption (forall (?x186 Int) (iff (= (uf_74 uf_4 ?x186) uf_9) (and (<= ?x186 uf_76) (<= 0 ?x186))) :pat { (uf_74 uf_4 ?x186) })
-:assumption (forall (?x187 Int) (iff (= (uf_74 uf_91 ?x187) uf_9) (and (<= ?x187 uf_77) (<= 0 ?x187))) :pat { (uf_74 uf_91 ?x187) })
-:assumption (forall (?x188 Int) (iff (= (uf_74 uf_7 ?x188) uf_9) (and (<= ?x188 uf_78) (<= 0 ?x188))) :pat { (uf_74 uf_7 ?x188) })
-:assumption (forall (?x189 Int) (iff (= (uf_74 uf_83 ?x189) uf_9) (and (<= ?x189 uf_85) (<= uf_86 ?x189))) :pat { (uf_74 uf_83 ?x189) })
-:assumption (forall (?x190 Int) (iff (= (uf_74 uf_87 ?x190) uf_9) (and (<= ?x190 uf_88) (<= uf_89 ?x190))) :pat { (uf_74 uf_87 ?x190) })
-:assumption (forall (?x191 Int) (iff (= (uf_74 uf_90 ?x191) uf_9) (and (<= ?x191 uf_92) (<= uf_93 ?x191))) :pat { (uf_74 uf_90 ?x191) })
-:assumption (forall (?x192 Int) (iff (= (uf_74 uf_94 ?x192) uf_9) (and (<= ?x192 uf_95) (<= uf_96 ?x192))) :pat { (uf_74 uf_94 ?x192) })
-:assumption (forall (?x193 Int) (?x194 Int) (?x195 Int) (?x196 Int) (implies (and (<= (uf_79 (+ (+ ?x194 ?x193) 1)) (uf_80 (uf_81 ?x195 (uf_79 ?x193)) (uf_79 (+ ?x194 ?x193)))) (and (<= 0 ?x195) (and (<= ?x194 ?x196) (and (< ?x193 ?x194) (<= 0 ?x193))))) (= (uf_97 ?x195 ?x196 ?x193 ?x194) (+ (uf_79 (+ (+ ?x194 ?x193) 1)) (uf_80 (uf_81 ?x195 (uf_79 ?x193)) (uf_79 (+ ?x194 ?x193)))))) :pat { (uf_97 ?x195 ?x196 ?x193 ?x194) })
-:assumption (forall (?x197 Int) (?x198 Int) (?x199 Int) (?x200 Int) (implies (and (< (uf_80 (uf_81 ?x199 (uf_79 ?x197)) (uf_79 (+ ?x198 ?x197))) (uf_79 (+ (+ ?x198 ?x197) 1))) (and (<= 0 ?x199) (and (<= ?x198 ?x200) (and (< ?x197 ?x198) (<= 0 ?x197))))) (= (uf_97 ?x199 ?x200 ?x197 ?x198) (uf_80 (uf_81 ?x199 (uf_79 ?x197)) (uf_79 (+ ?x198 ?x197))))) :pat { (uf_97 ?x199 ?x200 ?x197 ?x198) })
-:assumption (forall (?x201 Int) (?x202 Int) (?x203 Int) (?x204 Int) (implies (and (<= 0 ?x203) (and (<= ?x202 ?x204) (and (< ?x201 ?x202) (<= 0 ?x201)))) (= (uf_98 ?x203 ?x204 ?x201 ?x202) (uf_80 (uf_81 ?x203 (uf_79 ?x201)) (uf_79 (+ ?x202 ?x201))))) :pat { (uf_98 ?x203 ?x204 ?x201 ?x202) })
-:assumption (forall (?x205 Int) (?x206 Int) (?x207 Int) (implies (and (<= ?x206 ?x207) (and (< ?x205 ?x206) (<= 0 ?x205))) (= (uf_98 0 ?x207 ?x205 ?x206) 0)) :pat { (uf_98 0 ?x207 ?x205 ?x206) })
-:assumption (forall (?x208 Int) (?x209 Int) (?x210 Int) (implies (and (<= ?x209 ?x210) (and (< ?x208 ?x209) (<= 0 ?x208))) (= (uf_97 0 ?x210 ?x208 ?x209) 0)) :pat { (uf_97 0 ?x210 ?x208 ?x209) })
-:assumption (forall (?x211 Int) (?x212 Int) (?x213 Int) (?x214 Int) (?x215 Int) (?x216 Int) (?x217 Int) (implies (and (<= ?x212 ?x215) (and (< ?x211 ?x212) (<= 0 ?x211))) (implies (and (<= ?x217 ?x215) (and (< ?x216 ?x217) (<= 0 ?x216))) (implies (or (<= ?x212 ?x216) (<= ?x217 ?x211)) (= (uf_98 (uf_99 ?x214 ?x215 ?x211 ?x212 ?x213) ?x215 ?x216 ?x217) (uf_98 ?x214 ?x215 ?x216 ?x217))))) :pat { (uf_98 (uf_99 ?x214 ?x215 ?x211 ?x212 ?x213) ?x215 ?x216 ?x217) })
-:assumption (forall (?x218 Int) (?x219 Int) (?x220 Int) (?x221 Int) (?x222 Int) (?x223 Int) (?x224 Int) (implies (and (<= ?x219 ?x222) (and (< ?x218 ?x219) (<= 0 ?x218))) (implies (and (<= ?x224 ?x222) (and (< ?x223 ?x224) (<= 0 ?x223))) (implies (or (<= ?x219 ?x223) (<= ?x224 ?x218)) (= (uf_97 (uf_99 ?x221 ?x222 ?x218 ?x219 ?x220) ?x222 ?x223 ?x224) (uf_97 ?x221 ?x222 ?x223 ?x224))))) :pat { (uf_97 (uf_99 ?x221 ?x222 ?x218 ?x219 ?x220) ?x222 ?x223 ?x224) })
-:assumption (forall (?x225 Int) (?x226 Int) (?x227 Int) (?x228 Int) (implies (and (<= ?x226 ?x228) (and (< ?x225 ?x226) (<= 0 ?x225))) (and (<= (uf_98 ?x227 ?x228 ?x225 ?x226) (+ (uf_79 (+ ?x226 ?x225)) 1)) (<= 0 (uf_98 ?x227 ?x228 ?x225 ?x226)))) :pat { (uf_98 ?x227 ?x228 ?x225 ?x226) })
-:assumption (forall (?x229 Int) (?x230 Int) (?x231 Int) (?x232 Int) (implies (and (<= ?x230 ?x232) (and (< ?x229 ?x230) (<= 0 ?x229))) (and (<= (uf_97 ?x231 ?x232 ?x229 ?x230) (+ (uf_79 (+ (+ ?x230 ?x229) 1)) 1)) (<= (+ 0 (uf_79 (+ (+ ?x230 ?x229) 1))) (uf_97 ?x231 ?x232 ?x229 ?x230)))) :pat { (uf_97 ?x231 ?x232 ?x229 ?x230) })
-:assumption (forall (?x233 Int) (?x234 Int) (?x235 Int) (?x236 Int) (?x237 Int) (implies (and (<= ?x234 ?x237) (and (< ?x233 ?x234) (<= 0 ?x233))) (implies (and (< ?x235 (uf_79 (+ ?x234 ?x233))) (<= 0 ?x235)) (= (uf_98 (uf_99 ?x236 ?x237 ?x233 ?x234 ?x235) ?x237 ?x233 ?x234) ?x235))) :pat { (uf_98 (uf_99 ?x236 ?x237 ?x233 ?x234 ?x235) ?x237 ?x233 ?x234) })
-:assumption (forall (?x238 Int) (?x239 Int) (?x240 Int) (?x241 Int) (?x242 Int) (implies (and (<= ?x239 ?x242) (and (< ?x238 ?x239) (<= 0 ?x238))) (implies (and (< ?x240 (uf_79 (+ (+ ?x239 ?x238) 1))) (<= (+ 0 (uf_79 (+ (+ ?x239 ?x238) 1))) ?x240)) (= (uf_97 (uf_99 ?x241 ?x242 ?x238 ?x239 ?x240) ?x242 ?x238 ?x239) ?x240))) :pat { (uf_97 (uf_99 ?x241 ?x242 ?x238 ?x239 ?x240) ?x242 ?x238 ?x239) })
-:assumption (forall (?x243 Int) (?x244 Int) (?x245 Int) (implies (and (<= ?x244 ?x245) (and (< ?x243 ?x244) (<= 0 ?x243))) (= (uf_99 0 ?x245 ?x243 ?x244 0) 0)) :pat { (uf_99 0 ?x245 ?x243 ?x244 0) })
-:assumption (forall (?x246 Int) (?x247 Int) (?x248 Int) (?x249 Int) (?x250 Int) (implies (and (<= ?x248 ?x249) (and (< ?x247 ?x248) (<= 0 ?x247))) (implies (and (< ?x250 (uf_79 (+ ?x248 ?x247))) (<= 0 ?x250)) (and (< (uf_99 ?x246 ?x249 ?x247 ?x248 ?x250) (uf_79 ?x249)) (<= 0 (uf_99 ?x246 ?x249 ?x247 ?x248 ?x250))))) :pat { (uf_99 ?x246 ?x249 ?x247 ?x248 ?x250) })
+:assumption (forall (?x185 Int) (iff (= (uf_74 uf_84 ?x185) uf_9) (and (<= 0 ?x185) (<= ?x185 uf_75))) :pat { (uf_74 uf_84 ?x185) })
+:assumption (forall (?x186 Int) (iff (= (uf_74 uf_4 ?x186) uf_9) (and (<= 0 ?x186) (<= ?x186 uf_76))) :pat { (uf_74 uf_4 ?x186) })
+:assumption (forall (?x187 Int) (iff (= (uf_74 uf_91 ?x187) uf_9) (and (<= 0 ?x187) (<= ?x187 uf_77))) :pat { (uf_74 uf_91 ?x187) })
+:assumption (forall (?x188 Int) (iff (= (uf_74 uf_7 ?x188) uf_9) (and (<= 0 ?x188) (<= ?x188 uf_78))) :pat { (uf_74 uf_7 ?x188) })
+:assumption (forall (?x189 Int) (iff (= (uf_74 uf_83 ?x189) uf_9) (and (<= uf_85 ?x189) (<= ?x189 uf_86))) :pat { (uf_74 uf_83 ?x189) })
+:assumption (forall (?x190 Int) (iff (= (uf_74 uf_87 ?x190) uf_9) (and (<= uf_88 ?x190) (<= ?x190 uf_89))) :pat { (uf_74 uf_87 ?x190) })
+:assumption (forall (?x191 Int) (iff (= (uf_74 uf_90 ?x191) uf_9) (and (<= uf_92 ?x191) (<= ?x191 uf_93))) :pat { (uf_74 uf_90 ?x191) })
+:assumption (forall (?x192 Int) (iff (= (uf_74 uf_94 ?x192) uf_9) (and (<= uf_95 ?x192) (<= ?x192 uf_96))) :pat { (uf_74 uf_94 ?x192) })
+:assumption (forall (?x193 Int) (?x194 Int) (?x195 Int) (?x196 Int) (implies (and (<= 0 ?x193) (and (< ?x193 ?x194) (and (<= ?x194 ?x196) (and (<= 0 ?x195) (<= (uf_79 (- (- ?x194 ?x193) 1)) (uf_80 (uf_81 ?x195 (uf_79 ?x193)) (uf_79 (- ?x194 ?x193)))))))) (= (uf_97 ?x195 ?x196 ?x193 ?x194) (- (uf_79 (- (- ?x194 ?x193) 1)) (uf_80 (uf_81 ?x195 (uf_79 ?x193)) (uf_79 (- ?x194 ?x193)))))) :pat { (uf_97 ?x195 ?x196 ?x193 ?x194) })
+:assumption (forall (?x197 Int) (?x198 Int) (?x199 Int) (?x200 Int) (implies (and (<= 0 ?x197) (and (< ?x197 ?x198) (and (<= ?x198 ?x200) (and (<= 0 ?x199) (< (uf_80 (uf_81 ?x199 (uf_79 ?x197)) (uf_79 (- ?x198 ?x197))) (uf_79 (- (- ?x198 ?x197) 1))))))) (= (uf_97 ?x199 ?x200 ?x197 ?x198) (uf_80 (uf_81 ?x199 (uf_79 ?x197)) (uf_79 (- ?x198 ?x197))))) :pat { (uf_97 ?x199 ?x200 ?x197 ?x198) })
+:assumption (forall (?x201 Int) (?x202 Int) (?x203 Int) (?x204 Int) (implies (and (<= 0 ?x201) (and (< ?x201 ?x202) (and (<= ?x202 ?x204) (<= 0 ?x203)))) (= (uf_98 ?x203 ?x204 ?x201 ?x202) (uf_80 (uf_81 ?x203 (uf_79 ?x201)) (uf_79 (- ?x202 ?x201))))) :pat { (uf_98 ?x203 ?x204 ?x201 ?x202) })
+:assumption (forall (?x205 Int) (?x206 Int) (?x207 Int) (implies (and (<= 0 ?x205) (and (< ?x205 ?x206) (<= ?x206 ?x207))) (= (uf_98 0 ?x207 ?x205 ?x206) 0)) :pat { (uf_98 0 ?x207 ?x205 ?x206) })
+:assumption (forall (?x208 Int) (?x209 Int) (?x210 Int) (implies (and (<= 0 ?x208) (and (< ?x208 ?x209) (<= ?x209 ?x210))) (= (uf_97 0 ?x210 ?x208 ?x209) 0)) :pat { (uf_97 0 ?x210 ?x208 ?x209) })
+:assumption (forall (?x211 Int) (?x212 Int) (?x213 Int) (?x214 Int) (?x215 Int) (?x216 Int) (?x217 Int) (implies (and (<= 0 ?x211) (and (< ?x211 ?x212) (<= ?x212 ?x215))) (implies (and (<= 0 ?x216) (and (< ?x216 ?x217) (<= ?x217 ?x215))) (implies (or (<= ?x217 ?x211) (<= ?x212 ?x216)) (= (uf_98 (uf_99 ?x214 ?x215 ?x211 ?x212 ?x213) ?x215 ?x216 ?x217) (uf_98 ?x214 ?x215 ?x216 ?x217))))) :pat { (uf_98 (uf_99 ?x214 ?x215 ?x211 ?x212 ?x213) ?x215 ?x216 ?x217) })
+:assumption (forall (?x218 Int) (?x219 Int) (?x220 Int) (?x221 Int) (?x222 Int) (?x223 Int) (?x224 Int) (implies (and (<= 0 ?x218) (and (< ?x218 ?x219) (<= ?x219 ?x222))) (implies (and (<= 0 ?x223) (and (< ?x223 ?x224) (<= ?x224 ?x222))) (implies (or (<= ?x224 ?x218) (<= ?x219 ?x223)) (= (uf_97 (uf_99 ?x221 ?x222 ?x218 ?x219 ?x220) ?x222 ?x223 ?x224) (uf_97 ?x221 ?x222 ?x223 ?x224))))) :pat { (uf_97 (uf_99 ?x221 ?x222 ?x218 ?x219 ?x220) ?x222 ?x223 ?x224) })
+:assumption (forall (?x225 Int) (?x226 Int) (?x227 Int) (?x228 Int) (implies (and (<= 0 ?x225) (and (< ?x225 ?x226) (<= ?x226 ?x228))) (and (<= 0 (uf_98 ?x227 ?x228 ?x225 ?x226)) (<= (uf_98 ?x227 ?x228 ?x225 ?x226) (- (uf_79 (- ?x226 ?x225)) 1)))) :pat { (uf_98 ?x227 ?x228 ?x225 ?x226) })
+:assumption (forall (?x229 Int) (?x230 Int) (?x231 Int) (?x232 Int) (implies (and (<= 0 ?x229) (and (< ?x229 ?x230) (<= ?x230 ?x232))) (and (<= (- 0 (uf_79 (- (- ?x230 ?x229) 1))) (uf_97 ?x231 ?x232 ?x229 ?x230)) (<= (uf_97 ?x231 ?x232 ?x229 ?x230) (- (uf_79 (- (- ?x230 ?x229) 1)) 1)))) :pat { (uf_97 ?x231 ?x232 ?x229 ?x230) })
+:assumption (forall (?x233 Int) (?x234 Int) (?x235 Int) (?x236 Int) (?x237 Int) (implies (and (<= 0 ?x233) (and (< ?x233 ?x234) (<= ?x234 ?x237))) (implies (and (<= 0 ?x235) (< ?x235 (uf_79 (- ?x234 ?x233)))) (= (uf_98 (uf_99 ?x236 ?x237 ?x233 ?x234 ?x235) ?x237 ?x233 ?x234) ?x235))) :pat { (uf_98 (uf_99 ?x236 ?x237 ?x233 ?x234 ?x235) ?x237 ?x233 ?x234) })
+:assumption (forall (?x238 Int) (?x239 Int) (?x240 Int) (?x241 Int) (?x242 Int) (implies (and (<= 0 ?x238) (and (< ?x238 ?x239) (<= ?x239 ?x242))) (implies (and (<= (- 0 (uf_79 (- (- ?x239 ?x238) 1))) ?x240) (< ?x240 (uf_79 (- (- ?x239 ?x238) 1)))) (= (uf_97 (uf_99 ?x241 ?x242 ?x238 ?x239 ?x240) ?x242 ?x238 ?x239) ?x240))) :pat { (uf_97 (uf_99 ?x241 ?x242 ?x238 ?x239 ?x240) ?x242 ?x238 ?x239) })
+:assumption (forall (?x243 Int) (?x244 Int) (?x245 Int) (implies (and (<= 0 ?x243) (and (< ?x243 ?x244) (<= ?x244 ?x245))) (= (uf_99 0 ?x245 ?x243 ?x244 0) 0)) :pat { (uf_99 0 ?x245 ?x243 ?x244 0) })
+:assumption (forall (?x246 Int) (?x247 Int) (?x248 Int) (?x249 Int) (?x250 Int) (implies (and (<= 0 ?x247) (and (< ?x247 ?x248) (<= ?x248 ?x249))) (implies (and (<= 0 ?x250) (< ?x250 (uf_79 (- ?x248 ?x247)))) (and (<= 0 (uf_99 ?x246 ?x249 ?x247 ?x248 ?x250)) (< (uf_99 ?x246 ?x249 ?x247 ?x248 ?x250) (uf_79 ?x249))))) :pat { (uf_99 ?x246 ?x249 ?x247 ?x248 ?x250) })
:assumption (forall (?x251 Int) (?x252 Int) (= (uf_100 ?x251 ?x252) (uf_81 ?x251 (uf_79 ?x252))) :pat { (uf_100 ?x251 ?x252) })
-:assumption (forall (?x253 T3) (?x254 Int) (?x255 Int) (= (uf_101 ?x253 ?x254 ?x255) (uf_82 ?x253 (+ ?x254 (uf_79 ?x255)))) :pat { (uf_101 ?x253 ?x254 ?x255) })
+:assumption (forall (?x253 T3) (?x254 Int) (?x255 Int) (= (uf_101 ?x253 ?x254 ?x255) (uf_82 ?x253 (* ?x254 (uf_79 ?x255)))) :pat { (uf_101 ?x253 ?x254 ?x255) })
:assumption (forall (?x256 T3) (?x257 Int) (?x258 Int) (= (uf_102 ?x256 ?x257 ?x258) (uf_82 ?x256 (uf_80 ?x257 ?x258))) :pat { (uf_102 ?x256 ?x257 ?x258) })
:assumption (forall (?x259 T3) (?x260 Int) (?x261 Int) (= (uf_103 ?x259 ?x260 ?x261) (uf_82 ?x259 (uf_81 ?x260 ?x261))) :pat { (uf_103 ?x259 ?x260 ?x261) })
-:assumption (forall (?x262 T3) (?x263 Int) (?x264 Int) (= (uf_104 ?x262 ?x263 ?x264) (uf_82 ?x262 (+ ?x263 ?x264))) :pat { (uf_104 ?x262 ?x263 ?x264) })
-:assumption (forall (?x265 T3) (?x266 Int) (?x267 Int) (= (uf_105 ?x265 ?x266 ?x267) (uf_82 ?x265 (+ ?x266 ?x267))) :pat { (uf_105 ?x265 ?x266 ?x267) })
+:assumption (forall (?x262 T3) (?x263 Int) (?x264 Int) (= (uf_104 ?x262 ?x263 ?x264) (uf_82 ?x262 (* ?x263 ?x264))) :pat { (uf_104 ?x262 ?x263 ?x264) })
+:assumption (forall (?x265 T3) (?x266 Int) (?x267 Int) (= (uf_105 ?x265 ?x266 ?x267) (uf_82 ?x265 (- ?x266 ?x267))) :pat { (uf_105 ?x265 ?x266 ?x267) })
:assumption (forall (?x268 T3) (?x269 Int) (?x270 Int) (= (uf_106 ?x268 ?x269 ?x270) (uf_82 ?x268 (+ ?x269 ?x270))) :pat { (uf_106 ?x268 ?x269 ?x270) })
-:assumption (and (= (uf_79 63) 9223372036854775808) (and (= (uf_79 62) 4611686018427387904) (and (= (uf_79 61) 2305843009213693952) (and (= (uf_79 60) 1152921504606846976) (and (= (uf_79 59) 576460752303423488) (and (= (uf_79 58) 288230376151711744) (and (= (uf_79 57) 144115188075855872) (and (= (uf_79 56) 72057594037927936) (and (= (uf_79 55) 36028797018963968) (and (= (uf_79 54) 18014398509481984) (and (= (uf_79 53) 9007199254740992) (and (= (uf_79 52) 4503599627370496) (and (= (uf_79 51) 2251799813685248) (and (= (uf_79 50) 1125899906842624) (and (= (uf_79 49) 562949953421312) (and (= (uf_79 48) 281474976710656) (and (= (uf_79 47) 140737488355328) (and (= (uf_79 46) 70368744177664) (and (= (uf_79 45) 35184372088832) (and (= (uf_79 44) 17592186044416) (and (= (uf_79 43) 8796093022208) (and (= (uf_79 42) 4398046511104) (and (= (uf_79 41) 2199023255552) (and (= (uf_79 40) 1099511627776) (and (= (uf_79 39) 549755813888) (and (= (uf_79 38) 274877906944) (and (= (uf_79 37) 137438953472) (and (= (uf_79 36) 68719476736) (and (= (uf_79 35) 34359738368) (and (= (uf_79 34) 17179869184) (and (= (uf_79 33) 8589934592) (and (= (uf_79 32) 4294967296) (and (= (uf_79 31) 2147483648) (and (= (uf_79 30) 1073741824) (and (= (uf_79 29) 536870912) (and (= (uf_79 28) 268435456) (and (= (uf_79 27) 134217728) (and (= (uf_79 26) 67108864) (and (= (uf_79 25) 33554432) (and (= (uf_79 24) 16777216) (and (= (uf_79 23) 8388608) (and (= (uf_79 22) 4194304) (and (= (uf_79 21) 2097152) (and (= (uf_79 20) 1048576) (and (= (uf_79 19) 524288) (and (= (uf_79 18) 262144) (and (= (uf_79 17) 131072) (and (= (uf_79 16) 65536) (and (= (uf_79 15) 32768) (and (= (uf_79 14) 16384) (and (= (uf_79 13) 8192) (and (= (uf_79 12) 4096) (and (= (uf_79 11) 2048) (and (= (uf_79 10) 1024) (and (= (uf_79 9) 512) (and (= (uf_79 8) 256) (and (= (uf_79 7) 128) (and (= (uf_79 6) 64) (and (= (uf_79 5) 32) (and (= (uf_79 4) 16) (and (= (uf_79 3) 8) (and (= (uf_79 2) 4) (and (= (uf_79 1) 2) (= (uf_79 0) 1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
-:assumption (forall (?x271 T4) (?x272 T5) (implies (= (uf_51 ?x271) uf_9) (and (<= (uf_107 ?x271 ?x272) uf_75) (<= 0 (uf_107 ?x271 ?x272)))) :pat { (uf_107 ?x271 ?x272) })
-:assumption (forall (?x273 T4) (?x274 T5) (implies (= (uf_51 ?x273) uf_9) (and (<= (uf_108 ?x273 ?x274) uf_76) (<= 0 (uf_108 ?x273 ?x274)))) :pat { (uf_108 ?x273 ?x274) })
-:assumption (forall (?x275 T4) (?x276 T5) (implies (= (uf_51 ?x275) uf_9) (and (<= (uf_109 ?x275 ?x276) uf_77) (<= 0 (uf_109 ?x275 ?x276)))) :pat { (uf_109 ?x275 ?x276) })
-:assumption (forall (?x277 T4) (?x278 T5) (implies (= (uf_51 ?x277) uf_9) (and (<= (uf_110 ?x277 ?x278) uf_78) (<= 0 (uf_110 ?x277 ?x278)))) :pat { (uf_110 ?x277 ?x278) })
-:assumption (forall (?x279 T4) (?x280 T5) (implies (= (uf_51 ?x279) uf_9) (and (<= (uf_111 ?x279 ?x280) uf_85) (<= uf_86 (uf_111 ?x279 ?x280)))) :pat { (uf_111 ?x279 ?x280) })
-:assumption (forall (?x281 T4) (?x282 T5) (implies (= (uf_51 ?x281) uf_9) (and (<= (uf_112 ?x281 ?x282) uf_88) (<= uf_89 (uf_112 ?x281 ?x282)))) :pat { (uf_112 ?x281 ?x282) })
-:assumption (forall (?x283 T4) (?x284 T5) (implies (= (uf_51 ?x283) uf_9) (and (<= (uf_113 ?x283 ?x284) uf_92) (<= uf_93 (uf_113 ?x283 ?x284)))) :pat { (uf_113 ?x283 ?x284) })
-:assumption (forall (?x285 T4) (?x286 T5) (implies (= (uf_51 ?x285) uf_9) (and (<= (uf_114 ?x285 ?x286) uf_95) (<= uf_96 (uf_114 ?x285 ?x286)))) :pat { (uf_114 ?x285 ?x286) })
-:assumption (forall (?x287 T5) (?x288 T5) (= (uf_115 ?x287 ?x288) (+ (uf_116 ?x287) (uf_116 ?x288))) :pat { (uf_115 ?x287 ?x288) })
-:assumption (forall (?x289 T5) (implies (and (<= (uf_116 ?x289) uf_88) (<= uf_89 (uf_116 ?x289))) (= (uf_117 ?x289) (uf_116 ?x289))) :pat { (uf_117 ?x289) })
-:assumption (forall (?x290 T5) (implies (and (<= (uf_116 ?x290) uf_76) (<= 0 (uf_116 ?x290))) (= (uf_118 ?x290) (uf_116 ?x290))) :pat { (uf_118 ?x290) })
-:assumption (forall (?x291 T5) (implies (and (<= (uf_116 ?x291) uf_85) (<= uf_86 (uf_116 ?x291))) (= (uf_119 ?x291) (uf_116 ?x291))) :pat { (uf_119 ?x291) })
-:assumption (forall (?x292 T5) (implies (and (<= (uf_116 ?x292) uf_75) (<= 0 (uf_116 ?x292))) (= (uf_120 ?x292) (uf_116 ?x292))) :pat { (uf_120 ?x292) })
+:assumption (and (= (uf_79 0) 1) (and (= (uf_79 1) 2) (and (= (uf_79 2) 4) (and (= (uf_79 3) 8) (and (= (uf_79 4) 16) (and (= (uf_79 5) 32) (and (= (uf_79 6) 64) (and (= (uf_79 7) 128) (and (= (uf_79 8) 256) (and (= (uf_79 9) 512) (and (= (uf_79 10) 1024) (and (= (uf_79 11) 2048) (and (= (uf_79 12) 4096) (and (= (uf_79 13) 8192) (and (= (uf_79 14) 16384) (and (= (uf_79 15) 32768) (and (= (uf_79 16) 65536) (and (= (uf_79 17) 131072) (and (= (uf_79 18) 262144) (and (= (uf_79 19) 524288) (and (= (uf_79 20) 1048576) (and (= (uf_79 21) 2097152) (and (= (uf_79 22) 4194304) (and (= (uf_79 23) 8388608) (and (= (uf_79 24) 16777216) (and (= (uf_79 25) 33554432) (and (= (uf_79 26) 67108864) (and (= (uf_79 27) 134217728) (and (= (uf_79 28) 268435456) (and (= (uf_79 29) 536870912) (and (= (uf_79 30) 1073741824) (and (= (uf_79 31) 2147483648) (and (= (uf_79 32) 4294967296) (and (= (uf_79 33) 8589934592) (and (= (uf_79 34) 17179869184) (and (= (uf_79 35) 34359738368) (and (= (uf_79 36) 68719476736) (and (= (uf_79 37) 137438953472) (and (= (uf_79 38) 274877906944) (and (= (uf_79 39) 549755813888) (and (= (uf_79 40) 1099511627776) (and (= (uf_79 41) 2199023255552) (and (= (uf_79 42) 4398046511104) (and (= (uf_79 43) 8796093022208) (and (= (uf_79 44) 17592186044416) (and (= (uf_79 45) 35184372088832) (and (= (uf_79 46) 70368744177664) (and (= (uf_79 47) 140737488355328) (and (= (uf_79 48) 281474976710656) (and (= (uf_79 49) 562949953421312) (and (= (uf_79 50) 1125899906842624) (and (= (uf_79 51) 2251799813685248) (and (= (uf_79 52) 4503599627370496) (and (= (uf_79 53) 9007199254740992) (and (= (uf_79 54) 18014398509481984) (and (= (uf_79 55) 36028797018963968) (and (= (uf_79 56) 72057594037927936) (and (= (uf_79 57) 144115188075855872) (and (= (uf_79 58) 288230376151711744) (and (= (uf_79 59) 576460752303423488) (and (= (uf_79 60) 1152921504606846976) (and (= (uf_79 61) 2305843009213693952) (and (= (uf_79 62) 4611686018427387904) (= (uf_79 63) 9223372036854775808))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+:assumption (forall (?x271 T4) (?x272 T5) (implies (= (uf_51 ?x271) uf_9) (and (<= 0 (uf_107 ?x271 ?x272)) (<= (uf_107 ?x271 ?x272) uf_75))) :pat { (uf_107 ?x271 ?x272) })
+:assumption (forall (?x273 T4) (?x274 T5) (implies (= (uf_51 ?x273) uf_9) (and (<= 0 (uf_108 ?x273 ?x274)) (<= (uf_108 ?x273 ?x274) uf_76))) :pat { (uf_108 ?x273 ?x274) })
+:assumption (forall (?x275 T4) (?x276 T5) (implies (= (uf_51 ?x275) uf_9) (and (<= 0 (uf_109 ?x275 ?x276)) (<= (uf_109 ?x275 ?x276) uf_77))) :pat { (uf_109 ?x275 ?x276) })
+:assumption (forall (?x277 T4) (?x278 T5) (implies (= (uf_51 ?x277) uf_9) (and (<= 0 (uf_110 ?x277 ?x278)) (<= (uf_110 ?x277 ?x278) uf_78))) :pat { (uf_110 ?x277 ?x278) })
+:assumption (forall (?x279 T4) (?x280 T5) (implies (= (uf_51 ?x279) uf_9) (and (<= uf_85 (uf_111 ?x279 ?x280)) (<= (uf_111 ?x279 ?x280) uf_86))) :pat { (uf_111 ?x279 ?x280) })
+:assumption (forall (?x281 T4) (?x282 T5) (implies (= (uf_51 ?x281) uf_9) (and (<= uf_88 (uf_112 ?x281 ?x282)) (<= (uf_112 ?x281 ?x282) uf_89))) :pat { (uf_112 ?x281 ?x282) })
+:assumption (forall (?x283 T4) (?x284 T5) (implies (= (uf_51 ?x283) uf_9) (and (<= uf_92 (uf_113 ?x283 ?x284)) (<= (uf_113 ?x283 ?x284) uf_93))) :pat { (uf_113 ?x283 ?x284) })
+:assumption (forall (?x285 T4) (?x286 T5) (implies (= (uf_51 ?x285) uf_9) (and (<= uf_95 (uf_114 ?x285 ?x286)) (<= (uf_114 ?x285 ?x286) uf_96))) :pat { (uf_114 ?x285 ?x286) })
+:assumption (forall (?x287 T5) (?x288 T5) (= (uf_115 ?x287 ?x288) (- (uf_116 ?x287) (uf_116 ?x288))) :pat { (uf_115 ?x287 ?x288) })
+:assumption (forall (?x289 T5) (implies (and (<= uf_88 (uf_116 ?x289)) (<= (uf_116 ?x289) uf_89)) (= (uf_117 ?x289) (uf_116 ?x289))) :pat { (uf_117 ?x289) })
+:assumption (forall (?x290 T5) (implies (and (<= 0 (uf_116 ?x290)) (<= (uf_116 ?x290) uf_76)) (= (uf_118 ?x290) (uf_116 ?x290))) :pat { (uf_118 ?x290) })
+:assumption (forall (?x291 T5) (implies (and (<= uf_85 (uf_116 ?x291)) (<= (uf_116 ?x291) uf_86)) (= (uf_119 ?x291) (uf_116 ?x291))) :pat { (uf_119 ?x291) })
+:assumption (forall (?x292 T5) (implies (and (<= 0 (uf_116 ?x292)) (<= (uf_116 ?x292) uf_75)) (= (uf_120 ?x292) (uf_116 ?x292))) :pat { (uf_120 ?x292) })
:assumption (= (uf_117 uf_121) 0)
:assumption (= (uf_118 uf_121) 0)
:assumption (= (uf_119 uf_121) 0)
@@ -449,134 +449,134 @@
:assumption (forall (?x303 T4) (?x304 T5) (= (uf_112 ?x303 ?x304) (uf_19 (uf_20 ?x303) ?x304)) :pat { (uf_112 ?x303 ?x304) })
:assumption (forall (?x305 T4) (?x306 T5) (= (uf_113 ?x305 ?x306) (uf_19 (uf_20 ?x305) ?x306)) :pat { (uf_113 ?x305 ?x306) })
:assumption (forall (?x307 T4) (?x308 T5) (= (uf_114 ?x307 ?x308) (uf_19 (uf_20 ?x307) ?x308)) :pat { (uf_114 ?x307 ?x308) })
-:assumption (= uf_75 (+ (+ (+ (+ 65536 65536) 65536) 65536) 1))
-:assumption (= uf_76 (+ (+ 65536 65536) 1))
+:assumption (= uf_75 (- (* (* (* 65536 65536) 65536) 65536) 1))
+:assumption (= uf_76 (- (* 65536 65536) 1))
:assumption (= uf_77 65535)
:assumption (= uf_78 255)
-:assumption (= uf_85 (+ (+ (+ (+ 65536 65536) 65536) 32768) 1))
-:assumption (= uf_86 (+ 0 (+ (+ (+ 65536 65536) 65536) 32768)))
-:assumption (= uf_88 (+ (+ 65536 32768) 1))
-:assumption (= uf_89 (+ 0 (+ 65536 32768)))
-:assumption (= uf_92 32767)
-:assumption (= uf_93 (+ 0 32768))
-:assumption (= uf_95 127)
-:assumption (= uf_96 (+ 0 128))
+:assumption (= uf_86 (- (* (* (* 65536 65536) 65536) 32768) 1))
+:assumption (= uf_85 (- 0 (* (* (* 65536 65536) 65536) 32768)))
+:assumption (= uf_89 (- (* 65536 32768) 1))
+:assumption (= uf_88 (- 0 (* 65536 32768)))
+:assumption (= uf_93 32767)
+:assumption (= uf_92 (- 0 32768))
+:assumption (= uf_96 127)
+:assumption (= uf_95 (- 0 128))
:assumption (forall (?x309 T2) (iff (= (uf_122 ?x309) uf_9) (= ?x309 uf_9)) :pat { (uf_122 ?x309) })
-:assumption (forall (?x310 T4) (?x311 T4) (?x312 T5) (?x313 T3) (?x314 Int) (implies (= (uf_23 ?x313) uf_9) (implies (= (uf_123 ?x310 ?x311 ?x312 (uf_124 ?x313 ?x314)) uf_9) (forall (?x315 Int) (implies (and (< ?x315 ?x314) (<= 0 ?x315)) (= (uf_19 (uf_20 ?x310) (uf_66 (uf_43 ?x313 (uf_116 ?x312)) ?x315 ?x313)) (uf_19 (uf_20 ?x311) (uf_66 (uf_43 ?x313 (uf_116 ?x312)) ?x315 ?x313)))) :pat { (uf_19 (uf_20 ?x311) (uf_66 (uf_43 ?x313 (uf_116 ?x312)) ?x315 ?x313)) }))) :pat { (uf_123 ?x310 ?x311 ?x312 (uf_124 ?x313 ?x314)) (uf_23 ?x313) })
-:assumption (forall (?x316 T5) (?x317 Int) (?x318 T15) (= (uf_125 (uf_126 (uf_66 ?x316 ?x317 (uf_15 ?x316)) ?x318) ?x316) ?x317) :pat { (uf_125 (uf_126 (uf_66 ?x316 ?x317 (uf_15 ?x316)) ?x318) ?x316) })
-:assumption (forall (?x319 T5) (?x320 Int) (= (uf_125 (uf_66 ?x319 ?x320 (uf_15 ?x319)) ?x319) ?x320) :pat { (uf_66 ?x319 ?x320 (uf_15 ?x319)) })
-:assumption (forall (?x321 T5) (?x322 T4) (?x323 T5) (iff (= (uf_13 ?x321 (uf_127 ?x322 ?x323)) uf_9) (and (= (uf_13 ?x321 (uf_128 ?x322 ?x323)) uf_9) (not (= (uf_116 ?x323) (uf_116 uf_121))))) :pat { (uf_13 ?x321 (uf_127 ?x322 ?x323)) })
-:assumption (forall (?x324 T5) (?x325 Int) (?x326 T3) (?x327 Int) (iff (= (uf_13 ?x324 (uf_129 (uf_43 ?x326 ?x325) ?x326 ?x327)) uf_9) (and (= (uf_13 ?x324 (uf_130 (uf_66 (uf_43 ?x326 ?x325) (uf_125 ?x324 (uf_43 ?x326 ?x325)) ?x326))) uf_9) (and (<= (uf_125 ?x324 (uf_43 ?x326 ?x325)) (+ ?x327 1)) (and (<= 0 (uf_125 ?x324 (uf_43 ?x326 ?x325))) (not (= ?x325 0)))))) :pat { (uf_13 ?x324 (uf_129 (uf_43 ?x326 ?x325) ?x326 ?x327)) })
-:assumption (forall (?x328 T5) (?x329 T3) (?x330 Int) (?x331 Int) (?x332 T6) (implies (and (< ?x331 ?x330) (<= 0 ?x331)) (= (uf_133 (uf_66 ?x328 ?x331 ?x329) ?x332 (uf_132 ?x328 ?x329 ?x330)) 2)) :pat { (uf_66 ?x328 ?x331 ?x329) (uf_131 ?x332 (uf_132 ?x328 ?x329 ?x330)) })
-:assumption (forall (?x333 T5) (?x334 T3) (?x335 Int) (?x336 Int) (?x337 T6) (implies (and (< ?x336 ?x335) (<= 0 ?x336)) (= (uf_133 (uf_66 ?x333 ?x336 ?x334) (uf_132 ?x333 ?x334 ?x335) ?x337) 1)) :pat { (uf_66 ?x333 ?x336 ?x334) (uf_131 (uf_132 ?x333 ?x334 ?x335) ?x337) })
-:assumption (forall (?x338 T5) (?x339 Int) (?x340 T3) (?x341 Int) (iff (= (uf_13 ?x338 (uf_132 (uf_43 ?x340 ?x339) ?x340 ?x341)) uf_9) (and (= (uf_13 ?x338 (uf_130 (uf_66 (uf_43 ?x340 ?x339) (uf_125 ?x338 (uf_43 ?x340 ?x339)) ?x340))) uf_9) (and (<= (uf_125 ?x338 (uf_43 ?x340 ?x339)) (+ ?x341 1)) (<= 0 (uf_125 ?x338 (uf_43 ?x340 ?x339)))))) :pat { (uf_13 ?x338 (uf_132 (uf_43 ?x340 ?x339) ?x340 ?x341)) })
-:assumption (forall (?x342 T5) (?x343 T3) (?x344 Int) (?x345 T5) (iff (= (uf_13 ?x345 (uf_134 ?x342 ?x343 ?x344)) uf_9) (and (= ?x345 (uf_66 ?x342 (uf_125 ?x345 ?x342) ?x343)) (and (<= (uf_125 ?x345 ?x342) (+ ?x344 1)) (<= 0 (uf_125 ?x345 ?x342))))) :pat { (uf_13 ?x345 (uf_134 ?x342 ?x343 ?x344)) })
-:assumption (forall (?x346 T4) (?x347 Int) (?x348 T3) (?x349 Int) (?x350 Int) (implies (= (uf_27 ?x346 (uf_43 (uf_124 ?x348 ?x349) ?x347)) uf_9) (implies (and (< ?x350 ?x349) (<= 0 ?x350)) (and (= (uf_27 ?x346 (uf_66 (uf_43 (uf_124 ?x348 ?x349) ?x347) ?x350 ?x348)) uf_9) (and (up_68 (uf_58 (uf_59 ?x346) (uf_66 (uf_43 (uf_124 ?x348 ?x349) ?x347) ?x350 ?x348))) (and (not (= (uf_135 (uf_58 (uf_59 ?x346) (uf_66 (uf_43 (uf_124 ?x348 ?x349) ?x347) ?x350 ?x348))) uf_9)) (= (uf_136 (uf_58 (uf_59 ?x346) (uf_66 (uf_43 (uf_124 ?x348 ?x349) ?x347) ?x350 ?x348))) (uf_43 (uf_124 ?x348 ?x349) ?x347))))))) :pat { (uf_40 (uf_41 ?x346) (uf_66 (uf_43 ?x348 ?x347) ?x350 ?x348)) (uf_43 (uf_124 ?x348 ?x349) ?x347) } :pat { (uf_58 (uf_59 ?x346) (uf_66 (uf_43 ?x348 ?x347) ?x350 ?x348)) (uf_43 (uf_124 ?x348 ?x349) ?x347) })
-:assumption (forall (?x351 T4) (?x352 T5) (?x353 Int) (?x354 T3) (?x355 Int) (iff (= (uf_13 ?x352 (uf_128 ?x351 (uf_43 (uf_124 ?x354 ?x355) ?x353))) uf_9) (or (and (= (uf_13 ?x352 (uf_128 ?x351 (uf_66 (uf_43 ?x354 ?x353) (uf_125 ?x352 (uf_43 ?x354 ?x353)) ?x354))) uf_9) (and (<= (uf_125 ?x352 (uf_43 ?x354 ?x353)) (+ ?x355 1)) (<= 0 (uf_125 ?x352 (uf_43 ?x354 ?x353))))) (= ?x352 (uf_43 (uf_124 ?x354 ?x355) ?x353)))) :pat { (uf_13 ?x352 (uf_128 ?x351 (uf_43 (uf_124 ?x354 ?x355) ?x353))) })
-:assumption (forall (?x356 T5) (?x357 Int) (?x358 T3) (?x359 Int) (iff (= (uf_13 ?x356 (uf_130 (uf_43 (uf_124 ?x358 ?x359) ?x357))) uf_9) (or (and (= (uf_13 ?x356 (uf_130 (uf_66 (uf_43 ?x358 ?x357) (uf_125 ?x356 (uf_43 ?x358 ?x357)) ?x358))) uf_9) (and (<= (uf_125 ?x356 (uf_43 ?x358 ?x357)) (+ ?x359 1)) (<= 0 (uf_125 ?x356 (uf_43 ?x358 ?x357))))) (= ?x356 (uf_43 (uf_124 ?x358 ?x359) ?x357)))) :pat { (uf_13 ?x356 (uf_130 (uf_43 (uf_124 ?x358 ?x359) ?x357))) })
-:assumption (forall (?x360 T4) (?x361 T5) (?x362 T3) (?x363 Int) (iff (= (uf_65 ?x360 ?x361 ?x362 ?x363) uf_9) (and (forall (?x364 Int) (implies (and (< ?x364 ?x363) (<= 0 ?x364)) (and (= (uf_27 ?x360 (uf_66 ?x361 ?x364 ?x362)) uf_9) (up_68 (uf_58 (uf_59 ?x360) (uf_66 ?x361 ?x364 ?x362))))) :pat { (uf_40 (uf_41 ?x360) (uf_66 ?x361 ?x364 ?x362)) } :pat { (uf_58 (uf_59 ?x360) (uf_66 ?x361 ?x364 ?x362)) } :pat { (uf_19 (uf_20 ?x360) (uf_66 ?x361 ?x364 ?x362)) }) (= (uf_48 ?x361 ?x362) uf_9))) :pat { (uf_65 ?x360 ?x361 ?x362 ?x363) })
-:assumption (forall (?x365 T4) (?x366 T5) (?x367 T3) (?x368 Int) (?x369 T2) (iff (= (uf_137 ?x365 ?x366 ?x367 ?x368 ?x369) uf_9) (and (forall (?x370 Int) (implies (and (< ?x370 ?x368) (<= 0 ?x370)) (and (= (uf_27 ?x365 (uf_66 ?x366 ?x370 ?x367)) uf_9) (and (up_68 (uf_58 (uf_59 ?x365) (uf_66 ?x366 ?x370 ?x367))) (iff (= (uf_135 (uf_58 (uf_59 ?x365) (uf_66 ?x366 ?x370 ?x367))) uf_9) (= ?x369 uf_9))))) :pat { (uf_40 (uf_41 ?x365) (uf_66 ?x366 ?x370 ?x367)) } :pat { (uf_58 (uf_59 ?x365) (uf_66 ?x366 ?x370 ?x367)) } :pat { (uf_19 (uf_20 ?x365) (uf_66 ?x366 ?x370 ?x367)) }) (= (uf_48 ?x366 ?x367) uf_9))) :pat { (uf_137 ?x365 ?x366 ?x367 ?x368 ?x369) })
-:assumption (forall (?x371 T5) (?x372 Int) (?x373 Int) (?x374 T3) (implies (and (not (= ?x373 0)) (not (= ?x372 0))) (= (uf_66 (uf_66 ?x371 ?x372 ?x374) ?x373 ?x374) (uf_66 ?x371 (+ ?x372 ?x373) ?x374))) :pat { (uf_66 (uf_66 ?x371 ?x372 ?x374) ?x373 ?x374) })
-:assumption (forall (?x375 T5) (?x376 Int) (?x377 T3) (and (= (uf_66 ?x375 ?x376 ?x377) (uf_43 ?x377 (+ (uf_116 ?x375) (+ ?x376 (uf_138 ?x377))))) (= (uf_139 (uf_66 ?x375 ?x376 ?x377) ?x375) uf_9)) :pat { (uf_66 ?x375 ?x376 ?x377) })
+:assumption (forall (?x310 T4) (?x311 T4) (?x312 T5) (?x313 T3) (?x314 Int) (implies (= (uf_22 ?x313) uf_9) (implies (= (uf_123 ?x310 ?x311 ?x312 (uf_124 ?x313 ?x314)) uf_9) (forall (?x315 Int) (implies (and (<= 0 ?x315) (< ?x315 ?x314)) (= (uf_19 (uf_20 ?x310) (uf_66 (uf_43 ?x313 (uf_116 ?x312)) ?x315 ?x313)) (uf_19 (uf_20 ?x311) (uf_66 (uf_43 ?x313 (uf_116 ?x312)) ?x315 ?x313)))) :pat { (uf_19 (uf_20 ?x311) (uf_66 (uf_43 ?x313 (uf_116 ?x312)) ?x315 ?x313)) }))) :pat { (uf_123 ?x310 ?x311 ?x312 (uf_124 ?x313 ?x314)) (uf_22 ?x313) })
+:assumption (forall (?x316 T5) (?x317 Int) (?x318 T15) (= (uf_125 (uf_126 (uf_66 ?x316 ?x317 (uf_13 ?x316)) ?x318) ?x316) ?x317) :pat { (uf_125 (uf_126 (uf_66 ?x316 ?x317 (uf_13 ?x316)) ?x318) ?x316) })
+:assumption (forall (?x319 T5) (?x320 Int) (= (uf_125 (uf_66 ?x319 ?x320 (uf_13 ?x319)) ?x319) ?x320) :pat { (uf_66 ?x319 ?x320 (uf_13 ?x319)) })
+:assumption (forall (?x321 T5) (?x322 T4) (?x323 T5) (iff (= (uf_15 ?x321 (uf_127 ?x322 ?x323)) uf_9) (and (not (= (uf_116 ?x323) (uf_116 uf_121))) (= (uf_15 ?x321 (uf_128 ?x322 ?x323)) uf_9))) :pat { (uf_15 ?x321 (uf_127 ?x322 ?x323)) })
+:assumption (forall (?x324 T5) (?x325 Int) (?x326 T3) (?x327 Int) (iff (= (uf_15 ?x324 (uf_129 (uf_43 ?x326 ?x325) ?x326 ?x327)) uf_9) (and (not (= ?x325 0)) (and (<= 0 (uf_125 ?x324 (uf_43 ?x326 ?x325))) (and (<= (uf_125 ?x324 (uf_43 ?x326 ?x325)) (- ?x327 1)) (= (uf_15 ?x324 (uf_130 (uf_66 (uf_43 ?x326 ?x325) (uf_125 ?x324 (uf_43 ?x326 ?x325)) ?x326))) uf_9))))) :pat { (uf_15 ?x324 (uf_129 (uf_43 ?x326 ?x325) ?x326 ?x327)) })
+:assumption (forall (?x328 T5) (?x329 T3) (?x330 Int) (?x331 Int) (?x332 T6) (implies (and (<= 0 ?x331) (< ?x331 ?x330)) (= (uf_133 (uf_66 ?x328 ?x331 ?x329) ?x332 (uf_132 ?x328 ?x329 ?x330)) 2)) :pat { (uf_66 ?x328 ?x331 ?x329) (uf_131 ?x332 (uf_132 ?x328 ?x329 ?x330)) })
+:assumption (forall (?x333 T5) (?x334 T3) (?x335 Int) (?x336 Int) (?x337 T6) (implies (and (<= 0 ?x336) (< ?x336 ?x335)) (= (uf_133 (uf_66 ?x333 ?x336 ?x334) (uf_132 ?x333 ?x334 ?x335) ?x337) 1)) :pat { (uf_66 ?x333 ?x336 ?x334) (uf_131 (uf_132 ?x333 ?x334 ?x335) ?x337) })
+:assumption (forall (?x338 T5) (?x339 Int) (?x340 T3) (?x341 Int) (iff (= (uf_15 ?x338 (uf_132 (uf_43 ?x340 ?x339) ?x340 ?x341)) uf_9) (and (<= 0 (uf_125 ?x338 (uf_43 ?x340 ?x339))) (and (<= (uf_125 ?x338 (uf_43 ?x340 ?x339)) (- ?x341 1)) (= (uf_15 ?x338 (uf_130 (uf_66 (uf_43 ?x340 ?x339) (uf_125 ?x338 (uf_43 ?x340 ?x339)) ?x340))) uf_9)))) :pat { (uf_15 ?x338 (uf_132 (uf_43 ?x340 ?x339) ?x340 ?x341)) })
+:assumption (forall (?x342 T5) (?x343 T3) (?x344 Int) (?x345 T5) (iff (= (uf_15 ?x345 (uf_134 ?x342 ?x343 ?x344)) uf_9) (and (<= 0 (uf_125 ?x345 ?x342)) (and (<= (uf_125 ?x345 ?x342) (- ?x344 1)) (= ?x345 (uf_66 ?x342 (uf_125 ?x345 ?x342) ?x343))))) :pat { (uf_15 ?x345 (uf_134 ?x342 ?x343 ?x344)) })
+:assumption (forall (?x346 T4) (?x347 Int) (?x348 T3) (?x349 Int) (?x350 Int) (implies (= (uf_24 ?x346 (uf_43 (uf_124 ?x348 ?x349) ?x347)) uf_9) (implies (and (<= 0 ?x350) (< ?x350 ?x349)) (and (= (uf_135 (uf_58 (uf_59 ?x346) (uf_66 (uf_43 (uf_124 ?x348 ?x349) ?x347) ?x350 ?x348))) (uf_43 (uf_124 ?x348 ?x349) ?x347)) (and (not (= (uf_136 (uf_58 (uf_59 ?x346) (uf_66 (uf_43 (uf_124 ?x348 ?x349) ?x347) ?x350 ?x348))) uf_9)) (and (up_67 (uf_58 (uf_59 ?x346) (uf_66 (uf_43 (uf_124 ?x348 ?x349) ?x347) ?x350 ?x348))) (= (uf_24 ?x346 (uf_66 (uf_43 (uf_124 ?x348 ?x349) ?x347) ?x350 ?x348)) uf_9)))))) :pat { (uf_40 (uf_41 ?x346) (uf_66 (uf_43 ?x348 ?x347) ?x350 ?x348)) (uf_43 (uf_124 ?x348 ?x349) ?x347) } :pat { (uf_58 (uf_59 ?x346) (uf_66 (uf_43 ?x348 ?x347) ?x350 ?x348)) (uf_43 (uf_124 ?x348 ?x349) ?x347) })
+:assumption (forall (?x351 T4) (?x352 T5) (?x353 Int) (?x354 T3) (?x355 Int) (iff (= (uf_15 ?x352 (uf_128 ?x351 (uf_43 (uf_124 ?x354 ?x355) ?x353))) uf_9) (or (= ?x352 (uf_43 (uf_124 ?x354 ?x355) ?x353)) (and (<= 0 (uf_125 ?x352 (uf_43 ?x354 ?x353))) (and (<= (uf_125 ?x352 (uf_43 ?x354 ?x353)) (- ?x355 1)) (= (uf_15 ?x352 (uf_128 ?x351 (uf_66 (uf_43 ?x354 ?x353) (uf_125 ?x352 (uf_43 ?x354 ?x353)) ?x354))) uf_9))))) :pat { (uf_15 ?x352 (uf_128 ?x351 (uf_43 (uf_124 ?x354 ?x355) ?x353))) })
+:assumption (forall (?x356 T5) (?x357 Int) (?x358 T3) (?x359 Int) (iff (= (uf_15 ?x356 (uf_130 (uf_43 (uf_124 ?x358 ?x359) ?x357))) uf_9) (or (= ?x356 (uf_43 (uf_124 ?x358 ?x359) ?x357)) (and (<= 0 (uf_125 ?x356 (uf_43 ?x358 ?x357))) (and (<= (uf_125 ?x356 (uf_43 ?x358 ?x357)) (- ?x359 1)) (= (uf_15 ?x356 (uf_130 (uf_66 (uf_43 ?x358 ?x357) (uf_125 ?x356 (uf_43 ?x358 ?x357)) ?x358))) uf_9))))) :pat { (uf_15 ?x356 (uf_130 (uf_43 (uf_124 ?x358 ?x359) ?x357))) })
+:assumption (forall (?x360 T4) (?x361 T5) (?x362 T3) (?x363 Int) (iff (= (uf_65 ?x360 ?x361 ?x362 ?x363) uf_9) (and (= (uf_48 ?x361 ?x362) uf_9) (forall (?x364 Int) (implies (and (<= 0 ?x364) (< ?x364 ?x363)) (and (up_67 (uf_58 (uf_59 ?x360) (uf_66 ?x361 ?x364 ?x362))) (= (uf_24 ?x360 (uf_66 ?x361 ?x364 ?x362)) uf_9))) :pat { (uf_40 (uf_41 ?x360) (uf_66 ?x361 ?x364 ?x362)) } :pat { (uf_58 (uf_59 ?x360) (uf_66 ?x361 ?x364 ?x362)) } :pat { (uf_19 (uf_20 ?x360) (uf_66 ?x361 ?x364 ?x362)) }))) :pat { (uf_65 ?x360 ?x361 ?x362 ?x363) })
+:assumption (forall (?x365 T4) (?x366 T5) (?x367 T3) (?x368 Int) (?x369 T2) (iff (= (uf_137 ?x365 ?x366 ?x367 ?x368 ?x369) uf_9) (and (= (uf_48 ?x366 ?x367) uf_9) (forall (?x370 Int) (implies (and (<= 0 ?x370) (< ?x370 ?x368)) (and (iff (= (uf_136 (uf_58 (uf_59 ?x365) (uf_66 ?x366 ?x370 ?x367))) uf_9) (= ?x369 uf_9)) (and (up_67 (uf_58 (uf_59 ?x365) (uf_66 ?x366 ?x370 ?x367))) (= (uf_24 ?x365 (uf_66 ?x366 ?x370 ?x367)) uf_9)))) :pat { (uf_40 (uf_41 ?x365) (uf_66 ?x366 ?x370 ?x367)) } :pat { (uf_58 (uf_59 ?x365) (uf_66 ?x366 ?x370 ?x367)) } :pat { (uf_19 (uf_20 ?x365) (uf_66 ?x366 ?x370 ?x367)) }))) :pat { (uf_137 ?x365 ?x366 ?x367 ?x368 ?x369) })
+:assumption (forall (?x371 T5) (?x372 Int) (?x373 Int) (?x374 T3) (implies (and (not (= ?x372 0)) (not (= ?x373 0))) (= (uf_66 (uf_66 ?x371 ?x372 ?x374) ?x373 ?x374) (uf_66 ?x371 (+ ?x372 ?x373) ?x374))) :pat { (uf_66 (uf_66 ?x371 ?x372 ?x374) ?x373 ?x374) })
+:assumption (forall (?x375 T5) (?x376 Int) (?x377 T3) (and (= (uf_138 (uf_66 ?x375 ?x376 ?x377) ?x375) uf_9) (= (uf_66 ?x375 ?x376 ?x377) (uf_43 ?x377 (+ (uf_116 ?x375) (* ?x376 (uf_139 ?x377)))))) :pat { (uf_66 ?x375 ?x376 ?x377) })
:assumption (forall (?x378 T5) (?x379 T3) (= (uf_140 ?x378 ?x379) ?x378) :pat { (uf_140 ?x378 ?x379) })
:assumption (forall (?x380 T3) (?x381 Int) (not (up_36 (uf_124 ?x380 ?x381))) :pat { (uf_124 ?x380 ?x381) })
:assumption (forall (?x382 T3) (?x383 Int) (= (uf_141 (uf_124 ?x382 ?x383)) uf_9) :pat { (uf_124 ?x382 ?x383) })
:assumption (forall (?x384 T3) (?x385 Int) (= (uf_142 (uf_124 ?x384 ?x385)) 0) :pat { (uf_124 ?x384 ?x385) })
:assumption (forall (?x386 T3) (?x387 Int) (= (uf_143 (uf_124 ?x386 ?x387)) ?x387) :pat { (uf_124 ?x386 ?x387) })
:assumption (forall (?x388 T3) (?x389 Int) (= (uf_144 (uf_124 ?x388 ?x389)) ?x388) :pat { (uf_124 ?x388 ?x389) })
-:assumption (forall (?x390 T5) (?x391 T6) (iff (= (uf_13 ?x390 ?x391) uf_9) (= (uf_145 ?x390 ?x391) uf_9)) :pat { (uf_145 ?x390 ?x391) })
-:assumption (forall (?x392 T5) (?x393 T6) (iff (= (uf_13 ?x392 ?x393) uf_9) (up_146 ?x392 ?x393)) :pat { (uf_13 ?x392 ?x393) })
-:assumption (forall (?x394 T5) (?x395 T6) (iff (= (uf_13 ?x394 ?x395) uf_9) (= (uf_147 ?x394 ?x395) uf_9)) :pat { (uf_13 ?x394 ?x395) })
-:assumption (forall (?x396 T5) (?x397 T4) (?x398 T5) (iff (= (uf_13 ?x396 (uf_53 ?x397 ?x398)) uf_9) (= (uf_147 ?x396 (uf_53 ?x397 ?x398)) uf_9)) :pat { (uf_147 ?x396 (uf_53 ?x397 ?x398)) (uf_148 ?x396) })
-:assumption (forall (?x399 T5) (?x400 T4) (?x401 T5) (implies (= (uf_13 ?x399 (uf_53 ?x400 ?x401)) uf_9) (= (uf_148 ?x399) uf_9)) :pat { (uf_13 ?x399 (uf_53 ?x400 ?x401)) })
-:assumption (forall (?x402 T6) (?x403 T6) (implies (forall (?x404 T5) (and (implies (= (uf_13 ?x404 ?x403) uf_9) (not (= (uf_13 ?x404 ?x402) uf_9))) (implies (= (uf_13 ?x404 ?x402) uf_9) (not (= (uf_13 ?x404 ?x403) uf_9)))) :pat { (uf_18 ?x404) }) (= (uf_131 ?x402 ?x403) uf_9)) :pat { (uf_131 ?x402 ?x403) })
-:assumption (forall (?x405 T5) (?x406 T6) (?x407 T6) (implies (and (= (uf_13 ?x405 ?x407) uf_9) (= (uf_131 ?x406 ?x407) uf_9)) (= (uf_133 ?x405 ?x406 ?x407) 2)) :pat { (uf_131 ?x406 ?x407) (uf_13 ?x405 ?x407) })
-:assumption (forall (?x408 T5) (?x409 T6) (?x410 T6) (implies (and (= (uf_13 ?x408 ?x409) uf_9) (= (uf_131 ?x409 ?x410) uf_9)) (= (uf_133 ?x408 ?x409 ?x410) 1)) :pat { (uf_131 ?x409 ?x410) (uf_13 ?x408 ?x409) })
-:assumption (forall (?x411 T5) (= (uf_13 ?x411 uf_149) uf_9) :pat { (uf_13 ?x411 uf_149) })
+:assumption (forall (?x390 T5) (?x391 T6) (iff (= (uf_15 ?x390 ?x391) uf_9) (= (uf_145 ?x390 ?x391) uf_9)) :pat { (uf_145 ?x390 ?x391) })
+:assumption (forall (?x392 T5) (?x393 T6) (iff (= (uf_15 ?x392 ?x393) uf_9) (up_146 ?x392 ?x393)) :pat { (uf_15 ?x392 ?x393) })
+:assumption (forall (?x394 T5) (?x395 T6) (iff (= (uf_15 ?x394 ?x395) uf_9) (= (uf_147 ?x394 ?x395) uf_9)) :pat { (uf_15 ?x394 ?x395) })
+:assumption (forall (?x396 T5) (?x397 T4) (?x398 T5) (iff (= (uf_15 ?x396 (uf_53 ?x397 ?x398)) uf_9) (= (uf_147 ?x396 (uf_53 ?x397 ?x398)) uf_9)) :pat { (uf_147 ?x396 (uf_53 ?x397 ?x398)) (uf_148 ?x396) })
+:assumption (forall (?x399 T5) (?x400 T4) (?x401 T5) (implies (= (uf_15 ?x399 (uf_53 ?x400 ?x401)) uf_9) (= (uf_148 ?x399) uf_9)) :pat { (uf_15 ?x399 (uf_53 ?x400 ?x401)) })
+:assumption (forall (?x402 T6) (?x403 T6) (implies (forall (?x404 T5) (and (implies (= (uf_15 ?x404 ?x402) uf_9) (not (= (uf_15 ?x404 ?x403) uf_9))) (implies (= (uf_15 ?x404 ?x403) uf_9) (not (= (uf_15 ?x404 ?x402) uf_9)))) :pat { (uf_18 ?x404) }) (= (uf_131 ?x402 ?x403) uf_9)) :pat { (uf_131 ?x402 ?x403) })
+:assumption (forall (?x405 T5) (?x406 T6) (?x407 T6) (implies (and (= (uf_131 ?x406 ?x407) uf_9) (= (uf_15 ?x405 ?x407) uf_9)) (= (uf_133 ?x405 ?x406 ?x407) 2)) :pat { (uf_131 ?x406 ?x407) (uf_15 ?x405 ?x407) })
+:assumption (forall (?x408 T5) (?x409 T6) (?x410 T6) (implies (and (= (uf_131 ?x409 ?x410) uf_9) (= (uf_15 ?x408 ?x409) uf_9)) (= (uf_133 ?x408 ?x409 ?x410) 1)) :pat { (uf_131 ?x409 ?x410) (uf_15 ?x408 ?x409) })
+:assumption (forall (?x411 T5) (= (uf_15 ?x411 uf_149) uf_9) :pat { (uf_15 ?x411 uf_149) })
:assumption (forall (?x412 T5) (= (uf_150 (uf_151 ?x412)) 1))
:assumption (= (uf_150 uf_152) 0)
:assumption (forall (?x413 T6) (?x414 T6) (implies (= (uf_153 ?x413 ?x414) uf_9) (= ?x413 ?x414)) :pat { (uf_153 ?x413 ?x414) })
-:assumption (forall (?x415 T6) (?x416 T6) (implies (forall (?x417 T5) (iff (= (uf_13 ?x417 ?x415) uf_9) (= (uf_13 ?x417 ?x416) uf_9)) :pat { (uf_18 ?x417) }) (= (uf_153 ?x415 ?x416) uf_9)) :pat { (uf_153 ?x415 ?x416) })
-:assumption (forall (?x418 T6) (?x419 T6) (iff (= (uf_154 ?x418 ?x419) uf_9) (forall (?x420 T5) (implies (= (uf_13 ?x420 ?x418) uf_9) (= (uf_13 ?x420 ?x419) uf_9)) :pat { (uf_13 ?x420 ?x418) } :pat { (uf_13 ?x420 ?x419) })) :pat { (uf_154 ?x418 ?x419) })
-:assumption (forall (?x421 T6) (?x422 T6) (?x423 T5) (iff (= (uf_13 ?x423 (uf_155 ?x421 ?x422)) uf_9) (and (= (uf_13 ?x423 ?x422) uf_9) (= (uf_13 ?x423 ?x421) uf_9))) :pat { (uf_13 ?x423 (uf_155 ?x421 ?x422)) })
-:assumption (forall (?x424 T6) (?x425 T6) (?x426 T5) (iff (= (uf_13 ?x426 (uf_156 ?x424 ?x425)) uf_9) (and (not (= (uf_13 ?x426 ?x425) uf_9)) (= (uf_13 ?x426 ?x424) uf_9))) :pat { (uf_13 ?x426 (uf_156 ?x424 ?x425)) })
-:assumption (forall (?x427 T6) (?x428 T6) (?x429 T5) (iff (= (uf_13 ?x429 (uf_157 ?x427 ?x428)) uf_9) (or (= (uf_13 ?x429 ?x428) uf_9) (= (uf_13 ?x429 ?x427) uf_9))) :pat { (uf_13 ?x429 (uf_157 ?x427 ?x428)) })
-:assumption (forall (?x430 T5) (?x431 T5) (iff (= (uf_13 ?x431 (uf_158 ?x430)) uf_9) (and (not (= (uf_116 ?x430) (uf_116 uf_121))) (= ?x430 ?x431))) :pat { (uf_13 ?x431 (uf_158 ?x430)) })
-:assumption (forall (?x432 T5) (?x433 T5) (iff (= (uf_13 ?x433 (uf_151 ?x432)) uf_9) (= ?x432 ?x433)) :pat { (uf_13 ?x433 (uf_151 ?x432)) })
-:assumption (forall (?x434 T5) (not (= (uf_13 ?x434 uf_152) uf_9)) :pat { (uf_13 ?x434 uf_152) })
-:assumption (forall (?x435 T5) (?x436 T5) (= (uf_159 ?x435 ?x436) (uf_43 (uf_124 (uf_144 (uf_15 ?x435)) (+ (uf_143 (uf_15 ?x435)) (uf_143 (uf_15 ?x436)))) (uf_116 ?x435))) :pat { (uf_159 ?x435 ?x436) })
-:assumption (forall (?x437 T5) (?x438 Int) (= (uf_160 ?x437 ?x438) (uf_43 (uf_124 (uf_144 (uf_15 ?x437)) (+ (uf_143 (uf_15 ?x437)) ?x438)) (uf_116 (uf_66 (uf_43 (uf_144 (uf_15 ?x437)) (uf_116 ?x437)) ?x438 (uf_144 (uf_15 ?x437)))))) :pat { (uf_160 ?x437 ?x438) })
-:assumption (forall (?x439 T5) (?x440 Int) (= (uf_161 ?x439 ?x440) (uf_43 (uf_124 (uf_144 (uf_15 ?x439)) ?x440) (uf_116 ?x439))) :pat { (uf_161 ?x439 ?x440) })
-:assumption (forall (?x441 T4) (?x442 T5) (?x443 T5) (iff (= (uf_13 ?x442 (uf_162 ?x441 ?x443)) uf_9) (or (and (= (uf_13 ?x442 (uf_163 ?x443)) uf_9) (= (uf_135 (uf_58 (uf_59 ?x441) ?x442)) uf_9)) (= ?x442 ?x443))) :pat { (uf_13 ?x442 (uf_162 ?x441 ?x443)) })
+:assumption (forall (?x415 T6) (?x416 T6) (implies (forall (?x417 T5) (iff (= (uf_15 ?x417 ?x415) uf_9) (= (uf_15 ?x417 ?x416) uf_9)) :pat { (uf_18 ?x417) }) (= (uf_153 ?x415 ?x416) uf_9)) :pat { (uf_153 ?x415 ?x416) })
+:assumption (forall (?x418 T6) (?x419 T6) (iff (= (uf_154 ?x418 ?x419) uf_9) (forall (?x420 T5) (implies (= (uf_15 ?x420 ?x418) uf_9) (= (uf_15 ?x420 ?x419) uf_9)) :pat { (uf_15 ?x420 ?x418) } :pat { (uf_15 ?x420 ?x419) })) :pat { (uf_154 ?x418 ?x419) })
+:assumption (forall (?x421 T6) (?x422 T6) (?x423 T5) (iff (= (uf_15 ?x423 (uf_155 ?x421 ?x422)) uf_9) (and (= (uf_15 ?x423 ?x421) uf_9) (= (uf_15 ?x423 ?x422) uf_9))) :pat { (uf_15 ?x423 (uf_155 ?x421 ?x422)) })
+:assumption (forall (?x424 T6) (?x425 T6) (?x426 T5) (iff (= (uf_15 ?x426 (uf_156 ?x424 ?x425)) uf_9) (and (= (uf_15 ?x426 ?x424) uf_9) (not (= (uf_15 ?x426 ?x425) uf_9)))) :pat { (uf_15 ?x426 (uf_156 ?x424 ?x425)) })
+:assumption (forall (?x427 T6) (?x428 T6) (?x429 T5) (iff (= (uf_15 ?x429 (uf_157 ?x427 ?x428)) uf_9) (or (= (uf_15 ?x429 ?x427) uf_9) (= (uf_15 ?x429 ?x428) uf_9))) :pat { (uf_15 ?x429 (uf_157 ?x427 ?x428)) })
+:assumption (forall (?x430 T5) (?x431 T5) (iff (= (uf_15 ?x431 (uf_158 ?x430)) uf_9) (and (= ?x430 ?x431) (not (= (uf_116 ?x430) (uf_116 uf_121))))) :pat { (uf_15 ?x431 (uf_158 ?x430)) })
+:assumption (forall (?x432 T5) (?x433 T5) (iff (= (uf_15 ?x433 (uf_151 ?x432)) uf_9) (= ?x432 ?x433)) :pat { (uf_15 ?x433 (uf_151 ?x432)) })
+:assumption (forall (?x434 T5) (not (= (uf_15 ?x434 uf_152) uf_9)) :pat { (uf_15 ?x434 uf_152) })
+:assumption (forall (?x435 T5) (?x436 T5) (= (uf_159 ?x435 ?x436) (uf_43 (uf_124 (uf_144 (uf_13 ?x435)) (+ (uf_143 (uf_13 ?x435)) (uf_143 (uf_13 ?x436)))) (uf_116 ?x435))) :pat { (uf_159 ?x435 ?x436) })
+:assumption (forall (?x437 T5) (?x438 Int) (= (uf_160 ?x437 ?x438) (uf_43 (uf_124 (uf_144 (uf_13 ?x437)) (- (uf_143 (uf_13 ?x437)) ?x438)) (uf_116 (uf_66 (uf_43 (uf_144 (uf_13 ?x437)) (uf_116 ?x437)) ?x438 (uf_144 (uf_13 ?x437)))))) :pat { (uf_160 ?x437 ?x438) })
+:assumption (forall (?x439 T5) (?x440 Int) (= (uf_161 ?x439 ?x440) (uf_43 (uf_124 (uf_144 (uf_13 ?x439)) ?x440) (uf_116 ?x439))) :pat { (uf_161 ?x439 ?x440) })
+:assumption (forall (?x441 T4) (?x442 T5) (?x443 T5) (iff (= (uf_15 ?x442 (uf_162 ?x441 ?x443)) uf_9) (or (= ?x442 ?x443) (and (= (uf_136 (uf_58 (uf_59 ?x441) ?x442)) uf_9) (= (uf_15 ?x442 (uf_163 ?x443)) uf_9)))) :pat { (uf_15 ?x442 (uf_162 ?x441 ?x443)) })
:assumption (forall (?x444 T4) (implies (= (uf_164 ?x444) uf_9) (up_165 ?x444)) :pat { (uf_164 ?x444) })
:assumption (= (uf_142 uf_166) 0)
:assumption (= uf_167 (uf_43 uf_166 uf_168))
-:assumption (forall (?x445 T4) (?x446 T4) (?x447 T5) (?x448 T5) (and true (and (= (uf_170 (uf_169 ?x445 ?x446 ?x447 ?x448) ?x448) (uf_171 ?x445)) (and (= (uf_38 (uf_169 ?x445 ?x446 ?x447 ?x448) ?x448) (uf_38 ?x446 ?x448)) (and (= (uf_25 (uf_169 ?x445 ?x446 ?x447 ?x448) ?x448) uf_26) (and (= (uf_24 (uf_169 ?x445 ?x446 ?x447 ?x448) ?x448) uf_9) (= (uf_41 (uf_169 ?x445 ?x446 ?x447 ?x448)) (uf_172 (uf_41 ?x446) ?x448 (uf_173 ?x446 ?x447 ?x448)))))))) :pat { (uf_169 ?x445 ?x446 ?x447 ?x448) })
-:assumption (forall (?x449 T4) (?x450 T5) (?x451 T5) (implies (not (= (uf_14 (uf_15 ?x450)) uf_16)) (and true (and (= (uf_38 (uf_174 ?x449 ?x450 ?x451) ?x451) (uf_38 ?x449 ?x451)) (and (= (uf_25 (uf_174 ?x449 ?x450 ?x451) ?x451) ?x450) (and (= (uf_24 (uf_174 ?x449 ?x450 ?x451) ?x451) uf_9) (= (uf_41 (uf_174 ?x449 ?x450 ?x451)) (uf_172 (uf_41 ?x449) ?x451 (uf_175 ?x449 ?x450 ?x451)))))))) :pat { (uf_174 ?x449 ?x450 ?x451) })
-:assumption (forall (?x452 T4) (?x453 T5) (?x454 Int) (and (= (uf_177 ?x452 (uf_176 ?x452 ?x453 ?x454)) uf_9) (and (forall (?x455 T5) (<= (uf_170 ?x452 ?x455) (uf_170 (uf_176 ?x452 ?x455 ?x454) ?x455)) :pat { (uf_170 (uf_176 ?x452 ?x455 ?x454) ?x455) }) (and (< (uf_171 ?x452) (uf_171 (uf_176 ?x452 ?x453 ?x454))) (and (= (uf_20 (uf_176 ?x452 ?x453 ?x454)) (uf_178 (uf_20 ?x452) ?x453 ?x454)) (and (= (uf_41 (uf_176 ?x452 ?x453 ?x454)) (uf_41 ?x452)) (= (uf_59 (uf_176 ?x452 ?x453 ?x454)) (uf_59 ?x452))))))) :pat { (uf_176 ?x452 ?x453 ?x454) })
-:assumption (forall (?x456 T4) (implies (= (uf_51 ?x456) uf_9) (forall (?x457 T5) (?x458 T5) (implies (and (= (uf_24 ?x456 ?x458) uf_9) (and (= (uf_13 ?x457 (uf_53 ?x456 ?x458)) uf_9) (= (uf_51 ?x456) uf_9))) (and (not (= (uf_116 ?x457) 0)) (= (uf_24 ?x456 ?x457) uf_9))) :pat { (uf_13 ?x457 (uf_53 ?x456 ?x458)) })) :pat { (uf_51 ?x456) })
-:assumption (forall (?x459 T4) (?x460 T5) (?x461 T3) (implies (and (= (uf_24 ?x459 ?x460) uf_9) (= (uf_44 ?x459) uf_9)) (= (uf_46 ?x459 ?x459 ?x460 ?x461) uf_9)) :pat { (uf_46 ?x459 ?x459 ?x460 ?x461) })
+:assumption (forall (?x445 T4) (?x446 T4) (?x447 T5) (?x448 T5) (and (= (uf_41 (uf_169 ?x445 ?x446 ?x447 ?x448)) (uf_170 (uf_41 ?x446) ?x448 (uf_171 ?x446 ?x447 ?x448))) (and (= (uf_27 (uf_169 ?x445 ?x446 ?x447 ?x448) ?x448) uf_9) (and (= (uf_25 (uf_169 ?x445 ?x446 ?x447 ?x448) ?x448) uf_26) (and (= (uf_38 (uf_169 ?x445 ?x446 ?x447 ?x448) ?x448) (uf_38 ?x446 ?x448)) (and (= (uf_172 (uf_169 ?x445 ?x446 ?x447 ?x448) ?x448) (uf_173 ?x445)) true))))) :pat { (uf_169 ?x445 ?x446 ?x447 ?x448) })
+:assumption (forall (?x449 T4) (?x450 T5) (?x451 T5) (implies (not (= (uf_12 (uf_13 ?x450)) uf_14)) (and (= (uf_41 (uf_174 ?x449 ?x450 ?x451)) (uf_170 (uf_41 ?x449) ?x451 (uf_175 ?x449 ?x450 ?x451))) (and (= (uf_27 (uf_174 ?x449 ?x450 ?x451) ?x451) uf_9) (and (= (uf_25 (uf_174 ?x449 ?x450 ?x451) ?x451) ?x450) (and (= (uf_38 (uf_174 ?x449 ?x450 ?x451) ?x451) (uf_38 ?x449 ?x451)) true))))) :pat { (uf_174 ?x449 ?x450 ?x451) })
+:assumption (forall (?x452 T4) (?x453 T5) (?x454 Int) (and (= (uf_59 (uf_176 ?x452 ?x453 ?x454)) (uf_59 ?x452)) (and (= (uf_41 (uf_176 ?x452 ?x453 ?x454)) (uf_41 ?x452)) (and (= (uf_20 (uf_176 ?x452 ?x453 ?x454)) (uf_177 (uf_20 ?x452) ?x453 ?x454)) (and (< (uf_173 ?x452) (uf_173 (uf_176 ?x452 ?x453 ?x454))) (and (forall (?x455 T5) (<= (uf_172 ?x452 ?x455) (uf_172 (uf_176 ?x452 ?x455 ?x454) ?x455)) :pat { (uf_172 (uf_176 ?x452 ?x455 ?x454) ?x455) }) (= (uf_178 ?x452 (uf_176 ?x452 ?x453 ?x454)) uf_9)))))) :pat { (uf_176 ?x452 ?x453 ?x454) })
+:assumption (forall (?x456 T4) (implies (= (uf_51 ?x456) uf_9) (forall (?x457 T5) (?x458 T5) (implies (and (= (uf_51 ?x456) uf_9) (and (= (uf_15 ?x457 (uf_53 ?x456 ?x458)) uf_9) (= (uf_27 ?x456 ?x458) uf_9))) (and (= (uf_27 ?x456 ?x457) uf_9) (not (= (uf_116 ?x457) 0)))) :pat { (uf_15 ?x457 (uf_53 ?x456 ?x458)) })) :pat { (uf_51 ?x456) })
+:assumption (forall (?x459 T4) (?x460 T5) (?x461 T3) (implies (and (= (uf_44 ?x459) uf_9) (= (uf_27 ?x459 ?x460) uf_9)) (= (uf_46 ?x459 ?x459 ?x460 ?x461) uf_9)) :pat { (uf_46 ?x459 ?x459 ?x460 ?x461) })
:assumption (forall (?x462 T4) (?x463 Int) (?x464 T3) (implies (= (uf_51 ?x462) uf_9) (implies (= (uf_141 ?x464) uf_9) (= (uf_53 ?x462 (uf_43 ?x464 ?x463)) uf_152))) :pat { (uf_53 ?x462 (uf_43 ?x464 ?x463)) (uf_141 ?x464) })
-:assumption (forall (?x465 T4) (?x466 T4) (?x467 T5) (?x468 T3) (implies (and (= (uf_15 ?x467) ?x468) (= (uf_141 ?x468) uf_9)) (and (= (uf_179 ?x465 ?x466 ?x467 ?x468) uf_9) (iff (= (uf_46 ?x465 ?x466 ?x467 ?x468) uf_9) (= (uf_27 ?x466 ?x467) uf_9)))) :pat { (uf_141 ?x468) (uf_46 ?x465 ?x466 ?x467 ?x468) })
-:assumption (forall (?x469 T4) (?x470 T5) (?x471 T5) (implies (and (= (uf_22 (uf_15 ?x470)) uf_9) (and (= (uf_24 ?x469 ?x471) uf_9) (= (uf_51 ?x469) uf_9))) (iff (= (uf_13 ?x470 (uf_53 ?x469 ?x471)) uf_9) (= (uf_25 ?x469 ?x470) ?x471))) :pat { (uf_13 ?x470 (uf_53 ?x469 ?x471)) (uf_22 (uf_15 ?x470)) })
+:assumption (forall (?x465 T4) (?x466 T4) (?x467 T5) (?x468 T3) (implies (and (= (uf_141 ?x468) uf_9) (= (uf_13 ?x467) ?x468)) (and (iff (= (uf_46 ?x465 ?x466 ?x467 ?x468) uf_9) (= (uf_24 ?x466 ?x467) uf_9)) (= (uf_179 ?x465 ?x466 ?x467 ?x468) uf_9))) :pat { (uf_141 ?x468) (uf_46 ?x465 ?x466 ?x467 ?x468) })
+:assumption (forall (?x469 T4) (?x470 T5) (?x471 T5) (implies (and (= (uf_51 ?x469) uf_9) (and (= (uf_27 ?x469 ?x471) uf_9) (= (uf_23 (uf_13 ?x470)) uf_9))) (iff (= (uf_15 ?x470 (uf_53 ?x469 ?x471)) uf_9) (= (uf_25 ?x469 ?x470) ?x471))) :pat { (uf_15 ?x470 (uf_53 ?x469 ?x471)) (uf_23 (uf_13 ?x470)) })
:assumption (forall (?x472 T4) (?x473 T4) (?x474 Int) (?x475 T3) (?x476 T15) (up_182 (uf_19 (uf_20 ?x473) (uf_126 (uf_43 ?x475 ?x474) ?x476))) :pat { (uf_180 ?x475 ?x476) (uf_181 ?x472 ?x473) (uf_19 (uf_20 ?x472) (uf_126 (uf_43 ?x475 ?x474) ?x476)) })
-:assumption (forall (?x477 T4) (?x478 Int) (?x479 T3) (?x480 T15) (implies (and (= (uf_25 ?x477 (uf_43 ?x479 ?x478)) uf_26) (and (= (uf_180 ?x479 ?x480) uf_9) (and (= (uf_24 ?x477 (uf_43 ?x479 ?x478)) uf_9) (= (uf_55 ?x477) uf_9)))) (= (uf_19 (uf_20 ?x477) (uf_126 (uf_43 ?x479 ?x478) ?x480)) (uf_183 (uf_184 ?x477 (uf_43 ?x479 ?x478)) (uf_126 (uf_43 ?x479 ?x478) ?x480)))) :pat { (uf_180 ?x479 ?x480) (uf_19 (uf_20 ?x477) (uf_126 (uf_43 ?x479 ?x478) ?x480)) })
-:assumption (forall (?x481 T4) (?x482 Int) (?x483 T3) (?x484 T15) (?x485 T15) (implies (and (or (= (uf_28 (uf_183 (uf_184 ?x481 (uf_43 ?x483 ?x482)) (uf_126 (uf_43 ?x483 ?x482) ?x484))) uf_26) (= (uf_28 (uf_19 (uf_20 ?x481) (uf_126 (uf_43 ?x483 ?x482) ?x484))) uf_26)) (and (= (uf_24 ?x481 (uf_43 ?x483 ?x482)) uf_9) (and (= (uf_185 ?x483 ?x484 ?x485) uf_9) (= (uf_55 ?x481) uf_9)))) (= (uf_19 (uf_20 ?x481) (uf_126 (uf_43 ?x483 ?x482) ?x485)) (uf_183 (uf_184 ?x481 (uf_43 ?x483 ?x482)) (uf_126 (uf_43 ?x483 ?x482) ?x485)))) :pat { (uf_185 ?x483 ?x484 ?x485) (uf_19 (uf_20 ?x481) (uf_126 (uf_43 ?x483 ?x482) ?x485)) })
+:assumption (forall (?x477 T4) (?x478 Int) (?x479 T3) (?x480 T15) (implies (and (= (uf_55 ?x477) uf_9) (and (= (uf_27 ?x477 (uf_43 ?x479 ?x478)) uf_9) (and (= (uf_180 ?x479 ?x480) uf_9) (= (uf_25 ?x477 (uf_43 ?x479 ?x478)) uf_26)))) (= (uf_19 (uf_20 ?x477) (uf_126 (uf_43 ?x479 ?x478) ?x480)) (uf_183 (uf_184 ?x477 (uf_43 ?x479 ?x478)) (uf_126 (uf_43 ?x479 ?x478) ?x480)))) :pat { (uf_180 ?x479 ?x480) (uf_19 (uf_20 ?x477) (uf_126 (uf_43 ?x479 ?x478) ?x480)) })
+:assumption (forall (?x481 T4) (?x482 Int) (?x483 T3) (?x484 T15) (?x485 T15) (implies (and (= (uf_55 ?x481) uf_9) (and (= (uf_185 ?x483 ?x484 ?x485) uf_9) (and (= (uf_27 ?x481 (uf_43 ?x483 ?x482)) uf_9) (or (= (uf_28 (uf_19 (uf_20 ?x481) (uf_126 (uf_43 ?x483 ?x482) ?x484))) uf_26) (= (uf_28 (uf_183 (uf_184 ?x481 (uf_43 ?x483 ?x482)) (uf_126 (uf_43 ?x483 ?x482) ?x484))) uf_26))))) (= (uf_19 (uf_20 ?x481) (uf_126 (uf_43 ?x483 ?x482) ?x485)) (uf_183 (uf_184 ?x481 (uf_43 ?x483 ?x482)) (uf_126 (uf_43 ?x483 ?x482) ?x485)))) :pat { (uf_185 ?x483 ?x484 ?x485) (uf_19 (uf_20 ?x481) (uf_126 (uf_43 ?x483 ?x482) ?x485)) })
:assumption (forall (?x486 T4) (?x487 T5) (= (uf_184 ?x486 ?x487) (uf_30 (uf_19 (uf_20 ?x486) ?x487))) :pat { (uf_184 ?x486 ?x487) })
-:assumption (forall (?x488 T4) (?x489 T5) (?x490 T5) (?x491 T15) (?x492 Int) (?x493 Int) (?x494 T3) (implies (and (< ?x492 ?x493) (and (<= 0 ?x492) (and (= (uf_187 ?x491 ?x493) uf_9) (and (= (uf_186 ?x489 ?x490) uf_9) (and (= (uf_24 ?x488 ?x490) uf_9) (= (uf_51 ?x488) uf_9)))))) (= (uf_19 (uf_20 ?x488) (uf_66 (uf_126 ?x489 ?x491) ?x492 ?x494)) (uf_11 (uf_189 ?x490) (uf_66 (uf_126 ?x489 ?x491) ?x492 ?x494)))) :pat { (uf_49 ?x488 ?x490) (uf_186 ?x489 ?x490) (uf_19 (uf_20 ?x488) (uf_66 (uf_126 ?x489 ?x491) ?x492 ?x494)) (uf_187 ?x491 ?x493) } :pat { (uf_188 ?x488 ?x490 ?x489 (uf_66 (uf_126 ?x489 ?x491) ?x492 ?x494)) (uf_187 ?x491 ?x493) })
-:assumption (forall (?x495 T4) (?x496 T5) (?x497 T5) (?x498 T15) (implies (and (= (uf_190 ?x498) uf_9) (and (= (uf_186 ?x496 ?x497) uf_9) (and (= (uf_24 ?x495 ?x497) uf_9) (= (uf_51 ?x495) uf_9)))) (and (= (uf_19 (uf_20 ?x495) (uf_126 ?x496 ?x498)) (uf_11 (uf_189 ?x497) (uf_126 ?x496 ?x498))) (= (uf_186 ?x496 ?x497) uf_9))) :pat { (uf_186 ?x496 ?x497) (uf_19 (uf_20 ?x495) (uf_126 ?x496 ?x498)) } :pat { (uf_188 ?x495 ?x497 ?x496 (uf_126 ?x496 ?x498)) })
+:assumption (forall (?x488 T4) (?x489 T5) (?x490 T5) (?x491 T15) (?x492 Int) (?x493 Int) (?x494 T3) (implies (and (= (uf_51 ?x488) uf_9) (and (= (uf_27 ?x488 ?x490) uf_9) (and (= (uf_186 ?x489 ?x490) uf_9) (and (= (uf_187 ?x491 ?x493) uf_9) (and (<= 0 ?x492) (< ?x492 ?x493)))))) (= (uf_19 (uf_20 ?x488) (uf_66 (uf_126 ?x489 ?x491) ?x492 ?x494)) (uf_10 (uf_189 ?x490) (uf_66 (uf_126 ?x489 ?x491) ?x492 ?x494)))) :pat { (uf_49 ?x488 ?x490) (uf_186 ?x489 ?x490) (uf_19 (uf_20 ?x488) (uf_66 (uf_126 ?x489 ?x491) ?x492 ?x494)) (uf_187 ?x491 ?x493) } :pat { (uf_188 ?x488 ?x490 ?x489 (uf_66 (uf_126 ?x489 ?x491) ?x492 ?x494)) (uf_187 ?x491 ?x493) })
+:assumption (forall (?x495 T4) (?x496 T5) (?x497 T5) (?x498 T15) (implies (and (= (uf_51 ?x495) uf_9) (and (= (uf_27 ?x495 ?x497) uf_9) (and (= (uf_186 ?x496 ?x497) uf_9) (= (uf_190 ?x498) uf_9)))) (and (= (uf_186 ?x496 ?x497) uf_9) (= (uf_19 (uf_20 ?x495) (uf_126 ?x496 ?x498)) (uf_10 (uf_189 ?x497) (uf_126 ?x496 ?x498))))) :pat { (uf_186 ?x496 ?x497) (uf_19 (uf_20 ?x495) (uf_126 ?x496 ?x498)) } :pat { (uf_188 ?x495 ?x497 ?x496 (uf_126 ?x496 ?x498)) })
:assumption (forall (?x499 T4) (?x500 T5) (?x501 T5) (?x502 T5) (= (uf_188 ?x499 ?x500 ?x501 ?x502) ?x502) :pat { (uf_188 ?x499 ?x500 ?x501 ?x502) })
-:assumption (forall (?x503 T5) (?x504 T5) (implies (forall (?x505 T4) (implies (= (uf_49 ?x505 ?x504) uf_9) (= (uf_24 ?x505 ?x503) uf_9)) :pat { (uf_191 ?x505) }) (= (uf_186 ?x503 ?x504) uf_9)) :pat { (uf_186 ?x503 ?x504) })
-:assumption (forall (?x506 T5) (?x507 T4) (?x508 T4) (?x509 T5) (up_193 (uf_13 ?x509 (uf_192 (uf_12 ?x508 ?x506)))) :pat { (uf_13 ?x509 (uf_192 (uf_12 ?x507 ?x506))) (uf_177 ?x507 ?x508) })
-:assumption (forall (?x510 T5) (?x511 T4) (?x512 T4) (?x513 T5) (up_193 (uf_13 ?x513 (uf_10 ?x512 ?x510))) :pat { (uf_13 ?x513 (uf_10 ?x511 ?x510)) (uf_177 ?x511 ?x512) })
-:assumption (forall (?x514 T4) (?x515 T5) (?x516 T15) (?x517 Int) (?x518 Int) (?x519 T3) (implies (and (< ?x518 ?x517) (and (<= 0 ?x518) (and (= (uf_194 ?x516 ?x517 ?x519) uf_9) (= (uf_51 ?x514) uf_9)))) (= (uf_135 (uf_58 (uf_59 ?x514) (uf_66 (uf_126 ?x515 ?x516) ?x518 ?x519))) uf_9)) :pat { (uf_194 ?x516 ?x517 ?x519) (uf_135 (uf_58 (uf_59 ?x514) (uf_66 (uf_126 ?x515 ?x516) ?x518 ?x519))) })
-:assumption (forall (?x520 T4) (?x521 Int) (?x522 T5) (?x523 Int) (?x524 Int) (?x525 T3) (implies (and (< ?x524 ?x523) (and (<= 0 ?x524) (and (= (uf_13 (uf_43 (uf_124 ?x525 ?x523) ?x521) (uf_10 ?x520 ?x522)) uf_9) (and (= (uf_23 ?x525) uf_9) (= (uf_55 ?x520) uf_9))))) (= (uf_19 (uf_20 ?x520) (uf_66 (uf_43 ?x525 ?x521) ?x524 ?x525)) (uf_11 (uf_12 ?x520 ?x522) (uf_66 (uf_43 ?x525 ?x521) ?x524 ?x525)))) :pat { (uf_13 (uf_43 (uf_124 ?x525 ?x523) ?x521) (uf_10 ?x520 ?x522)) (uf_19 (uf_20 ?x520) (uf_66 (uf_43 ?x525 ?x521) ?x524 ?x525)) (uf_23 ?x525) })
-:assumption (forall (?x526 T4) (?x527 Int) (?x528 T5) (?x529 Int) (?x530 Int) (?x531 T3) (implies (and (< ?x530 ?x529) (and (<= 0 ?x530) (and (= (uf_13 (uf_43 (uf_124 ?x531 ?x529) ?x527) (uf_10 ?x526 ?x528)) uf_9) (and (= (uf_23 ?x531) uf_9) (= (uf_55 ?x526) uf_9))))) (and (not (= (uf_135 (uf_58 (uf_59 ?x526) (uf_66 (uf_43 ?x531 ?x527) ?x530 ?x531))) uf_9)) (= (uf_27 ?x526 (uf_66 (uf_43 ?x531 ?x527) ?x530 ?x531)) uf_9))) :pat { (uf_13 (uf_43 (uf_124 ?x531 ?x529) ?x527) (uf_10 ?x526 ?x528)) (uf_58 (uf_59 ?x526) (uf_66 (uf_43 ?x531 ?x527) ?x530 ?x531)) (uf_23 ?x531) } :pat { (uf_13 (uf_43 (uf_124 ?x531 ?x529) ?x527) (uf_10 ?x526 ?x528)) (uf_25 ?x526 (uf_66 (uf_43 ?x531 ?x527) ?x530 ?x531)) (uf_23 ?x531) })
-:assumption (forall (?x532 T4) (?x533 T5) (?x534 T5) (?x535 T15) (?x536 Int) (?x537 Int) (?x538 T3) (implies (and (< ?x537 ?x536) (and (<= 0 ?x537) (and (= (uf_187 ?x535 ?x536) uf_9) (and (= (uf_13 ?x533 (uf_10 ?x532 ?x534)) uf_9) (= (uf_55 ?x532) uf_9))))) (and (not (= (uf_135 (uf_58 (uf_59 ?x532) (uf_66 (uf_126 ?x533 ?x535) ?x537 ?x538))) uf_9)) (= (uf_27 ?x532 (uf_66 (uf_126 ?x533 ?x535) ?x537 ?x538)) uf_9))) :pat { (uf_13 ?x533 (uf_10 ?x532 ?x534)) (uf_187 ?x535 ?x536) (uf_58 (uf_59 ?x532) (uf_66 (uf_126 ?x533 ?x535) ?x537 ?x538)) } :pat { (uf_13 ?x533 (uf_10 ?x532 ?x534)) (uf_187 ?x535 ?x536) (uf_25 ?x532 (uf_66 (uf_126 ?x533 ?x535) ?x537 ?x538)) })
-:assumption (forall (?x539 T4) (?x540 T5) (?x541 T5) (?x542 T15) (?x543 Int) (?x544 Int) (?x545 T3) (implies (and (< ?x544 ?x543) (and (<= 0 ?x544) (and (= (uf_187 ?x542 ?x543) uf_9) (and (= (uf_13 ?x540 (uf_10 ?x539 ?x541)) uf_9) (= (uf_55 ?x539) uf_9))))) (= (uf_19 (uf_20 ?x539) (uf_66 (uf_126 ?x540 ?x542) ?x544 ?x545)) (uf_11 (uf_12 ?x539 ?x541) (uf_66 (uf_126 ?x540 ?x542) ?x544 ?x545)))) :pat { (uf_13 ?x540 (uf_10 ?x539 ?x541)) (uf_187 ?x542 ?x543) (uf_19 (uf_20 ?x539) (uf_66 (uf_126 ?x540 ?x542) ?x544 ?x545)) })
-:assumption (forall (?x546 T4) (?x547 T5) (?x548 T5) (?x549 T15) (implies (and (= (uf_190 ?x549) uf_9) (and (= (uf_13 ?x547 (uf_10 ?x546 ?x548)) uf_9) (= (uf_55 ?x546) uf_9))) (and (not (= (uf_135 (uf_58 (uf_59 ?x546) (uf_126 ?x547 ?x549))) uf_9)) (= (uf_27 ?x546 (uf_126 ?x547 ?x549)) uf_9))) :pat { (uf_13 ?x547 (uf_10 ?x546 ?x548)) (uf_190 ?x549) (uf_25 ?x546 (uf_126 ?x547 ?x549)) } :pat { (uf_13 ?x547 (uf_10 ?x546 ?x548)) (uf_190 ?x549) (uf_58 (uf_59 ?x546) (uf_126 ?x547 ?x549)) })
-:assumption (forall (?x550 T4) (?x551 T5) (?x552 T5) (implies (and (= (uf_13 ?x551 (uf_10 ?x550 ?x552)) uf_9) (= (uf_55 ?x550) uf_9)) (and (not (= (uf_135 (uf_58 (uf_59 ?x550) ?x551)) uf_9)) (= (uf_27 ?x550 ?x551) uf_9))) :pat { (uf_55 ?x550) (uf_13 ?x551 (uf_10 ?x550 ?x552)) (uf_40 (uf_41 ?x550) ?x551) } :pat { (uf_55 ?x550) (uf_13 ?x551 (uf_10 ?x550 ?x552)) (uf_58 (uf_59 ?x550) ?x551) })
-:assumption (forall (?x553 T4) (?x554 T5) (?x555 T5) (?x556 T15) (implies (and (= (uf_190 ?x556) uf_9) (= (uf_13 ?x554 (uf_10 ?x553 ?x555)) uf_9)) (= (uf_19 (uf_20 ?x553) (uf_126 ?x554 ?x556)) (uf_11 (uf_12 ?x553 ?x555) (uf_126 ?x554 ?x556)))) :pat { (uf_13 ?x554 (uf_10 ?x553 ?x555)) (uf_190 ?x556) (uf_19 (uf_20 ?x553) (uf_126 ?x554 ?x556)) })
+:assumption (forall (?x503 T5) (?x504 T5) (implies (forall (?x505 T4) (implies (= (uf_49 ?x505 ?x504) uf_9) (= (uf_27 ?x505 ?x503) uf_9)) :pat { (uf_191 ?x505) }) (= (uf_186 ?x503 ?x504) uf_9)) :pat { (uf_186 ?x503 ?x504) })
+:assumption (forall (?x506 T5) (?x507 T4) (?x508 T4) (?x509 T5) (up_193 (uf_15 ?x509 (uf_192 (uf_11 ?x508 ?x506)))) :pat { (uf_15 ?x509 (uf_192 (uf_11 ?x507 ?x506))) (uf_178 ?x507 ?x508) })
+:assumption (forall (?x510 T5) (?x511 T4) (?x512 T4) (?x513 T5) (up_193 (uf_15 ?x513 (uf_16 ?x512 ?x510))) :pat { (uf_15 ?x513 (uf_16 ?x511 ?x510)) (uf_178 ?x511 ?x512) })
+:assumption (forall (?x514 T4) (?x515 T5) (?x516 T15) (?x517 Int) (?x518 Int) (?x519 T3) (implies (and (= (uf_51 ?x514) uf_9) (and (= (uf_194 ?x516 ?x517 ?x519) uf_9) (and (<= 0 ?x518) (< ?x518 ?x517)))) (= (uf_136 (uf_58 (uf_59 ?x514) (uf_66 (uf_126 ?x515 ?x516) ?x518 ?x519))) uf_9)) :pat { (uf_194 ?x516 ?x517 ?x519) (uf_136 (uf_58 (uf_59 ?x514) (uf_66 (uf_126 ?x515 ?x516) ?x518 ?x519))) })
+:assumption (forall (?x520 T4) (?x521 Int) (?x522 T5) (?x523 Int) (?x524 Int) (?x525 T3) (implies (and (= (uf_55 ?x520) uf_9) (and (= (uf_22 ?x525) uf_9) (and (= (uf_15 (uf_43 (uf_124 ?x525 ?x523) ?x521) (uf_16 ?x520 ?x522)) uf_9) (and (<= 0 ?x524) (< ?x524 ?x523))))) (= (uf_19 (uf_20 ?x520) (uf_66 (uf_43 ?x525 ?x521) ?x524 ?x525)) (uf_10 (uf_11 ?x520 ?x522) (uf_66 (uf_43 ?x525 ?x521) ?x524 ?x525)))) :pat { (uf_15 (uf_43 (uf_124 ?x525 ?x523) ?x521) (uf_16 ?x520 ?x522)) (uf_19 (uf_20 ?x520) (uf_66 (uf_43 ?x525 ?x521) ?x524 ?x525)) (uf_22 ?x525) })
+:assumption (forall (?x526 T4) (?x527 Int) (?x528 T5) (?x529 Int) (?x530 Int) (?x531 T3) (implies (and (= (uf_55 ?x526) uf_9) (and (= (uf_22 ?x531) uf_9) (and (= (uf_15 (uf_43 (uf_124 ?x531 ?x529) ?x527) (uf_16 ?x526 ?x528)) uf_9) (and (<= 0 ?x530) (< ?x530 ?x529))))) (and (= (uf_24 ?x526 (uf_66 (uf_43 ?x531 ?x527) ?x530 ?x531)) uf_9) (not (= (uf_136 (uf_58 (uf_59 ?x526) (uf_66 (uf_43 ?x531 ?x527) ?x530 ?x531))) uf_9)))) :pat { (uf_15 (uf_43 (uf_124 ?x531 ?x529) ?x527) (uf_16 ?x526 ?x528)) (uf_58 (uf_59 ?x526) (uf_66 (uf_43 ?x531 ?x527) ?x530 ?x531)) (uf_22 ?x531) } :pat { (uf_15 (uf_43 (uf_124 ?x531 ?x529) ?x527) (uf_16 ?x526 ?x528)) (uf_25 ?x526 (uf_66 (uf_43 ?x531 ?x527) ?x530 ?x531)) (uf_22 ?x531) })
+:assumption (forall (?x532 T4) (?x533 T5) (?x534 T5) (?x535 T15) (?x536 Int) (?x537 Int) (?x538 T3) (implies (and (= (uf_55 ?x532) uf_9) (and (= (uf_15 ?x533 (uf_16 ?x532 ?x534)) uf_9) (and (= (uf_187 ?x535 ?x536) uf_9) (and (<= 0 ?x537) (< ?x537 ?x536))))) (and (= (uf_24 ?x532 (uf_66 (uf_126 ?x533 ?x535) ?x537 ?x538)) uf_9) (not (= (uf_136 (uf_58 (uf_59 ?x532) (uf_66 (uf_126 ?x533 ?x535) ?x537 ?x538))) uf_9)))) :pat { (uf_15 ?x533 (uf_16 ?x532 ?x534)) (uf_187 ?x535 ?x536) (uf_58 (uf_59 ?x532) (uf_66 (uf_126 ?x533 ?x535) ?x537 ?x538)) } :pat { (uf_15 ?x533 (uf_16 ?x532 ?x534)) (uf_187 ?x535 ?x536) (uf_25 ?x532 (uf_66 (uf_126 ?x533 ?x535) ?x537 ?x538)) })
+:assumption (forall (?x539 T4) (?x540 T5) (?x541 T5) (?x542 T15) (?x543 Int) (?x544 Int) (?x545 T3) (implies (and (= (uf_55 ?x539) uf_9) (and (= (uf_15 ?x540 (uf_16 ?x539 ?x541)) uf_9) (and (= (uf_187 ?x542 ?x543) uf_9) (and (<= 0 ?x544) (< ?x544 ?x543))))) (= (uf_19 (uf_20 ?x539) (uf_66 (uf_126 ?x540 ?x542) ?x544 ?x545)) (uf_10 (uf_11 ?x539 ?x541) (uf_66 (uf_126 ?x540 ?x542) ?x544 ?x545)))) :pat { (uf_15 ?x540 (uf_16 ?x539 ?x541)) (uf_187 ?x542 ?x543) (uf_19 (uf_20 ?x539) (uf_66 (uf_126 ?x540 ?x542) ?x544 ?x545)) })
+:assumption (forall (?x546 T4) (?x547 T5) (?x548 T5) (?x549 T15) (implies (and (= (uf_55 ?x546) uf_9) (and (= (uf_15 ?x547 (uf_16 ?x546 ?x548)) uf_9) (= (uf_190 ?x549) uf_9))) (and (= (uf_24 ?x546 (uf_126 ?x547 ?x549)) uf_9) (not (= (uf_136 (uf_58 (uf_59 ?x546) (uf_126 ?x547 ?x549))) uf_9)))) :pat { (uf_15 ?x547 (uf_16 ?x546 ?x548)) (uf_190 ?x549) (uf_25 ?x546 (uf_126 ?x547 ?x549)) } :pat { (uf_15 ?x547 (uf_16 ?x546 ?x548)) (uf_190 ?x549) (uf_58 (uf_59 ?x546) (uf_126 ?x547 ?x549)) })
+:assumption (forall (?x550 T4) (?x551 T5) (?x552 T5) (implies (and (= (uf_55 ?x550) uf_9) (= (uf_15 ?x551 (uf_16 ?x550 ?x552)) uf_9)) (and (= (uf_24 ?x550 ?x551) uf_9) (not (= (uf_136 (uf_58 (uf_59 ?x550) ?x551)) uf_9)))) :pat { (uf_55 ?x550) (uf_15 ?x551 (uf_16 ?x550 ?x552)) (uf_40 (uf_41 ?x550) ?x551) } :pat { (uf_55 ?x550) (uf_15 ?x551 (uf_16 ?x550 ?x552)) (uf_58 (uf_59 ?x550) ?x551) })
+:assumption (forall (?x553 T4) (?x554 T5) (?x555 T5) (?x556 T15) (implies (and (= (uf_15 ?x554 (uf_16 ?x553 ?x555)) uf_9) (= (uf_190 ?x556) uf_9)) (= (uf_19 (uf_20 ?x553) (uf_126 ?x554 ?x556)) (uf_10 (uf_11 ?x553 ?x555) (uf_126 ?x554 ?x556)))) :pat { (uf_15 ?x554 (uf_16 ?x553 ?x555)) (uf_190 ?x556) (uf_19 (uf_20 ?x553) (uf_126 ?x554 ?x556)) })
:assumption (forall (?x557 T4) (?x558 T5) (?x559 T5) (implies (= (uf_195 ?x557 ?x558 ?x559) uf_9) (= (uf_196 ?x557 ?x558 ?x559) uf_9)) :pat { (uf_195 ?x557 ?x558 ?x559) })
-:assumption (forall (?x560 T4) (?x561 T5) (?x562 T5) (?x563 T5) (implies (and (forall (?x564 T4) (implies (and (= (uf_10 ?x564 ?x561) (uf_10 ?x560 ?x561)) (and (= (uf_12 ?x564 ?x561) (uf_12 ?x560 ?x561)) (= (uf_46 ?x564 ?x564 ?x562 (uf_15 ?x562)) uf_9))) (= (uf_145 ?x563 (uf_53 ?x564 ?x562)) uf_9))) (and (= (uf_13 ?x562 (uf_10 ?x560 ?x561)) uf_9) (up_197 (uf_15 ?x562)))) (and (= (uf_145 ?x563 (uf_53 ?x560 ?x562)) uf_9) (= (uf_195 ?x560 ?x563 ?x561) uf_9))) :pat { (uf_13 ?x562 (uf_10 ?x560 ?x561)) (uf_195 ?x560 ?x563 ?x561) })
-:assumption (forall (?x565 T4) (?x566 T5) (?x567 T5) (?x568 T5) (implies (and (= (uf_145 ?x568 (uf_53 ?x565 ?x567)) uf_9) (and (= (uf_13 ?x567 (uf_10 ?x565 ?x566)) uf_9) (not (up_197 (uf_15 ?x567))))) (and (= (uf_145 ?x568 (uf_53 ?x565 ?x567)) uf_9) (= (uf_196 ?x565 ?x568 ?x566) uf_9))) :pat { (uf_13 ?x567 (uf_10 ?x565 ?x566)) (uf_196 ?x565 ?x568 ?x566) })
-:assumption (forall (?x569 T4) (?x570 T5) (?x571 T5) (implies (and (= (uf_13 ?x571 (uf_10 ?x569 ?x570)) uf_9) (= (uf_55 ?x569) uf_9)) (= (uf_196 ?x569 ?x571 ?x570) uf_9)) :pat { (uf_196 ?x569 ?x571 ?x570) })
-:assumption (forall (?x572 T4) (?x573 T5) (implies (and (= (uf_22 (uf_15 ?x573)) uf_9) (and (not (= (uf_14 (uf_15 ?x573)) uf_16)) (and (= (uf_27 ?x572 ?x573) uf_9) (and (= (uf_48 ?x573 (uf_15 ?x573)) uf_9) (and (= (uf_25 ?x572 ?x573) uf_26) (and (= (uf_24 ?x572 ?x573) uf_9) (= (uf_55 ?x572) uf_9))))))) (= (uf_196 ?x572 ?x573 ?x573) uf_9)) :pat { (uf_196 ?x572 ?x573 ?x573) })
-:assumption (forall (?x574 T4) (?x575 T5) (?x576 T5) (implies (= (uf_196 ?x574 ?x575 ?x576) uf_9) (and (forall (?x577 T5) (implies (and (= (uf_13 ?x577 (uf_53 ?x574 ?x575)) uf_9) (not (up_197 (uf_15 ?x575)))) (= (uf_147 ?x577 (uf_192 (uf_12 ?x574 ?x576))) uf_9)) :pat { (uf_13 ?x577 (uf_53 ?x574 ?x575)) }) (and (= (uf_24 ?x574 ?x575) uf_9) (= (uf_13 ?x575 (uf_10 ?x574 ?x576)) uf_9)))) :pat { (uf_196 ?x574 ?x575 ?x576) })
+:assumption (forall (?x560 T4) (?x561 T5) (?x562 T5) (?x563 T5) (implies (and (up_197 (uf_13 ?x562)) (and (= (uf_15 ?x562 (uf_16 ?x560 ?x561)) uf_9) (forall (?x564 T4) (implies (and (= (uf_46 ?x564 ?x564 ?x562 (uf_13 ?x562)) uf_9) (and (= (uf_11 ?x564 ?x561) (uf_11 ?x560 ?x561)) (= (uf_16 ?x564 ?x561) (uf_16 ?x560 ?x561)))) (= (uf_145 ?x563 (uf_53 ?x564 ?x562)) uf_9))))) (and (= (uf_195 ?x560 ?x563 ?x561) uf_9) (= (uf_145 ?x563 (uf_53 ?x560 ?x562)) uf_9))) :pat { (uf_15 ?x562 (uf_16 ?x560 ?x561)) (uf_195 ?x560 ?x563 ?x561) })
+:assumption (forall (?x565 T4) (?x566 T5) (?x567 T5) (?x568 T5) (implies (and (not (up_197 (uf_13 ?x567))) (and (= (uf_15 ?x567 (uf_16 ?x565 ?x566)) uf_9) (= (uf_145 ?x568 (uf_53 ?x565 ?x567)) uf_9))) (and (= (uf_196 ?x565 ?x568 ?x566) uf_9) (= (uf_145 ?x568 (uf_53 ?x565 ?x567)) uf_9))) :pat { (uf_15 ?x567 (uf_16 ?x565 ?x566)) (uf_196 ?x565 ?x568 ?x566) })
+:assumption (forall (?x569 T4) (?x570 T5) (?x571 T5) (implies (and (= (uf_55 ?x569) uf_9) (= (uf_15 ?x571 (uf_16 ?x569 ?x570)) uf_9)) (= (uf_196 ?x569 ?x571 ?x570) uf_9)) :pat { (uf_196 ?x569 ?x571 ?x570) })
+:assumption (forall (?x572 T4) (?x573 T5) (implies (and (= (uf_55 ?x572) uf_9) (and (= (uf_27 ?x572 ?x573) uf_9) (and (= (uf_25 ?x572 ?x573) uf_26) (and (= (uf_48 ?x573 (uf_13 ?x573)) uf_9) (and (= (uf_24 ?x572 ?x573) uf_9) (and (not (= (uf_12 (uf_13 ?x573)) uf_14)) (= (uf_23 (uf_13 ?x573)) uf_9))))))) (= (uf_196 ?x572 ?x573 ?x573) uf_9)) :pat { (uf_196 ?x572 ?x573 ?x573) })
+:assumption (forall (?x574 T4) (?x575 T5) (?x576 T5) (implies (= (uf_196 ?x574 ?x575 ?x576) uf_9) (and (= (uf_15 ?x575 (uf_16 ?x574 ?x576)) uf_9) (and (= (uf_27 ?x574 ?x575) uf_9) (forall (?x577 T5) (implies (and (not (up_197 (uf_13 ?x575))) (= (uf_15 ?x577 (uf_53 ?x574 ?x575)) uf_9)) (= (uf_147 ?x577 (uf_192 (uf_11 ?x574 ?x576))) uf_9)) :pat { (uf_15 ?x577 (uf_53 ?x574 ?x575)) })))) :pat { (uf_196 ?x574 ?x575 ?x576) })
:assumption (forall (?x578 T4) (?x579 T5) (?x580 T5) (?x581 T16) (iff (= (uf_198 ?x578 ?x579 ?x580 ?x581) uf_9) (= (uf_195 ?x578 ?x579 ?x580) uf_9)) :pat { (uf_198 ?x578 ?x579 ?x580 ?x581) })
:assumption (forall (?x582 T4) (?x583 T5) (?x584 T5) (?x585 T16) (implies (= (uf_198 ?x582 ?x583 ?x584 ?x585) uf_9) (up_199 ?x582 ?x583 ?x585)) :pat { (uf_198 ?x582 ?x583 ?x584 ?x585) })
:assumption (forall (?x586 T4) (?x587 T5) (?x588 T5) (?x589 T16) (iff (= (uf_200 ?x586 ?x587 ?x588 ?x589) uf_9) (= (uf_196 ?x586 ?x587 ?x588) uf_9)) :pat { (uf_200 ?x586 ?x587 ?x588 ?x589) })
:assumption (forall (?x590 T4) (?x591 T5) (?x592 T5) (?x593 T16) (implies (= (uf_200 ?x590 ?x591 ?x592 ?x593) uf_9) (up_199 ?x590 ?x591 ?x593)) :pat { (uf_200 ?x590 ?x591 ?x592 ?x593) })
-:assumption (forall (?x594 T4) (?x595 T5) (= (uf_10 ?x594 ?x595) (uf_192 (uf_12 ?x594 ?x595))) :pat { (uf_10 ?x594 ?x595) })
-:assumption (forall (?x596 T4) (?x597 T5) (= (uf_12 ?x596 ?x597) (uf_32 (uf_19 (uf_20 ?x596) ?x597))) :pat { (uf_12 ?x596 ?x597) })
+:assumption (forall (?x594 T4) (?x595 T5) (= (uf_16 ?x594 ?x595) (uf_192 (uf_11 ?x594 ?x595))) :pat { (uf_16 ?x594 ?x595) })
+:assumption (forall (?x596 T4) (?x597 T5) (= (uf_11 ?x596 ?x597) (uf_32 (uf_19 (uf_20 ?x596) ?x597))) :pat { (uf_11 ?x596 ?x597) })
:assumption (forall (?x598 T4) (?x599 Int) (?x600 T3) (= (uf_43 ?x600 (uf_19 (uf_20 ?x598) (uf_43 (uf_6 ?x600) ?x599))) (uf_201 ?x598 (uf_43 (uf_6 ?x600) ?x599) ?x600)) :pat { (uf_43 ?x600 (uf_19 (uf_20 ?x598) (uf_43 (uf_6 ?x600) ?x599))) })
:assumption (forall (?x601 T1) (?x602 T4) (implies (= (uf_202 ?x601 ?x602) uf_9) (= (uf_51 ?x602) uf_9)) :pat { (uf_202 ?x601 ?x602) })
:assumption (forall (?x603 T4) (implies (= (uf_44 ?x603) uf_9) (= (uf_51 ?x603) uf_9)) :pat { (uf_44 ?x603) })
-:assumption (forall (?x604 T4) (implies (= (uf_55 ?x604) uf_9) (and (= (uf_44 ?x604) uf_9) (= (uf_51 ?x604) uf_9))) :pat { (uf_55 ?x604) })
-:assumption (forall (?x605 T4) (implies (= (uf_203 ?x605) uf_9) (and (<= 0 (uf_171 ?x605)) (= (uf_55 ?x605) uf_9))) :pat { (uf_203 ?x605) })
-:assumption (forall (?x606 T3) (implies (= (uf_23 ?x606) uf_9) (forall (?x607 T4) (?x608 Int) (?x609 T5) (iff (= (uf_13 ?x609 (uf_128 ?x607 (uf_43 ?x606 ?x608))) uf_9) (= ?x609 (uf_43 ?x606 ?x608))) :pat { (uf_13 ?x609 (uf_128 ?x607 (uf_43 ?x606 ?x608))) })) :pat { (uf_23 ?x606) })
-:assumption (forall (?x610 T3) (implies (= (uf_23 ?x610) uf_9) (forall (?x611 Int) (?x612 T5) (iff (= (uf_13 ?x612 (uf_130 (uf_43 ?x610 ?x611))) uf_9) (= ?x612 (uf_43 ?x610 ?x611))) :pat { (uf_13 ?x612 (uf_130 (uf_43 ?x610 ?x611))) })) :pat { (uf_23 ?x610) })
-:assumption (forall (?x613 T4) (?x614 T4) (?x615 T5) (?x616 T3) (iff (= (uf_204 ?x613 ?x614 ?x615 ?x616) uf_9) (and (up_205 ?x613 ?x614 ?x615 ?x616) (and (= (uf_58 (uf_59 ?x613) ?x615) (uf_58 (uf_59 ?x614) ?x615)) (= (uf_12 ?x613 ?x615) (uf_12 ?x614 ?x615))))) :pat { (uf_204 ?x613 ?x614 ?x615 ?x616) })
-:assumption (forall (?x617 T4) (?x618 T4) (?x619 T5) (?x620 T3) (iff (= (uf_206 ?x617 ?x618 ?x619 ?x620) uf_9) (and (= (uf_123 ?x617 ?x618 ?x619 ?x620) uf_9) (and (= (uf_58 (uf_59 ?x617) ?x619) (uf_58 (uf_59 ?x618) ?x619)) (and (= (uf_53 ?x617 ?x619) (uf_53 ?x618 ?x619)) (= (uf_12 ?x617 ?x619) (uf_12 ?x618 ?x619)))))) :pat { (uf_206 ?x617 ?x618 ?x619 ?x620) })
-:assumption (forall (?x621 T4) (?x622 T4) (?x623 T5) (?x624 T5) (iff (= (uf_207 ?x621 ?x622 ?x623 ?x624) uf_9) (or (= (uf_208 (uf_15 ?x623)) uf_9) (or (and (= (uf_204 ?x621 ?x622 ?x623 (uf_15 ?x623)) uf_9) (= (uf_46 ?x621 ?x622 ?x623 (uf_15 ?x623)) uf_9)) (or (and (not (= (uf_24 ?x622 ?x623) uf_9)) (not (= (uf_24 ?x621 ?x623) uf_9))) (= (uf_206 ?x621 ?x622 ?x624 (uf_15 ?x624)) uf_9))))) :pat { (uf_207 ?x621 ?x622 ?x623 ?x624) })
-:assumption (forall (?x625 T4) (?x626 T4) (?x627 T5) (?x628 T3) (iff (= (uf_179 ?x625 ?x626 ?x627 ?x628) uf_9) (implies (and (= (uf_24 ?x626 ?x627) uf_9) (= (uf_24 ?x625 ?x627) uf_9)) (= (uf_206 ?x625 ?x626 ?x627 ?x628) uf_9))) :pat { (uf_179 ?x625 ?x626 ?x627 ?x628) })
+:assumption (forall (?x604 T4) (implies (= (uf_55 ?x604) uf_9) (and (= (uf_51 ?x604) uf_9) (= (uf_44 ?x604) uf_9))) :pat { (uf_55 ?x604) })
+:assumption (forall (?x605 T4) (implies (= (uf_203 ?x605) uf_9) (and (= (uf_55 ?x605) uf_9) (<= 0 (uf_173 ?x605)))) :pat { (uf_203 ?x605) })
+:assumption (forall (?x606 T3) (implies (= (uf_22 ?x606) uf_9) (forall (?x607 T4) (?x608 Int) (?x609 T5) (iff (= (uf_15 ?x609 (uf_128 ?x607 (uf_43 ?x606 ?x608))) uf_9) (= ?x609 (uf_43 ?x606 ?x608))) :pat { (uf_15 ?x609 (uf_128 ?x607 (uf_43 ?x606 ?x608))) })) :pat { (uf_22 ?x606) })
+:assumption (forall (?x610 T3) (implies (= (uf_22 ?x610) uf_9) (forall (?x611 Int) (?x612 T5) (iff (= (uf_15 ?x612 (uf_130 (uf_43 ?x610 ?x611))) uf_9) (= ?x612 (uf_43 ?x610 ?x611))) :pat { (uf_15 ?x612 (uf_130 (uf_43 ?x610 ?x611))) })) :pat { (uf_22 ?x610) })
+:assumption (forall (?x613 T4) (?x614 T4) (?x615 T5) (?x616 T3) (iff (= (uf_204 ?x613 ?x614 ?x615 ?x616) uf_9) (and (= (uf_11 ?x613 ?x615) (uf_11 ?x614 ?x615)) (and (= (uf_58 (uf_59 ?x613) ?x615) (uf_58 (uf_59 ?x614) ?x615)) (up_205 ?x613 ?x614 ?x615 ?x616)))) :pat { (uf_204 ?x613 ?x614 ?x615 ?x616) })
+:assumption (forall (?x617 T4) (?x618 T4) (?x619 T5) (?x620 T3) (iff (= (uf_206 ?x617 ?x618 ?x619 ?x620) uf_9) (and (= (uf_11 ?x617 ?x619) (uf_11 ?x618 ?x619)) (and (= (uf_53 ?x617 ?x619) (uf_53 ?x618 ?x619)) (and (= (uf_58 (uf_59 ?x617) ?x619) (uf_58 (uf_59 ?x618) ?x619)) (= (uf_123 ?x617 ?x618 ?x619 ?x620) uf_9))))) :pat { (uf_206 ?x617 ?x618 ?x619 ?x620) })
+:assumption (forall (?x621 T4) (?x622 T4) (?x623 T5) (?x624 T5) (iff (= (uf_207 ?x621 ?x622 ?x623 ?x624) uf_9) (or (= (uf_206 ?x621 ?x622 ?x624 (uf_13 ?x624)) uf_9) (or (and (not (= (uf_27 ?x621 ?x623) uf_9)) (not (= (uf_27 ?x622 ?x623) uf_9))) (or (and (= (uf_46 ?x621 ?x622 ?x623 (uf_13 ?x623)) uf_9) (= (uf_204 ?x621 ?x622 ?x623 (uf_13 ?x623)) uf_9)) (= (uf_208 (uf_13 ?x623)) uf_9))))) :pat { (uf_207 ?x621 ?x622 ?x623 ?x624) })
+:assumption (forall (?x625 T4) (?x626 T4) (?x627 T5) (?x628 T3) (iff (= (uf_179 ?x625 ?x626 ?x627 ?x628) uf_9) (implies (and (= (uf_27 ?x625 ?x627) uf_9) (= (uf_27 ?x626 ?x627) uf_9)) (= (uf_206 ?x625 ?x626 ?x627 ?x628) uf_9))) :pat { (uf_179 ?x625 ?x626 ?x627 ?x628) })
:assumption (forall (?x629 T4) (?x630 T5) (?x631 T3) (implies (up_209 ?x629 ?x630 ?x631) (= (uf_46 ?x629 ?x629 ?x630 ?x631) uf_9)) :pat { (uf_46 ?x629 ?x629 ?x630 ?x631) })
-:assumption (forall (?x632 T4) (?x633 T5) (iff (= (uf_67 ?x632 ?x633) uf_9) (and (or (and (or (= (uf_210 ?x632 ?x633) uf_9) (= (uf_25 ?x632 ?x633) uf_26)) (not (= (uf_14 (uf_15 ?x633)) uf_16))) (and (or (= (uf_210 ?x632 (uf_136 (uf_58 (uf_59 ?x632) ?x633))) uf_9) (= (uf_25 ?x632 (uf_136 (uf_58 (uf_59 ?x632) ?x633))) uf_26)) (and (not (= (uf_14 (uf_15 (uf_136 (uf_58 (uf_59 ?x632) ?x633)))) uf_16)) (and (or (not (= (uf_24 ?x632 (uf_136 (uf_58 (uf_59 ?x632) ?x633))) uf_9)) (not (= (uf_135 (uf_58 (uf_59 ?x632) ?x633)) uf_9))) (= (uf_14 (uf_15 ?x633)) uf_16))))) (= (uf_27 ?x632 ?x633) uf_9))) :pat { (uf_67 ?x632 ?x633) })
-:assumption (forall (?x634 T4) (?x635 T5) (iff (= (uf_210 ?x634 ?x635) uf_9) (exists (?x636 T5) (and (= (uf_211 ?x634 ?x636) uf_9) (and (= (uf_22 (uf_15 ?x636)) uf_9) (and (not (= (uf_14 (uf_15 ?x636)) uf_16)) (and (= (uf_27 ?x634 ?x636) uf_9) (and (= (uf_48 ?x636 (uf_15 ?x636)) uf_9) (and (= (uf_25 ?x634 ?x636) uf_26) (and (= (uf_24 ?x634 ?x636) uf_9) (= (uf_13 ?x635 (uf_192 (uf_12 ?x634 ?x636))) uf_9)))))))) :pat { (uf_147 ?x635 (uf_192 (uf_12 ?x634 ?x636))) })) :pat { (uf_210 ?x634 ?x635) })
+:assumption (forall (?x632 T4) (?x633 T5) (iff (= (uf_68 ?x632 ?x633) uf_9) (and (= (uf_24 ?x632 ?x633) uf_9) (or (and (= (uf_12 (uf_13 ?x633)) uf_14) (and (or (not (= (uf_136 (uf_58 (uf_59 ?x632) ?x633)) uf_9)) (not (= (uf_27 ?x632 (uf_135 (uf_58 (uf_59 ?x632) ?x633))) uf_9))) (and (not (= (uf_12 (uf_13 (uf_135 (uf_58 (uf_59 ?x632) ?x633)))) uf_14)) (or (= (uf_25 ?x632 (uf_135 (uf_58 (uf_59 ?x632) ?x633))) uf_26) (= (uf_210 ?x632 (uf_135 (uf_58 (uf_59 ?x632) ?x633))) uf_9))))) (and (not (= (uf_12 (uf_13 ?x633)) uf_14)) (or (= (uf_25 ?x632 ?x633) uf_26) (= (uf_210 ?x632 ?x633) uf_9)))))) :pat { (uf_68 ?x632 ?x633) })
+:assumption (forall (?x634 T4) (?x635 T5) (iff (= (uf_210 ?x634 ?x635) uf_9) (exists (?x636 T5) (and (= (uf_15 ?x635 (uf_192 (uf_11 ?x634 ?x636))) uf_9) (and (= (uf_27 ?x634 ?x636) uf_9) (and (= (uf_25 ?x634 ?x636) uf_26) (and (= (uf_48 ?x636 (uf_13 ?x636)) uf_9) (and (= (uf_24 ?x634 ?x636) uf_9) (and (not (= (uf_12 (uf_13 ?x636)) uf_14)) (and (= (uf_23 (uf_13 ?x636)) uf_9) (= (uf_211 ?x634 ?x636) uf_9)))))))) :pat { (uf_147 ?x635 (uf_192 (uf_11 ?x634 ?x636))) })) :pat { (uf_210 ?x634 ?x635) })
:assumption (forall (?x637 T4) (?x638 T5) (iff (= (uf_211 ?x637 ?x638) uf_9) true) :pat { (uf_211 ?x637 ?x638) })
-:assumption (forall (?x639 T4) (?x640 T4) (?x641 T5) (implies (= (uf_177 ?x639 ?x640) uf_9) (up_212 (uf_40 (uf_41 ?x639) ?x641))) :pat { (uf_40 (uf_41 ?x640) ?x641) (uf_177 ?x639 ?x640) })
-:assumption (forall (?x642 T4) (?x643 T5) (implies (and (= (uf_27 ?x642 ?x643) uf_9) (= (uf_51 ?x642) uf_9)) (< 0 (uf_116 ?x643))) :pat { (uf_27 ?x642 ?x643) })
-:assumption (forall (?x644 T4) (?x645 T5) (implies (= (uf_51 ?x644) uf_9) (iff (= (uf_27 ?x644 ?x645) uf_9) (up_213 (uf_58 (uf_59 ?x644) ?x645)))) :pat { (uf_27 ?x644 ?x645) })
-:assumption (forall (?x646 T4) (?x647 T5) (iff (= (uf_61 ?x646 ?x647) uf_9) (and (not (= (uf_24 ?x646 ?x647) uf_9)) (and (= (uf_25 ?x646 ?x647) uf_26) (= (uf_27 ?x646 ?x647) uf_9)))) :pat { (uf_61 ?x646 ?x647) })
-:assumption (forall (?x648 T4) (?x649 T5) (= (uf_53 ?x648 ?x649) (uf_34 (uf_19 (uf_20 ?x648) (uf_126 ?x649 (uf_214 (uf_15 ?x649)))))) :pat { (uf_53 ?x648 ?x649) })
-:assumption (forall (?x650 T11) (and (= (uf_22 (uf_15 (uf_215 ?x650))) uf_9) (not (= (uf_14 (uf_15 (uf_215 ?x650))) uf_16))) :pat { (uf_215 ?x650) })
+:assumption (forall (?x639 T4) (?x640 T4) (?x641 T5) (implies (= (uf_178 ?x639 ?x640) uf_9) (up_212 (uf_40 (uf_41 ?x639) ?x641))) :pat { (uf_40 (uf_41 ?x640) ?x641) (uf_178 ?x639 ?x640) })
+:assumption (forall (?x642 T4) (?x643 T5) (implies (and (= (uf_51 ?x642) uf_9) (= (uf_24 ?x642 ?x643) uf_9)) (< 0 (uf_116 ?x643))) :pat { (uf_24 ?x642 ?x643) })
+:assumption (forall (?x644 T4) (?x645 T5) (implies (= (uf_51 ?x644) uf_9) (iff (= (uf_24 ?x644 ?x645) uf_9) (up_213 (uf_58 (uf_59 ?x644) ?x645)))) :pat { (uf_24 ?x644 ?x645) })
+:assumption (forall (?x646 T4) (?x647 T5) (iff (= (uf_61 ?x646 ?x647) uf_9) (and (= (uf_24 ?x646 ?x647) uf_9) (and (= (uf_25 ?x646 ?x647) uf_26) (not (= (uf_27 ?x646 ?x647) uf_9))))) :pat { (uf_61 ?x646 ?x647) })
+:assumption (forall (?x648 T4) (?x649 T5) (= (uf_53 ?x648 ?x649) (uf_34 (uf_19 (uf_20 ?x648) (uf_126 ?x649 (uf_214 (uf_13 ?x649)))))) :pat { (uf_53 ?x648 ?x649) })
+:assumption (forall (?x650 T11) (and (not (= (uf_12 (uf_13 (uf_215 ?x650))) uf_14)) (= (uf_23 (uf_13 (uf_215 ?x650))) uf_9)) :pat { (uf_215 ?x650) })
:assumption up_216
-:assumption (forall (?x651 T4) (?x652 T5) (implies (= (uf_22 (uf_15 ?x652)) uf_9) (= (uf_170 ?x651 ?x652) (uf_217 (uf_40 (uf_41 ?x651) ?x652)))) :pat { (uf_22 (uf_15 ?x652)) (uf_170 ?x651 ?x652) })
-:assumption (forall (?x653 T4) (?x654 T5) (implies (= (uf_23 (uf_15 ?x654)) uf_9) (= (uf_170 ?x653 ?x654) (uf_217 (uf_40 (uf_41 ?x653) (uf_136 (uf_58 (uf_59 ?x653) ?x654)))))) :pat { (uf_23 (uf_15 ?x654)) (uf_170 ?x653 ?x654) })
-:assumption (forall (?x655 T4) (?x656 T5) (implies (= (uf_22 (uf_15 ?x656)) uf_9) (iff (= (uf_24 ?x655 ?x656) uf_9) (up_218 (uf_40 (uf_41 ?x655) ?x656)))) :pat { (uf_22 (uf_15 ?x656)) (uf_24 ?x655 ?x656) })
-:assumption (forall (?x657 T4) (?x658 T5) (implies (= (uf_23 (uf_15 ?x658)) uf_9) (iff (= (uf_24 ?x657 ?x658) uf_9) (up_218 (uf_40 (uf_41 ?x657) (uf_136 (uf_58 (uf_59 ?x657) ?x658)))))) :pat { (uf_23 (uf_15 ?x658)) (uf_24 ?x657 ?x658) })
-:assumption (forall (?x659 T4) (?x660 T5) (implies (= (uf_22 (uf_15 ?x660)) uf_9) (= (uf_25 ?x659 ?x660) (uf_215 (uf_40 (uf_41 ?x659) ?x660)))) :pat { (uf_22 (uf_15 ?x660)) (uf_25 ?x659 ?x660) })
-:assumption (forall (?x661 T4) (?x662 T5) (implies (= (uf_23 (uf_15 ?x662)) uf_9) (= (uf_25 ?x661 ?x662) (uf_25 ?x661 (uf_136 (uf_58 (uf_59 ?x661) ?x662))))) :pat { (uf_23 (uf_15 ?x662)) (uf_25 ?x661 ?x662) })
+:assumption (forall (?x651 T4) (?x652 T5) (implies (= (uf_23 (uf_13 ?x652)) uf_9) (= (uf_172 ?x651 ?x652) (uf_217 (uf_40 (uf_41 ?x651) ?x652)))) :pat { (uf_23 (uf_13 ?x652)) (uf_172 ?x651 ?x652) })
+:assumption (forall (?x653 T4) (?x654 T5) (implies (= (uf_22 (uf_13 ?x654)) uf_9) (= (uf_172 ?x653 ?x654) (uf_217 (uf_40 (uf_41 ?x653) (uf_135 (uf_58 (uf_59 ?x653) ?x654)))))) :pat { (uf_22 (uf_13 ?x654)) (uf_172 ?x653 ?x654) })
+:assumption (forall (?x655 T4) (?x656 T5) (implies (= (uf_23 (uf_13 ?x656)) uf_9) (iff (= (uf_27 ?x655 ?x656) uf_9) (up_218 (uf_40 (uf_41 ?x655) ?x656)))) :pat { (uf_23 (uf_13 ?x656)) (uf_27 ?x655 ?x656) })
+:assumption (forall (?x657 T4) (?x658 T5) (implies (= (uf_22 (uf_13 ?x658)) uf_9) (iff (= (uf_27 ?x657 ?x658) uf_9) (up_218 (uf_40 (uf_41 ?x657) (uf_135 (uf_58 (uf_59 ?x657) ?x658)))))) :pat { (uf_22 (uf_13 ?x658)) (uf_27 ?x657 ?x658) })
+:assumption (forall (?x659 T4) (?x660 T5) (implies (= (uf_23 (uf_13 ?x660)) uf_9) (= (uf_25 ?x659 ?x660) (uf_215 (uf_40 (uf_41 ?x659) ?x660)))) :pat { (uf_23 (uf_13 ?x660)) (uf_25 ?x659 ?x660) })
+:assumption (forall (?x661 T4) (?x662 T5) (implies (= (uf_22 (uf_13 ?x662)) uf_9) (= (uf_25 ?x661 ?x662) (uf_25 ?x661 (uf_135 (uf_58 (uf_59 ?x661) ?x662))))) :pat { (uf_22 (uf_13 ?x662)) (uf_25 ?x661 ?x662) })
:assumption (forall (?x663 T5) (?x664 T3) (= (uf_126 ?x663 (uf_214 ?x664)) (uf_43 uf_219 (uf_220 ?x663 (uf_214 ?x664)))) :pat { (uf_126 ?x663 (uf_214 ?x664)) })
:assumption (up_197 uf_37)
:assumption (forall (?x665 T17) (?x666 T17) (?x667 T15) (implies (= (uf_224 (uf_225 (uf_222 ?x665 ?x667)) (uf_225 (uf_222 ?x666 ?x667))) uf_9) (= (uf_221 (uf_222 ?x665 ?x667) (uf_222 ?x666 ?x667)) uf_9)) :pat { (uf_221 (uf_222 ?x665 ?x667) (uf_222 ?x666 (uf_223 ?x667))) })
@@ -584,70 +584,70 @@
:assumption (forall (?x671 T17) (= (uf_225 (uf_226 ?x671)) ?x671))
:assumption (forall (?x672 Int) (?x673 Int) (iff (= (uf_221 ?x672 ?x673) uf_9) (= ?x672 ?x673)) :pat { (uf_221 ?x672 ?x673) })
:assumption (forall (?x674 T17) (?x675 T17) (iff (= (uf_224 ?x674 ?x675) uf_9) (= ?x674 ?x675)) :pat { (uf_224 ?x674 ?x675) })
-:assumption (forall (?x676 T3) (?x677 T15) (?x678 T3) (implies (and (= (uf_228 ?x678) uf_9) (= (uf_227 ?x676 ?x677 ?x678) uf_9)) (= (uf_223 ?x677) ?x677)) :pat { (uf_227 ?x676 ?x677 ?x678) (uf_228 ?x678) })
-:assumption (forall (?x679 T3) (implies (= (uf_228 ?x679) uf_9) (= (uf_23 ?x679) uf_9)) :pat { (uf_228 ?x679) })
-:assumption (forall (?x680 T17) (?x681 T15) (?x682 T15) (?x683 Int) (or (= ?x681 ?x682) (= (uf_222 (uf_229 ?x680 ?x681 ?x683) ?x682) (uf_222 ?x680 ?x682))) :pat { (uf_222 (uf_229 ?x680 ?x681 ?x683) ?x682) })
+:assumption (forall (?x676 T3) (?x677 T15) (?x678 T3) (implies (and (= (uf_227 ?x676 ?x677 ?x678) uf_9) (= (uf_228 ?x678) uf_9)) (= (uf_223 ?x677) ?x677)) :pat { (uf_227 ?x676 ?x677 ?x678) (uf_228 ?x678) })
+:assumption (forall (?x679 T3) (implies (= (uf_228 ?x679) uf_9) (= (uf_22 ?x679) uf_9)) :pat { (uf_228 ?x679) })
+:assumption (forall (?x680 T17) (?x681 T15) (?x682 T15) (?x683 Int) (or (= (uf_222 (uf_229 ?x680 ?x681 ?x683) ?x682) (uf_222 ?x680 ?x682)) (= ?x681 ?x682)) :pat { (uf_222 (uf_229 ?x680 ?x681 ?x683) ?x682) })
:assumption (forall (?x684 T17) (?x685 T15) (?x686 Int) (= (uf_222 (uf_229 ?x684 ?x685 ?x686) ?x685) ?x686) :pat { (uf_222 (uf_229 ?x684 ?x685 ?x686) ?x685) })
:assumption (forall (?x687 T15) (= (uf_222 uf_230 ?x687) 0))
:assumption (forall (?x688 T17) (?x689 T15) (?x690 Int) (?x691 Int) (?x692 Int) (?x693 Int) (= (uf_231 ?x688 ?x689 ?x690 ?x691 ?x692 ?x693) (uf_229 ?x688 ?x689 (uf_99 (uf_222 ?x688 ?x689) ?x690 ?x691 ?x692 ?x693))) :pat { (uf_231 ?x688 ?x689 ?x690 ?x691 ?x692 ?x693) })
-:assumption (forall (?x694 T4) (?x695 T5) (implies (= (uf_51 ?x694) uf_9) (and (= (uf_233 (uf_232 ?x694 ?x695)) ?x694) (= (uf_234 (uf_232 ?x694 ?x695)) (uf_116 ?x695)))) :pat { (uf_232 ?x694 ?x695) })
-:assumption (forall (?x696 T18) (= (uf_51 (uf_233 ?x696)) uf_9))
-:assumption (= (uf_51 (uf_233 uf_235)) uf_9)
-:assumption (forall (?x697 T4) (?x698 T5) (or (not (up_213 (uf_58 (uf_59 ?x697) ?x698))) (<= (uf_170 ?x697 ?x698) (uf_171 ?x697))) :pat { (uf_40 (uf_41 ?x697) ?x698) })
-:assumption (forall (?x699 T4) (?x700 T5) (implies (and (= (uf_135 (uf_58 (uf_59 ?x699) ?x700)) uf_9) (= (uf_51 ?x699) uf_9)) (= (uf_14 (uf_15 ?x700)) uf_16)) :pat { (uf_135 (uf_58 (uf_59 ?x699) ?x700)) })
-:assumption (forall (?x701 T4) (?x702 T5) (implies (= (uf_27 ?x701 ?x702) uf_9) (= (uf_27 ?x701 (uf_136 (uf_58 (uf_59 ?x701) ?x702))) uf_9)) :pat { (uf_27 ?x701 ?x702) (uf_58 (uf_59 ?x701) (uf_136 (uf_58 (uf_59 ?x701) ?x702))) })
-:assumption (forall (?x703 T14) (and (= (uf_22 (uf_15 (uf_136 ?x703))) uf_9) (not (= (uf_14 (uf_15 (uf_136 ?x703))) uf_16))) :pat { (uf_136 ?x703) })
+:assumption (forall (?x694 T4) (?x695 T5) (implies (= (uf_51 ?x694) uf_9) (and (= (uf_233 (uf_232 ?x694 ?x695)) (uf_116 ?x695)) (= (uf_234 (uf_232 ?x694 ?x695)) ?x694))) :pat { (uf_232 ?x694 ?x695) })
+:assumption (forall (?x696 T18) (= (uf_51 (uf_234 ?x696)) uf_9))
+:assumption (= (uf_51 (uf_234 uf_235)) uf_9)
+:assumption (forall (?x697 T4) (?x698 T5) (or (<= (uf_172 ?x697 ?x698) (uf_173 ?x697)) (not (up_213 (uf_58 (uf_59 ?x697) ?x698)))) :pat { (uf_40 (uf_41 ?x697) ?x698) })
+:assumption (forall (?x699 T4) (?x700 T5) (implies (and (= (uf_51 ?x699) uf_9) (= (uf_136 (uf_58 (uf_59 ?x699) ?x700)) uf_9)) (= (uf_12 (uf_13 ?x700)) uf_14)) :pat { (uf_136 (uf_58 (uf_59 ?x699) ?x700)) })
+:assumption (forall (?x701 T4) (?x702 T5) (implies (= (uf_24 ?x701 ?x702) uf_9) (= (uf_24 ?x701 (uf_135 (uf_58 (uf_59 ?x701) ?x702))) uf_9)) :pat { (uf_24 ?x701 ?x702) (uf_58 (uf_59 ?x701) (uf_135 (uf_58 (uf_59 ?x701) ?x702))) })
+:assumption (forall (?x703 T14) (and (not (= (uf_12 (uf_13 (uf_135 ?x703))) uf_14)) (= (uf_23 (uf_13 (uf_135 ?x703))) uf_9)) :pat { (uf_135 ?x703) })
:assumption (forall (?x704 T5) (?x705 T15) (implies (<= 0 (uf_237 ?x705)) (= (uf_116 (uf_126 (uf_236 ?x704 ?x705) ?x705)) (uf_116 ?x704))) :pat { (uf_126 (uf_236 ?x704 ?x705) ?x705) })
:assumption (forall (?x706 T5) (?x707 T15) (= (uf_236 ?x706 ?x707) (uf_43 (uf_238 ?x707) (uf_239 ?x706 ?x707))) :pat { (uf_236 ?x706 ?x707) })
:assumption (forall (?x708 Int) (?x709 T15) (= (uf_236 (uf_126 (uf_43 (uf_238 ?x709) ?x708) ?x709) ?x709) (uf_43 (uf_238 ?x709) ?x708)) :pat { (uf_236 (uf_126 (uf_43 (uf_238 ?x709) ?x708) ?x709) ?x709) })
:assumption (forall (?x710 T5) (?x711 T3) (implies (= (uf_48 ?x710 ?x711) uf_9) (= ?x710 (uf_43 ?x711 (uf_116 ?x710)))) :pat { (uf_48 ?x710 ?x711) })
-:assumption (forall (?x712 T5) (?x713 T3) (iff (= (uf_48 ?x712 ?x713) uf_9) (= (uf_15 ?x712) ?x713)))
+:assumption (forall (?x712 T5) (?x713 T3) (iff (= (uf_48 ?x712 ?x713) uf_9) (= (uf_13 ?x712) ?x713)))
:assumption (= uf_121 (uf_43 uf_240 0))
-:assumption (forall (?x714 T15) (?x715 Int) (and (= (uf_242 (uf_241 ?x714 ?x715)) ?x715) (and (= (uf_243 (uf_241 ?x714 ?x715)) ?x714) (not (up_244 (uf_241 ?x714 ?x715))))) :pat { (uf_241 ?x714 ?x715) })
-:assumption (forall (?x716 T5) (?x717 T15) (and (= (uf_245 (uf_220 ?x716 ?x717)) ?x717) (= (uf_246 (uf_220 ?x716 ?x717)) ?x716)) :pat { (uf_220 ?x716 ?x717) })
+:assumption (forall (?x714 T15) (?x715 Int) (and (not (up_242 (uf_241 ?x714 ?x715))) (and (= (uf_243 (uf_241 ?x714 ?x715)) ?x714) (= (uf_244 (uf_241 ?x714 ?x715)) ?x715))) :pat { (uf_241 ?x714 ?x715) })
+:assumption (forall (?x716 T5) (?x717 T15) (and (= (uf_245 (uf_220 ?x716 ?x717)) ?x716) (= (uf_246 (uf_220 ?x716 ?x717)) ?x717)) :pat { (uf_220 ?x716 ?x717) })
:assumption (forall (?x718 T3) (?x719 Int) (= (uf_116 (uf_43 ?x718 ?x719)) ?x719))
-:assumption (forall (?x720 T3) (?x721 Int) (= (uf_15 (uf_43 ?x720 ?x721)) ?x720))
-:assumption (forall (?x722 T3) (?x723 T3) (?x724 Int) (?x725 Int) (iff (= (uf_247 ?x722 ?x723 ?x724 ?x725) uf_9) (and (= (uf_248 ?x722 ?x723) ?x725) (and (= (uf_249 ?x722 ?x723) ?x724) (up_250 ?x722 ?x723)))) :pat { (uf_247 ?x722 ?x723 ?x724 ?x725) })
-:assumption (forall (?x726 T5) (= (uf_139 ?x726 ?x726) uf_9) :pat { (uf_15 ?x726) })
-:assumption (forall (?x727 T5) (?x728 T5) (?x729 T5) (implies (and (= (uf_139 ?x728 ?x729) uf_9) (= (uf_139 ?x727 ?x728) uf_9)) (= (uf_139 ?x727 ?x729) uf_9)) :pat { (uf_139 ?x727 ?x728) (uf_139 ?x728 ?x729) })
-:assumption (forall (?x730 T12) (?x731 T5) (?x732 T5) (?x733 T11) (or (= (uf_40 (uf_172 ?x730 ?x731 ?x733) ?x732) (uf_40 ?x730 ?x732)) (= ?x731 ?x732)))
-:assumption (forall (?x734 T12) (?x735 T5) (?x736 T11) (= (uf_40 (uf_172 ?x734 ?x735 ?x736) ?x735) ?x736))
-:assumption (forall (?x737 T13) (?x738 T5) (?x739 T5) (?x740 T14) (or (= (uf_58 (uf_251 ?x737 ?x738 ?x740) ?x739) (uf_58 ?x737 ?x739)) (= ?x738 ?x739)))
+:assumption (forall (?x720 T3) (?x721 Int) (= (uf_13 (uf_43 ?x720 ?x721)) ?x720))
+:assumption (forall (?x722 T3) (?x723 T3) (?x724 Int) (?x725 Int) (iff (= (uf_247 ?x722 ?x723 ?x724 ?x725) uf_9) (and (up_248 ?x722 ?x723) (and (= (uf_249 ?x722 ?x723) ?x724) (= (uf_250 ?x722 ?x723) ?x725)))) :pat { (uf_247 ?x722 ?x723 ?x724 ?x725) })
+:assumption (forall (?x726 T5) (= (uf_138 ?x726 ?x726) uf_9) :pat { (uf_13 ?x726) })
+:assumption (forall (?x727 T5) (?x728 T5) (?x729 T5) (implies (and (= (uf_138 ?x727 ?x728) uf_9) (= (uf_138 ?x728 ?x729) uf_9)) (= (uf_138 ?x727 ?x729) uf_9)) :pat { (uf_138 ?x727 ?x728) (uf_138 ?x728 ?x729) })
+:assumption (forall (?x730 T12) (?x731 T5) (?x732 T5) (?x733 T11) (or (= ?x731 ?x732) (= (uf_40 (uf_170 ?x730 ?x731 ?x733) ?x732) (uf_40 ?x730 ?x732))))
+:assumption (forall (?x734 T12) (?x735 T5) (?x736 T11) (= (uf_40 (uf_170 ?x734 ?x735 ?x736) ?x735) ?x736))
+:assumption (forall (?x737 T13) (?x738 T5) (?x739 T5) (?x740 T14) (or (= ?x738 ?x739) (= (uf_58 (uf_251 ?x737 ?x738 ?x740) ?x739) (uf_58 ?x737 ?x739))))
:assumption (forall (?x741 T13) (?x742 T5) (?x743 T14) (= (uf_58 (uf_251 ?x741 ?x742 ?x743) ?x742) ?x743))
-:assumption (forall (?x744 T9) (?x745 T5) (?x746 T5) (?x747 Int) (or (= (uf_19 (uf_178 ?x744 ?x745 ?x747) ?x746) (uf_19 ?x744 ?x746)) (= ?x745 ?x746)))
-:assumption (forall (?x748 T9) (?x749 T5) (?x750 Int) (= (uf_19 (uf_178 ?x748 ?x749 ?x750) ?x749) ?x750))
+:assumption (forall (?x744 T9) (?x745 T5) (?x746 T5) (?x747 Int) (or (= ?x745 ?x746) (= (uf_19 (uf_177 ?x744 ?x745 ?x747) ?x746) (uf_19 ?x744 ?x746))))
+:assumption (forall (?x748 T9) (?x749 T5) (?x750 Int) (= (uf_19 (uf_177 ?x748 ?x749 ?x750) ?x749) ?x750))
:assumption (= uf_26 (uf_43 uf_252 uf_253))
-:assumption (= (uf_23 uf_254) uf_9)
-:assumption (= (uf_23 uf_255) uf_9)
-:assumption (= (uf_23 uf_84) uf_9)
-:assumption (= (uf_23 uf_4) uf_9)
-:assumption (= (uf_23 uf_91) uf_9)
-:assumption (= (uf_23 uf_7) uf_9)
-:assumption (= (uf_23 uf_83) uf_9)
-:assumption (= (uf_23 uf_87) uf_9)
-:assumption (= (uf_23 uf_90) uf_9)
-:assumption (= (uf_23 uf_94) uf_9)
+:assumption (= (uf_22 uf_254) uf_9)
+:assumption (= (uf_22 uf_255) uf_9)
+:assumption (= (uf_22 uf_84) uf_9)
+:assumption (= (uf_22 uf_4) uf_9)
+:assumption (= (uf_22 uf_91) uf_9)
+:assumption (= (uf_22 uf_7) uf_9)
+:assumption (= (uf_22 uf_83) uf_9)
+:assumption (= (uf_22 uf_87) uf_9)
+:assumption (= (uf_22 uf_90) uf_9)
+:assumption (= (uf_22 uf_94) uf_9)
:assumption (= (uf_208 uf_252) uf_9)
-:assumption (= (uf_23 uf_256) uf_9)
-:assumption (= (uf_23 uf_219) uf_9)
-:assumption (= (uf_23 uf_257) uf_9)
-:assumption (= (uf_23 uf_258) uf_9)
-:assumption (= (uf_23 uf_240) uf_9)
-:assumption (forall (?x751 T3) (implies (= (uf_23 ?x751) uf_9) (not (up_36 ?x751))) :pat { (uf_23 ?x751) })
-:assumption (forall (?x752 T3) (= (uf_23 (uf_6 ?x752)) uf_9) :pat { (uf_6 ?x752) })
-:assumption (forall (?x753 T3) (?x754 T3) (= (uf_23 (uf_259 ?x753 ?x754)) uf_9) :pat { (uf_259 ?x753 ?x754) })
-:assumption (forall (?x755 T3) (implies (= (uf_208 ?x755) uf_9) (= (uf_22 ?x755) uf_9)) :pat { (uf_208 ?x755) })
-:assumption (forall (?x756 T3) (implies (= (uf_141 ?x756) uf_9) (= (uf_22 ?x756) uf_9)) :pat { (uf_141 ?x756) })
-:assumption (forall (?x757 T3) (implies (= (uf_260 ?x757) uf_9) (= (uf_22 ?x757) uf_9)) :pat { (uf_260 ?x757) })
-:assumption (forall (?x758 T3) (iff (= (uf_208 ?x758) uf_9) (= (uf_14 ?x758) uf_261)) :pat { (uf_208 ?x758) })
-:assumption (forall (?x759 T3) (iff (= (uf_141 ?x759) uf_9) (= (uf_14 ?x759) uf_262)) :pat { (uf_141 ?x759) })
-:assumption (forall (?x760 T3) (iff (= (uf_260 ?x760) uf_9) (= (uf_14 ?x760) uf_263)) :pat { (uf_260 ?x760) })
-:assumption (forall (?x761 T3) (iff (= (uf_23 ?x761) uf_9) (= (uf_14 ?x761) uf_16)) :pat { (uf_23 ?x761) })
+:assumption (= (uf_22 uf_256) uf_9)
+:assumption (= (uf_22 uf_219) uf_9)
+:assumption (= (uf_22 uf_257) uf_9)
+:assumption (= (uf_22 uf_258) uf_9)
+:assumption (= (uf_22 uf_240) uf_9)
+:assumption (forall (?x751 T3) (implies (= (uf_22 ?x751) uf_9) (not (up_36 ?x751))) :pat { (uf_22 ?x751) })
+:assumption (forall (?x752 T3) (= (uf_22 (uf_6 ?x752)) uf_9) :pat { (uf_6 ?x752) })
+:assumption (forall (?x753 T3) (?x754 T3) (= (uf_22 (uf_259 ?x753 ?x754)) uf_9) :pat { (uf_259 ?x753 ?x754) })
+:assumption (forall (?x755 T3) (implies (= (uf_208 ?x755) uf_9) (= (uf_23 ?x755) uf_9)) :pat { (uf_208 ?x755) })
+:assumption (forall (?x756 T3) (implies (= (uf_141 ?x756) uf_9) (= (uf_23 ?x756) uf_9)) :pat { (uf_141 ?x756) })
+:assumption (forall (?x757 T3) (implies (= (uf_260 ?x757) uf_9) (= (uf_23 ?x757) uf_9)) :pat { (uf_260 ?x757) })
+:assumption (forall (?x758 T3) (iff (= (uf_208 ?x758) uf_9) (= (uf_12 ?x758) uf_261)) :pat { (uf_208 ?x758) })
+:assumption (forall (?x759 T3) (iff (= (uf_141 ?x759) uf_9) (= (uf_12 ?x759) uf_262)) :pat { (uf_141 ?x759) })
+:assumption (forall (?x760 T3) (iff (= (uf_260 ?x760) uf_9) (= (uf_12 ?x760) uf_263)) :pat { (uf_260 ?x760) })
+:assumption (forall (?x761 T3) (iff (= (uf_22 ?x761) uf_9) (= (uf_12 ?x761) uf_14)) :pat { (uf_22 ?x761) })
:assumption (forall (?x762 T3) (?x763 T3) (= (uf_142 (uf_259 ?x762 ?x763)) (+ (uf_142 ?x762) 23)) :pat { (uf_259 ?x762 ?x763) })
:assumption (forall (?x764 T3) (= (uf_142 (uf_6 ?x764)) (+ (uf_142 ?x764) 17)) :pat { (uf_6 ?x764) })
:assumption (forall (?x765 T3) (?x766 T3) (= (uf_264 (uf_259 ?x765 ?x766)) ?x765) :pat { (uf_259 ?x765 ?x766) })
:assumption (forall (?x767 T3) (?x768 T3) (= (uf_265 (uf_259 ?x767 ?x768)) ?x768) :pat { (uf_259 ?x767 ?x768) })
-:assumption (forall (?x769 T3) (= (uf_138 (uf_6 ?x769)) 8) :pat { (uf_6 ?x769) })
+:assumption (forall (?x769 T3) (= (uf_139 (uf_6 ?x769)) 8) :pat { (uf_6 ?x769) })
:assumption (forall (?x770 T3) (= (uf_266 (uf_6 ?x770)) ?x770) :pat { (uf_6 ?x770) })
:assumption (= (uf_260 uf_267) uf_9)
:assumption (= (uf_260 uf_37) uf_9)
@@ -670,18 +670,18 @@
:assumption (= (uf_142 uf_87) 0)
:assumption (= (uf_142 uf_90) 0)
:assumption (= (uf_142 uf_94) 0)
-:assumption (= (uf_138 uf_219) 1)
-:assumption (= (uf_138 uf_252) 1)
-:assumption (= (uf_138 uf_254) 8)
-:assumption (= (uf_138 uf_255) 4)
-:assumption (= (uf_138 uf_84) 8)
-:assumption (= (uf_138 uf_4) 4)
-:assumption (= (uf_138 uf_91) 2)
-:assumption (= (uf_138 uf_7) 1)
-:assumption (= (uf_138 uf_83) 8)
-:assumption (= (uf_138 uf_87) 4)
-:assumption (= (uf_138 uf_90) 2)
-:assumption (= (uf_138 uf_94) 1)
-:assumption (not (implies true (implies (and (<= uf_269 uf_78) (<= 0 uf_269)) (implies (and (<= uf_270 uf_76) (<= 0 uf_270)) (implies (and (<= uf_271 uf_76) (<= 0 uf_271)) (implies (< uf_272 1099511627776) (implies (< 0 uf_272) (implies (and (= (uf_22 (uf_124 uf_7 uf_272)) uf_9) (and (not (= (uf_14 (uf_124 uf_7 uf_272)) uf_16)) (and (= (uf_27 uf_273 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274)))) uf_9) (and (= (uf_48 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274))) (uf_124 uf_7 uf_272)) uf_9) (and (= (uf_25 uf_273 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274)))) uf_26) (= (uf_24 uf_273 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274)))) uf_9)))))) (implies true (implies (= (uf_203 uf_273) uf_9) (implies (and (= (uf_55 uf_273) uf_9) (= (uf_202 uf_275 uf_273) uf_9)) (implies (forall (?x771 T19) (< (uf_276 ?x771) uf_277) :pat { (uf_276 ?x771) }) (implies (and (up_278 uf_273 uf_275 uf_279 (uf_43 uf_7 uf_274) (uf_6 uf_7)) (up_280 uf_273 uf_275 uf_279 (uf_29 (uf_43 uf_7 uf_274)) (uf_6 uf_7))) (implies (up_280 uf_273 uf_275 uf_281 uf_272 uf_4) (implies (= uf_282 (uf_171 uf_273)) (implies (forall (?x772 T5) (iff (= (uf_283 uf_282 ?x772) uf_9) false) :pat { (uf_283 uf_282 ?x772) }) (implies (and (<= uf_272 uf_76) (<= 0 uf_272)) (and (implies (= (uf_200 uf_273 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274))) (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274))) uf_284) uf_9) (and (implies (and (= (uf_27 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7) uf_7) uf_9)) (and (implies (and (= (uf_67 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7) uf_7) uf_9)) (implies (= uf_285 (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7))) (implies (up_280 uf_273 uf_286 uf_287 uf_285 uf_7) (implies (up_280 uf_273 uf_288 uf_289 0 uf_4) (implies (up_280 uf_273 uf_290 uf_291 1 uf_4) (implies (and (<= 0 0) (and (<= 0 0) (and (<= 1 1) (<= 1 1)))) (and (implies (<= 1 uf_272) (and (implies (forall (?x773 Int) (implies (and (<= ?x773 uf_76) (<= 0 ?x773)) (implies (< ?x773 1) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x773 uf_7)) uf_285)))) (and (implies (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_285) (< 0 uf_272)) (implies true (implies (and (<= uf_292 uf_78) (<= 0 uf_292)) (implies (and (<= uf_293 uf_76) (<= 0 uf_293)) (implies (and (<= uf_294 uf_76) (<= 0 uf_294)) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (<= uf_294 uf_272) (implies (forall (?x774 Int) (implies (and (<= ?x774 uf_76) (<= 0 ?x774)) (implies (< ?x774 uf_294) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x774 uf_7)) uf_292)))) (implies (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_293 uf_7)) uf_292) (< uf_293 uf_272)) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (and (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (and (= (uf_177 uf_273 uf_273) uf_9) (and (forall (?x775 T5) (<= (uf_170 uf_273 ?x775) (uf_170 uf_273 ?x775)) :pat { (uf_170 uf_273 ?x775) }) (and (<= (uf_171 uf_273) (uf_171 uf_273)) (and (forall (?x776 T5) (implies (= (uf_67 uf_273 ?x776) uf_9) (and (= (uf_67 uf_273 ?x776) uf_9) (= (uf_58 (uf_59 uf_273) ?x776) (uf_58 (uf_59 uf_273) ?x776)))) :pat { (uf_58 (uf_59 uf_273) ?x776) }) (and (forall (?x777 T5) (implies (= (uf_67 uf_273 ?x777) uf_9) (and (= (uf_67 uf_273 ?x777) uf_9) (= (uf_40 (uf_41 uf_273) ?x777) (uf_40 (uf_41 uf_273) ?x777)))) :pat { (uf_40 (uf_41 uf_273) ?x777) }) (and (forall (?x778 T5) (implies (= (uf_67 uf_273 ?x778) uf_9) (and (= (uf_67 uf_273 ?x778) uf_9) (= (uf_19 (uf_20 uf_273) ?x778) (uf_19 (uf_20 uf_273) ?x778)))) :pat { (uf_19 (uf_20 uf_273) ?x778) }) (forall (?x779 T5) (implies (not (= (uf_14 (uf_15 (uf_25 uf_273 ?x779))) uf_261)) (not (= (uf_14 (uf_15 (uf_25 uf_273 ?x779))) uf_261))) :pat { (uf_40 (uf_41 uf_273) ?x779) }))))))) (implies (and (= (uf_177 uf_273 uf_273) uf_9) (and (forall (?x780 T5) (<= (uf_170 uf_273 ?x780) (uf_170 uf_273 ?x780)) :pat { (uf_170 uf_273 ?x780) }) (<= (uf_171 uf_273) (uf_171 uf_273)))) (implies (and (= (uf_55 uf_273) uf_9) (= (uf_202 uf_295 uf_273) uf_9)) (implies (up_280 uf_273 uf_295 uf_291 uf_294 uf_4) (implies (up_280 uf_273 uf_295 uf_289 uf_293 uf_4) (implies (up_280 uf_273 uf_295 uf_287 uf_292 uf_7) (implies (up_280 uf_273 uf_295 uf_281 uf_272 uf_4) (implies (and (up_278 uf_273 uf_295 uf_279 (uf_43 uf_7 uf_274) (uf_6 uf_7)) (up_280 uf_273 uf_295 uf_279 (uf_29 (uf_43 uf_7 uf_274)) (uf_6 uf_7))) (implies (and (= (uf_41 uf_273) (uf_41 uf_273)) (= (uf_59 uf_273) (uf_59 uf_273))) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (and (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (<= uf_272 uf_294) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (and (implies up_216 (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (= uf_296 uf_292) (implies (= uf_297 uf_294) (implies (= uf_298 uf_293) (implies (= uf_299 uf_292) (implies true (and (implies (forall (?x781 Int) (implies (and (<= ?x781 uf_76) (<= 0 ?x781)) (implies (< ?x781 uf_272) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x781 uf_7)) uf_299)))) (and (implies (exists (?x782 Int) (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x782 uf_7)) uf_299) (and (< ?x782 uf_272) (and (<= ?x782 uf_76) (<= 0 ?x782))))) true) (exists (?x783 Int) (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x783 uf_7)) uf_299) (and (< ?x783 uf_272) (and (<= ?x783 uf_76) (<= 0 ?x783))))))) (forall (?x784 Int) (implies (and (<= ?x784 uf_76) (<= 0 ?x784)) (implies (< ?x784 uf_272) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x784 uf_7)) uf_299)))))))))))))))) up_216)))))))))) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (< uf_294 uf_272) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (and (implies (and (= (uf_27 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9)) (and (implies (and (= (uf_67 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9)) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (and (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_292) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (= uf_300 uf_292) (implies (= uf_301 uf_293) (implies true (implies (and (<= 0 uf_301) (<= 1 uf_294)) (and (implies (and (<= (+ uf_294 1) uf_76) (<= 0 (+ uf_294 1))) (implies (= uf_302 (+ uf_294 1)) (implies (up_280 uf_273 uf_303 uf_291 uf_302 uf_4) (implies (and (<= 0 uf_301) (<= 2 uf_302)) (implies true (and (implies (<= uf_302 uf_272) (and (implies (forall (?x785 Int) (implies (and (<= ?x785 uf_76) (<= 0 ?x785)) (implies (< ?x785 uf_302) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x785 uf_7)) uf_300)))) (and (implies (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_301 uf_7)) uf_300) (< uf_301 uf_272)) (implies false true)) (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_301 uf_7)) uf_300) (< uf_301 uf_272)))) (forall (?x786 Int) (implies (and (<= ?x786 uf_76) (<= 0 ?x786)) (implies (< ?x786 uf_302) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x786 uf_7)) uf_300)))))) (<= uf_302 uf_272))))))) (and (<= (+ uf_294 1) uf_76) (<= 0 (+ uf_294 1)))))))))))))))) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (< uf_292 (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7))) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (and (implies (and (= (uf_27 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9)) (and (implies (and (= (uf_67 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9)) (implies (= uf_304 (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7))) (implies (up_280 uf_273 uf_305 uf_287 uf_304 uf_7) (implies (up_280 uf_273 uf_306 uf_289 uf_294 uf_4) (implies (and (<= 1 uf_294) (<= 1 uf_294)) (implies true (implies (= uf_300 uf_304) (implies (= uf_301 uf_294) (implies true (implies (and (<= 0 uf_301) (<= 1 uf_294)) (and (implies (and (<= (+ uf_294 1) uf_76) (<= 0 (+ uf_294 1))) (implies (= uf_302 (+ uf_294 1)) (implies (up_280 uf_273 uf_303 uf_291 uf_302 uf_4) (implies (and (<= 0 uf_301) (<= 2 uf_302)) (implies true (and (implies (<= uf_302 uf_272) (and (implies (forall (?x787 Int) (implies (and (<= ?x787 uf_76) (<= 0 ?x787)) (implies (< ?x787 uf_302) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x787 uf_7)) uf_300)))) (and (implies (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_301 uf_7)) uf_300) (< uf_301 uf_272)) (implies false true)) (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_301 uf_7)) uf_300) (< uf_301 uf_272)))) (forall (?x788 Int) (implies (and (<= ?x788 uf_76) (<= 0 ?x788)) (implies (< ?x788 uf_302) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x788 uf_7)) uf_300)))))) (<= uf_302 uf_272))))))) (and (<= (+ uf_294 1) uf_76) (<= 0 (+ uf_294 1)))))))))))))) (and (= (uf_67 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9)))) (and (= (uf_27 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9)))))))))))) (and (= (uf_67 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9)))) (and (= (uf_27 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9)))))))))))))))))))))))))) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (not true) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (and (= (uf_55 uf_273) uf_9) (= (uf_202 uf_295 uf_273) uf_9)) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (and (implies up_216 (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies (and (<= 0 uf_293) (<= 1 uf_294)) (implies true (implies (= uf_296 uf_292) (implies (= uf_297 uf_294) (implies (= uf_298 uf_293) (implies (= uf_299 uf_292) (implies true (and (implies (forall (?x789 Int) (implies (and (<= ?x789 uf_76) (<= 0 ?x789)) (implies (< ?x789 uf_272) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x789 uf_7)) uf_299)))) (and (implies (exists (?x790 Int) (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x790 uf_7)) uf_299) (and (< ?x790 uf_272) (and (<= ?x790 uf_76) (<= 0 ?x790))))) true) (exists (?x791 Int) (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x791 uf_7)) uf_299) (and (< ?x791 uf_272) (and (<= ?x791 uf_76) (<= 0 ?x791))))))) (forall (?x792 Int) (implies (and (<= ?x792 uf_76) (<= 0 ?x792)) (implies (< ?x792 uf_272) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x792 uf_7)) uf_299)))))))))))))))) up_216)))))))))))))))))))))) (and (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_285) (< 0 uf_272)))) (forall (?x793 Int) (implies (and (<= ?x793 uf_76) (<= 0 ?x793)) (implies (< ?x793 1) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x793 uf_7)) uf_285)))))) (<= 1 uf_272)))))))) (and (= (uf_67 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7) uf_7) uf_9)))) (and (= (uf_27 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_9) (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7) uf_7) uf_9)))) (= (uf_200 uf_273 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274))) (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274))) uf_284) uf_9)))))))))))))))))))
+:assumption (= (uf_139 uf_219) 1)
+:assumption (= (uf_139 uf_252) 1)
+:assumption (= (uf_139 uf_254) 8)
+:assumption (= (uf_139 uf_255) 4)
+:assumption (= (uf_139 uf_84) 8)
+:assumption (= (uf_139 uf_4) 4)
+:assumption (= (uf_139 uf_91) 2)
+:assumption (= (uf_139 uf_7) 1)
+:assumption (= (uf_139 uf_83) 8)
+:assumption (= (uf_139 uf_87) 4)
+:assumption (= (uf_139 uf_90) 2)
+:assumption (= (uf_139 uf_94) 1)
+:assumption (not (implies true (implies (and (<= 0 uf_269) (<= uf_269 uf_78)) (implies (and (<= 0 uf_270) (<= uf_270 uf_76)) (implies (and (<= 0 uf_271) (<= uf_271 uf_76)) (implies (< uf_272 1099511627776) (implies (< 0 uf_272) (implies (and (= (uf_27 uf_273 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274)))) uf_9) (and (= (uf_25 uf_273 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274)))) uf_26) (and (= (uf_48 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274))) (uf_124 uf_7 uf_272)) uf_9) (and (= (uf_24 uf_273 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274)))) uf_9) (and (not (= (uf_12 (uf_124 uf_7 uf_272)) uf_14)) (= (uf_23 (uf_124 uf_7 uf_272)) uf_9)))))) (implies true (implies (= (uf_203 uf_273) uf_9) (implies (and (= (uf_202 uf_275 uf_273) uf_9) (= (uf_55 uf_273) uf_9)) (implies (forall (?x771 T19) (< (uf_276 ?x771) uf_277) :pat { (uf_276 ?x771) }) (implies (and (up_278 uf_273 uf_275 uf_279 (uf_29 (uf_43 uf_7 uf_274)) (uf_6 uf_7)) (up_280 uf_273 uf_275 uf_279 (uf_43 uf_7 uf_274) (uf_6 uf_7))) (implies (up_278 uf_273 uf_275 uf_281 uf_272 uf_4) (implies (= uf_282 (uf_173 uf_273)) (implies (forall (?x772 T5) (iff (= (uf_283 uf_282 ?x772) uf_9) false) :pat { (uf_283 uf_282 ?x772) }) (implies (and (<= 0 uf_272) (<= uf_272 uf_76)) (and (= (uf_200 uf_273 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274))) (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274))) uf_284) uf_9) (implies (= (uf_200 uf_273 (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274))) (uf_43 (uf_124 uf_7 uf_272) (uf_116 (uf_43 uf_7 uf_274))) uf_284) uf_9) (and (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7) uf_7) uf_9) (= (uf_24 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_9)) (implies (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7) uf_7) uf_9) (= (uf_24 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_9)) (and (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7) uf_7) uf_9) (= (uf_68 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_9)) (implies (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7) uf_7) uf_9) (= (uf_68 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_9)) (implies (= uf_285 (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7))) (implies (up_278 uf_273 uf_286 uf_287 uf_285 uf_7) (implies (up_278 uf_273 uf_288 uf_289 0 uf_4) (implies (up_278 uf_273 uf_290 uf_291 1 uf_4) (implies (and (<= 1 1) (and (<= 1 1) (and (<= 0 0) (<= 0 0)))) (and (<= 1 uf_272) (implies (<= 1 uf_272) (and (forall (?x773 Int) (implies (and (<= 0 ?x773) (<= ?x773 uf_76)) (implies (< ?x773 1) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x773 uf_7)) uf_285)))) (implies (forall (?x774 Int) (implies (and (<= 0 ?x774) (<= ?x774 uf_76)) (implies (< ?x774 1) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x774 uf_7)) uf_285)))) (and (and (< 0 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_285)) (implies (and (< 0 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) 0 uf_7)) uf_285)) (implies true (implies (and (<= 0 uf_292) (<= uf_292 uf_78)) (implies (and (<= 0 uf_293) (<= uf_293 uf_76)) (implies (and (<= 0 uf_294) (<= uf_294 uf_76)) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (<= uf_294 uf_272) (implies (forall (?x775 Int) (implies (and (<= 0 ?x775) (<= ?x775 uf_76)) (implies (< ?x775 uf_294) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x775 uf_7)) uf_292)))) (implies (and (< uf_293 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_293 uf_7)) uf_292)) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (and (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (not true) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (and (= (uf_202 uf_295 uf_273) uf_9) (= (uf_55 uf_273) uf_9)) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (and up_216 (implies up_216 (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (= uf_296 uf_292) (implies (= uf_297 uf_294) (implies (= uf_298 uf_293) (implies (= uf_299 uf_292) (implies true (and (forall (?x776 Int) (implies (and (<= 0 ?x776) (<= ?x776 uf_76)) (implies (< ?x776 uf_272) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x776 uf_7)) uf_299)))) (implies (forall (?x777 Int) (implies (and (<= 0 ?x777) (<= ?x777 uf_76)) (implies (< ?x777 uf_272) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x777 uf_7)) uf_299)))) (and (exists (?x778 Int) (and (<= 0 ?x778) (and (<= ?x778 uf_76) (and (< ?x778 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x778 uf_7)) uf_299))))) (implies (exists (?x779 Int) (and (<= 0 ?x779) (and (<= ?x779 uf_76) (and (< ?x779 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x779 uf_7)) uf_299))))) true)))))))))))))))))))))))))) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (and (forall (?x780 T5) (implies (not (= (uf_12 (uf_13 (uf_25 uf_273 ?x780))) uf_261)) (not (= (uf_12 (uf_13 (uf_25 uf_273 ?x780))) uf_261))) :pat { (uf_40 (uf_41 uf_273) ?x780) }) (and (forall (?x781 T5) (implies (= (uf_68 uf_273 ?x781) uf_9) (and (= (uf_19 (uf_20 uf_273) ?x781) (uf_19 (uf_20 uf_273) ?x781)) (= (uf_68 uf_273 ?x781) uf_9))) :pat { (uf_19 (uf_20 uf_273) ?x781) }) (and (forall (?x782 T5) (implies (= (uf_68 uf_273 ?x782) uf_9) (and (= (uf_40 (uf_41 uf_273) ?x782) (uf_40 (uf_41 uf_273) ?x782)) (= (uf_68 uf_273 ?x782) uf_9))) :pat { (uf_40 (uf_41 uf_273) ?x782) }) (and (forall (?x783 T5) (implies (= (uf_68 uf_273 ?x783) uf_9) (and (= (uf_58 (uf_59 uf_273) ?x783) (uf_58 (uf_59 uf_273) ?x783)) (= (uf_68 uf_273 ?x783) uf_9))) :pat { (uf_58 (uf_59 uf_273) ?x783) }) (and (<= (uf_173 uf_273) (uf_173 uf_273)) (and (forall (?x784 T5) (<= (uf_172 uf_273 ?x784) (uf_172 uf_273 ?x784)) :pat { (uf_172 uf_273 ?x784) }) (= (uf_178 uf_273 uf_273) uf_9))))))) (implies (and (<= (uf_173 uf_273) (uf_173 uf_273)) (and (forall (?x785 T5) (<= (uf_172 uf_273 ?x785) (uf_172 uf_273 ?x785)) :pat { (uf_172 uf_273 ?x785) }) (= (uf_178 uf_273 uf_273) uf_9))) (implies (and (= (uf_202 uf_295 uf_273) uf_9) (= (uf_55 uf_273) uf_9)) (implies (up_278 uf_273 uf_295 uf_291 uf_294 uf_4) (implies (up_278 uf_273 uf_295 uf_289 uf_293 uf_4) (implies (up_278 uf_273 uf_295 uf_287 uf_292 uf_7) (implies (up_278 uf_273 uf_295 uf_281 uf_272 uf_4) (implies (and (up_278 uf_273 uf_295 uf_279 (uf_29 (uf_43 uf_7 uf_274)) (uf_6 uf_7)) (up_280 uf_273 uf_295 uf_279 (uf_43 uf_7 uf_274) (uf_6 uf_7))) (implies (and (= (uf_59 uf_273) (uf_59 uf_273)) (= (uf_41 uf_273) (uf_41 uf_273))) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (and (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (< uf_294 uf_272) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (and (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9) (= (uf_24 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9)) (implies (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9) (= (uf_24 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9)) (and (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9) (= (uf_68 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9)) (implies (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9) (= (uf_68 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9)) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (and (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (< uf_292 (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7))) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (and (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9) (= (uf_24 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9)) (implies (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9) (= (uf_24 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9)) (and (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9) (= (uf_68 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9)) (implies (and (= (uf_48 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7) uf_7) uf_9) (= (uf_68 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_9)) (implies (= uf_300 (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7))) (implies (up_278 uf_273 uf_301 uf_287 uf_300 uf_7) (implies (up_278 uf_273 uf_302 uf_289 uf_294 uf_4) (implies (and (<= 1 uf_294) (<= 1 uf_294)) (implies true (implies (= uf_303 uf_300) (implies (= uf_304 uf_294) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_304)) (and (and (<= 0 (+ uf_294 1)) (<= (+ uf_294 1) uf_76)) (implies (and (<= 0 (+ uf_294 1)) (<= (+ uf_294 1) uf_76)) (implies (= uf_305 (+ uf_294 1)) (implies (up_278 uf_273 uf_306 uf_291 uf_305 uf_4) (implies (and (<= 2 uf_305) (<= 0 uf_304)) (implies true (and (<= uf_305 uf_272) (implies (<= uf_305 uf_272) (and (forall (?x786 Int) (implies (and (<= 0 ?x786) (<= ?x786 uf_76)) (implies (< ?x786 uf_305) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x786 uf_7)) uf_303)))) (implies (forall (?x787 Int) (implies (and (<= 0 ?x787) (<= ?x787 uf_76)) (implies (< ?x787 uf_305) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x787 uf_7)) uf_303)))) (and (and (< uf_304 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_304 uf_7)) uf_303)) (implies (and (< uf_304 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_304 uf_7)) uf_303)) (implies false true)))))))))))))))))))))))))))))))) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_294 uf_7)) uf_292) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (= uf_303 uf_292) (implies (= uf_304 uf_293) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_304)) (and (and (<= 0 (+ uf_294 1)) (<= (+ uf_294 1) uf_76)) (implies (and (<= 0 (+ uf_294 1)) (<= (+ uf_294 1) uf_76)) (implies (= uf_305 (+ uf_294 1)) (implies (up_278 uf_273 uf_306 uf_291 uf_305 uf_4) (implies (and (<= 2 uf_305) (<= 0 uf_304)) (implies true (and (<= uf_305 uf_272) (implies (<= uf_305 uf_272) (and (forall (?x788 Int) (implies (and (<= 0 ?x788) (<= ?x788 uf_76)) (implies (< ?x788 uf_305) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x788 uf_7)) uf_303)))) (implies (forall (?x789 Int) (implies (and (<= 0 ?x789) (<= ?x789 uf_76)) (implies (< ?x789 uf_305) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x789 uf_7)) uf_303)))) (and (and (< uf_304 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_304 uf_7)) uf_303)) (implies (and (< uf_304 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) uf_304 uf_7)) uf_303)) (implies false true))))))))))))))))))))))))))))))))))))) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (<= uf_272 uf_294) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (and up_216 (implies up_216 (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies (and (<= 1 uf_294) (<= 0 uf_293)) (implies true (implies (= uf_296 uf_292) (implies (= uf_297 uf_294) (implies (= uf_298 uf_293) (implies (= uf_299 uf_292) (implies true (and (forall (?x790 Int) (implies (and (<= 0 ?x790) (<= ?x790 uf_76)) (implies (< ?x790 uf_272) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x790 uf_7)) uf_299)))) (implies (forall (?x791 Int) (implies (and (<= 0 ?x791) (<= ?x791 uf_76)) (implies (< ?x791 uf_272) (<= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x791 uf_7)) uf_299)))) (and (exists (?x792 Int) (and (<= 0 ?x792) (and (<= ?x792 uf_76) (and (< ?x792 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x792 uf_7)) uf_299))))) (implies (exists (?x793 Int) (and (<= 0 ?x793) (and (<= ?x793 uf_76) (and (< ?x793 uf_272) (= (uf_110 uf_273 (uf_66 (uf_43 uf_7 uf_274) ?x793 uf_7)) uf_299))))) true))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
:formula true
)
--- a/src/HOL/Boogie/Examples/cert/VCC_maximum.proof Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Boogie/Examples/cert/VCC_maximum.proof Sat Nov 14 09:40:27 2009 +0100
@@ -1,8070 +1,8005 @@
#2 := false
-#121 := 0::int
decl uf_110 :: (-> T4 T5 int)
decl uf_66 :: (-> T5 int T3 T5)
decl uf_7 :: T3
#10 := uf_7
-decl ?x785!14 :: int
-#19054 := ?x785!14
+decl ?x786!14 :: int
+#18483 := ?x786!14
decl uf_43 :: (-> T3 int T5)
decl uf_274 :: int
#2959 := uf_274
#2960 := (uf_43 uf_7 uf_274)
-#19059 := (uf_66 #2960 ?x785!14 uf_7)
+#18488 := (uf_66 #2960 ?x786!14 uf_7)
decl uf_273 :: T4
-#2958 := uf_273
-#19060 := (uf_110 uf_273 #19059)
-#4076 := -1::int
-#19385 := (* -1::int #19060)
-decl uf_300 :: int
-#3186 := uf_300
-#19386 := (+ uf_300 #19385)
-#19387 := (>= #19386 0::int)
-#23584 := (not #19387)
-#19372 := (* -1::int ?x785!14)
-decl uf_302 :: int
-#3196 := uf_302
-#19373 := (+ uf_302 #19372)
-#19374 := (<= #19373 0::int)
-#19056 := (>= ?x785!14 0::int)
-#22816 := (not #19056)
-#7878 := 131073::int
-#19055 := (<= ?x785!14 131073::int)
-#22815 := (not #19055)
-#22831 := (or #22815 #22816 #19374 #19387)
-#22836 := (not #22831)
-#161 := (:var 0 int)
-#3039 := (uf_66 #2960 #161 uf_7)
-#23745 := (pattern #3039)
-#15606 := (<= #161 131073::int)
-#20064 := (not #15606)
-#14120 := (* -1::int uf_300)
-#3040 := (uf_110 uf_273 #3039)
-#14121 := (+ #3040 #14120)
-#14122 := (<= #14121 0::int)
-#14101 := (* -1::int uf_302)
-#14110 := (+ #161 #14101)
-#14109 := (>= #14110 0::int)
-#4084 := (>= #161 0::int)
-#5113 := (not #4084)
-#22797 := (or #5113 #14109 #14122 #20064)
-#23762 := (forall (vars (?x785 int)) (:pat #23745) #22797)
-#23767 := (not #23762)
-decl uf_301 :: int
-#3188 := uf_301
-#14142 := (* -1::int uf_301)
-decl uf_272 :: int
-#2949 := uf_272
-#14143 := (+ uf_272 #14142)
-#14144 := (<= #14143 0::int)
-#3208 := (uf_66 #2960 uf_301 uf_7)
-#3209 := (uf_110 uf_273 #3208)
-#12862 := (= uf_300 #3209)
-#22782 := (not #12862)
-#22783 := (or #22782 #14144)
-#22784 := (not #22783)
-#23770 := (or #22784 #23767)
-#14145 := (not #14144)
+#2957 := uf_273
+#18489 := (uf_110 uf_273 #18488)
decl uf_294 :: int
-#3055 := uf_294
-#14044 := (* -1::int uf_294)
-#14045 := (+ uf_272 #14044)
-#14046 := (<= #14045 0::int)
-#14049 := (not #14046)
-decl uf_125 :: (-> T5 T5 int)
-decl uf_28 :: (-> int T5)
-decl uf_29 :: (-> T5 int)
-#2992 := (uf_29 #2960)
-#23223 := (uf_28 #2992)
-decl uf_15 :: (-> T5 T3)
-#26404 := (uf_15 #23223)
-decl uf_293 :: int
-#3051 := uf_293
-#26963 := (uf_66 #23223 uf_293 #26404)
-#26964 := (uf_125 #26963 #23223)
-#27037 := (>= #26964 0::int)
-#13947 := (>= uf_293 0::int)
-decl ?x781!15 :: int
-#19190 := ?x781!15
-#19195 := (uf_66 #2960 ?x781!15 uf_7)
-#19196 := (uf_110 uf_273 #19195)
-#19541 := (* -1::int #19196)
-decl uf_299 :: int
-#3138 := uf_299
-#19542 := (+ uf_299 #19541)
-#19543 := (>= #19542 0::int)
-#19528 := (* -1::int ?x781!15)
-#19529 := (+ uf_272 #19528)
-#19530 := (<= #19529 0::int)
-#19192 := (>= ?x781!15 0::int)
-#22993 := (not #19192)
-#19191 := (<= ?x781!15 131073::int)
-#22992 := (not #19191)
-#23008 := (or #22992 #22993 #19530 #19543)
-#23013 := (not #23008)
-#13873 := (* -1::int uf_272)
-#13960 := (+ #161 #13873)
-#13959 := (>= #13960 0::int)
-#3145 := (= #3040 uf_299)
-#22966 := (not #3145)
-#22967 := (or #22966 #5113 #13959 #20064)
-#23886 := (forall (vars (?x782 int)) (:pat #23745) #22967)
-#23891 := (not #23886)
-#13970 := (* -1::int uf_299)
-#13971 := (+ #3040 #13970)
-#13972 := (<= #13971 0::int)
-#22958 := (or #5113 #13959 #13972 #20064)
-#23878 := (forall (vars (?x781 int)) (:pat #23745) #22958)
-#23883 := (not #23878)
-#23894 := (or #23883 #23891)
-#23897 := (not #23894)
-#23900 := (or #23897 #23013)
-#23903 := (not #23900)
-#4 := 1::int
-#13950 := (>= uf_294 1::int)
-#14243 := (not #13950)
-#22873 := (not #13947)
-decl uf_292 :: int
-#3047 := uf_292
-#12576 := (= uf_292 uf_299)
-#12644 := (not #12576)
-decl uf_298 :: int
-#3136 := uf_298
-#12573 := (= uf_293 uf_298)
-#12653 := (not #12573)
-decl uf_297 :: int
-#3134 := uf_297
-#12570 := (= uf_294 uf_297)
-#12662 := (not #12570)
-decl uf_296 :: int
-#3132 := uf_296
-#12567 := (= uf_292 uf_296)
-#12671 := (not #12567)
-#23906 := (or #12671 #12662 #12653 #12644 #22873 #14243 #14049 #23903)
-#23909 := (not #23906)
-#23773 := (not #23770)
-#23776 := (or #23773 #22836)
-#23779 := (not #23776)
-#14102 := (+ uf_272 #14101)
-#14100 := (>= #14102 0::int)
-#14105 := (not #14100)
-#23782 := (or #14105 #23779)
-#23785 := (not #23782)
-#23788 := (or #14105 #23785)
-#23791 := (not #23788)
-#1066 := 131072::int
-#16368 := (<= uf_294 131072::int)
-#19037 := (not #16368)
-#14169 := (+ uf_294 #14101)
-#14168 := (= #14169 -1::int)
-#14172 := (not #14168)
-#1120 := 2::int
-#14092 := (>= uf_302 2::int)
-#22859 := (not #14092)
-#14088 := (>= uf_294 -1::int)
-#19034 := (not #14088)
-#14076 := (>= uf_301 0::int)
-#22858 := (not #14076)
-decl up_280 :: (-> T4 T1 T1 int T3 bool)
+#3060 := uf_294
+#3180 := (uf_66 #2960 uf_294 uf_7)
+#3189 := (uf_110 uf_273 #3180)
+#29114 := (= #3189 #18489)
+#29119 := (not #29114)
+#121 := 0::int
+#4066 := -1::int
+#18810 := (* -1::int #18489)
+#29118 := (+ #3189 #18810)
+#29120 := (>= #29118 0::int)
+#29130 := (not #29120)
+decl uf_303 :: int
+#3198 := uf_303
+#13466 := (* -1::int uf_303)
+#28824 := (+ #3189 #13466)
+#28825 := (<= #28824 0::int)
+#28823 := (= #3189 uf_303)
+decl uf_300 :: int
+#3191 := uf_300
+#12365 := (= uf_300 uf_303)
+#18811 := (+ uf_303 #18810)
+#18812 := (>= #18811 0::int)
+#18797 := (* -1::int ?x786!14)
+decl uf_305 :: int
+#3208 := uf_305
+#18798 := (+ uf_305 #18797)
+#18799 := (<= #18798 0::int)
+#18485 := (>= ?x786!14 0::int)
+#22265 := (not #18485)
+#7495 := 4294967295::int
+#18484 := (<= ?x786!14 4294967295::int)
+#22264 := (not #18484)
+#22280 := (or #22264 #22265 #18799 #18812)
+#22285 := (not #22280)
+#161 := (:var 0 int)
+#3044 := (uf_66 #2960 #161 uf_7)
+#23194 := (pattern #3044)
+#15097 := (<= #161 4294967295::int)
+#19482 := (not #15097)
+#3045 := (uf_110 uf_273 #3044)
+#13467 := (+ #3045 #13466)
+#13468 := (<= #13467 0::int)
+#13447 := (* -1::int uf_305)
+#13455 := (+ #161 #13447)
+#13454 := (>= #13455 0::int)
+#4065 := (>= #161 0::int)
+#4987 := (not #4065)
+#22246 := (or #4987 #13454 #13468 #19482)
+#23211 := (forall (vars (?x786 int)) (:pat #23194) #22246)
+#23216 := (not #23211)
+decl uf_304 :: int
+#3200 := uf_304
+#13488 := (* -1::int uf_304)
+decl uf_272 :: int
+#2954 := uf_272
+#13489 := (+ uf_272 #13488)
+#13490 := (<= #13489 0::int)
+#3221 := (uf_66 #2960 uf_304 uf_7)
+#3222 := (uf_110 uf_273 #3221)
+#12404 := (= uf_303 #3222)
+#22231 := (not #12404)
+#22232 := (or #22231 #13490)
+#22233 := (not #22232)
+#23219 := (or #22233 #23216)
+#23222 := (not #23219)
+#23225 := (or #23222 #22285)
+#23228 := (not #23225)
+#13448 := (+ uf_272 #13447)
+#13446 := (>= #13448 0::int)
+#13451 := (not #13446)
+#23231 := (or #13451 #23228)
+#23234 := (not #23231)
+#23237 := (or #13451 #23234)
+#23240 := (not #23237)
+#15795 := 4294967294::int
+#15796 := (<= uf_294 4294967294::int)
+#18466 := (not #15796)
+#13515 := (+ uf_294 #13447)
+#13514 := (= #13515 -1::int)
+#13518 := (not #13514)
+#892 := 2::int
+#13438 := (>= uf_305 2::int)
+#22308 := (not #13438)
+#13430 := (>= uf_294 -1::int)
+#18463 := (not #13430)
+#13421 := (>= uf_304 0::int)
+#22307 := (not #13421)
+decl up_278 :: (-> T4 T1 T1 int T3 bool)
decl uf_4 :: T3
#7 := uf_4
decl uf_291 :: T1
-#3030 := uf_291
-decl uf_303 :: T1
-#3198 := uf_303
-#3199 := (up_280 uf_273 uf_303 uf_291 uf_302 uf_4)
-#12942 := (not #3199)
-#23794 := (or #12942 #22858 #19034 #22859 #14172 #19037 #23791)
-#23797 := (not #23794)
-#23800 := (or #19034 #19037 #23797)
-#23803 := (not #23800)
-#13075 := (= uf_294 uf_301)
-#13081 := (not #13075)
-decl uf_304 :: int
-#3239 := uf_304
-#3175 := (uf_66 #2960 uf_294 uf_7)
-#3184 := (uf_110 uf_273 #3175)
-#13070 := (= #3184 uf_304)
-#13133 := (not #13070)
-decl uf_67 :: (-> T4 T5 T2)
-#3181 := (uf_67 uf_273 #3175)
+#3035 := uf_291
+decl uf_306 :: T1
+#3210 := uf_306
+#3211 := (up_278 uf_273 uf_306 uf_291 uf_305 uf_4)
+#12469 := (not #3211)
+#23243 := (or #12469 #22307 #18463 #22308 #13518 #18466 #23240)
+#23246 := (not #23243)
+#23249 := (or #18463 #18466 #23246)
+#23252 := (not #23249)
+#4 := 1::int
+#13412 := (>= uf_294 1::int)
+#13552 := (not #13412)
+#12368 := (= uf_294 uf_304)
+#12515 := (not #12368)
+#12524 := (not #12365)
+#12360 := (= #3189 uf_300)
+#12567 := (not #12360)
+decl uf_68 :: (-> T4 T5 T2)
+#3186 := (uf_68 uf_273 #3180)
decl uf_9 :: T2
#19 := uf_9
-#12812 := (= uf_9 #3181)
-#19017 := (not #12812)
+#12354 := (= uf_9 #3186)
+#18434 := (not #12354)
decl uf_48 :: (-> T5 T3 T2)
-#3178 := (uf_48 #3175 uf_7)
-#12806 := (= uf_9 #3178)
-#19011 := (not #12806)
-#3246 := (= uf_300 uf_304)
-#13090 := (not #3246)
+#3181 := (uf_48 #3180 uf_7)
+#12345 := (= uf_9 #3181)
+#18425 := (not #12345)
decl uf_289 :: T1
-#3027 := uf_289
-decl uf_306 :: T1
-#3243 := uf_306
-#3244 := (up_280 uf_273 uf_306 uf_289 uf_294 uf_4)
-#13115 := (not #3244)
+#3032 := uf_289
+decl uf_302 :: T1
+#3195 := uf_302
+#3196 := (up_278 uf_273 uf_302 uf_289 uf_294 uf_4)
+#12549 := (not #3196)
decl uf_287 :: T1
-#3024 := uf_287
-decl uf_305 :: T1
-#3241 := uf_305
-#3242 := (up_280 uf_273 uf_305 uf_287 uf_304 uf_7)
-#13124 := (not #3242)
-#23812 := (or #13124 #13115 #13090 #19011 #19017 #13133 #13081 #14243 #22858 #23803)
-#23815 := (not #23812)
-#23818 := (or #19011 #19017 #23815)
-#23821 := (not #23818)
+#3029 := uf_287
+decl uf_301 :: T1
+#3193 := uf_301
+#3194 := (up_278 uf_273 uf_301 uf_287 uf_300 uf_7)
+#12558 := (not #3194)
+#23255 := (or #12558 #12549 #18425 #18434 #12567 #12524 #12515 #13552 #22307 #23252)
+#23258 := (not #23255)
+decl uf_25 :: (-> T4 T5 T5)
+decl uf_135 :: (-> T14 T5)
+decl uf_58 :: (-> T13 T5 T14)
+decl uf_59 :: (-> T4 T13)
+#3149 := (uf_59 uf_273)
+#26583 := (uf_58 #3149 #3180)
+#27027 := (uf_135 #26583)
+#27032 := (uf_25 uf_273 #27027)
+decl uf_26 :: T5
+#77 := uf_26
+#27033 := (= uf_26 #27032)
+decl uf_210 :: (-> T4 T5 T2)
+#27028 := (uf_210 uf_273 #27027)
+#27031 := (= uf_9 #27028)
+#27089 := (or #27031 #27033)
+#27092 := (not #27089)
+decl uf_136 :: (-> T14 T2)
+#27042 := (uf_136 #26583)
+#27043 := (= uf_9 #27042)
+#27044 := (not #27043)
decl uf_27 :: (-> T4 T5 T2)
-#3176 := (uf_27 uf_273 #3175)
-#12803 := (= uf_9 #3176)
-#19008 := (not #12803)
-#23824 := (or #19008 #19011 #23821)
-#23827 := (not #23824)
-#23830 := (or #19008 #19011 #23827)
-#23833 := (not #23830)
-#14208 := (* -1::int #3184)
-#14209 := (+ uf_292 #14208)
-#14207 := (>= #14209 0::int)
-#23836 := (or #22873 #14243 #14207 #23833)
-#23839 := (not #23836)
-#14211 := (not #14207)
-#12826 := (= uf_293 uf_301)
-#12993 := (not #12826)
-#12823 := (= uf_292 uf_300)
-#13002 := (not #12823)
-#23806 := (or #13002 #12993 #22873 #14243 #22858 #14211 #23803)
-#23809 := (not #23806)
-#23842 := (or #23809 #23839)
-#23845 := (not #23842)
-#23848 := (or #19011 #19017 #22873 #14243 #23845)
-#23851 := (not #23848)
-#23854 := (or #19011 #19017 #23851)
-#23857 := (not #23854)
-#23860 := (or #19008 #19011 #23857)
-#23863 := (not #23860)
-#23866 := (or #19008 #19011 #23863)
-#23869 := (not #23866)
-#23872 := (or #22873 #14243 #14046 #23869)
-#23875 := (not #23872)
-#23912 := (or #23875 #23909)
-#23915 := (not #23912)
-#14431 := (* -1::int uf_292)
-#14432 := (+ #3040 #14431)
-#14433 := (<= #14432 0::int)
-#14421 := (+ #161 #14044)
-#14420 := (>= #14421 0::int)
-#22774 := (or #5113 #14420 #14433 #20064)
-#23754 := (forall (vars (?x774 int)) (:pat #23745) #22774)
-#23759 := (not #23754)
-#1322 := 255::int
-#16349 := (<= uf_292 255::int)
-#23043 := (not #16349)
-#16332 := (<= uf_293 131073::int)
-#23042 := (not #16332)
-#16310 := (<= uf_294 131073::int)
-#23041 := (not #16310)
-#14490 := (>= uf_292 0::int)
-#23039 := (not #14490)
-#14462 := (>= uf_294 0::int)
-#23038 := (not #14462)
-#14453 := (>= #14045 0::int)
-#14456 := (not #14453)
-#14402 := (* -1::int uf_293)
-#14403 := (+ uf_272 #14402)
-#14404 := (<= #14403 0::int)
-#13942 := (<= uf_272 0::int)
-decl uf_202 :: (-> T1 T4 T2)
-decl uf_295 :: T1
-#3117 := uf_295
-#3118 := (uf_202 uf_295 uf_273)
-#12553 := (= uf_9 #3118)
-#15709 := (not #12553)
-decl uf_177 :: (-> T4 T4 T2)
-#3072 := (uf_177 uf_273 uf_273)
-#12437 := (= uf_9 #3072)
-#14399 := (not #12437)
-#3067 := (uf_66 #2960 uf_293 uf_7)
-#3068 := (uf_110 uf_273 #3067)
-#12426 := (= uf_292 #3068)
-#23037 := (not #12426)
-decl uf_6 :: (-> T3 T3)
-#11 := (uf_6 uf_7)
-decl uf_279 :: T1
-#2990 := uf_279
-#3126 := (up_280 uf_273 uf_295 uf_279 #2992 #11)
-#23036 := (not #3126)
-decl up_278 :: (-> T4 T1 T1 T5 T3 bool)
-#3125 := (up_278 uf_273 uf_295 uf_279 #2960 #11)
-#23035 := (not #3125)
-decl uf_281 :: T1
-#2995 := uf_281
-#3124 := (up_280 uf_273 uf_295 uf_281 uf_272 uf_4)
-#13340 := (not #3124)
-#3123 := (up_280 uf_273 uf_295 uf_287 uf_292 uf_7)
-#13349 := (not #3123)
-#3122 := (up_280 uf_273 uf_295 uf_289 uf_293 uf_4)
-#13358 := (not #3122)
-#3121 := (up_280 uf_273 uf_295 uf_291 uf_294 uf_4)
-#13367 := (not #3121)
-#3011 := (uf_66 #2960 0::int uf_7)
-#3021 := (uf_110 uf_273 #3011)
-decl uf_285 :: int
-#3020 := uf_285
-#3022 := (= uf_285 #3021)
-#13672 := (not #3022)
-#23918 := (or #13672 #13367 #13358 #13349 #13340 #23035 #23036 #23037 #14399 #15709 #13942 #22873 #14243 #14404 #14456 #23038 #23039 #23041 #23042 #23043 #23759 #23915)
-#23921 := (not #23918)
-#23924 := (or #13672 #13942 #23921)
-#23927 := (not #23924)
-#13922 := (* -1::int #3040)
-#13923 := (+ uf_285 #13922)
-#13921 := (>= #13923 0::int)
-#13910 := (>= #161 1::int)
-#22763 := (or #5113 #13910 #13921 #20064)
-#23746 := (forall (vars (?x773 int)) (:pat #23745) #22763)
-#23751 := (not #23746)
-#23930 := (or #23751 #23927)
-#23933 := (not #23930)
-decl ?x773!13 :: int
-#18929 := ?x773!13
-#18939 := (>= ?x773!13 1::int)
-#18934 := (uf_66 #2960 ?x773!13 uf_7)
-#18935 := (uf_110 uf_273 #18934)
-#18936 := (* -1::int #18935)
-#18937 := (+ uf_285 #18936)
-#18938 := (>= #18937 0::int)
-#18931 := (>= ?x773!13 0::int)
-#22737 := (not #18931)
-#18930 := (<= ?x773!13 131073::int)
-#22736 := (not #18930)
-#22752 := (or #22736 #22737 #18938 #18939)
-#22757 := (not #22752)
-#23936 := (or #22757 #23933)
-#23939 := (not #23936)
-#13903 := (>= uf_272 1::int)
-#13906 := (not #13903)
-#23942 := (or #13906 #23939)
-#23945 := (not #23942)
-#23948 := (or #13906 #23945)
-#23951 := (not #23948)
-#3017 := (uf_67 uf_273 #3011)
-#12367 := (= uf_9 #3017)
-#18906 := (not #12367)
-#3014 := (uf_48 #3011 uf_7)
-#12361 := (= uf_9 #3014)
-#18900 := (not #12361)
-decl uf_290 :: T1
-#3029 := uf_290
-#3031 := (up_280 uf_273 uf_290 uf_291 1::int uf_4)
-#13645 := (not #3031)
-decl uf_288 :: T1
-#3026 := uf_288
-#3028 := (up_280 uf_273 uf_288 uf_289 0::int uf_4)
-#13654 := (not #3028)
-decl uf_286 :: T1
-#3023 := uf_286
-#3025 := (up_280 uf_273 uf_286 uf_287 uf_285 uf_7)
-#13663 := (not #3025)
-#23954 := (or #13672 #13663 #13654 #13645 #18900 #18906 #23951)
-#23957 := (not #23954)
-#23960 := (or #18900 #18906 #23957)
-#23963 := (not #23960)
-#3012 := (uf_27 uf_273 #3011)
-#12358 := (= uf_9 #3012)
-#18897 := (not #12358)
-#23966 := (or #18897 #18900 #23963)
-#23969 := (not #23966)
-#23972 := (or #18897 #18900 #23969)
-#23975 := (not #23972)
-decl uf_200 :: (-> T4 T5 T5 T16 T2)
-decl uf_284 :: T16
-#3008 := uf_284
+#27039 := (uf_27 uf_273 #27027)
+#27040 := (= uf_9 #27039)
+#27041 := (not #27040)
+#27083 := (or #27041 #27044)
+#27086 := (not #27083)
+decl uf_12 :: (-> T3 T8)
+decl uf_13 :: (-> T5 T3)
+#26922 := (uf_13 #3180)
+#27047 := (uf_12 #26922)
+decl uf_14 :: T8
+#28 := uf_14
+#27065 := (= uf_14 #27047)
+#27080 := (not #27065)
+#27036 := (uf_13 #27027)
+#27037 := (uf_12 #27036)
+#27038 := (= uf_14 #27037)
+#27098 := (or #27038 #27080 #27086 #27092)
+#27103 := (not #27098)
+#27054 := (uf_25 uf_273 #3180)
+#27055 := (= uf_26 #27054)
+#27052 := (uf_210 uf_273 #3180)
+#27053 := (= uf_9 #27052)
+#27068 := (or #27053 #27055)
+#27071 := (not #27068)
+#27074 := (or #27065 #27071)
+#27077 := (not #27074)
+#27106 := (or #27077 #27103)
+#27109 := (not #27106)
+decl uf_24 :: (-> T4 T5 T2)
+#3183 := (uf_24 uf_273 #3180)
+#12348 := (= uf_9 #3183)
+#18428 := (not #12348)
+#27112 := (or #18428 #27109)
+#27115 := (not #27112)
+#27118 := (iff #12354 #27115)
+#28635 := (not #27118)
+#28695 := [hypothesis]: #28635
+#23 := (:var 0 T5)
+#47 := (:var 1 T4)
+#2381 := (uf_68 #47 #23)
+#2382 := (pattern #2381)
+#282 := (uf_59 #47)
+#2384 := (uf_58 #282 #23)
+#2388 := (uf_135 #2384)
+#2399 := (uf_210 #47 #2388)
+#10502 := (= uf_9 #2399)
+#2397 := (uf_25 #47 #2388)
+#10499 := (= uf_26 #2397)
+#10505 := (or #10499 #10502)
+#21939 := (not #10505)
+#2393 := (uf_13 #2388)
+#2394 := (uf_12 #2393)
+#10493 := (= uf_14 #2394)
+#2389 := (uf_27 #47 #2388)
+#10484 := (= uf_9 #2389)
+#10487 := (not #10484)
+#2385 := (uf_136 #2384)
+#10478 := (= uf_9 #2385)
+#10481 := (not #10478)
+#10490 := (or #10481 #10487)
+#21938 := (not #10490)
+#26 := (uf_13 #23)
+#27 := (uf_12 #26)
+#29 := (= #27 uf_14)
+#52 := (not #29)
+#21940 := (or #52 #21938 #10493 #21939)
+#21941 := (not #21940)
+#2405 := (uf_210 #47 #23)
+#10517 := (= uf_9 #2405)
+#142 := (uf_25 #47 #23)
+#3639 := (= uf_26 #142)
+#10520 := (or #3639 #10517)
+#21933 := (not #10520)
+#21934 := (or #29 #21933)
+#21935 := (not #21934)
+#21944 := (or #21935 #21941)
+#21950 := (not #21944)
+#146 := (uf_24 #47 #23)
+#3645 := (= uf_9 #146)
+#11090 := (not #3645)
+#21951 := (or #11090 #21950)
+#21952 := (not #21951)
+#10474 := (= uf_9 #2381)
+#21957 := (iff #10474 #21952)
+#21960 := (forall (vars (?x632 T4) (?x633 T5)) (:pat #2382) #21957)
+#10496 := (not #10493)
+#10538 := (and #29 #10490 #10496 #10505)
+#10523 := (and #52 #10520)
+#10544 := (or #10523 #10538)
+#10549 := (and #3645 #10544)
+#10552 := (iff #10474 #10549)
+#10555 := (forall (vars (?x632 T4) (?x633 T5)) (:pat #2382) #10552)
+#21961 := (iff #10555 #21960)
+#21958 := (iff #10552 #21957)
+#21955 := (iff #10549 #21952)
+#21947 := (and #3645 #21944)
+#21953 := (iff #21947 #21952)
+#21954 := [rewrite]: #21953
+#21948 := (iff #10549 #21947)
+#21945 := (iff #10544 #21944)
+#21942 := (iff #10538 #21941)
+#21943 := [rewrite]: #21942
+#21936 := (iff #10523 #21935)
+#21937 := [rewrite]: #21936
+#21946 := [monotonicity #21937 #21943]: #21945
+#21949 := [monotonicity #21946]: #21948
+#21956 := [trans #21949 #21954]: #21955
+#21959 := [monotonicity #21956]: #21958
+#21962 := [quant-intro #21959]: #21961
+#17883 := (~ #10555 #10555)
+#17881 := (~ #10552 #10552)
+#17882 := [refl]: #17881
+#17884 := [nnf-pos #17882]: #17883
+#2406 := (= #2405 uf_9)
+#143 := (= #142 uf_26)
+#2407 := (or #143 #2406)
+#2408 := (and #52 #2407)
+#2400 := (= #2399 uf_9)
+#2398 := (= #2397 uf_26)
+#2401 := (or #2398 #2400)
+#2395 := (= #2394 uf_14)
+#2396 := (not #2395)
+#2402 := (and #2396 #2401)
+#2390 := (= #2389 uf_9)
+#2391 := (not #2390)
+#2386 := (= #2385 uf_9)
+#2387 := (not #2386)
+#2392 := (or #2387 #2391)
+#2403 := (and #2392 #2402)
+#2404 := (and #29 #2403)
+#2409 := (or #2404 #2408)
+#147 := (= #146 uf_9)
+#2410 := (and #147 #2409)
+#2383 := (= #2381 uf_9)
+#2411 := (iff #2383 #2410)
+#2412 := (forall (vars (?x632 T4) (?x633 T5)) (:pat #2382) #2411)
+#10558 := (iff #2412 #10555)
+#10508 := (and #10496 #10505)
+#10511 := (and #10490 #10508)
+#10514 := (and #29 #10511)
+#10526 := (or #10514 #10523)
+#10529 := (and #3645 #10526)
+#10532 := (iff #10474 #10529)
+#10535 := (forall (vars (?x632 T4) (?x633 T5)) (:pat #2382) #10532)
+#10556 := (iff #10535 #10555)
+#10553 := (iff #10532 #10552)
+#10550 := (iff #10529 #10549)
+#10547 := (iff #10526 #10544)
+#10541 := (or #10538 #10523)
+#10545 := (iff #10541 #10544)
+#10546 := [rewrite]: #10545
+#10542 := (iff #10526 #10541)
+#10539 := (iff #10514 #10538)
+#10540 := [rewrite]: #10539
+#10543 := [monotonicity #10540]: #10542
+#10548 := [trans #10543 #10546]: #10547
+#10551 := [monotonicity #10548]: #10550
+#10554 := [monotonicity #10551]: #10553
+#10557 := [quant-intro #10554]: #10556
+#10536 := (iff #2412 #10535)
+#10533 := (iff #2411 #10532)
+#10530 := (iff #2410 #10529)
+#10527 := (iff #2409 #10526)
+#10524 := (iff #2408 #10523)
+#10521 := (iff #2407 #10520)
+#10518 := (iff #2406 #10517)
+#10519 := [rewrite]: #10518
+#3640 := (iff #143 #3639)
+#3641 := [rewrite]: #3640
+#10522 := [monotonicity #3641 #10519]: #10521
+#10525 := [monotonicity #10522]: #10524
+#10515 := (iff #2404 #10514)
+#10512 := (iff #2403 #10511)
+#10509 := (iff #2402 #10508)
+#10506 := (iff #2401 #10505)
+#10503 := (iff #2400 #10502)
+#10504 := [rewrite]: #10503
+#10500 := (iff #2398 #10499)
+#10501 := [rewrite]: #10500
+#10507 := [monotonicity #10501 #10504]: #10506
+#10497 := (iff #2396 #10496)
+#10494 := (iff #2395 #10493)
+#10495 := [rewrite]: #10494
+#10498 := [monotonicity #10495]: #10497
+#10510 := [monotonicity #10498 #10507]: #10509
+#10491 := (iff #2392 #10490)
+#10488 := (iff #2391 #10487)
+#10485 := (iff #2390 #10484)
+#10486 := [rewrite]: #10485
+#10489 := [monotonicity #10486]: #10488
+#10482 := (iff #2387 #10481)
+#10479 := (iff #2386 #10478)
+#10480 := [rewrite]: #10479
+#10483 := [monotonicity #10480]: #10482
+#10492 := [monotonicity #10483 #10489]: #10491
+#10513 := [monotonicity #10492 #10510]: #10512
+#10516 := [monotonicity #10513]: #10515
+#10528 := [monotonicity #10516 #10525]: #10527
+#3646 := (iff #147 #3645)
+#3647 := [rewrite]: #3646
+#10531 := [monotonicity #3647 #10528]: #10530
+#10476 := (iff #2383 #10474)
+#10477 := [rewrite]: #10476
+#10534 := [monotonicity #10477 #10531]: #10533
+#10537 := [quant-intro #10534]: #10536
+#10559 := [trans #10537 #10557]: #10558
+#10473 := [asserted]: #2412
+#10560 := [mp #10473 #10559]: #10555
+#17885 := [mp~ #10560 #17884]: #10555
+#21963 := [mp #17885 #21962]: #21960
+#27179 := (not #21960)
+#28611 := (or #27179 #27118)
+#27034 := (or #27033 #27031)
+#27035 := (not #27034)
+#27045 := (or #27044 #27041)
+#27046 := (not #27045)
+#27048 := (= #27047 uf_14)
+#27049 := (not #27048)
+#27050 := (or #27049 #27046 #27038 #27035)
+#27051 := (not #27050)
+#27056 := (or #27055 #27053)
+#27057 := (not #27056)
+#27058 := (or #27048 #27057)
+#27059 := (not #27058)
+#27060 := (or #27059 #27051)
+#27061 := (not #27060)
+#27062 := (or #18428 #27061)
+#27063 := (not #27062)
+#27064 := (iff #12354 #27063)
+#28614 := (or #27179 #27064)
+#28616 := (iff #28614 #28611)
+#28601 := (iff #28611 #28611)
+#28602 := [rewrite]: #28601
+#27119 := (iff #27064 #27118)
+#27116 := (iff #27063 #27115)
+#27113 := (iff #27062 #27112)
+#27110 := (iff #27061 #27109)
+#27107 := (iff #27060 #27106)
+#27104 := (iff #27051 #27103)
+#27101 := (iff #27050 #27098)
+#27095 := (or #27080 #27086 #27038 #27092)
+#27099 := (iff #27095 #27098)
+#27100 := [rewrite]: #27099
+#27096 := (iff #27050 #27095)
+#27093 := (iff #27035 #27092)
+#27090 := (iff #27034 #27089)
+#27091 := [rewrite]: #27090
+#27094 := [monotonicity #27091]: #27093
+#27087 := (iff #27046 #27086)
+#27084 := (iff #27045 #27083)
+#27085 := [rewrite]: #27084
+#27088 := [monotonicity #27085]: #27087
+#27081 := (iff #27049 #27080)
+#27066 := (iff #27048 #27065)
+#27067 := [rewrite]: #27066
+#27082 := [monotonicity #27067]: #27081
+#27097 := [monotonicity #27082 #27088 #27094]: #27096
+#27102 := [trans #27097 #27100]: #27101
+#27105 := [monotonicity #27102]: #27104
+#27078 := (iff #27059 #27077)
+#27075 := (iff #27058 #27074)
+#27072 := (iff #27057 #27071)
+#27069 := (iff #27056 #27068)
+#27070 := [rewrite]: #27069
+#27073 := [monotonicity #27070]: #27072
+#27076 := [monotonicity #27067 #27073]: #27075
+#27079 := [monotonicity #27076]: #27078
+#27108 := [monotonicity #27079 #27105]: #27107
+#27111 := [monotonicity #27108]: #27110
+#27114 := [monotonicity #27111]: #27113
+#27117 := [monotonicity #27114]: #27116
+#27120 := [monotonicity #27117]: #27119
+#28600 := [monotonicity #27120]: #28616
+#28603 := [trans #28600 #28602]: #28616
+#28615 := [quant-inst]: #28614
+#28604 := [mp #28615 #28603]: #28611
+#28729 := [unit-resolution #28604 #21963 #28695]: false
+#28730 := [lemma #28729]: #27118
+#29058 := (or #28635 #12354)
+#28658 := [hypothesis]: #27098
decl uf_116 :: (-> T5 int)
#2961 := (uf_116 #2960)
decl uf_124 :: (-> T3 int T3)
-#2952 := (uf_124 uf_7 uf_272)
-#2962 := (uf_43 #2952 #2961)
-#3009 := (uf_200 uf_273 #2962 #2962 uf_284)
-#12355 := (= uf_9 #3009)
-#13715 := (not #12355)
-#23978 := (or #13715 #23975)
-#23981 := (not #23978)
-decl uf_14 :: (-> T3 T8)
-#24016 := (uf_116 #2962)
-#25404 := (uf_43 #2952 #24016)
-#25815 := (uf_15 #25404)
-#26092 := (uf_14 #25815)
-decl uf_16 :: T8
-#35 := uf_16
-#26095 := (= uf_16 #26092)
-#26297 := (not #26095)
-#2955 := (uf_14 #2952)
-#12296 := (= uf_16 #2955)
-#12299 := (not #12296)
-#26298 := (iff #12299 #26297)
-#26293 := (iff #12296 #26095)
-#26342 := (iff #26095 #12296)
-#26340 := (= #26092 #2955)
-#26338 := (= #25815 #2952)
-#24234 := (uf_15 #2962)
-#28358 := (= #24234 #2952)
-#24237 := (= #2952 #24234)
+#2958 := (uf_124 uf_7 uf_272)
+#2962 := (uf_43 #2958 #2961)
+#2965 := (uf_25 uf_273 #2962)
+#28691 := (= #2965 #27032)
+#28541 := (= #27032 #2965)
+#29243 := (= #27027 #2962)
+decl uf_143 :: (-> T3 int)
+#23568 := (uf_143 #2958)
+decl uf_144 :: (-> T3 T3)
+#23566 := (uf_144 #2958)
+#25879 := (uf_124 #23566 #23568)
+#25880 := (uf_43 #25879 #2961)
+#25867 := (= #25880 #2962)
+#25850 := (= #25879 #2958)
+#25848 := (= #23568 uf_272)
+#23569 := (= uf_272 #23568)
#326 := (:var 1 T3)
-#2692 := (uf_43 #326 #161)
-#23682 := (pattern #2692)
-#2696 := (uf_15 #2692)
-#11677 := (= #326 #2696)
-#23689 := (forall (vars (?x720 T3) (?x721 int)) (:pat #23682) #11677)
-#11681 := (forall (vars (?x720 T3) (?x721 int)) #11677)
-#23692 := (iff #11681 #23689)
-#23690 := (iff #11677 #11677)
-#23691 := [refl]: #23690
-#23693 := [quant-intro #23691]: #23692
-#18759 := (~ #11681 #11681)
-#18757 := (~ #11677 #11677)
-#18758 := [refl]: #18757
-#18760 := [nnf-pos #18758]: #18759
-#2697 := (= #2696 #326)
-#2698 := (forall (vars (?x720 T3) (?x721 int)) #2697)
-#11682 := (iff #2698 #11681)
-#11679 := (iff #2697 #11677)
-#11680 := [rewrite]: #11679
-#11683 := [quant-intro #11680]: #11682
-#11676 := [asserted]: #2698
-#11686 := [mp #11676 #11683]: #11681
-#18761 := [mp~ #11686 #18760]: #11681
-#23694 := [mp #18761 #23693]: #23689
-#24181 := (not #23689)
-#24242 := (or #24181 #24237)
-#24243 := [quant-inst]: #24242
-#28006 := [unit-resolution #24243 #23694]: #24237
-#28359 := [symm #28006]: #28358
-#26336 := (= #25815 #24234)
-#27940 := (= #25404 #2962)
-#25411 := (= #2962 #25404)
-#2965 := (uf_48 #2962 #2952)
-#12305 := (= uf_9 #2965)
-decl uf_24 :: (-> T4 T5 T2)
+#1358 := (uf_124 #326 #161)
+#1592 := (pattern #1358)
+#1602 := (uf_143 #1358)
+#8288 := (= #161 #1602)
+#8291 := (forall (vars (?x386 T3) (?x387 int)) (:pat #1592) #8288)
+#17259 := (~ #8291 #8291)
+#17257 := (~ #8288 #8288)
+#17258 := [refl]: #17257
+#17260 := [nnf-pos #17258]: #17259
+#1603 := (= #1602 #161)
+#1604 := (forall (vars (?x386 T3) (?x387 int)) (:pat #1592) #1603)
+#8292 := (iff #1604 #8291)
+#8289 := (iff #1603 #8288)
+#8290 := [rewrite]: #8289
+#8293 := [quant-intro #8290]: #8292
+#8287 := [asserted]: #1604
+#8296 := [mp #8287 #8293]: #8291
+#17261 := [mp~ #8296 #17260]: #8291
+#23575 := (not #8291)
+#23576 := (or #23575 #23569)
+#23577 := [quant-inst]: #23576
+#26235 := [unit-resolution #23577 #17261]: #23569
+#25849 := [symm #26235]: #25848
+#25689 := (= #23566 uf_7)
+#23567 := (= uf_7 #23566)
+#1605 := (uf_144 #1358)
+#8295 := (= #326 #1605)
+#8299 := (forall (vars (?x388 T3) (?x389 int)) (:pat #1592) #8295)
+#17264 := (~ #8299 #8299)
+#17262 := (~ #8295 #8295)
+#17263 := [refl]: #17262
+#17265 := [nnf-pos #17263]: #17264
+#1606 := (= #1605 #326)
+#1607 := (forall (vars (?x388 T3) (?x389 int)) (:pat #1592) #1606)
+#8300 := (iff #1607 #8299)
+#8297 := (iff #1606 #8295)
+#8298 := [rewrite]: #8297
+#8301 := [quant-intro #8298]: #8300
+#8294 := [asserted]: #1607
+#8304 := [mp #8294 #8301]: #8299
+#17266 := [mp~ #8304 #17265]: #8299
+#23570 := (not #8299)
+#23571 := (or #23570 #23567)
+#23572 := [quant-inst]: #23571
+#25688 := [unit-resolution #23572 #17266]: #23567
+#25690 := [symm #25688]: #25689
+#25866 := [monotonicity #25690 #25849]: #25850
+#25865 := [monotonicity #25866]: #25867
+#29241 := (= #27027 #25880)
+decl uf_125 :: (-> T5 T5 int)
+decl uf_28 :: (-> int T5)
+decl uf_29 :: (-> T5 int)
+#2996 := (uf_29 #2960)
+#22665 := (uf_28 #2996)
+#25805 := (uf_116 #22665)
+#25821 := (uf_43 #23566 #25805)
+#26356 := (uf_13 #25821)
+#27024 := (uf_66 #25821 uf_294 #26356)
+#27025 := (uf_125 #27024 #25821)
+#27192 := (uf_66 #25880 #27025 #23566)
+#27196 := (uf_58 #3149 #27192)
+#27199 := (uf_135 #27196)
+#29239 := (= #27199 #25880)
+#27200 := (= #25880 #27199)
+decl up_67 :: (-> T14 bool)
+#27202 := (up_67 #27196)
+#27203 := (not #27202)
+#27201 := (not #27200)
+#27197 := (uf_136 #27196)
+#27198 := (= uf_9 #27197)
+#27193 := (uf_24 uf_273 #27192)
+#27194 := (= uf_9 #27193)
+#27195 := (not #27194)
+#27224 := (or #27195 #27198 #27201 #27203)
+#27227 := (not #27224)
+#25895 := (uf_24 uf_273 #25880)
+#25896 := (= uf_9 #25895)
#2969 := (uf_24 uf_273 #2962)
-#12311 := (= uf_9 #2969)
-decl uf_25 :: (-> T4 T5 T5)
-#2967 := (uf_25 uf_273 #2962)
-decl uf_26 :: T5
-#78 := uf_26
-#12308 := (= uf_26 #2967)
+#27444 := (= #2969 #25895)
+#27389 := (= #25895 #2969)
+#27448 := [monotonicity #25865]: #27389
+#27445 := [symm #27448]: #27444
+#11875 := (= uf_9 #2969)
+decl uf_23 :: (-> T3 T2)
+#2974 := (uf_23 #2958)
+#11884 := (= uf_9 #2974)
+#2971 := (uf_12 #2958)
+#11878 := (= uf_14 #2971)
+#11881 := (not #11878)
+#2967 := (uf_48 #2962 #2958)
+#11872 := (= uf_9 #2967)
+#11869 := (= uf_26 #2965)
#2963 := (uf_27 uf_273 #2962)
-#12302 := (= uf_9 #2963)
-decl uf_22 :: (-> T3 T2)
-#2953 := (uf_22 #2952)
-#12293 := (= uf_9 #2953)
-#14658 := (and #12293 #12299 #12302 #12305 #12308 #12311)
+#11866 := (= uf_9 #2963)
+#14124 := (and #11866 #11869 #11872 #11875 #11881 #11884)
decl uf_269 :: int
-#2937 := uf_269
-#14715 := (>= uf_269 0::int)
-#14711 := (* -1::int uf_269)
+#2942 := uf_269
+#14180 := (* -1::int uf_269)
decl uf_78 :: int
#429 := uf_78
-#14712 := (+ uf_78 #14711)
-#14710 := (>= #14712 0::int)
-#14718 := (and #14710 #14715)
-#14721 := (not #14718)
+#14181 := (+ uf_78 #14180)
+#14179 := (>= #14181 0::int)
+#14177 := (>= uf_269 0::int)
+#14184 := (and #14177 #14179)
+#14187 := (not #14184)
decl uf_270 :: int
-#2941 := uf_270
-#14701 := (>= uf_270 0::int)
-#14697 := (* -1::int uf_270)
+#2946 := uf_270
+#14166 := (* -1::int uf_270)
decl uf_76 :: int
#409 := uf_76
-#14698 := (+ uf_76 #14697)
-#14696 := (>= #14698 0::int)
-#14704 := (and #14696 #14701)
-#14707 := (not #14704)
+#14167 := (+ uf_76 #14166)
+#14165 := (>= #14167 0::int)
+#14163 := (>= uf_270 0::int)
+#14170 := (and #14163 #14165)
+#14173 := (not #14170)
decl uf_271 :: int
-#2945 := uf_271
-#14687 := (>= uf_271 0::int)
-#14683 := (* -1::int uf_271)
-#14684 := (+ uf_76 #14683)
-#14682 := (>= #14684 0::int)
-#14690 := (and #14682 #14687)
-#14693 := (not #14690)
-#974 := 1099511627776::int
-#14671 := (>= uf_272 1099511627776::int)
-#14661 := (not #14658)
+#2950 := uf_271
+#14152 := (* -1::int uf_271)
+#14153 := (+ uf_76 #14152)
+#14151 := (>= #14153 0::int)
+#14149 := (>= uf_271 0::int)
+#14156 := (and #14149 #14151)
+#14159 := (not #14156)
+#1042 := 1099511627776::int
+#14137 := (>= uf_272 1099511627776::int)
+#14127 := (not #14124)
decl uf_276 :: (-> T19 int)
-#2984 := (:var 0 T19)
-#2985 := (uf_276 #2984)
-#2986 := (pattern #2985)
+#2989 := (:var 0 T19)
+#2990 := (uf_276 #2989)
+#2991 := (pattern #2990)
decl uf_277 :: int
-#2987 := uf_277
-#14648 := (* -1::int uf_277)
-#14649 := (+ #2985 #14648)
-#14647 := (>= #14649 0::int)
-#14646 := (not #14647)
-#14652 := (forall (vars (?x771 T19)) (:pat #2986) #14646)
-#14655 := (not #14652)
-#13943 := (not #13942)
-#14502 := (and #3022 #13943)
-#14507 := (not #14502)
-#14487 := (+ uf_78 #14431)
-#14486 := (>= #14487 0::int)
-#14493 := (and #14486 #14490)
-#14496 := (not #14493)
-#14472 := (+ uf_76 #14402)
-#14471 := (>= #14472 0::int)
-#14478 := (and #13947 #14471)
-#14483 := (not #14478)
-#14085 := (+ uf_76 #14044)
-#14459 := (>= #14085 0::int)
-#14465 := (and #14459 #14462)
-#14468 := (not #14465)
-#4413 := (* -1::int uf_76)
-#4418 := (+ #161 #4413)
-#4419 := (<= #4418 0::int)
-#5736 := (and #4084 #4419)
-#5739 := (not #5736)
-#14442 := (or #5739 #14420 #14433)
-#14447 := (forall (vars (?x774 int)) #14442)
-#14450 := (not #14447)
-#14405 := (not #14404)
-#14411 := (and #12426 #14405)
-#14416 := (not #14411)
-#14084 := (>= #14085 1::int)
-#14175 := (and #14084 #14088)
-#14178 := (not #14175)
-#14151 := (and #12862 #14145)
-#14131 := (or #5739 #14109 #14122)
-#14136 := (forall (vars (?x785 int)) #14131)
-#14139 := (not #14136)
-#14156 := (or #14139 #14151)
-#14159 := (and #14136 #14156)
-#14162 := (or #14105 #14159)
-#14165 := (and #14100 #14162)
-#14094 := (and #14076 #14092)
-#14097 := (not #14094)
-#14193 := (or #12942 #14097 #14165 #14172 #14178)
-#14201 := (and #14084 #14088 #14193)
-#14078 := (and #13950 #14076)
-#14081 := (not #14078)
-#12818 := (and #12806 #12812)
-#13142 := (not #12818)
-#14267 := (or #13124 #13115 #13090 #13142 #13133 #13081 #14243 #14081 #14201)
-#14275 := (and #12806 #12812 #14267)
-#12809 := (and #12803 #12806)
-#13159 := (not #12809)
-#14280 := (or #13159 #14275)
-#14286 := (and #12803 #12806 #14280)
-#13952 := (and #13947 #13950)
-#13955 := (not #13952)
-#14312 := (or #13955 #14207 #14286)
-#14238 := (or #13002 #12993 #13955 #14081 #14201 #14211)
-#14317 := (and #14238 #14312)
-#14326 := (or #13142 #13955 #14317)
-#14334 := (and #12806 #12812 #14326)
-#14339 := (or #13159 #14334)
-#14345 := (and #12803 #12806 #14339)
-#14371 := (or #13955 #14046 #14345)
-#13958 := (not #13959)
-#13998 := (and #3145 #4084 #4419 #13958)
-#14003 := (exists (vars (?x782 int)) #13998)
-#13981 := (or #5739 #13959 #13972)
-#13986 := (forall (vars (?x781 int)) #13981)
-#13989 := (not #13986)
-#14006 := (or #13989 #14003)
-#14009 := (and #13986 #14006)
+#2992 := uf_277
+#14114 := (* -1::int uf_277)
+#14115 := (+ #2990 #14114)
+#14113 := (>= #14115 0::int)
+#14112 := (not #14113)
+#14118 := (forall (vars (?x771 T19)) (:pat #2991) #14112)
+#14121 := (not #14118)
+#13404 := (<= uf_272 0::int)
+#13405 := (not #13404)
+#3016 := (uf_66 #2960 0::int uf_7)
+#3026 := (uf_110 uf_273 #3016)
+decl uf_285 :: int
+#3025 := uf_285
+#3027 := (= uf_285 #3026)
+#13968 := (and #3027 #13405)
+#13973 := (not #13968)
+decl uf_292 :: int
+#3052 := uf_292
+#13902 := (* -1::int uf_292)
+#13956 := (+ uf_78 #13902)
+#13955 := (>= #13956 0::int)
+#13952 := (>= uf_292 0::int)
+#13959 := (and #13952 #13955)
+#13962 := (not #13959)
+decl uf_293 :: int
+#3056 := uf_293
+#13873 := (* -1::int uf_293)
+#13943 := (+ uf_76 #13873)
+#13942 := (>= #13943 0::int)
+#13409 := (>= uf_293 0::int)
+#13946 := (and #13409 #13942)
+#13949 := (not #13946)
+#13433 := (* -1::int uf_294)
+#13434 := (+ uf_76 #13433)
+#13933 := (>= #13434 0::int)
+#13930 := (>= uf_294 0::int)
+#13936 := (and #13930 #13933)
+#13939 := (not #13936)
+#13696 := (+ uf_272 #13433)
+#13924 := (>= #13696 0::int)
+#13927 := (not #13924)
+#13903 := (+ #3045 #13902)
+#13904 := (<= #13903 0::int)
+#13891 := (+ #161 #13433)
+#13890 := (>= #13891 0::int)
+#4377 := (* -1::int uf_76)
+#4378 := (+ #161 #4377)
+#4379 := (<= #4378 0::int)
+#4386 := (and #4065 #4379)
+#5601 := (not #4386)
+#13913 := (or #5601 #13890 #13904)
+#13918 := (forall (vars (?x775 int)) #13913)
+#13921 := (not #13918)
+#13874 := (+ uf_272 #13873)
+#13875 := (<= #13874 0::int)
+#13876 := (not #13875)
+#3073 := (uf_66 #2960 uf_293 uf_7)
+#3074 := (uf_110 uf_273 #3073)
+#11992 := (= uf_292 #3074)
+#13882 := (and #11992 #13876)
+#13887 := (not #13882)
+#13338 := (* -1::int uf_272)
+#13726 := (+ #161 #13338)
+#13725 := (>= #13726 0::int)
+#13727 := (not #13725)
+decl uf_299 :: int
+#3088 := uf_299
+#3095 := (= #3045 uf_299)
+#13765 := (and #3095 #4065 #4379 #13727)
+#13770 := (exists (vars (?x778 int)) #13765)
+#13737 := (* -1::int uf_299)
+#13738 := (+ #3045 #13737)
+#13739 := (<= #13738 0::int)
+#13748 := (or #5601 #13725 #13739)
+#13753 := (forall (vars (?x776 int)) #13748)
+#13773 := (not #13753)
+#13779 := (or #13773 #13770)
+#13784 := (and #13753 #13779)
+#13414 := (and #13409 #13412)
+#13417 := (not #13414)
+#12020 := (= uf_292 uf_299)
+#12069 := (not #12020)
+decl uf_298 :: int
+#3086 := uf_298
+#12017 := (= uf_293 uf_298)
+#12078 := (not #12017)
+decl uf_297 :: int
+#3084 := uf_297
+#12014 := (= uf_294 uf_297)
+#12087 := (not #12014)
+decl uf_296 :: int
+#3082 := uf_296
+#12011 := (= uf_292 uf_296)
+#12096 := (not #12011)
decl up_216 :: bool
-#2477 := up_216
-#12719 := (not up_216)
-#14036 := (or #12719 #12671 #12662 #12653 #12644 #13955 #14009)
-#14041 := (and up_216 #14036)
-#14070 := (or #13955 #14041 #14049)
-#14376 := (and #14070 #14371)
+#2482 := up_216
+#12144 := (not up_216)
+#13811 := (or #12144 #12096 #12087 #12078 #12069 #13417 #13784)
+#13816 := (and up_216 #13811)
+#13697 := (<= #13696 0::int)
+#13698 := (not #13697)
+#13841 := (or #13417 #13698 #13816)
+#13605 := (* -1::int #3189)
+#13606 := (+ uf_292 #13605)
+#13604 := (>= #13606 0::int)
+#13603 := (not #13604)
+#13432 := (>= #13434 1::int)
+#13521 := (and #13430 #13432)
+#13524 := (not #13521)
+#13491 := (not #13490)
+#13497 := (and #12404 #13491)
+#13477 := (or #5601 #13454 #13468)
+#13482 := (forall (vars (?x786 int)) #13477)
+#13485 := (not #13482)
+#13502 := (or #13485 #13497)
+#13505 := (and #13482 #13502)
+#13508 := (or #13451 #13505)
+#13511 := (and #13446 #13508)
+#13440 := (and #13421 #13438)
+#13443 := (not #13440)
+#13539 := (or #12469 #13443 #13511 #13518 #13524)
+#13547 := (and #13430 #13432 #13539)
+#13423 := (and #13412 #13421)
+#13426 := (not #13423)
+#12647 := (= uf_293 uf_304)
+#12653 := (not #12647)
+#12644 := (= uf_292 uf_303)
+#12662 := (not #12644)
+#13658 := (or #12662 #12653 #13417 #13426 #13547 #13603)
+#12357 := (and #12345 #12354)
+#12576 := (not #12357)
+#13579 := (or #12558 #12549 #12576 #12567 #12524 #12515 #13552 #13426 #13547)
+#13587 := (and #12345 #12354 #13579)
+#12351 := (and #12345 #12348)
+#12588 := (not #12351)
+#13592 := (or #12588 #13587)
+#13598 := (and #12345 #12348 #13592)
+#13628 := (or #13417 #13598 #13604)
+#13663 := (and #13628 #13658)
+#13672 := (or #12576 #13417 #13663)
+#13680 := (and #12345 #12354 #13672)
+#13685 := (or #12588 #13680)
+#13691 := (and #12345 #12348 #13685)
+#13720 := (or #13417 #13691 #13697)
+#13846 := (and #13720 #13841)
+decl uf_178 :: (-> T4 T4 T2)
+#3161 := (uf_178 uf_273 uf_273)
+#12306 := (= uf_9 #3161)
+#13870 := (not #12306)
+decl uf_202 :: (-> T1 T4 T2)
+decl uf_295 :: T1
+#3078 := uf_295
+#3079 := (uf_202 uf_295 uf_273)
+#12000 := (= uf_9 #3079)
decl uf_55 :: (-> T4 T2)
-#2978 := (uf_55 uf_273)
-#12332 := (= uf_9 #2978)
-#12556 := (and #12332 #12553)
-#13376 := (not #12556)
-#3127 := (and #3125 #3126)
-#13331 := (not #3127)
-#14573 := (or #13367 #13358 #13349 #13340 #13331 #14399 #13376 #13955 #14376 #14416 #14450 #14456 #14468 #14483 #14496 #14507)
-#14581 := (and #3022 #13943 #14573)
-#13931 := (or #5739 #13910 #13921)
-#13936 := (forall (vars (?x773 int)) #13931)
-#13939 := (not #13936)
-#14586 := (or #13939 #14581)
-#14589 := (and #13936 #14586)
-#14592 := (or #13906 #14589)
-#14595 := (and #13903 #14592)
-#12373 := (and #12361 #12367)
-#13681 := (not #12373)
-#14616 := (or #13672 #13663 #13654 #13645 #13681 #14595)
-#14624 := (and #12361 #12367 #14616)
-#12364 := (and #12358 #12361)
-#13698 := (not #12364)
-#14629 := (or #13698 #14624)
-#14635 := (and #12358 #12361 #14629)
-#14640 := (or #13715 #14635)
-#14643 := (and #12355 #14640)
-#13877 := (>= uf_272 0::int)
-#13874 := (+ uf_76 #13873)
-#13872 := (>= #13874 0::int)
-#13880 := (and #13872 #13877)
-#13883 := (not #13880)
+#2986 := (uf_55 uf_273)
+#11908 := (= uf_9 #2986)
+#12006 := (and #11908 #12000)
+#12179 := (not #12006)
+decl up_280 :: (-> T4 T1 T1 T5 T3 bool)
+decl uf_6 :: (-> T3 T3)
+#11 := (uf_6 uf_7)
+decl uf_279 :: T1
+#2995 := uf_279
+#3174 := (up_280 uf_273 uf_295 uf_279 #2960 #11)
+#3173 := (up_278 uf_273 uf_295 uf_279 #2996 #11)
+#3175 := (and #3173 #3174)
+#12878 := (not #3175)
+decl uf_281 :: T1
+#3000 := uf_281
+#3172 := (up_278 uf_273 uf_295 uf_281 uf_272 uf_4)
+#12887 := (not #3172)
+#3171 := (up_278 uf_273 uf_295 uf_287 uf_292 uf_7)
+#12896 := (not #3171)
+#3170 := (up_278 uf_273 uf_295 uf_289 uf_293 uf_4)
+#12905 := (not #3170)
+#3169 := (up_278 uf_273 uf_295 uf_291 uf_294 uf_4)
+#12914 := (not #3169)
+#14039 := (or #12914 #12905 #12896 #12887 #12878 #12179 #13870 #13417 #13846 #13887 #13921 #13927 #13939 #13949 #13962 #13973)
+#14047 := (and #3027 #13405 #14039)
+#13384 := (* -1::int #3045)
+#13385 := (+ uf_285 #13384)
+#13383 := (>= #13385 0::int)
+#13371 := (>= #161 1::int)
+#13393 := (or #5601 #13371 #13383)
+#13398 := (forall (vars (?x773 int)) #13393)
+#13401 := (not #13398)
+#14052 := (or #13401 #14047)
+#14055 := (and #13398 #14052)
+#13365 := (>= uf_272 1::int)
+#13368 := (not #13365)
+#14058 := (or #13368 #14055)
+#14061 := (and #13365 #14058)
+#3022 := (uf_68 uf_273 #3016)
+#11940 := (= uf_9 #3022)
+#3017 := (uf_48 #3016 uf_7)
+#11931 := (= uf_9 #3017)
+#11943 := (and #11931 #11940)
+#13158 := (not #11943)
+decl uf_290 :: T1
+#3034 := uf_290
+#3036 := (up_278 uf_273 uf_290 uf_291 1::int uf_4)
+#13122 := (not #3036)
+decl uf_288 :: T1
+#3031 := uf_288
+#3033 := (up_278 uf_273 uf_288 uf_289 0::int uf_4)
+#13131 := (not #3033)
+decl uf_286 :: T1
+#3028 := uf_286
+#3030 := (up_278 uf_273 uf_286 uf_287 uf_285 uf_7)
+#13140 := (not #3030)
+#13149 := (not #3027)
+#14082 := (or #13149 #13140 #13131 #13122 #13158 #14061)
+#14090 := (and #11931 #11940 #14082)
+#3019 := (uf_24 uf_273 #3016)
+#11934 := (= uf_9 #3019)
+#11937 := (and #11931 #11934)
+#13170 := (not #11937)
+#14095 := (or #13170 #14090)
+#14101 := (and #11931 #11934 #14095)
+decl uf_200 :: (-> T4 T5 T5 T16 T2)
+decl uf_284 :: T16
+#3013 := uf_284
+#3014 := (uf_200 uf_273 #2962 #2962 uf_284)
+#11928 := (= uf_9 #3014)
+#13182 := (not #11928)
+#14106 := (or #13182 #14101)
+#14109 := (and #11928 #14106)
+#13339 := (+ uf_76 #13338)
+#13337 := (>= #13339 0::int)
+#13335 := (>= uf_272 0::int)
+#13342 := (and #13335 #13337)
+#13345 := (not #13342)
decl uf_283 :: (-> int T5 T2)
-#26 := (:var 0 T5)
decl uf_282 :: int
-#2997 := uf_282
-#3000 := (uf_283 uf_282 #26)
-#3001 := (pattern #3000)
-#12341 := (= uf_9 #3000)
-#12347 := (not #12341)
-#12352 := (forall (vars (?x772 T5)) (:pat #3001) #12347)
-#13741 := (not #12352)
+#3002 := uf_282
+#3005 := (uf_283 uf_282 #23)
+#3006 := (pattern #3005)
+#11914 := (= uf_9 #3005)
+#11920 := (not #11914)
+#11925 := (forall (vars (?x772 T5)) (:pat #3006) #11920)
+#13203 := (not #11925)
decl uf_275 :: T1
-#2980 := uf_275
-#2981 := (uf_202 uf_275 uf_273)
-#12335 := (= uf_9 #2981)
-#12338 := (and #12332 #12335)
-#13786 := (not #12338)
+#2983 := uf_275
+#2984 := (uf_202 uf_275 uf_273)
+#11905 := (= uf_9 #2984)
+#11911 := (and #11905 #11908)
+#13248 := (not #11911)
decl uf_203 :: (-> T4 T2)
-#2976 := (uf_203 uf_273)
-#12329 := (= uf_9 #2976)
-#13795 := (not #12329)
-decl uf_171 :: (-> T4 int)
-#2998 := (uf_171 uf_273)
-#2999 := (= uf_282 #2998)
-#13750 := (not #2999)
-#2996 := (up_280 uf_273 uf_275 uf_281 uf_272 uf_4)
-#13759 := (not #2996)
-#2993 := (up_280 uf_273 uf_275 uf_279 #2992 #11)
-#2991 := (up_278 uf_273 uf_275 uf_279 #2960 #11)
-#2994 := (and #2991 #2993)
-#13768 := (not #2994)
-#14766 := (or #13768 #13759 #13750 #13795 #13786 #13741 #13883 #13942 #14643 #14655 #14661 #14671 #14693 #14707 #14721)
-#14771 := (not #14766)
-#3010 := (= #3009 uf_9)
-#3015 := (= #3014 uf_9)
-#3013 := (= #3012 uf_9)
-#3016 := (and #3013 #3015)
-#3018 := (= #3017 uf_9)
-#3019 := (and #3018 #3015)
-#3037 := (<= 1::int uf_272)
-#3041 := (<= #3040 uf_285)
-#3038 := (< #161 1::int)
-#3042 := (implies #3038 #3041)
+#2981 := (uf_203 uf_273)
+#11902 := (= uf_9 #2981)
+#13257 := (not #11902)
+decl uf_173 :: (-> T4 int)
+#3003 := (uf_173 uf_273)
+#3004 := (= uf_282 #3003)
+#13212 := (not #3004)
+#3001 := (up_278 uf_273 uf_275 uf_281 uf_272 uf_4)
+#13221 := (not #3001)
+#2998 := (up_280 uf_273 uf_275 uf_279 #2960 #11)
+#2997 := (up_278 uf_273 uf_275 uf_279 #2996 #11)
+#2999 := (and #2997 #2998)
+#13230 := (not #2999)
+#14232 := (or #13230 #13221 #13212 #13257 #13248 #13203 #13345 #13404 #14109 #14121 #14127 #14137 #14159 #14173 #14187)
+#14237 := (not #14232)
+#1 := true
+#3090 := (< #161 uf_272)
+#3096 := (and #3090 #3095)
+#411 := (<= #161 uf_76)
+#3097 := (and #411 #3096)
#285 := (<= 0::int #161)
-#410 := (<= #161 uf_76)
-#645 := (and #410 #285)
-#3043 := (implies #645 #3042)
-#3044 := (forall (vars (?x773 int)) #3043)
-#2951 := (< 0::int uf_272)
-#3045 := (= #3021 uf_285)
-#3046 := (and #3045 #2951)
-#3141 := (<= #3040 uf_299)
-#3140 := (< #161 uf_272)
-#3142 := (implies #3140 #3141)
-#3143 := (implies #645 #3142)
-#3144 := (forall (vars (?x781 int)) #3143)
-#3146 := (and #3140 #645)
-#3147 := (and #3145 #3146)
-#3148 := (exists (vars (?x782 int)) #3147)
-#1 := true
-#3149 := (implies #3148 true)
-#3150 := (and #3149 #3148)
-#3151 := (implies #3144 #3150)
-#3152 := (and #3151 #3144)
-#3153 := (implies true #3152)
-#3139 := (= uf_299 uf_292)
-#3154 := (implies #3139 #3153)
-#3137 := (= uf_298 uf_293)
-#3155 := (implies #3137 #3154)
-#3135 := (= uf_297 uf_294)
-#3156 := (implies #3135 #3155)
-#3133 := (= uf_296 uf_292)
-#3157 := (implies #3133 #3156)
-#3158 := (implies true #3157)
-#3059 := (<= 1::int uf_294)
-#3053 := (<= 0::int uf_293)
-#3060 := (and #3053 #3059)
-#3159 := (implies #3060 #3158)
-#3160 := (implies #3060 #3159)
-#3161 := (implies true #3160)
-#3162 := (implies #3060 #3161)
-#3163 := (implies up_216 #3162)
-#3164 := (and #3163 up_216)
-#3165 := (implies #3060 #3164)
-#3166 := (implies true #3165)
-#3167 := (implies #3060 #3166)
-#3119 := (= #3118 uf_9)
-#2979 := (= #2978 uf_9)
-#3120 := (and #2979 #3119)
-#3295 := (implies #3120 #3167)
-#3296 := (implies #3060 #3295)
-#3297 := (implies true #3296)
-#3298 := (implies #3060 #3297)
-#3294 := (not true)
-#3299 := (implies #3294 #3298)
-#3300 := (implies #3060 #3299)
-#3301 := (implies true #3300)
-#3179 := (= #3178 uf_9)
-#3177 := (= #3176 uf_9)
-#3180 := (and #3177 #3179)
+#3098 := (and #285 #3097)
+#3099 := (exists (vars (?x778 int)) #3098)
+#3100 := (implies #3099 true)
+#3101 := (and #3099 #3100)
+#3091 := (<= #3045 uf_299)
+#3092 := (implies #3090 #3091)
+#412 := (and #285 #411)
+#3093 := (implies #412 #3092)
+#3094 := (forall (vars (?x776 int)) #3093)
+#3102 := (implies #3094 #3101)
+#3103 := (and #3094 #3102)
+#3104 := (implies true #3103)
+#3089 := (= uf_299 uf_292)
+#3105 := (implies #3089 #3104)
+#3087 := (= uf_298 uf_293)
+#3106 := (implies #3087 #3105)
+#3085 := (= uf_297 uf_294)
+#3107 := (implies #3085 #3106)
+#3083 := (= uf_296 uf_292)
+#3108 := (implies #3083 #3107)
+#3109 := (implies true #3108)
+#3057 := (<= 0::int uf_293)
+#3064 := (<= 1::int uf_294)
+#3065 := (and #3064 #3057)
+#3110 := (implies #3065 #3109)
+#3111 := (implies #3065 #3110)
+#3112 := (implies true #3111)
+#3113 := (implies #3065 #3112)
+#3114 := (implies up_216 #3113)
+#3115 := (and up_216 #3114)
+#3116 := (implies #3065 #3115)
+#3117 := (implies true #3116)
+#3118 := (implies #3065 #3117)
+#3283 := (implies #3065 #3118)
+#3284 := (implies true #3283)
+#3285 := (implies #3065 #3284)
+#3282 := (<= uf_272 uf_294)
+#3286 := (implies #3282 #3285)
+#3287 := (implies #3065 #3286)
+#3288 := (implies true #3287)
+#3225 := (implies false true)
+#3223 := (= #3222 uf_303)
+#3220 := (< uf_304 uf_272)
+#3224 := (and #3220 #3223)
+#3226 := (implies #3224 #3225)
+#3227 := (and #3224 #3226)
+#3216 := (<= #3045 uf_303)
+#3215 := (< #161 uf_305)
+#3217 := (implies #3215 #3216)
+#3218 := (implies #412 #3217)
+#3219 := (forall (vars (?x786 int)) #3218)
+#3228 := (implies #3219 #3227)
+#3229 := (and #3219 #3228)
+#3214 := (<= uf_305 uf_272)
+#3230 := (implies #3214 #3229)
+#3231 := (and #3214 #3230)
+#3232 := (implies true #3231)
+#3202 := (<= 0::int uf_304)
+#3212 := (<= 2::int uf_305)
+#3213 := (and #3212 #3202)
+#3233 := (implies #3213 #3232)
+#3234 := (implies #3211 #3233)
+#3204 := (+ uf_294 1::int)
+#3209 := (= uf_305 #3204)
+#3235 := (implies #3209 #3234)
+#3206 := (<= #3204 uf_76)
+#3205 := (<= 0::int #3204)
+#3207 := (and #3205 #3206)
+#3236 := (implies #3207 #3235)
+#3237 := (and #3207 #3236)
+#3203 := (and #3064 #3202)
+#3238 := (implies #3203 #3237)
+#3239 := (implies true #3238)
+#3259 := (= uf_304 uf_293)
+#3260 := (implies #3259 #3239)
+#3258 := (= uf_303 uf_292)
+#3261 := (implies #3258 #3260)
+#3262 := (implies true #3261)
+#3263 := (implies #3065 #3262)
+#3264 := (implies #3065 #3263)
+#3265 := (implies true #3264)
+#3266 := (implies #3065 #3265)
+#3257 := (<= #3189 uf_292)
+#3267 := (implies #3257 #3266)
+#3268 := (implies #3065 #3267)
+#3269 := (implies true #3268)
+#3201 := (= uf_304 uf_294)
+#3240 := (implies #3201 #3239)
+#3199 := (= uf_303 uf_300)
+#3241 := (implies #3199 #3240)
+#3242 := (implies true #3241)
+#3197 := (and #3064 #3064)
+#3243 := (implies #3197 #3242)
+#3244 := (implies #3196 #3243)
+#3245 := (implies #3194 #3244)
+#3192 := (= uf_300 #3189)
+#3246 := (implies #3192 #3245)
+#3187 := (= #3186 uf_9)
#3182 := (= #3181 uf_9)
-#3183 := (and #3182 #3179)
-#3192 := (+ uf_294 1::int)
-#3194 := (<= 0::int #3192)
-#3193 := (<= #3192 uf_76)
-#3195 := (and #3193 #3194)
-#3202 := (<= uf_302 uf_272)
-#3204 := (<= #3040 uf_300)
-#3203 := (< #161 uf_302)
-#3205 := (implies #3203 #3204)
-#3206 := (implies #645 #3205)
-#3207 := (forall (vars (?x785 int)) #3206)
-#3211 := (< uf_301 uf_272)
-#3210 := (= #3209 uf_300)
-#3212 := (and #3210 #3211)
-#3213 := (implies false true)
-#3214 := (implies #3212 #3213)
-#3215 := (and #3214 #3212)
-#3216 := (implies #3207 #3215)
-#3217 := (and #3216 #3207)
-#3218 := (implies #3202 #3217)
-#3219 := (and #3218 #3202)
-#3220 := (implies true #3219)
-#3200 := (<= 2::int uf_302)
-#3190 := (<= 0::int uf_301)
-#3201 := (and #3190 #3200)
-#3221 := (implies #3201 #3220)
-#3222 := (implies #3199 #3221)
-#3197 := (= uf_302 #3192)
-#3223 := (implies #3197 #3222)
-#3224 := (implies #3195 #3223)
-#3225 := (and #3224 #3195)
-#3191 := (and #3190 #3059)
-#3226 := (implies #3191 #3225)
-#3227 := (implies true #3226)
-#3247 := (= uf_301 uf_294)
-#3248 := (implies #3247 #3227)
-#3249 := (implies #3246 #3248)
-#3250 := (implies true #3249)
-#3245 := (and #3059 #3059)
-#3251 := (implies #3245 #3250)
-#3252 := (implies #3244 #3251)
-#3253 := (implies #3242 #3252)
-#3240 := (= uf_304 #3184)
-#3254 := (implies #3240 #3253)
-#3255 := (implies #3183 #3254)
-#3256 := (and #3255 #3183)
-#3257 := (implies #3180 #3256)
-#3258 := (and #3257 #3180)
-#3259 := (implies #3060 #3258)
-#3260 := (implies true #3259)
-#3261 := (implies #3060 #3260)
-#3238 := (< uf_292 #3184)
-#3262 := (implies #3238 #3261)
-#3263 := (implies #3060 #3262)
-#3264 := (implies true #3263)
-#3189 := (= uf_301 uf_293)
-#3228 := (implies #3189 #3227)
-#3187 := (= uf_300 uf_292)
-#3229 := (implies #3187 #3228)
-#3230 := (implies true #3229)
-#3231 := (implies #3060 #3230)
-#3232 := (implies #3060 #3231)
-#3233 := (implies true #3232)
-#3234 := (implies #3060 #3233)
-#3185 := (<= #3184 uf_292)
-#3235 := (implies #3185 #3234)
-#3236 := (implies #3060 #3235)
-#3237 := (implies true #3236)
-#3265 := (and #3237 #3264)
-#3266 := (implies #3060 #3265)
-#3267 := (implies #3183 #3266)
-#3268 := (and #3267 #3183)
-#3269 := (implies #3180 #3268)
-#3270 := (and #3269 #3180)
-#3271 := (implies #3060 #3270)
-#3272 := (implies true #3271)
-#3273 := (implies #3060 #3272)
-#3174 := (< uf_294 uf_272)
-#3274 := (implies #3174 #3273)
-#3275 := (implies #3060 #3274)
-#3276 := (implies true #3275)
-#3168 := (implies #3060 #3167)
-#3169 := (implies true #3168)
-#3170 := (implies #3060 #3169)
-#3131 := (<= uf_272 uf_294)
-#3171 := (implies #3131 #3170)
-#3172 := (implies #3060 #3171)
-#3173 := (implies true #3172)
-#3277 := (and #3173 #3276)
-#3278 := (implies #3060 #3277)
-decl uf_59 :: (-> T4 T13)
-#3079 := (uf_59 uf_273)
-#3129 := (= #3079 #3079)
+#3188 := (and #3182 #3187)
+#3247 := (implies #3188 #3246)
+#3248 := (and #3188 #3247)
+#3184 := (= #3183 uf_9)
+#3185 := (and #3182 #3184)
+#3249 := (implies #3185 #3248)
+#3250 := (and #3185 #3249)
+#3251 := (implies #3065 #3250)
+#3252 := (implies true #3251)
+#3253 := (implies #3065 #3252)
+#3190 := (< uf_292 #3189)
+#3254 := (implies #3190 #3253)
+#3255 := (implies #3065 #3254)
+#3256 := (implies true #3255)
+#3270 := (and #3256 #3269)
+#3271 := (implies #3065 #3270)
+#3272 := (implies #3188 #3271)
+#3273 := (and #3188 #3272)
+#3274 := (implies #3185 #3273)
+#3275 := (and #3185 #3274)
+#3276 := (implies #3065 #3275)
+#3277 := (implies true #3276)
+#3278 := (implies #3065 #3277)
+#3179 := (< uf_294 uf_272)
+#3279 := (implies #3179 #3278)
+#3280 := (implies #3065 #3279)
+#3281 := (implies true #3280)
+#3289 := (and #3281 #3288)
+#3290 := (implies #3065 #3289)
decl uf_41 :: (-> T4 T12)
-#3088 := (uf_41 uf_273)
-#3128 := (= #3088 #3088)
-#3130 := (and #3128 #3129)
-#3279 := (implies #3130 #3278)
-#3280 := (implies #3127 #3279)
-#3281 := (implies #3124 #3280)
-#3282 := (implies #3123 #3281)
-#3283 := (implies #3122 #3282)
-#3284 := (implies #3121 #3283)
-#3285 := (implies #3120 #3284)
-#3078 := (<= #2998 #2998)
-decl uf_170 :: (-> T4 T5 int)
-#3074 := (uf_170 uf_273 #26)
-#3075 := (pattern #3074)
-#3076 := (<= #3074 #3074)
-#3077 := (forall (vars (?x775 T5)) (:pat #3075) #3076)
-#3115 := (and #3077 #3078)
-#3073 := (= #3072 uf_9)
-#3116 := (and #3073 #3115)
-#3286 := (implies #3116 #3285)
+#3126 := (uf_41 uf_273)
+#3177 := (= #3126 #3126)
+#3176 := (= #3149 #3149)
+#3178 := (and #3176 #3177)
+#3291 := (implies #3178 #3290)
+#3292 := (implies #3175 #3291)
+#3293 := (implies #3172 #3292)
+#3294 := (implies #3171 #3293)
+#3295 := (implies #3170 #3294)
+#3296 := (implies #3169 #3295)
+#2987 := (= #2986 uf_9)
+#3080 := (= #3079 uf_9)
+#3081 := (and #3080 #2987)
+#3297 := (implies #3081 #3296)
+#3162 := (= #3161 uf_9)
+decl uf_172 :: (-> T4 T5 int)
+#3157 := (uf_172 uf_273 #23)
+#3158 := (pattern #3157)
+#3159 := (<= #3157 #3157)
+#3160 := (forall (vars (?x784 T5)) (:pat #3158) #3159)
+#3163 := (and #3160 #3162)
+#3156 := (<= #3003 #3003)
+#3164 := (and #3156 #3163)
+#3298 := (implies #3164 #3297)
+#3150 := (uf_58 #3149 #23)
+#3151 := (pattern #3150)
+#3139 := (uf_68 uf_273 #23)
+#3140 := (= #3139 uf_9)
+#3152 := (= #3150 #3150)
+#3153 := (and #3152 #3140)
+#3154 := (implies #3140 #3153)
+#3155 := (forall (vars (?x783 T5)) (:pat #3151) #3154)
+#3165 := (and #3155 #3164)
decl uf_40 :: (-> T12 T5 T11)
-#3089 := (uf_40 #3088 #26)
-#3090 := (pattern #3089)
-decl uf_261 :: T8
-#2832 := uf_261
-#3102 := (uf_25 uf_273 #26)
-#3103 := (uf_15 #3102)
-#3104 := (uf_14 #3103)
-#3105 := (= #3104 uf_261)
-#3106 := (not #3105)
-#3107 := (implies #3106 #3106)
-#3108 := (forall (vars (?x779 T5)) (:pat #3090) #3107)
+#3127 := (uf_40 #3126 #23)
+#3128 := (pattern #3127)
+#3145 := (= #3127 #3127)
+#3146 := (and #3145 #3140)
+#3147 := (implies #3140 #3146)
+#3148 := (forall (vars (?x782 T5)) (:pat #3128) #3147)
+#3166 := (and #3148 #3165)
decl uf_19 :: (-> T9 T5 int)
decl uf_20 :: (-> T4 T9)
-#3095 := (uf_20 uf_273)
-#3096 := (uf_19 #3095 #26)
-#3097 := (pattern #3096)
-#3098 := (= #3096 #3096)
-#3082 := (uf_67 uf_273 #26)
-#3083 := (= #3082 uf_9)
-#3099 := (and #3083 #3098)
-#3100 := (implies #3083 #3099)
-#3101 := (forall (vars (?x778 T5)) (:pat #3097) #3100)
-#3109 := (and #3101 #3108)
-#3091 := (= #3089 #3089)
-#3092 := (and #3083 #3091)
-#3093 := (implies #3083 #3092)
-#3094 := (forall (vars (?x777 T5)) (:pat #3090) #3093)
-#3110 := (and #3094 #3109)
-decl uf_58 :: (-> T13 T5 T14)
-#3080 := (uf_58 #3079 #26)
-#3081 := (pattern #3080)
-#3084 := (= #3080 #3080)
-#3085 := (and #3083 #3084)
-#3086 := (implies #3083 #3085)
-#3087 := (forall (vars (?x776 T5)) (:pat #3081) #3086)
-#3111 := (and #3087 #3110)
-#3112 := (and #3078 #3111)
-#3113 := (and #3077 #3112)
-#3114 := (and #3073 #3113)
-#3287 := (implies #3114 #3286)
-#3288 := (implies #3060 #3287)
-#3289 := (implies true #3288)
-#3290 := (implies #3060 #3289)
-#3291 := (implies true #3290)
-#3292 := (implies #3060 #3291)
-#3293 := (implies true #3292)
-#3302 := (and #3293 #3301)
-#3303 := (implies #3060 #3302)
-#3070 := (< uf_293 uf_272)
-#3069 := (= #3068 uf_292)
-#3071 := (and #3069 #3070)
-#3304 := (implies #3071 #3303)
-#3063 := (<= #3040 uf_292)
-#3062 := (< #161 uf_294)
-#3064 := (implies #3062 #3063)
-#3065 := (implies #645 #3064)
-#3066 := (forall (vars (?x774 int)) #3065)
-#3305 := (implies #3066 #3304)
-#3061 := (<= uf_294 uf_272)
-#3306 := (implies #3061 #3305)
-#3307 := (implies #3060 #3306)
-#3057 := (<= 0::int uf_294)
-#3056 := (<= uf_294 uf_76)
-#3058 := (and #3056 #3057)
-#3308 := (implies #3058 #3307)
-#3052 := (<= uf_293 uf_76)
-#3054 := (and #3052 #3053)
-#3309 := (implies #3054 #3308)
-#3049 := (<= 0::int uf_292)
-#3048 := (<= uf_292 uf_78)
-#3050 := (and #3048 #3049)
-#3310 := (implies #3050 #3309)
-#3311 := (implies true #3310)
-#3312 := (implies #3046 #3311)
-#3313 := (and #3312 #3046)
-#3314 := (implies #3044 #3313)
-#3315 := (and #3314 #3044)
-#3316 := (implies #3037 #3315)
-#3317 := (and #3316 #3037)
-#3033 := (<= 1::int 1::int)
-#3034 := (and #3033 #3033)
-#3032 := (<= 0::int 0::int)
-#3035 := (and #3032 #3034)
-#3036 := (and #3032 #3035)
-#3318 := (implies #3036 #3317)
-#3319 := (implies #3031 #3318)
-#3320 := (implies #3028 #3319)
-#3321 := (implies #3025 #3320)
-#3322 := (implies #3022 #3321)
-#3323 := (implies #3019 #3322)
-#3324 := (and #3323 #3019)
-#3325 := (implies #3016 #3324)
-#3326 := (and #3325 #3016)
-#3327 := (implies #3010 #3326)
-#3328 := (and #3327 #3010)
-#3006 := (<= 0::int uf_272)
-#3005 := (<= uf_272 uf_76)
-#3007 := (and #3005 #3006)
-#3329 := (implies #3007 #3328)
-#3002 := (= #3000 uf_9)
-#3003 := (iff #3002 false)
-#3004 := (forall (vars (?x772 T5)) (:pat #3001) #3003)
-#3330 := (implies #3004 #3329)
-#3331 := (implies #2999 #3330)
-#3332 := (implies #2996 #3331)
-#3333 := (implies #2994 #3332)
-#2988 := (< #2985 uf_277)
-#2989 := (forall (vars (?x771 T19)) (:pat #2986) #2988)
-#3334 := (implies #2989 #3333)
+#3136 := (uf_20 uf_273)
+#3137 := (uf_19 #3136 #23)
+#3138 := (pattern #3137)
+#3141 := (= #3137 #3137)
+#3142 := (and #3141 #3140)
+#3143 := (implies #3140 #3142)
+#3144 := (forall (vars (?x781 T5)) (:pat #3138) #3143)
+#3167 := (and #3144 #3166)
+decl uf_261 :: T8
+#2837 := uf_261
+#3129 := (uf_25 uf_273 #23)
+#3130 := (uf_13 #3129)
+#3131 := (uf_12 #3130)
+#3132 := (= #3131 uf_261)
+#3133 := (not #3132)
+#3134 := (implies #3133 #3133)
+#3135 := (forall (vars (?x780 T5)) (:pat #3128) #3134)
+#3168 := (and #3135 #3167)
+#3299 := (implies #3168 #3298)
+#3300 := (implies #3065 #3299)
+#3301 := (implies true #3300)
+#3302 := (implies #3065 #3301)
+#3303 := (implies true #3302)
+#3304 := (implies #3065 #3303)
+#3305 := (implies true #3304)
+#3119 := (implies #3081 #3118)
+#3120 := (implies #3065 #3119)
+#3121 := (implies true #3120)
+#3122 := (implies #3065 #3121)
+#3077 := (not true)
+#3123 := (implies #3077 #3122)
+#3124 := (implies #3065 #3123)
+#3125 := (implies true #3124)
+#3306 := (and #3125 #3305)
+#3307 := (implies #3065 #3306)
+#3075 := (= #3074 uf_292)
+#3072 := (< uf_293 uf_272)
+#3076 := (and #3072 #3075)
+#3308 := (implies #3076 #3307)
+#3068 := (<= #3045 uf_292)
+#3067 := (< #161 uf_294)
+#3069 := (implies #3067 #3068)
+#3070 := (implies #412 #3069)
+#3071 := (forall (vars (?x775 int)) #3070)
+#3309 := (implies #3071 #3308)
+#3066 := (<= uf_294 uf_272)
+#3310 := (implies #3066 #3309)
+#3311 := (implies #3065 #3310)
+#3062 := (<= uf_294 uf_76)
+#3061 := (<= 0::int uf_294)
+#3063 := (and #3061 #3062)
+#3312 := (implies #3063 #3311)
+#3058 := (<= uf_293 uf_76)
+#3059 := (and #3057 #3058)
+#3313 := (implies #3059 #3312)
+#3054 := (<= uf_292 uf_78)
+#3053 := (<= 0::int uf_292)
+#3055 := (and #3053 #3054)
+#3314 := (implies #3055 #3313)
+#3315 := (implies true #3314)
+#3050 := (= #3026 uf_285)
+#2956 := (< 0::int uf_272)
+#3051 := (and #2956 #3050)
+#3316 := (implies #3051 #3315)
+#3317 := (and #3051 #3316)
+#3046 := (<= #3045 uf_285)
+#3043 := (< #161 1::int)
+#3047 := (implies #3043 #3046)
+#3048 := (implies #412 #3047)
+#3049 := (forall (vars (?x773 int)) #3048)
+#3318 := (implies #3049 #3317)
+#3319 := (and #3049 #3318)
+#3042 := (<= 1::int uf_272)
+#3320 := (implies #3042 #3319)
+#3321 := (and #3042 #3320)
+#3038 := (<= 0::int 0::int)
+#3039 := (and #3038 #3038)
+#3037 := (<= 1::int 1::int)
+#3040 := (and #3037 #3039)
+#3041 := (and #3037 #3040)
+#3322 := (implies #3041 #3321)
+#3323 := (implies #3036 #3322)
+#3324 := (implies #3033 #3323)
+#3325 := (implies #3030 #3324)
+#3326 := (implies #3027 #3325)
+#3023 := (= #3022 uf_9)
+#3018 := (= #3017 uf_9)
+#3024 := (and #3018 #3023)
+#3327 := (implies #3024 #3326)
+#3328 := (and #3024 #3327)
+#3020 := (= #3019 uf_9)
+#3021 := (and #3018 #3020)
+#3329 := (implies #3021 #3328)
+#3330 := (and #3021 #3329)
+#3015 := (= #3014 uf_9)
+#3331 := (implies #3015 #3330)
+#3332 := (and #3015 #3331)
+#3011 := (<= uf_272 uf_76)
+#3010 := (<= 0::int uf_272)
+#3012 := (and #3010 #3011)
+#3333 := (implies #3012 #3332)
+#3007 := (= #3005 uf_9)
+#3008 := (iff #3007 false)
+#3009 := (forall (vars (?x772 T5)) (:pat #3006) #3008)
+#3334 := (implies #3009 #3333)
+#3335 := (implies #3004 #3334)
+#3336 := (implies #3001 #3335)
+#3337 := (implies #2999 #3336)
+#2993 := (< #2990 uf_277)
+#2994 := (forall (vars (?x771 T19)) (:pat #2991) #2993)
+#3338 := (implies #2994 #3337)
+#2985 := (= #2984 uf_9)
+#2988 := (and #2985 #2987)
+#3339 := (implies #2988 #3338)
#2982 := (= #2981 uf_9)
-#2983 := (and #2979 #2982)
-#3335 := (implies #2983 #3334)
-#2977 := (= #2976 uf_9)
-#3336 := (implies #2977 #3335)
-#3337 := (implies true #3336)
+#3340 := (implies #2982 #3339)
+#3341 := (implies true #3340)
+#2975 := (= #2974 uf_9)
+#2972 := (= #2971 uf_14)
+#2973 := (not #2972)
+#2976 := (and #2973 #2975)
#2970 := (= #2969 uf_9)
-#2968 := (= #2967 uf_26)
-#2971 := (and #2968 #2970)
-#2966 := (= #2965 uf_9)
-#2972 := (and #2966 #2971)
+#2977 := (and #2970 #2976)
+#2968 := (= #2967 uf_9)
+#2978 := (and #2968 #2977)
+#2966 := (= #2965 uf_26)
+#2979 := (and #2966 #2978)
#2964 := (= #2963 uf_9)
-#2973 := (and #2964 #2972)
-#2956 := (= #2955 uf_16)
-#2957 := (not #2956)
-#2974 := (and #2957 #2973)
-#2954 := (= #2953 uf_9)
-#2975 := (and #2954 #2974)
-#3338 := (implies #2975 #3337)
-#3339 := (implies #2951 #3338)
-#2950 := (< uf_272 1099511627776::int)
-#3340 := (implies #2950 #3339)
-#2947 := (<= 0::int uf_271)
-#2946 := (<= uf_271 uf_76)
-#2948 := (and #2946 #2947)
-#3341 := (implies #2948 #3340)
-#2943 := (<= 0::int uf_270)
-#2942 := (<= uf_270 uf_76)
-#2944 := (and #2942 #2943)
-#3342 := (implies #2944 #3341)
-#2939 := (<= 0::int uf_269)
-#2938 := (<= uf_269 uf_78)
-#2940 := (and #2938 #2939)
-#3343 := (implies #2940 #3342)
-#3344 := (implies true #3343)
-#3345 := (not #3344)
-#14774 := (iff #3345 #14771)
-#12868 := (and #3211 #12862)
-#12847 := (not #3203)
-#12848 := (or #12847 #3204)
-#5718 := (and #285 #410)
-#5727 := (not #5718)
-#12854 := (or #5727 #12848)
-#12859 := (forall (vars (?x785 int)) #12854)
-#12892 := (not #12859)
-#12893 := (or #12892 #12868)
-#12901 := (and #12859 #12893)
-#12909 := (not #3202)
-#12910 := (or #12909 #12901)
-#12918 := (and #3202 #12910)
-#12933 := (not #3201)
-#12934 := (or #12933 #12918)
-#12943 := (or #12942 #12934)
-#12832 := (+ 1::int uf_294)
-#12844 := (= uf_302 #12832)
-#12951 := (not #12844)
-#12952 := (or #12951 #12943)
-#12838 := (<= 0::int #12832)
-#12835 := (<= #12832 uf_76)
-#12841 := (and #12835 #12838)
-#12960 := (not #12841)
-#12961 := (or #12960 #12952)
-#12969 := (and #12841 #12961)
-#12829 := (and #3059 #3190)
-#12977 := (not #12829)
-#12978 := (or #12977 #12969)
-#13082 := (or #12978 #13081)
-#13091 := (or #13090 #13082)
-#13106 := (not #3059)
-#13107 := (or #13106 #13091)
-#13116 := (or #13115 #13107)
-#13125 := (or #13124 #13116)
-#13134 := (or #13133 #13125)
-#13143 := (or #13142 #13134)
-#13151 := (and #12818 #13143)
-#13160 := (or #13159 #13151)
-#13168 := (and #12809 #13160)
-#12687 := (not #3060)
-#13176 := (or #12687 #13168)
-#13191 := (or #12687 #13176)
-#13199 := (not #3238)
-#13200 := (or #13199 #13191)
-#13208 := (or #12687 #13200)
-#12994 := (or #12993 #12978)
-#13003 := (or #13002 #12994)
-#13018 := (or #12687 #13003)
-#13026 := (or #12687 #13018)
-#13041 := (or #12687 #13026)
-#13049 := (not #3185)
-#13050 := (or #13049 #13041)
-#13058 := (or #12687 #13050)
-#13220 := (and #13058 #13208)
-#13226 := (or #12687 #13220)
-#13234 := (or #13142 #13226)
-#13242 := (and #12818 #13234)
-#13250 := (or #13159 #13242)
-#13258 := (and #12809 #13250)
-#13266 := (or #12687 #13258)
-#13281 := (or #12687 #13266)
-#13289 := (not #3174)
-#13290 := (or #13289 #13281)
-#13298 := (or #12687 #13290)
-#12594 := (and #3140 #5718)
-#12597 := (and #3145 #12594)
-#12600 := (exists (vars (?x782 int)) #12597)
-#12579 := (not #3140)
-#12580 := (or #12579 #3141)
-#12586 := (or #5727 #12580)
-#12591 := (forall (vars (?x781 int)) #12586)
-#12620 := (not #12591)
-#12621 := (or #12620 #12600)
-#12629 := (and #12591 #12621)
-#12645 := (or #12644 #12629)
-#12654 := (or #12653 #12645)
+#2980 := (and #2964 #2979)
+#3342 := (implies #2980 #3341)
+#3343 := (implies #2956 #3342)
+#2955 := (< uf_272 1099511627776::int)
+#3344 := (implies #2955 #3343)
+#2952 := (<= uf_271 uf_76)
+#2951 := (<= 0::int uf_271)
+#2953 := (and #2951 #2952)
+#3345 := (implies #2953 #3344)
+#2948 := (<= uf_270 uf_76)
+#2947 := (<= 0::int uf_270)
+#2949 := (and #2947 #2948)
+#3346 := (implies #2949 #3345)
+#2944 := (<= uf_269 uf_78)
+#2943 := (<= 0::int uf_269)
+#2945 := (and #2943 #2944)
+#3347 := (implies #2945 #3346)
+#3348 := (implies true #3347)
+#3349 := (not #3348)
+#14240 := (iff #3349 #14237)
+#12023 := (not #3090)
+#12024 := (or #12023 #3091)
+#5592 := (not #412)
+#12030 := (or #5592 #12024)
+#12035 := (forall (vars (?x776 int)) #12030)
+#12050 := (not #12035)
+#12051 := (or #3099 #12050)
+#12056 := (and #12035 #12051)
+#12070 := (or #12069 #12056)
+#12079 := (or #12078 #12070)
+#12088 := (or #12087 #12079)
+#12097 := (or #12096 #12088)
+#11974 := (and #3057 #3064)
+#12112 := (not #11974)
+#12113 := (or #12112 #12097)
+#12121 := (or #12112 #12113)
+#12136 := (or #12112 #12121)
+#12145 := (or #12144 #12136)
+#12150 := (and up_216 #12145)
+#12156 := (or #12112 #12150)
+#12171 := (or #12112 #12156)
+#12813 := (or #12112 #12171)
+#12828 := (or #12112 #12813)
+#12836 := (not #3282)
+#12837 := (or #12836 #12828)
+#12845 := (or #12112 #12837)
+#12407 := (and #3220 #12404)
+#12389 := (not #3215)
+#12390 := (or #12389 #3216)
+#12396 := (or #5592 #12390)
+#12401 := (forall (vars (?x786 int)) #12396)
+#12429 := (not #12401)
+#12430 := (or #12429 #12407)
+#12435 := (and #12401 #12430)
+#12441 := (not #3214)
+#12442 := (or #12441 #12435)
+#12447 := (and #3214 #12442)
+#12386 := (and #3202 #3212)
+#12460 := (not #12386)
+#12461 := (or #12460 #12447)
+#12470 := (or #12469 #12461)
+#12371 := (+ 1::int uf_294)
+#12383 := (= uf_305 #12371)
+#12478 := (not #12383)
+#12479 := (or #12478 #12470)
+#12377 := (<= #12371 uf_76)
+#12374 := (<= 0::int #12371)
+#12380 := (and #12374 #12377)
+#12487 := (not #12380)
+#12488 := (or #12487 #12479)
+#12493 := (and #12380 #12488)
+#12499 := (not #3203)
+#12500 := (or #12499 #12493)
+#12654 := (or #12500 #12653)
#12663 := (or #12662 #12654)
-#12672 := (or #12671 #12663)
-#12688 := (or #12687 #12672)
-#12696 := (or #12687 #12688)
-#12711 := (or #12687 #12696)
-#12720 := (or #12719 #12711)
-#12728 := (and up_216 #12720)
-#12736 := (or #12687 #12728)
-#12751 := (or #12687 #12736)
-#12759 := (or #12687 #12751)
-#12774 := (or #12687 #12759)
-#12782 := (not #3131)
-#12783 := (or #12782 #12774)
-#12791 := (or #12687 #12783)
-#13310 := (and #12791 #13298)
-#13316 := (or #12687 #13310)
-#13332 := (or #13331 #13316)
-#13341 := (or #13340 #13332)
-#13350 := (or #13349 #13341)
-#13359 := (or #13358 #13350)
-#13368 := (or #13367 #13359)
-#13377 := (or #13376 #13368)
-#12544 := (and #3115 #12437)
-#13385 := (not #12544)
-#13386 := (or #13385 #13377)
-#13394 := (or #13385 #13386)
-#13402 := (or #12687 #13394)
-#13417 := (or #12687 #13402)
-#13432 := (or #12687 #13417)
-#13508 := (or #12687 #13432)
-#12432 := (and #3070 #12426)
-#13516 := (not #12432)
-#13517 := (or #13516 #13508)
-#12411 := (not #3062)
-#12412 := (or #12411 #3063)
-#12418 := (or #5727 #12412)
-#12423 := (forall (vars (?x774 int)) #12418)
-#13525 := (not #12423)
-#13526 := (or #13525 #13517)
-#13534 := (not #3061)
-#13535 := (or #13534 #13526)
-#13543 := (or #12687 #13535)
-#13551 := (not #3058)
-#13552 := (or #13551 #13543)
-#13560 := (not #3054)
-#13561 := (or #13560 #13552)
-#13569 := (not #3050)
-#13570 := (or #13569 #13561)
-#12406 := (and #2951 #3022)
-#13585 := (not #12406)
-#13586 := (or #13585 #13570)
-#13594 := (and #12406 #13586)
-#12386 := (not #3038)
-#12387 := (or #12386 #3041)
-#12393 := (or #5727 #12387)
-#12398 := (forall (vars (?x773 int)) #12393)
-#13602 := (not #12398)
-#13603 := (or #13602 #13594)
-#13611 := (and #12398 #13603)
-#13619 := (not #3037)
-#13620 := (or #13619 #13611)
-#13628 := (and #3037 #13620)
-#12380 := (and #3032 #3033)
-#12383 := (and #3032 #12380)
-#13636 := (not #12383)
-#13637 := (or #13636 #13628)
-#13646 := (or #13645 #13637)
-#13655 := (or #13654 #13646)
-#13664 := (or #13663 #13655)
-#13673 := (or #13672 #13664)
-#13682 := (or #13681 #13673)
-#13690 := (and #12373 #13682)
-#13699 := (or #13698 #13690)
-#13707 := (and #12364 #13699)
-#13716 := (or #13715 #13707)
-#13724 := (and #12355 #13716)
-#13732 := (not #3007)
-#13733 := (or #13732 #13724)
-#13742 := (or #13741 #13733)
-#13751 := (or #13750 #13742)
-#13760 := (or #13759 #13751)
-#13769 := (or #13768 #13760)
-#13777 := (not #2989)
-#13778 := (or #13777 #13769)
-#13787 := (or #13786 #13778)
-#13796 := (or #13795 #13787)
-#12314 := (and #12308 #12311)
-#12317 := (and #12305 #12314)
-#12320 := (and #12302 #12317)
-#12323 := (and #12299 #12320)
-#12326 := (and #12293 #12323)
-#13811 := (not #12326)
-#13812 := (or #13811 #13796)
-#13820 := (not #2951)
-#13821 := (or #13820 #13812)
-#13829 := (not #2950)
-#13830 := (or #13829 #13821)
-#13838 := (not #2948)
-#13839 := (or #13838 #13830)
-#13847 := (not #2944)
-#13848 := (or #13847 #13839)
-#13856 := (not #2940)
-#13857 := (or #13856 #13848)
-#13869 := (not #13857)
-#14772 := (iff #13869 #14771)
-#14769 := (iff #13857 #14766)
-#14724 := (or #13883 #14643)
-#14727 := (or #13741 #14724)
-#14730 := (or #13750 #14727)
-#14733 := (or #13759 #14730)
-#14736 := (or #13768 #14733)
-#14739 := (or #14655 #14736)
-#14742 := (or #13786 #14739)
-#14745 := (or #13795 #14742)
-#14748 := (or #14661 #14745)
-#14751 := (or #13942 #14748)
-#14754 := (or #14671 #14751)
-#14757 := (or #14693 #14754)
-#14760 := (or #14707 #14757)
-#14763 := (or #14721 #14760)
-#14767 := (iff #14763 #14766)
-#14768 := [rewrite]: #14767
-#14764 := (iff #13857 #14763)
-#14761 := (iff #13848 #14760)
-#14758 := (iff #13839 #14757)
-#14755 := (iff #13830 #14754)
-#14752 := (iff #13821 #14751)
-#14749 := (iff #13812 #14748)
-#14746 := (iff #13796 #14745)
-#14743 := (iff #13787 #14742)
-#14740 := (iff #13778 #14739)
-#14737 := (iff #13769 #14736)
-#14734 := (iff #13760 #14733)
-#14731 := (iff #13751 #14730)
-#14728 := (iff #13742 #14727)
-#14725 := (iff #13733 #14724)
-#14644 := (iff #13724 #14643)
-#14641 := (iff #13716 #14640)
-#14638 := (iff #13707 #14635)
-#14632 := (and #12364 #14629)
-#14636 := (iff #14632 #14635)
-#14637 := [rewrite]: #14636
-#14633 := (iff #13707 #14632)
-#14630 := (iff #13699 #14629)
-#14627 := (iff #13690 #14624)
-#14621 := (and #12373 #14616)
-#14625 := (iff #14621 #14624)
-#14626 := [rewrite]: #14625
-#14622 := (iff #13690 #14621)
-#14619 := (iff #13682 #14616)
-#14598 := (or false #14595)
-#14601 := (or #13645 #14598)
-#14604 := (or #13654 #14601)
-#14607 := (or #13663 #14604)
-#14610 := (or #13672 #14607)
-#14613 := (or #13681 #14610)
-#14617 := (iff #14613 #14616)
-#14618 := [rewrite]: #14617
-#14614 := (iff #13682 #14613)
-#14611 := (iff #13673 #14610)
-#14608 := (iff #13664 #14607)
-#14605 := (iff #13655 #14604)
-#14602 := (iff #13646 #14601)
-#14599 := (iff #13637 #14598)
-#14596 := (iff #13628 #14595)
-#14593 := (iff #13620 #14592)
-#14590 := (iff #13611 #14589)
-#14587 := (iff #13603 #14586)
-#14584 := (iff #13594 #14581)
-#14499 := (and #13943 #3022)
-#14578 := (and #14499 #14573)
-#14582 := (iff #14578 #14581)
-#14583 := [rewrite]: #14582
-#14579 := (iff #13594 #14578)
-#14576 := (iff #13586 #14573)
-#14510 := (or #13955 #14376)
-#14513 := (or #13331 #14510)
-#14516 := (or #13340 #14513)
-#14519 := (or #13349 #14516)
-#14522 := (or #13358 #14519)
-#14525 := (or #13367 #14522)
-#14528 := (or #13376 #14525)
-#14531 := (or #14399 #14528)
-#14534 := (or #14399 #14531)
-#14537 := (or #13955 #14534)
-#14540 := (or #13955 #14537)
-#14543 := (or #13955 #14540)
-#14546 := (or #13955 #14543)
-#14549 := (or #14416 #14546)
-#14552 := (or #14450 #14549)
-#14555 := (or #14456 #14552)
-#14558 := (or #13955 #14555)
-#14561 := (or #14468 #14558)
-#14564 := (or #14483 #14561)
-#14567 := (or #14496 #14564)
-#14570 := (or #14507 #14567)
-#14574 := (iff #14570 #14573)
-#14575 := [rewrite]: #14574
-#14571 := (iff #13586 #14570)
-#14568 := (iff #13570 #14567)
-#14565 := (iff #13561 #14564)
-#14562 := (iff #13552 #14561)
-#14559 := (iff #13543 #14558)
-#14556 := (iff #13535 #14555)
-#14553 := (iff #13526 #14552)
-#14550 := (iff #13517 #14549)
-#14547 := (iff #13508 #14546)
-#14544 := (iff #13432 #14543)
-#14541 := (iff #13417 #14540)
-#14538 := (iff #13402 #14537)
-#14535 := (iff #13394 #14534)
-#14532 := (iff #13386 #14531)
-#14529 := (iff #13377 #14528)
-#14526 := (iff #13368 #14525)
-#14523 := (iff #13359 #14522)
-#14520 := (iff #13350 #14519)
-#14517 := (iff #13341 #14516)
-#14514 := (iff #13332 #14513)
-#14511 := (iff #13316 #14510)
-#14377 := (iff #13310 #14376)
-#14374 := (iff #13298 #14371)
-#14359 := (or #13955 #14345)
-#14362 := (or #13955 #14359)
-#14365 := (or #14046 #14362)
-#14368 := (or #13955 #14365)
-#14372 := (iff #14368 #14371)
-#14373 := [rewrite]: #14372
-#14369 := (iff #13298 #14368)
-#14366 := (iff #13290 #14365)
-#14363 := (iff #13281 #14362)
-#14360 := (iff #13266 #14359)
-#14348 := (iff #13258 #14345)
-#14342 := (and #12809 #14339)
-#14346 := (iff #14342 #14345)
-#14347 := [rewrite]: #14346
-#14343 := (iff #13258 #14342)
-#14340 := (iff #13250 #14339)
-#14337 := (iff #13242 #14334)
-#14331 := (and #12818 #14326)
-#14335 := (iff #14331 #14334)
-#14336 := [rewrite]: #14335
-#14332 := (iff #13242 #14331)
-#14329 := (iff #13234 #14326)
-#14320 := (or #13955 #14317)
-#14323 := (or #13142 #14320)
-#14327 := (iff #14323 #14326)
-#14328 := [rewrite]: #14327
-#14324 := (iff #13234 #14323)
-#14321 := (iff #13226 #14320)
-#14318 := (iff #13220 #14317)
-#14315 := (iff #13208 #14312)
-#14300 := (or #13955 #14286)
-#14303 := (or #13955 #14300)
-#14306 := (or #14207 #14303)
-#14309 := (or #13955 #14306)
-#14313 := (iff #14309 #14312)
-#14314 := [rewrite]: #14313
-#14310 := (iff #13208 #14309)
-#14307 := (iff #13200 #14306)
-#14304 := (iff #13191 #14303)
-#14301 := (iff #13176 #14300)
-#14289 := (iff #13168 #14286)
-#14283 := (and #12809 #14280)
-#14287 := (iff #14283 #14286)
-#14288 := [rewrite]: #14287
-#14284 := (iff #13168 #14283)
-#14281 := (iff #13160 #14280)
-#14278 := (iff #13151 #14275)
-#14272 := (and #12818 #14267)
-#14276 := (iff #14272 #14275)
-#14277 := [rewrite]: #14276
-#14273 := (iff #13151 #14272)
-#14270 := (iff #13143 #14267)
-#14214 := (or #14081 #14201)
-#14246 := (or #14214 #13081)
-#14249 := (or #13090 #14246)
-#14252 := (or #14243 #14249)
-#14255 := (or #13115 #14252)
-#14258 := (or #13124 #14255)
-#14261 := (or #13133 #14258)
-#14264 := (or #13142 #14261)
-#14268 := (iff #14264 #14267)
-#14269 := [rewrite]: #14268
-#14265 := (iff #13143 #14264)
-#14262 := (iff #13134 #14261)
-#14259 := (iff #13125 #14258)
-#14256 := (iff #13116 #14255)
-#14253 := (iff #13107 #14252)
-#14250 := (iff #13091 #14249)
-#14247 := (iff #13082 #14246)
-#14215 := (iff #12978 #14214)
-#14204 := (iff #12969 #14201)
-#14198 := (and #14175 #14193)
-#14202 := (iff #14198 #14201)
-#14203 := [rewrite]: #14202
-#14199 := (iff #12969 #14198)
-#14196 := (iff #12961 #14193)
-#14181 := (or #14097 #14165)
-#14184 := (or #12942 #14181)
-#14187 := (or #14172 #14184)
-#14190 := (or #14178 #14187)
-#14194 := (iff #14190 #14193)
-#14195 := [rewrite]: #14194
-#14191 := (iff #12961 #14190)
-#14188 := (iff #12952 #14187)
-#14185 := (iff #12943 #14184)
-#14182 := (iff #12934 #14181)
-#14166 := (iff #12918 #14165)
-#14163 := (iff #12910 #14162)
-#14160 := (iff #12901 #14159)
-#14157 := (iff #12893 #14156)
-#14154 := (iff #12868 #14151)
-#14148 := (and #14145 #12862)
-#14152 := (iff #14148 #14151)
-#14153 := [rewrite]: #14152
-#14149 := (iff #12868 #14148)
-#14146 := (iff #3211 #14145)
-#14147 := [rewrite]: #14146
-#14150 := [monotonicity #14147]: #14149
-#14155 := [trans #14150 #14153]: #14154
-#14140 := (iff #12892 #14139)
-#14137 := (iff #12859 #14136)
-#14134 := (iff #12854 #14131)
-#14125 := (or #14109 #14122)
-#14128 := (or #5739 #14125)
-#14132 := (iff #14128 #14131)
-#14133 := [rewrite]: #14132
-#14129 := (iff #12854 #14128)
-#14126 := (iff #12848 #14125)
-#14123 := (iff #3204 #14122)
-#14124 := [rewrite]: #14123
-#14118 := (iff #12847 #14109)
-#14108 := (not #14109)
-#14113 := (not #14108)
-#14116 := (iff #14113 #14109)
-#14117 := [rewrite]: #14116
-#14114 := (iff #12847 #14113)
-#14111 := (iff #3203 #14108)
-#14112 := [rewrite]: #14111
-#14115 := [monotonicity #14112]: #14114
-#14119 := [trans #14115 #14117]: #14118
-#14127 := [monotonicity #14119 #14124]: #14126
-#5740 := (iff #5727 #5739)
-#5737 := (iff #5718 #5736)
-#4420 := (iff #410 #4419)
-#4421 := [rewrite]: #4420
-#4083 := (iff #285 #4084)
-#4085 := [rewrite]: #4083
-#5738 := [monotonicity #4085 #4421]: #5737
-#5741 := [monotonicity #5738]: #5740
-#14130 := [monotonicity #5741 #14127]: #14129
-#14135 := [trans #14130 #14133]: #14134
-#14138 := [quant-intro #14135]: #14137
-#14141 := [monotonicity #14138]: #14140
-#14158 := [monotonicity #14141 #14155]: #14157
-#14161 := [monotonicity #14138 #14158]: #14160
-#14106 := (iff #12909 #14105)
-#14103 := (iff #3202 #14100)
-#14104 := [rewrite]: #14103
-#14107 := [monotonicity #14104]: #14106
-#14164 := [monotonicity #14107 #14161]: #14163
-#14167 := [monotonicity #14104 #14164]: #14166
-#14098 := (iff #12933 #14097)
-#14095 := (iff #3201 #14094)
-#14091 := (iff #3200 #14092)
-#14093 := [rewrite]: #14091
-#14075 := (iff #3190 #14076)
-#14077 := [rewrite]: #14075
-#14096 := [monotonicity #14077 #14093]: #14095
-#14099 := [monotonicity #14096]: #14098
-#14183 := [monotonicity #14099 #14167]: #14182
-#14186 := [monotonicity #14183]: #14185
-#14173 := (iff #12951 #14172)
-#14170 := (iff #12844 #14168)
-#14171 := [rewrite]: #14170
-#14174 := [monotonicity #14171]: #14173
-#14189 := [monotonicity #14174 #14186]: #14188
-#14179 := (iff #12960 #14178)
-#14176 := (iff #12841 #14175)
-#14089 := (iff #12838 #14088)
-#14090 := [rewrite]: #14089
-#14086 := (iff #12835 #14084)
-#14087 := [rewrite]: #14086
-#14177 := [monotonicity #14087 #14090]: #14176
-#14180 := [monotonicity #14177]: #14179
-#14192 := [monotonicity #14180 #14189]: #14191
-#14197 := [trans #14192 #14195]: #14196
-#14200 := [monotonicity #14177 #14197]: #14199
-#14205 := [trans #14200 #14203]: #14204
-#14082 := (iff #12977 #14081)
-#14079 := (iff #12829 #14078)
-#13949 := (iff #3059 #13950)
-#13951 := [rewrite]: #13949
-#14080 := [monotonicity #13951 #14077]: #14079
-#14083 := [monotonicity #14080]: #14082
-#14216 := [monotonicity #14083 #14205]: #14215
-#14248 := [monotonicity #14216]: #14247
-#14251 := [monotonicity #14248]: #14250
-#14244 := (iff #13106 #14243)
-#14245 := [monotonicity #13951]: #14244
-#14254 := [monotonicity #14245 #14251]: #14253
-#14257 := [monotonicity #14254]: #14256
-#14260 := [monotonicity #14257]: #14259
-#14263 := [monotonicity #14260]: #14262
-#14266 := [monotonicity #14263]: #14265
-#14271 := [trans #14266 #14269]: #14270
-#14274 := [monotonicity #14271]: #14273
-#14279 := [trans #14274 #14277]: #14278
-#14282 := [monotonicity #14279]: #14281
-#14285 := [monotonicity #14282]: #14284
-#14290 := [trans #14285 #14288]: #14289
-#13956 := (iff #12687 #13955)
-#13953 := (iff #3060 #13952)
-#13946 := (iff #3053 #13947)
-#13948 := [rewrite]: #13946
-#13954 := [monotonicity #13948 #13951]: #13953
-#13957 := [monotonicity #13954]: #13956
-#14302 := [monotonicity #13957 #14290]: #14301
-#14305 := [monotonicity #13957 #14302]: #14304
-#14298 := (iff #13199 #14207)
-#14293 := (not #14211)
-#14296 := (iff #14293 #14207)
-#14297 := [rewrite]: #14296
-#14294 := (iff #13199 #14293)
-#14291 := (iff #3238 #14211)
-#14292 := [rewrite]: #14291
-#14295 := [monotonicity #14292]: #14294
-#14299 := [trans #14295 #14297]: #14298
-#14308 := [monotonicity #14299 #14305]: #14307
-#14311 := [monotonicity #13957 #14308]: #14310
-#14316 := [trans #14311 #14314]: #14315
-#14241 := (iff #13058 #14238)
-#14217 := (or #12993 #14214)
-#14220 := (or #13002 #14217)
-#14223 := (or #13955 #14220)
-#14226 := (or #13955 #14223)
-#14229 := (or #13955 #14226)
-#14232 := (or #14211 #14229)
-#14235 := (or #13955 #14232)
-#14239 := (iff #14235 #14238)
-#14240 := [rewrite]: #14239
-#14236 := (iff #13058 #14235)
-#14233 := (iff #13050 #14232)
-#14230 := (iff #13041 #14229)
-#14227 := (iff #13026 #14226)
-#14224 := (iff #13018 #14223)
-#14221 := (iff #13003 #14220)
-#14218 := (iff #12994 #14217)
-#14219 := [monotonicity #14216]: #14218
-#14222 := [monotonicity #14219]: #14221
-#14225 := [monotonicity #13957 #14222]: #14224
-#14228 := [monotonicity #13957 #14225]: #14227
-#14231 := [monotonicity #13957 #14228]: #14230
-#14212 := (iff #13049 #14211)
-#14206 := (iff #3185 #14207)
-#14210 := [rewrite]: #14206
-#14213 := [monotonicity #14210]: #14212
-#14234 := [monotonicity #14213 #14231]: #14233
-#14237 := [monotonicity #13957 #14234]: #14236
-#14242 := [trans #14237 #14240]: #14241
-#14319 := [monotonicity #14242 #14316]: #14318
-#14322 := [monotonicity #13957 #14319]: #14321
-#14325 := [monotonicity #14322]: #14324
-#14330 := [trans #14325 #14328]: #14329
-#14333 := [monotonicity #14330]: #14332
-#14338 := [trans #14333 #14336]: #14337
-#14341 := [monotonicity #14338]: #14340
-#14344 := [monotonicity #14341]: #14343
-#14349 := [trans #14344 #14347]: #14348
-#14361 := [monotonicity #13957 #14349]: #14360
-#14364 := [monotonicity #13957 #14361]: #14363
-#14357 := (iff #13289 #14046)
-#14352 := (not #14049)
-#14355 := (iff #14352 #14046)
-#14356 := [rewrite]: #14355
-#14353 := (iff #13289 #14352)
-#14350 := (iff #3174 #14049)
-#14351 := [rewrite]: #14350
-#14354 := [monotonicity #14351]: #14353
-#14358 := [trans #14354 #14356]: #14357
-#14367 := [monotonicity #14358 #14364]: #14366
-#14370 := [monotonicity #13957 #14367]: #14369
-#14375 := [trans #14370 #14373]: #14374
-#14073 := (iff #12791 #14070)
-#14052 := (or #13955 #14041)
-#14055 := (or #13955 #14052)
-#14058 := (or #13955 #14055)
-#14061 := (or #13955 #14058)
-#14064 := (or #14049 #14061)
-#14067 := (or #13955 #14064)
-#14071 := (iff #14067 #14070)
-#14072 := [rewrite]: #14071
-#14068 := (iff #12791 #14067)
-#14065 := (iff #12783 #14064)
-#14062 := (iff #12774 #14061)
-#14059 := (iff #12759 #14058)
-#14056 := (iff #12751 #14055)
-#14053 := (iff #12736 #14052)
-#14042 := (iff #12728 #14041)
-#14039 := (iff #12720 #14036)
-#14012 := (or #12644 #14009)
-#14015 := (or #12653 #14012)
-#14018 := (or #12662 #14015)
-#14021 := (or #12671 #14018)
-#14024 := (or #13955 #14021)
-#14027 := (or #13955 #14024)
-#14030 := (or #13955 #14027)
-#14033 := (or #12719 #14030)
-#14037 := (iff #14033 #14036)
-#14038 := [rewrite]: #14037
-#14034 := (iff #12720 #14033)
-#14031 := (iff #12711 #14030)
-#14028 := (iff #12696 #14027)
-#14025 := (iff #12688 #14024)
-#14022 := (iff #12672 #14021)
-#14019 := (iff #12663 #14018)
-#14016 := (iff #12654 #14015)
-#14013 := (iff #12645 #14012)
-#14010 := (iff #12629 #14009)
-#14007 := (iff #12621 #14006)
-#14004 := (iff #12600 #14003)
-#14001 := (iff #12597 #13998)
-#13992 := (and #13958 #5736)
-#13995 := (and #3145 #13992)
-#13999 := (iff #13995 #13998)
-#14000 := [rewrite]: #13999
-#13996 := (iff #12597 #13995)
-#13993 := (iff #12594 #13992)
-#13961 := (iff #3140 #13958)
-#13962 := [rewrite]: #13961
-#13994 := [monotonicity #13962 #5738]: #13993
-#13997 := [monotonicity #13994]: #13996
-#14002 := [trans #13997 #14000]: #14001
-#14005 := [quant-intro #14002]: #14004
-#13990 := (iff #12620 #13989)
-#13987 := (iff #12591 #13986)
-#13984 := (iff #12586 #13981)
-#13975 := (or #13959 #13972)
-#13978 := (or #5739 #13975)
-#13982 := (iff #13978 #13981)
-#13983 := [rewrite]: #13982
-#13979 := (iff #12586 #13978)
-#13976 := (iff #12580 #13975)
-#13973 := (iff #3141 #13972)
-#13974 := [rewrite]: #13973
-#13968 := (iff #12579 #13959)
-#13963 := (not #13958)
-#13966 := (iff #13963 #13959)
-#13967 := [rewrite]: #13966
-#13964 := (iff #12579 #13963)
-#13965 := [monotonicity #13962]: #13964
-#13969 := [trans #13965 #13967]: #13968
-#13977 := [monotonicity #13969 #13974]: #13976
-#13980 := [monotonicity #5741 #13977]: #13979
-#13985 := [trans #13980 #13983]: #13984
-#13988 := [quant-intro #13985]: #13987
-#13991 := [monotonicity #13988]: #13990
-#14008 := [monotonicity #13991 #14005]: #14007
-#14011 := [monotonicity #13988 #14008]: #14010
-#14014 := [monotonicity #14011]: #14013
-#14017 := [monotonicity #14014]: #14016
-#14020 := [monotonicity #14017]: #14019
-#14023 := [monotonicity #14020]: #14022
-#14026 := [monotonicity #13957 #14023]: #14025
-#14029 := [monotonicity #13957 #14026]: #14028
-#14032 := [monotonicity #13957 #14029]: #14031
-#14035 := [monotonicity #14032]: #14034
-#14040 := [trans #14035 #14038]: #14039
-#14043 := [monotonicity #14040]: #14042
-#14054 := [monotonicity #13957 #14043]: #14053
-#14057 := [monotonicity #13957 #14054]: #14056
-#14060 := [monotonicity #13957 #14057]: #14059
-#14063 := [monotonicity #13957 #14060]: #14062
-#14050 := (iff #12782 #14049)
-#14047 := (iff #3131 #14046)
-#14048 := [rewrite]: #14047
-#14051 := [monotonicity #14048]: #14050
-#14066 := [monotonicity #14051 #14063]: #14065
-#14069 := [monotonicity #13957 #14066]: #14068
-#14074 := [trans #14069 #14072]: #14073
-#14378 := [monotonicity #14074 #14375]: #14377
-#14512 := [monotonicity #13957 #14378]: #14511
-#14515 := [monotonicity #14512]: #14514
-#14518 := [monotonicity #14515]: #14517
-#14521 := [monotonicity #14518]: #14520
-#14524 := [monotonicity #14521]: #14523
-#14527 := [monotonicity #14524]: #14526
-#14530 := [monotonicity #14527]: #14529
-#14400 := (iff #13385 #14399)
-#14397 := (iff #12544 #12437)
-#12517 := (and true true)
-#14392 := (and #12517 #12437)
-#14395 := (iff #14392 #12437)
-#14396 := [rewrite]: #14395
-#14393 := (iff #12544 #14392)
-#14390 := (iff #3115 #12517)
-#14388 := (iff #3078 true)
-#14389 := [rewrite]: #14388
-#14386 := (iff #3077 true)
-#14381 := (forall (vars (?x775 T5)) (:pat #3075) true)
-#14384 := (iff #14381 true)
-#14385 := [elim-unused]: #14384
-#14382 := (iff #3077 #14381)
-#14379 := (iff #3076 true)
-#14380 := [rewrite]: #14379
-#14383 := [quant-intro #14380]: #14382
-#14387 := [trans #14383 #14385]: #14386
-#14391 := [monotonicity #14387 #14389]: #14390
-#14394 := [monotonicity #14391]: #14393
-#14398 := [trans #14394 #14396]: #14397
-#14401 := [monotonicity #14398]: #14400
-#14533 := [monotonicity #14401 #14530]: #14532
-#14536 := [monotonicity #14401 #14533]: #14535
-#14539 := [monotonicity #13957 #14536]: #14538
-#14542 := [monotonicity #13957 #14539]: #14541
-#14545 := [monotonicity #13957 #14542]: #14544
-#14548 := [monotonicity #13957 #14545]: #14547
-#14417 := (iff #13516 #14416)
-#14414 := (iff #12432 #14411)
-#14408 := (and #14405 #12426)
-#14412 := (iff #14408 #14411)
-#14413 := [rewrite]: #14412
-#14409 := (iff #12432 #14408)
-#14406 := (iff #3070 #14405)
-#14407 := [rewrite]: #14406
-#14410 := [monotonicity #14407]: #14409
-#14415 := [trans #14410 #14413]: #14414
-#14418 := [monotonicity #14415]: #14417
-#14551 := [monotonicity #14418 #14548]: #14550
-#14451 := (iff #13525 #14450)
-#14448 := (iff #12423 #14447)
-#14445 := (iff #12418 #14442)
-#14436 := (or #14420 #14433)
-#14439 := (or #5739 #14436)
-#14443 := (iff #14439 #14442)
-#14444 := [rewrite]: #14443
-#14440 := (iff #12418 #14439)
-#14437 := (iff #12412 #14436)
-#14434 := (iff #3063 #14433)
-#14435 := [rewrite]: #14434
-#14429 := (iff #12411 #14420)
-#14419 := (not #14420)
-#14424 := (not #14419)
-#14427 := (iff #14424 #14420)
-#14428 := [rewrite]: #14427
-#14425 := (iff #12411 #14424)
-#14422 := (iff #3062 #14419)
-#14423 := [rewrite]: #14422
-#14426 := [monotonicity #14423]: #14425
-#14430 := [trans #14426 #14428]: #14429
-#14438 := [monotonicity #14430 #14435]: #14437
-#14441 := [monotonicity #5741 #14438]: #14440
-#14446 := [trans #14441 #14444]: #14445
-#14449 := [quant-intro #14446]: #14448
-#14452 := [monotonicity #14449]: #14451
-#14554 := [monotonicity #14452 #14551]: #14553
-#14457 := (iff #13534 #14456)
-#14454 := (iff #3061 #14453)
-#14455 := [rewrite]: #14454
-#14458 := [monotonicity #14455]: #14457
-#14557 := [monotonicity #14458 #14554]: #14556
-#14560 := [monotonicity #13957 #14557]: #14559
-#14469 := (iff #13551 #14468)
-#14466 := (iff #3058 #14465)
-#14463 := (iff #3057 #14462)
-#14464 := [rewrite]: #14463
-#14460 := (iff #3056 #14459)
-#14461 := [rewrite]: #14460
-#14467 := [monotonicity #14461 #14464]: #14466
-#14470 := [monotonicity #14467]: #14469
-#14563 := [monotonicity #14470 #14560]: #14562
-#14484 := (iff #13560 #14483)
-#14481 := (iff #3054 #14478)
-#14475 := (and #14471 #13947)
-#14479 := (iff #14475 #14478)
-#14480 := [rewrite]: #14479
-#14476 := (iff #3054 #14475)
-#14473 := (iff #3052 #14471)
-#14474 := [rewrite]: #14473
-#14477 := [monotonicity #14474 #13948]: #14476
-#14482 := [trans #14477 #14480]: #14481
-#14485 := [monotonicity #14482]: #14484
-#14566 := [monotonicity #14485 #14563]: #14565
-#14497 := (iff #13569 #14496)
-#14494 := (iff #3050 #14493)
-#14491 := (iff #3049 #14490)
-#14492 := [rewrite]: #14491
-#14488 := (iff #3048 #14486)
-#14489 := [rewrite]: #14488
-#14495 := [monotonicity #14489 #14492]: #14494
-#14498 := [monotonicity #14495]: #14497
-#14569 := [monotonicity #14498 #14566]: #14568
-#14508 := (iff #13585 #14507)
-#14505 := (iff #12406 #14502)
-#14503 := (iff #14499 #14502)
-#14504 := [rewrite]: #14503
-#14500 := (iff #12406 #14499)
-#13944 := (iff #2951 #13943)
-#13945 := [rewrite]: #13944
-#14501 := [monotonicity #13945]: #14500
-#14506 := [trans #14501 #14504]: #14505
-#14509 := [monotonicity #14506]: #14508
-#14572 := [monotonicity #14509 #14569]: #14571
-#14577 := [trans #14572 #14575]: #14576
-#14580 := [monotonicity #14501 #14577]: #14579
-#14585 := [trans #14580 #14583]: #14584
-#13940 := (iff #13602 #13939)
-#13937 := (iff #12398 #13936)
-#13934 := (iff #12393 #13931)
-#13925 := (or #13910 #13921)
-#13928 := (or #5739 #13925)
-#13932 := (iff #13928 #13931)
-#13933 := [rewrite]: #13932
-#13929 := (iff #12393 #13928)
-#13926 := (iff #12387 #13925)
-#13920 := (iff #3041 #13921)
-#13924 := [rewrite]: #13920
-#13918 := (iff #12386 #13910)
-#13909 := (not #13910)
-#13913 := (not #13909)
-#13916 := (iff #13913 #13910)
-#13917 := [rewrite]: #13916
-#13914 := (iff #12386 #13913)
-#13911 := (iff #3038 #13909)
-#13912 := [rewrite]: #13911
-#13915 := [monotonicity #13912]: #13914
-#13919 := [trans #13915 #13917]: #13918
-#13927 := [monotonicity #13919 #13924]: #13926
-#13930 := [monotonicity #5741 #13927]: #13929
-#13935 := [trans #13930 #13933]: #13934
-#13938 := [quant-intro #13935]: #13937
-#13941 := [monotonicity #13938]: #13940
-#14588 := [monotonicity #13941 #14585]: #14587
-#14591 := [monotonicity #13938 #14588]: #14590
-#13907 := (iff #13619 #13906)
-#13904 := (iff #3037 #13903)
-#13905 := [rewrite]: #13904
-#13908 := [monotonicity #13905]: #13907
-#14594 := [monotonicity #13908 #14591]: #14593
-#14597 := [monotonicity #13905 #14594]: #14596
-#13901 := (iff #13636 false)
-#13444 := (iff #3294 false)
-#13445 := [rewrite]: #13444
-#13899 := (iff #13636 #3294)
-#13897 := (iff #12383 true)
-#13892 := (and true #12517)
-#13895 := (iff #13892 true)
-#13896 := [rewrite]: #13895
-#13893 := (iff #12383 #13892)
-#13890 := (iff #12380 #12517)
-#13888 := (iff #3033 true)
-#13889 := [rewrite]: #13888
-#13886 := (iff #3032 true)
-#13887 := [rewrite]: #13886
-#13891 := [monotonicity #13887 #13889]: #13890
-#13894 := [monotonicity #13887 #13891]: #13893
-#13898 := [trans #13894 #13896]: #13897
-#13900 := [monotonicity #13898]: #13899
-#13902 := [trans #13900 #13445]: #13901
-#14600 := [monotonicity #13902 #14597]: #14599
-#14603 := [monotonicity #14600]: #14602
-#14606 := [monotonicity #14603]: #14605
-#14609 := [monotonicity #14606]: #14608
-#14612 := [monotonicity #14609]: #14611
-#14615 := [monotonicity #14612]: #14614
-#14620 := [trans #14615 #14618]: #14619
-#14623 := [monotonicity #14620]: #14622
-#14628 := [trans #14623 #14626]: #14627
-#14631 := [monotonicity #14628]: #14630
-#14634 := [monotonicity #14631]: #14633
-#14639 := [trans #14634 #14637]: #14638
-#14642 := [monotonicity #14639]: #14641
-#14645 := [monotonicity #14642]: #14644
-#13884 := (iff #13732 #13883)
-#13881 := (iff #3007 #13880)
-#13878 := (iff #3006 #13877)
-#13879 := [rewrite]: #13878
-#13875 := (iff #3005 #13872)
-#13876 := [rewrite]: #13875
-#13882 := [monotonicity #13876 #13879]: #13881
-#13885 := [monotonicity #13882]: #13884
-#14726 := [monotonicity #13885 #14645]: #14725
-#14729 := [monotonicity #14726]: #14728
-#14732 := [monotonicity #14729]: #14731
-#14735 := [monotonicity #14732]: #14734
-#14738 := [monotonicity #14735]: #14737
-#14656 := (iff #13777 #14655)
-#14653 := (iff #2989 #14652)
-#14650 := (iff #2988 #14646)
-#14651 := [rewrite]: #14650
-#14654 := [quant-intro #14651]: #14653
-#14657 := [monotonicity #14654]: #14656
-#14741 := [monotonicity #14657 #14738]: #14740
-#14744 := [monotonicity #14741]: #14743
-#14747 := [monotonicity #14744]: #14746
-#14662 := (iff #13811 #14661)
-#14659 := (iff #12326 #14658)
-#14660 := [rewrite]: #14659
-#14663 := [monotonicity #14660]: #14662
-#14750 := [monotonicity #14663 #14747]: #14749
-#14669 := (iff #13820 #13942)
-#14664 := (not #13943)
-#14667 := (iff #14664 #13942)
-#14668 := [rewrite]: #14667
-#14665 := (iff #13820 #14664)
-#14666 := [monotonicity #13945]: #14665
-#14670 := [trans #14666 #14668]: #14669
-#14753 := [monotonicity #14670 #14750]: #14752
-#14680 := (iff #13829 #14671)
-#14672 := (not #14671)
-#14675 := (not #14672)
-#14678 := (iff #14675 #14671)
-#14679 := [rewrite]: #14678
-#14676 := (iff #13829 #14675)
-#14673 := (iff #2950 #14672)
-#14674 := [rewrite]: #14673
-#14677 := [monotonicity #14674]: #14676
-#14681 := [trans #14677 #14679]: #14680
-#14756 := [monotonicity #14681 #14753]: #14755
-#14694 := (iff #13838 #14693)
-#14691 := (iff #2948 #14690)
-#14688 := (iff #2947 #14687)
-#14689 := [rewrite]: #14688
-#14685 := (iff #2946 #14682)
-#14686 := [rewrite]: #14685
-#14692 := [monotonicity #14686 #14689]: #14691
-#14695 := [monotonicity #14692]: #14694
-#14759 := [monotonicity #14695 #14756]: #14758
-#14708 := (iff #13847 #14707)
-#14705 := (iff #2944 #14704)
-#14702 := (iff #2943 #14701)
-#14703 := [rewrite]: #14702
-#14699 := (iff #2942 #14696)
-#14700 := [rewrite]: #14699
-#14706 := [monotonicity #14700 #14703]: #14705
-#14709 := [monotonicity #14706]: #14708
-#14762 := [monotonicity #14709 #14759]: #14761
-#14722 := (iff #13856 #14721)
-#14719 := (iff #2940 #14718)
-#14716 := (iff #2939 #14715)
-#14717 := [rewrite]: #14716
-#14713 := (iff #2938 #14710)
-#14714 := [rewrite]: #14713
-#14720 := [monotonicity #14714 #14717]: #14719
-#14723 := [monotonicity #14720]: #14722
-#14765 := [monotonicity #14723 #14762]: #14764
-#14770 := [trans #14765 #14768]: #14769
-#14773 := [monotonicity #14770]: #14772
-#13870 := (iff #3345 #13869)
-#13867 := (iff #3344 #13857)
-#13862 := (implies true #13857)
-#13865 := (iff #13862 #13857)
-#13866 := [rewrite]: #13865
-#13863 := (iff #3344 #13862)
-#13860 := (iff #3343 #13857)
-#13853 := (implies #2940 #13848)
-#13858 := (iff #13853 #13857)
-#13859 := [rewrite]: #13858
-#13854 := (iff #3343 #13853)
-#13851 := (iff #3342 #13848)
-#13844 := (implies #2944 #13839)
-#13849 := (iff #13844 #13848)
-#13850 := [rewrite]: #13849
-#13845 := (iff #3342 #13844)
-#13842 := (iff #3341 #13839)
-#13835 := (implies #2948 #13830)
-#13840 := (iff #13835 #13839)
-#13841 := [rewrite]: #13840
-#13836 := (iff #3341 #13835)
-#13833 := (iff #3340 #13830)
-#13826 := (implies #2950 #13821)
-#13831 := (iff #13826 #13830)
-#13832 := [rewrite]: #13831
-#13827 := (iff #3340 #13826)
-#13824 := (iff #3339 #13821)
-#13817 := (implies #2951 #13812)
-#13822 := (iff #13817 #13821)
-#13823 := [rewrite]: #13822
-#13818 := (iff #3339 #13817)
-#13815 := (iff #3338 #13812)
-#13808 := (implies #12326 #13796)
-#13813 := (iff #13808 #13812)
-#13814 := [rewrite]: #13813
-#13809 := (iff #3338 #13808)
-#13806 := (iff #3337 #13796)
-#13801 := (implies true #13796)
-#13804 := (iff #13801 #13796)
-#13805 := [rewrite]: #13804
-#13802 := (iff #3337 #13801)
-#13799 := (iff #3336 #13796)
-#13792 := (implies #12329 #13787)
-#13797 := (iff #13792 #13796)
-#13798 := [rewrite]: #13797
-#13793 := (iff #3336 #13792)
-#13790 := (iff #3335 #13787)
-#13783 := (implies #12338 #13778)
-#13788 := (iff #13783 #13787)
-#13789 := [rewrite]: #13788
-#13784 := (iff #3335 #13783)
-#13781 := (iff #3334 #13778)
-#13774 := (implies #2989 #13769)
-#13779 := (iff #13774 #13778)
-#13780 := [rewrite]: #13779
-#13775 := (iff #3334 #13774)
-#13772 := (iff #3333 #13769)
-#13765 := (implies #2994 #13760)
-#13770 := (iff #13765 #13769)
-#13771 := [rewrite]: #13770
-#13766 := (iff #3333 #13765)
-#13763 := (iff #3332 #13760)
-#13756 := (implies #2996 #13751)
-#13761 := (iff #13756 #13760)
-#13762 := [rewrite]: #13761
-#13757 := (iff #3332 #13756)
-#13754 := (iff #3331 #13751)
-#13747 := (implies #2999 #13742)
-#13752 := (iff #13747 #13751)
-#13753 := [rewrite]: #13752
-#13748 := (iff #3331 #13747)
-#13745 := (iff #3330 #13742)
-#13738 := (implies #12352 #13733)
-#13743 := (iff #13738 #13742)
-#13744 := [rewrite]: #13743
-#13739 := (iff #3330 #13738)
-#13736 := (iff #3329 #13733)
-#13729 := (implies #3007 #13724)
-#13734 := (iff #13729 #13733)
-#13735 := [rewrite]: #13734
-#13730 := (iff #3329 #13729)
-#13727 := (iff #3328 #13724)
-#13721 := (and #13716 #12355)
-#13725 := (iff #13721 #13724)
-#13726 := [rewrite]: #13725
-#13722 := (iff #3328 #13721)
-#12356 := (iff #3010 #12355)
-#12357 := [rewrite]: #12356
-#13719 := (iff #3327 #13716)
-#13712 := (implies #12355 #13707)
-#13717 := (iff #13712 #13716)
-#13718 := [rewrite]: #13717
-#13713 := (iff #3327 #13712)
-#13710 := (iff #3326 #13707)
-#13704 := (and #13699 #12364)
-#13708 := (iff #13704 #13707)
-#13709 := [rewrite]: #13708
-#13705 := (iff #3326 #13704)
-#12365 := (iff #3016 #12364)
-#12362 := (iff #3015 #12361)
-#12363 := [rewrite]: #12362
-#12359 := (iff #3013 #12358)
-#12360 := [rewrite]: #12359
-#12366 := [monotonicity #12360 #12363]: #12365
-#13702 := (iff #3325 #13699)
-#13695 := (implies #12364 #13690)
-#13700 := (iff #13695 #13699)
-#13701 := [rewrite]: #13700
-#13696 := (iff #3325 #13695)
-#13693 := (iff #3324 #13690)
-#13687 := (and #13682 #12373)
-#13691 := (iff #13687 #13690)
-#13692 := [rewrite]: #13691
-#13688 := (iff #3324 #13687)
-#12376 := (iff #3019 #12373)
-#12370 := (and #12367 #12361)
-#12374 := (iff #12370 #12373)
-#12375 := [rewrite]: #12374
-#12371 := (iff #3019 #12370)
-#12368 := (iff #3018 #12367)
-#12369 := [rewrite]: #12368
-#12372 := [monotonicity #12369 #12363]: #12371
-#12377 := [trans #12372 #12375]: #12376
-#13685 := (iff #3323 #13682)
-#13678 := (implies #12373 #13673)
-#13683 := (iff #13678 #13682)
-#13684 := [rewrite]: #13683
-#13679 := (iff #3323 #13678)
-#13676 := (iff #3322 #13673)
-#13669 := (implies #3022 #13664)
-#13674 := (iff #13669 #13673)
-#13675 := [rewrite]: #13674
-#13670 := (iff #3322 #13669)
-#13667 := (iff #3321 #13664)
-#13660 := (implies #3025 #13655)
-#13665 := (iff #13660 #13664)
-#13666 := [rewrite]: #13665
-#13661 := (iff #3321 #13660)
-#13658 := (iff #3320 #13655)
-#13651 := (implies #3028 #13646)
-#13656 := (iff #13651 #13655)
-#13657 := [rewrite]: #13656
-#13652 := (iff #3320 #13651)
-#13649 := (iff #3319 #13646)
-#13642 := (implies #3031 #13637)
-#13647 := (iff #13642 #13646)
-#13648 := [rewrite]: #13647
-#13643 := (iff #3319 #13642)
-#13640 := (iff #3318 #13637)
-#13633 := (implies #12383 #13628)
-#13638 := (iff #13633 #13637)
-#13639 := [rewrite]: #13638
-#13634 := (iff #3318 #13633)
-#13631 := (iff #3317 #13628)
-#13625 := (and #13620 #3037)
+#12678 := (or #12112 #12663)
+#12686 := (or #12112 #12678)
+#12701 := (or #12112 #12686)
+#12709 := (not #3257)
+#12710 := (or #12709 #12701)
+#12718 := (or #12112 #12710)
+#12516 := (or #12515 #12500)
+#12525 := (or #12524 #12516)
+#12540 := (not #3064)
+#12541 := (or #12540 #12525)
+#12550 := (or #12549 #12541)
+#12559 := (or #12558 #12550)
+#12568 := (or #12567 #12559)
+#12577 := (or #12576 #12568)
+#12582 := (and #12357 #12577)
+#12589 := (or #12588 #12582)
+#12594 := (and #12351 #12589)
+#12600 := (or #12112 #12594)
+#12615 := (or #12112 #12600)
+#12623 := (not #3190)
+#12624 := (or #12623 #12615)
+#12632 := (or #12112 #12624)
+#12730 := (and #12632 #12718)
+#12736 := (or #12112 #12730)
+#12744 := (or #12576 #12736)
+#12749 := (and #12357 #12744)
+#12755 := (or #12588 #12749)
+#12760 := (and #12351 #12755)
+#12766 := (or #12112 #12760)
+#12781 := (or #12112 #12766)
+#12789 := (not #3179)
+#12790 := (or #12789 #12781)
+#12798 := (or #12112 #12790)
+#12857 := (and #12798 #12845)
+#12863 := (or #12112 #12857)
+#12879 := (or #12878 #12863)
+#12888 := (or #12887 #12879)
+#12897 := (or #12896 #12888)
+#12906 := (or #12905 #12897)
+#12915 := (or #12914 #12906)
+#12923 := (or #12179 #12915)
+#12309 := (and #3160 #12306)
+#12312 := (and #3156 #12309)
+#12931 := (not #12312)
+#12932 := (or #12931 #12923)
+#12940 := (or #12931 #12932)
+#12948 := (or #12112 #12940)
+#12963 := (or #12112 #12948)
+#12978 := (or #12112 #12963)
+#13000 := (or #12112 #12978)
+#11995 := (and #3072 #11992)
+#13008 := (not #11995)
+#13009 := (or #13008 #13000)
+#11977 := (not #3067)
+#11978 := (or #11977 #3068)
+#11984 := (or #5592 #11978)
+#11989 := (forall (vars (?x775 int)) #11984)
+#13017 := (not #11989)
+#13018 := (or #13017 #13009)
+#13026 := (not #3066)
+#13027 := (or #13026 #13018)
+#13035 := (or #12112 #13027)
+#13043 := (not #3063)
+#13044 := (or #13043 #13035)
+#13052 := (not #3059)
+#13053 := (or #13052 #13044)
+#13061 := (not #3055)
+#13062 := (or #13061 #13053)
+#11971 := (and #2956 #3027)
+#13077 := (not #11971)
+#13078 := (or #13077 #13062)
+#13083 := (and #11971 #13078)
+#11954 := (not #3043)
+#11955 := (or #11954 #3046)
+#11961 := (or #5592 #11955)
+#11966 := (forall (vars (?x773 int)) #11961)
+#13089 := (not #11966)
+#13090 := (or #13089 #13083)
+#13095 := (and #11966 #13090)
+#13101 := (not #3042)
+#13102 := (or #13101 #13095)
+#13107 := (and #3042 #13102)
+#11948 := (and #3037 #3038)
+#11951 := (and #3037 #11948)
+#13113 := (not #11951)
+#13114 := (or #13113 #13107)
+#13123 := (or #13122 #13114)
+#13132 := (or #13131 #13123)
+#13141 := (or #13140 #13132)
+#13150 := (or #13149 #13141)
+#13159 := (or #13158 #13150)
+#13164 := (and #11943 #13159)
+#13171 := (or #13170 #13164)
+#13176 := (and #11937 #13171)
+#13183 := (or #13182 #13176)
+#13188 := (and #11928 #13183)
+#13194 := (not #3012)
+#13195 := (or #13194 #13188)
+#13204 := (or #13203 #13195)
+#13213 := (or #13212 #13204)
+#13222 := (or #13221 #13213)
+#13231 := (or #13230 #13222)
+#13239 := (not #2994)
+#13240 := (or #13239 #13231)
+#13249 := (or #13248 #13240)
+#13258 := (or #13257 #13249)
+#11887 := (and #11881 #11884)
+#11890 := (and #11875 #11887)
+#11893 := (and #11872 #11890)
+#11896 := (and #11869 #11893)
+#11899 := (and #11866 #11896)
+#13273 := (not #11899)
+#13274 := (or #13273 #13258)
+#13282 := (not #2956)
+#13283 := (or #13282 #13274)
+#13291 := (not #2955)
+#13292 := (or #13291 #13283)
+#13300 := (not #2953)
+#13301 := (or #13300 #13292)
+#13309 := (not #2949)
+#13310 := (or #13309 #13301)
+#13318 := (not #2945)
+#13319 := (or #13318 #13310)
+#13331 := (not #13319)
+#14238 := (iff #13331 #14237)
+#14235 := (iff #13319 #14232)
+#14190 := (or #13345 #14109)
+#14193 := (or #13203 #14190)
+#14196 := (or #13212 #14193)
+#14199 := (or #13221 #14196)
+#14202 := (or #13230 #14199)
+#14205 := (or #14121 #14202)
+#14208 := (or #13248 #14205)
+#14211 := (or #13257 #14208)
+#14214 := (or #14127 #14211)
+#14217 := (or #13404 #14214)
+#14220 := (or #14137 #14217)
+#14223 := (or #14159 #14220)
+#14226 := (or #14173 #14223)
+#14229 := (or #14187 #14226)
+#14233 := (iff #14229 #14232)
+#14234 := [rewrite]: #14233
+#14230 := (iff #13319 #14229)
+#14227 := (iff #13310 #14226)
+#14224 := (iff #13301 #14223)
+#14221 := (iff #13292 #14220)
+#14218 := (iff #13283 #14217)
+#14215 := (iff #13274 #14214)
+#14212 := (iff #13258 #14211)
+#14209 := (iff #13249 #14208)
+#14206 := (iff #13240 #14205)
+#14203 := (iff #13231 #14202)
+#14200 := (iff #13222 #14199)
+#14197 := (iff #13213 #14196)
+#14194 := (iff #13204 #14193)
+#14191 := (iff #13195 #14190)
+#14110 := (iff #13188 #14109)
+#14107 := (iff #13183 #14106)
+#14104 := (iff #13176 #14101)
+#14098 := (and #11937 #14095)
+#14102 := (iff #14098 #14101)
+#14103 := [rewrite]: #14102
+#14099 := (iff #13176 #14098)
+#14096 := (iff #13171 #14095)
+#14093 := (iff #13164 #14090)
+#14087 := (and #11943 #14082)
+#14091 := (iff #14087 #14090)
+#14092 := [rewrite]: #14091
+#14088 := (iff #13164 #14087)
+#14085 := (iff #13159 #14082)
+#14064 := (or false #14061)
+#14067 := (or #13122 #14064)
+#14070 := (or #13131 #14067)
+#14073 := (or #13140 #14070)
+#14076 := (or #13149 #14073)
+#14079 := (or #13158 #14076)
+#14083 := (iff #14079 #14082)
+#14084 := [rewrite]: #14083
+#14080 := (iff #13159 #14079)
+#14077 := (iff #13150 #14076)
+#14074 := (iff #13141 #14073)
+#14071 := (iff #13132 #14070)
+#14068 := (iff #13123 #14067)
+#14065 := (iff #13114 #14064)
+#14062 := (iff #13107 #14061)
+#14059 := (iff #13102 #14058)
+#14056 := (iff #13095 #14055)
+#14053 := (iff #13090 #14052)
+#14050 := (iff #13083 #14047)
+#13965 := (and #13405 #3027)
+#14044 := (and #13965 #14039)
+#14048 := (iff #14044 #14047)
+#14049 := [rewrite]: #14048
+#14045 := (iff #13083 #14044)
+#14042 := (iff #13078 #14039)
+#13976 := (or #13417 #13846)
+#13979 := (or #12878 #13976)
+#13982 := (or #12887 #13979)
+#13985 := (or #12896 #13982)
+#13988 := (or #12905 #13985)
+#13991 := (or #12914 #13988)
+#13994 := (or #12179 #13991)
+#13997 := (or #13870 #13994)
+#14000 := (or #13870 #13997)
+#14003 := (or #13417 #14000)
+#14006 := (or #13417 #14003)
+#14009 := (or #13417 #14006)
+#14012 := (or #13417 #14009)
+#14015 := (or #13887 #14012)
+#14018 := (or #13921 #14015)
+#14021 := (or #13927 #14018)
+#14024 := (or #13417 #14021)
+#14027 := (or #13939 #14024)
+#14030 := (or #13949 #14027)
+#14033 := (or #13962 #14030)
+#14036 := (or #13973 #14033)
+#14040 := (iff #14036 #14039)
+#14041 := [rewrite]: #14040
+#14037 := (iff #13078 #14036)
+#14034 := (iff #13062 #14033)
+#14031 := (iff #13053 #14030)
+#14028 := (iff #13044 #14027)
+#14025 := (iff #13035 #14024)
+#14022 := (iff #13027 #14021)
+#14019 := (iff #13018 #14018)
+#14016 := (iff #13009 #14015)
+#14013 := (iff #13000 #14012)
+#14010 := (iff #12978 #14009)
+#14007 := (iff #12963 #14006)
+#14004 := (iff #12948 #14003)
+#14001 := (iff #12940 #14000)
+#13998 := (iff #12932 #13997)
+#13995 := (iff #12923 #13994)
+#13992 := (iff #12915 #13991)
+#13989 := (iff #12906 #13988)
+#13986 := (iff #12897 #13985)
+#13983 := (iff #12888 #13982)
+#13980 := (iff #12879 #13979)
+#13977 := (iff #12863 #13976)
+#13847 := (iff #12857 #13846)
+#13844 := (iff #12845 #13841)
+#13823 := (or #13417 #13816)
+#13826 := (or #13417 #13823)
+#13829 := (or #13417 #13826)
+#13832 := (or #13417 #13829)
+#13835 := (or #13698 #13832)
+#13838 := (or #13417 #13835)
+#13842 := (iff #13838 #13841)
+#13843 := [rewrite]: #13842
+#13839 := (iff #12845 #13838)
+#13836 := (iff #12837 #13835)
+#13833 := (iff #12828 #13832)
+#13830 := (iff #12813 #13829)
+#13827 := (iff #12171 #13826)
+#13824 := (iff #12156 #13823)
+#13817 := (iff #12150 #13816)
+#13814 := (iff #12145 #13811)
+#13787 := (or #12069 #13784)
+#13790 := (or #12078 #13787)
+#13793 := (or #12087 #13790)
+#13796 := (or #12096 #13793)
+#13799 := (or #13417 #13796)
+#13802 := (or #13417 #13799)
+#13805 := (or #13417 #13802)
+#13808 := (or #12144 #13805)
+#13812 := (iff #13808 #13811)
+#13813 := [rewrite]: #13812
+#13809 := (iff #12145 #13808)
+#13806 := (iff #12136 #13805)
+#13803 := (iff #12121 #13802)
+#13800 := (iff #12113 #13799)
+#13797 := (iff #12097 #13796)
+#13794 := (iff #12088 #13793)
+#13791 := (iff #12079 #13790)
+#13788 := (iff #12070 #13787)
+#13785 := (iff #12056 #13784)
+#13782 := (iff #12051 #13779)
+#13776 := (or #13770 #13773)
+#13780 := (iff #13776 #13779)
+#13781 := [rewrite]: #13780
+#13777 := (iff #12051 #13776)
+#13774 := (iff #12050 #13773)
+#13754 := (iff #12035 #13753)
+#13751 := (iff #12030 #13748)
+#13742 := (or #13725 #13739)
+#13745 := (or #5601 #13742)
+#13749 := (iff #13745 #13748)
+#13750 := [rewrite]: #13749
+#13746 := (iff #12030 #13745)
+#13743 := (iff #12024 #13742)
+#13740 := (iff #3091 #13739)
+#13741 := [rewrite]: #13740
+#13735 := (iff #12023 #13725)
+#13730 := (not #13727)
+#13733 := (iff #13730 #13725)
+#13734 := [rewrite]: #13733
+#13731 := (iff #12023 #13730)
+#13728 := (iff #3090 #13727)
+#13729 := [rewrite]: #13728
+#13732 := [monotonicity #13729]: #13731
+#13736 := [trans #13732 #13734]: #13735
+#13744 := [monotonicity #13736 #13741]: #13743
+#5602 := (iff #5592 #5601)
+#4387 := (iff #412 #4386)
+#4380 := (iff #411 #4379)
+#4381 := [rewrite]: #4380
+#4063 := (iff #285 #4065)
+#4064 := [rewrite]: #4063
+#4388 := [monotonicity #4064 #4381]: #4387
+#5603 := [monotonicity #4388]: #5602
+#13747 := [monotonicity #5603 #13744]: #13746
+#13752 := [trans #13747 #13750]: #13751
+#13755 := [quant-intro #13752]: #13754
+#13775 := [monotonicity #13755]: #13774
+#13771 := (iff #3099 #13770)
+#13768 := (iff #3098 #13765)
+#13756 := (and #13727 #3095)
+#13759 := (and #4379 #13756)
+#13762 := (and #4065 #13759)
+#13766 := (iff #13762 #13765)
+#13767 := [rewrite]: #13766
+#13763 := (iff #3098 #13762)
+#13760 := (iff #3097 #13759)
+#13757 := (iff #3096 #13756)
+#13758 := [monotonicity #13729]: #13757
+#13761 := [monotonicity #4381 #13758]: #13760
+#13764 := [monotonicity #4064 #13761]: #13763
+#13769 := [trans #13764 #13767]: #13768
+#13772 := [quant-intro #13769]: #13771
+#13778 := [monotonicity #13772 #13775]: #13777
+#13783 := [trans #13778 #13781]: #13782
+#13786 := [monotonicity #13755 #13783]: #13785
+#13789 := [monotonicity #13786]: #13788
+#13792 := [monotonicity #13789]: #13791
+#13795 := [monotonicity #13792]: #13794
+#13798 := [monotonicity #13795]: #13797
+#13418 := (iff #12112 #13417)
+#13415 := (iff #11974 #13414)
+#13411 := (iff #3064 #13412)
+#13413 := [rewrite]: #13411
+#13408 := (iff #3057 #13409)
+#13410 := [rewrite]: #13408
+#13416 := [monotonicity #13410 #13413]: #13415
+#13419 := [monotonicity #13416]: #13418
+#13801 := [monotonicity #13419 #13798]: #13800
+#13804 := [monotonicity #13419 #13801]: #13803
+#13807 := [monotonicity #13419 #13804]: #13806
+#13810 := [monotonicity #13807]: #13809
+#13815 := [trans #13810 #13813]: #13814
+#13818 := [monotonicity #13815]: #13817
+#13825 := [monotonicity #13419 #13818]: #13824
+#13828 := [monotonicity #13419 #13825]: #13827
+#13831 := [monotonicity #13419 #13828]: #13830
+#13834 := [monotonicity #13419 #13831]: #13833
+#13821 := (iff #12836 #13698)
+#13819 := (iff #3282 #13697)
+#13820 := [rewrite]: #13819
+#13822 := [monotonicity #13820]: #13821
+#13837 := [monotonicity #13822 #13834]: #13836
+#13840 := [monotonicity #13419 #13837]: #13839
+#13845 := [trans #13840 #13843]: #13844
+#13723 := (iff #12798 #13720)
+#13708 := (or #13417 #13691)
+#13711 := (or #13417 #13708)
+#13714 := (or #13697 #13711)
+#13717 := (or #13417 #13714)
+#13721 := (iff #13717 #13720)
+#13722 := [rewrite]: #13721
+#13718 := (iff #12798 #13717)
+#13715 := (iff #12790 #13714)
+#13712 := (iff #12781 #13711)
+#13709 := (iff #12766 #13708)
+#13694 := (iff #12760 #13691)
+#13688 := (and #12351 #13685)
+#13692 := (iff #13688 #13691)
+#13693 := [rewrite]: #13692
+#13689 := (iff #12760 #13688)
+#13686 := (iff #12755 #13685)
+#13683 := (iff #12749 #13680)
+#13677 := (and #12357 #13672)
+#13681 := (iff #13677 #13680)
+#13682 := [rewrite]: #13681
+#13678 := (iff #12749 #13677)
+#13675 := (iff #12744 #13672)
+#13666 := (or #13417 #13663)
+#13669 := (or #12576 #13666)
+#13673 := (iff #13669 #13672)
+#13674 := [rewrite]: #13673
+#13670 := (iff #12744 #13669)
+#13667 := (iff #12736 #13666)
+#13664 := (iff #12730 #13663)
+#13661 := (iff #12718 #13658)
+#13555 := (or #13426 #13547)
+#13637 := (or #13555 #12653)
+#13640 := (or #12662 #13637)
+#13643 := (or #13417 #13640)
+#13646 := (or #13417 #13643)
+#13649 := (or #13417 #13646)
+#13652 := (or #13603 #13649)
+#13655 := (or #13417 #13652)
+#13659 := (iff #13655 #13658)
+#13660 := [rewrite]: #13659
+#13656 := (iff #12718 #13655)
+#13653 := (iff #12710 #13652)
+#13650 := (iff #12701 #13649)
+#13647 := (iff #12686 #13646)
+#13644 := (iff #12678 #13643)
+#13641 := (iff #12663 #13640)
+#13638 := (iff #12654 #13637)
+#13556 := (iff #12500 #13555)
+#13550 := (iff #12493 #13547)
+#13544 := (and #13521 #13539)
+#13548 := (iff #13544 #13547)
+#13549 := [rewrite]: #13548
+#13545 := (iff #12493 #13544)
+#13542 := (iff #12488 #13539)
+#13527 := (or #13443 #13511)
+#13530 := (or #12469 #13527)
+#13533 := (or #13518 #13530)
+#13536 := (or #13524 #13533)
+#13540 := (iff #13536 #13539)
+#13541 := [rewrite]: #13540
+#13537 := (iff #12488 #13536)
+#13534 := (iff #12479 #13533)
+#13531 := (iff #12470 #13530)
+#13528 := (iff #12461 #13527)
+#13512 := (iff #12447 #13511)
+#13509 := (iff #12442 #13508)
+#13506 := (iff #12435 #13505)
+#13503 := (iff #12430 #13502)
+#13500 := (iff #12407 #13497)
+#13494 := (and #13491 #12404)
+#13498 := (iff #13494 #13497)
+#13499 := [rewrite]: #13498
+#13495 := (iff #12407 #13494)
+#13492 := (iff #3220 #13491)
+#13493 := [rewrite]: #13492
+#13496 := [monotonicity #13493]: #13495
+#13501 := [trans #13496 #13499]: #13500
+#13486 := (iff #12429 #13485)
+#13483 := (iff #12401 #13482)
+#13480 := (iff #12396 #13477)
+#13471 := (or #13454 #13468)
+#13474 := (or #5601 #13471)
+#13478 := (iff #13474 #13477)
+#13479 := [rewrite]: #13478
+#13475 := (iff #12396 #13474)
+#13472 := (iff #12390 #13471)
+#13469 := (iff #3216 #13468)
+#13470 := [rewrite]: #13469
+#13464 := (iff #12389 #13454)
+#13456 := (not #13454)
+#13459 := (not #13456)
+#13462 := (iff #13459 #13454)
+#13463 := [rewrite]: #13462
+#13460 := (iff #12389 #13459)
+#13457 := (iff #3215 #13456)
+#13458 := [rewrite]: #13457
+#13461 := [monotonicity #13458]: #13460
+#13465 := [trans #13461 #13463]: #13464
+#13473 := [monotonicity #13465 #13470]: #13472
+#13476 := [monotonicity #5603 #13473]: #13475
+#13481 := [trans #13476 #13479]: #13480
+#13484 := [quant-intro #13481]: #13483
+#13487 := [monotonicity #13484]: #13486
+#13504 := [monotonicity #13487 #13501]: #13503
+#13507 := [monotonicity #13484 #13504]: #13506
+#13452 := (iff #12441 #13451)
+#13449 := (iff #3214 #13446)
+#13450 := [rewrite]: #13449
+#13453 := [monotonicity #13450]: #13452
+#13510 := [monotonicity #13453 #13507]: #13509
+#13513 := [monotonicity #13450 #13510]: #13512
+#13444 := (iff #12460 #13443)
+#13441 := (iff #12386 #13440)
+#13437 := (iff #3212 #13438)
+#13439 := [rewrite]: #13437
+#13420 := (iff #3202 #13421)
+#13422 := [rewrite]: #13420
+#13442 := [monotonicity #13422 #13439]: #13441
+#13445 := [monotonicity #13442]: #13444
+#13529 := [monotonicity #13445 #13513]: #13528
+#13532 := [monotonicity #13529]: #13531
+#13519 := (iff #12478 #13518)
+#13516 := (iff #12383 #13514)
+#13517 := [rewrite]: #13516
+#13520 := [monotonicity #13517]: #13519
+#13535 := [monotonicity #13520 #13532]: #13534
+#13525 := (iff #12487 #13524)
+#13522 := (iff #12380 #13521)
+#13435 := (iff #12377 #13432)
+#13436 := [rewrite]: #13435
+#13429 := (iff #12374 #13430)
+#13431 := [rewrite]: #13429
+#13523 := [monotonicity #13431 #13436]: #13522
+#13526 := [monotonicity #13523]: #13525
+#13538 := [monotonicity #13526 #13535]: #13537
+#13543 := [trans #13538 #13541]: #13542
+#13546 := [monotonicity #13523 #13543]: #13545
+#13551 := [trans #13546 #13549]: #13550
+#13427 := (iff #12499 #13426)
+#13424 := (iff #3203 #13423)
+#13425 := [monotonicity #13413 #13422]: #13424
+#13428 := [monotonicity #13425]: #13427
+#13557 := [monotonicity #13428 #13551]: #13556
+#13639 := [monotonicity #13557]: #13638
+#13642 := [monotonicity #13639]: #13641
+#13645 := [monotonicity #13419 #13642]: #13644
+#13648 := [monotonicity #13419 #13645]: #13647
+#13651 := [monotonicity #13419 #13648]: #13650
+#13635 := (iff #12709 #13603)
+#13633 := (iff #3257 #13604)
+#13634 := [rewrite]: #13633
+#13636 := [monotonicity #13634]: #13635
+#13654 := [monotonicity #13636 #13651]: #13653
+#13657 := [monotonicity #13419 #13654]: #13656
+#13662 := [trans #13657 #13660]: #13661
+#13631 := (iff #12632 #13628)
+#13616 := (or #13417 #13598)
+#13619 := (or #13417 #13616)
+#13622 := (or #13604 #13619)
+#13625 := (or #13417 #13622)
#13629 := (iff #13625 #13628)
#13630 := [rewrite]: #13629
-#13626 := (iff #3317 #13625)
-#13623 := (iff #3316 #13620)
-#13616 := (implies #3037 #13611)
-#13621 := (iff #13616 #13620)
-#13622 := [rewrite]: #13621
-#13617 := (iff #3316 #13616)
-#13614 := (iff #3315 #13611)
-#13608 := (and #13603 #12398)
-#13612 := (iff #13608 #13611)
+#13626 := (iff #12632 #13625)
+#13623 := (iff #12624 #13622)
+#13620 := (iff #12615 #13619)
+#13617 := (iff #12600 #13616)
+#13601 := (iff #12594 #13598)
+#13595 := (and #12351 #13592)
+#13599 := (iff #13595 #13598)
+#13600 := [rewrite]: #13599
+#13596 := (iff #12594 #13595)
+#13593 := (iff #12589 #13592)
+#13590 := (iff #12582 #13587)
+#13584 := (and #12357 #13579)
+#13588 := (iff #13584 #13587)
+#13589 := [rewrite]: #13588
+#13585 := (iff #12582 #13584)
+#13582 := (iff #12577 #13579)
+#13558 := (or #12515 #13555)
+#13561 := (or #12524 #13558)
+#13564 := (or #13552 #13561)
+#13567 := (or #12549 #13564)
+#13570 := (or #12558 #13567)
+#13573 := (or #12567 #13570)
+#13576 := (or #12576 #13573)
+#13580 := (iff #13576 #13579)
+#13581 := [rewrite]: #13580
+#13577 := (iff #12577 #13576)
+#13574 := (iff #12568 #13573)
+#13571 := (iff #12559 #13570)
+#13568 := (iff #12550 #13567)
+#13565 := (iff #12541 #13564)
+#13562 := (iff #12525 #13561)
+#13559 := (iff #12516 #13558)
+#13560 := [monotonicity #13557]: #13559
+#13563 := [monotonicity #13560]: #13562
+#13553 := (iff #12540 #13552)
+#13554 := [monotonicity #13413]: #13553
+#13566 := [monotonicity #13554 #13563]: #13565
+#13569 := [monotonicity #13566]: #13568
+#13572 := [monotonicity #13569]: #13571
+#13575 := [monotonicity #13572]: #13574
+#13578 := [monotonicity #13575]: #13577
+#13583 := [trans #13578 #13581]: #13582
+#13586 := [monotonicity #13583]: #13585
+#13591 := [trans #13586 #13589]: #13590
+#13594 := [monotonicity #13591]: #13593
+#13597 := [monotonicity #13594]: #13596
+#13602 := [trans #13597 #13600]: #13601
+#13618 := [monotonicity #13419 #13602]: #13617
+#13621 := [monotonicity #13419 #13618]: #13620
+#13614 := (iff #12623 #13604)
+#13609 := (not #13603)
+#13612 := (iff #13609 #13604)
#13613 := [rewrite]: #13612
-#13609 := (iff #3315 #13608)
-#12399 := (iff #3044 #12398)
-#12396 := (iff #3043 #12393)
-#12390 := (implies #5718 #12387)
-#12394 := (iff #12390 #12393)
-#12395 := [rewrite]: #12394
-#12391 := (iff #3043 #12390)
-#12388 := (iff #3042 #12387)
-#12389 := [rewrite]: #12388
-#5719 := (iff #645 #5718)
-#5720 := [rewrite]: #5719
-#12392 := [monotonicity #5720 #12389]: #12391
-#12397 := [trans #12392 #12395]: #12396
-#12400 := [quant-intro #12397]: #12399
-#13606 := (iff #3314 #13603)
-#13599 := (implies #12398 #13594)
-#13604 := (iff #13599 #13603)
-#13605 := [rewrite]: #13604
-#13600 := (iff #3314 #13599)
-#13597 := (iff #3313 #13594)
-#13591 := (and #13586 #12406)
-#13595 := (iff #13591 #13594)
-#13596 := [rewrite]: #13595
-#13592 := (iff #3313 #13591)
-#12409 := (iff #3046 #12406)
-#12403 := (and #3022 #2951)
-#12407 := (iff #12403 #12406)
-#12408 := [rewrite]: #12407
-#12404 := (iff #3046 #12403)
-#12401 := (iff #3045 #3022)
-#12402 := [rewrite]: #12401
-#12405 := [monotonicity #12402]: #12404
-#12410 := [trans #12405 #12408]: #12409
-#13589 := (iff #3312 #13586)
-#13582 := (implies #12406 #13570)
-#13587 := (iff #13582 #13586)
-#13588 := [rewrite]: #13587
-#13583 := (iff #3312 #13582)
-#13580 := (iff #3311 #13570)
-#13575 := (implies true #13570)
-#13578 := (iff #13575 #13570)
-#13579 := [rewrite]: #13578
-#13576 := (iff #3311 #13575)
-#13573 := (iff #3310 #13570)
-#13566 := (implies #3050 #13561)
-#13571 := (iff #13566 #13570)
-#13572 := [rewrite]: #13571
-#13567 := (iff #3310 #13566)
-#13564 := (iff #3309 #13561)
-#13557 := (implies #3054 #13552)
-#13562 := (iff #13557 #13561)
-#13563 := [rewrite]: #13562
-#13558 := (iff #3309 #13557)
-#13555 := (iff #3308 #13552)
-#13548 := (implies #3058 #13543)
-#13553 := (iff #13548 #13552)
-#13554 := [rewrite]: #13553
-#13549 := (iff #3308 #13548)
-#13546 := (iff #3307 #13543)
-#13540 := (implies #3060 #13535)
-#13544 := (iff #13540 #13543)
-#13545 := [rewrite]: #13544
-#13541 := (iff #3307 #13540)
-#13538 := (iff #3306 #13535)
-#13531 := (implies #3061 #13526)
-#13536 := (iff #13531 #13535)
-#13537 := [rewrite]: #13536
-#13532 := (iff #3306 #13531)
-#13529 := (iff #3305 #13526)
-#13522 := (implies #12423 #13517)
-#13527 := (iff #13522 #13526)
-#13528 := [rewrite]: #13527
-#13523 := (iff #3305 #13522)
-#13520 := (iff #3304 #13517)
-#13513 := (implies #12432 #13508)
-#13518 := (iff #13513 #13517)
-#13519 := [rewrite]: #13518
-#13514 := (iff #3304 #13513)
-#13511 := (iff #3303 #13508)
-#13505 := (implies #3060 #13432)
-#13509 := (iff #13505 #13508)
-#13510 := [rewrite]: #13509
-#13506 := (iff #3303 #13505)
-#13503 := (iff #3302 #13432)
-#13498 := (and #13432 true)
-#13501 := (iff #13498 #13432)
-#13502 := [rewrite]: #13501
-#13499 := (iff #3302 #13498)
-#13496 := (iff #3301 true)
-#13491 := (implies true true)
-#13494 := (iff #13491 true)
-#13495 := [rewrite]: #13494
-#13492 := (iff #3301 #13491)
-#13489 := (iff #3300 true)
-#13484 := (implies #3060 true)
-#13487 := (iff #13484 true)
-#13488 := [rewrite]: #13487
-#13485 := (iff #3300 #13484)
-#13482 := (iff #3299 true)
-#13449 := (or #13376 #12751)
-#13457 := (or #12687 #13449)
-#13472 := (or #12687 #13457)
-#13477 := (implies false #13472)
-#13480 := (iff #13477 true)
-#13481 := [rewrite]: #13480
-#13478 := (iff #3299 #13477)
-#13475 := (iff #3298 #13472)
-#13469 := (implies #3060 #13457)
-#13473 := (iff #13469 #13472)
-#13474 := [rewrite]: #13473
-#13470 := (iff #3298 #13469)
-#13467 := (iff #3297 #13457)
-#13462 := (implies true #13457)
-#13465 := (iff #13462 #13457)
-#13466 := [rewrite]: #13465
-#13463 := (iff #3297 #13462)
-#13460 := (iff #3296 #13457)
-#13454 := (implies #3060 #13449)
-#13458 := (iff #13454 #13457)
-#13459 := [rewrite]: #13458
-#13455 := (iff #3296 #13454)
-#13452 := (iff #3295 #13449)
-#13446 := (implies #12556 #12751)
-#13450 := (iff #13446 #13449)
-#13451 := [rewrite]: #13450
-#13447 := (iff #3295 #13446)
-#12754 := (iff #3167 #12751)
-#12748 := (implies #3060 #12736)
-#12752 := (iff #12748 #12751)
-#12753 := [rewrite]: #12752
-#12749 := (iff #3167 #12748)
-#12746 := (iff #3166 #12736)
-#12741 := (implies true #12736)
-#12744 := (iff #12741 #12736)
-#12745 := [rewrite]: #12744
-#12742 := (iff #3166 #12741)
-#12739 := (iff #3165 #12736)
-#12733 := (implies #3060 #12728)
-#12737 := (iff #12733 #12736)
-#12738 := [rewrite]: #12737
-#12734 := (iff #3165 #12733)
-#12731 := (iff #3164 #12728)
-#12725 := (and #12720 up_216)
-#12729 := (iff #12725 #12728)
-#12730 := [rewrite]: #12729
-#12726 := (iff #3164 #12725)
-#12723 := (iff #3163 #12720)
-#12716 := (implies up_216 #12711)
-#12721 := (iff #12716 #12720)
-#12722 := [rewrite]: #12721
-#12717 := (iff #3163 #12716)
-#12714 := (iff #3162 #12711)
-#12708 := (implies #3060 #12696)
-#12712 := (iff #12708 #12711)
-#12713 := [rewrite]: #12712
-#12709 := (iff #3162 #12708)
-#12706 := (iff #3161 #12696)
-#12701 := (implies true #12696)
-#12704 := (iff #12701 #12696)
-#12705 := [rewrite]: #12704
-#12702 := (iff #3161 #12701)
-#12699 := (iff #3160 #12696)
-#12693 := (implies #3060 #12688)
-#12697 := (iff #12693 #12696)
-#12698 := [rewrite]: #12697
-#12694 := (iff #3160 #12693)
-#12691 := (iff #3159 #12688)
-#12684 := (implies #3060 #12672)
-#12689 := (iff #12684 #12688)
-#12690 := [rewrite]: #12689
-#12685 := (iff #3159 #12684)
-#12682 := (iff #3158 #12672)
-#12677 := (implies true #12672)
-#12680 := (iff #12677 #12672)
-#12681 := [rewrite]: #12680
-#12678 := (iff #3158 #12677)
-#12675 := (iff #3157 #12672)
-#12668 := (implies #12567 #12663)
-#12673 := (iff #12668 #12672)
-#12674 := [rewrite]: #12673
-#12669 := (iff #3157 #12668)
-#12666 := (iff #3156 #12663)
-#12659 := (implies #12570 #12654)
-#12664 := (iff #12659 #12663)
-#12665 := [rewrite]: #12664
-#12660 := (iff #3156 #12659)
-#12657 := (iff #3155 #12654)
-#12650 := (implies #12573 #12645)
-#12655 := (iff #12650 #12654)
-#12656 := [rewrite]: #12655
-#12651 := (iff #3155 #12650)
-#12648 := (iff #3154 #12645)
-#12641 := (implies #12576 #12629)
-#12646 := (iff #12641 #12645)
-#12647 := [rewrite]: #12646
-#12642 := (iff #3154 #12641)
-#12639 := (iff #3153 #12629)
-#12634 := (implies true #12629)
-#12637 := (iff #12634 #12629)
-#12638 := [rewrite]: #12637
-#12635 := (iff #3153 #12634)
-#12632 := (iff #3152 #12629)
-#12626 := (and #12621 #12591)
-#12630 := (iff #12626 #12629)
-#12631 := [rewrite]: #12630
-#12627 := (iff #3152 #12626)
-#12592 := (iff #3144 #12591)
-#12589 := (iff #3143 #12586)
-#12583 := (implies #5718 #12580)
-#12587 := (iff #12583 #12586)
-#12588 := [rewrite]: #12587
-#12584 := (iff #3143 #12583)
-#12581 := (iff #3142 #12580)
-#12582 := [rewrite]: #12581
-#12585 := [monotonicity #5720 #12582]: #12584
-#12590 := [trans #12585 #12588]: #12589
-#12593 := [quant-intro #12590]: #12592
-#12624 := (iff #3151 #12621)
-#12617 := (implies #12591 #12600)
-#12622 := (iff #12617 #12621)
-#12623 := [rewrite]: #12622
-#12618 := (iff #3151 #12617)
-#12615 := (iff #3150 #12600)
-#12610 := (and true #12600)
-#12613 := (iff #12610 #12600)
-#12614 := [rewrite]: #12613
-#12611 := (iff #3150 #12610)
-#12601 := (iff #3148 #12600)
-#12598 := (iff #3147 #12597)
-#12595 := (iff #3146 #12594)
-#12596 := [monotonicity #5720]: #12595
-#12599 := [monotonicity #12596]: #12598
-#12602 := [quant-intro #12599]: #12601
-#12608 := (iff #3149 true)
-#12603 := (implies #12600 true)
-#12606 := (iff #12603 true)
-#12607 := [rewrite]: #12606
-#12604 := (iff #3149 #12603)
-#12605 := [monotonicity #12602]: #12604
-#12609 := [trans #12605 #12607]: #12608
-#12612 := [monotonicity #12609 #12602]: #12611
-#12616 := [trans #12612 #12614]: #12615
-#12619 := [monotonicity #12593 #12616]: #12618
-#12625 := [trans #12619 #12623]: #12624
-#12628 := [monotonicity #12625 #12593]: #12627
-#12633 := [trans #12628 #12631]: #12632
-#12636 := [monotonicity #12633]: #12635
-#12640 := [trans #12636 #12638]: #12639
-#12577 := (iff #3139 #12576)
-#12578 := [rewrite]: #12577
-#12643 := [monotonicity #12578 #12640]: #12642
-#12649 := [trans #12643 #12647]: #12648
-#12574 := (iff #3137 #12573)
-#12575 := [rewrite]: #12574
-#12652 := [monotonicity #12575 #12649]: #12651
-#12658 := [trans #12652 #12656]: #12657
-#12571 := (iff #3135 #12570)
-#12572 := [rewrite]: #12571
-#12661 := [monotonicity #12572 #12658]: #12660
-#12667 := [trans #12661 #12665]: #12666
-#12568 := (iff #3133 #12567)
-#12569 := [rewrite]: #12568
-#12670 := [monotonicity #12569 #12667]: #12669
-#12676 := [trans #12670 #12674]: #12675
-#12679 := [monotonicity #12676]: #12678
-#12683 := [trans #12679 #12681]: #12682
-#12686 := [monotonicity #12683]: #12685
-#12692 := [trans #12686 #12690]: #12691
-#12695 := [monotonicity #12692]: #12694
-#12700 := [trans #12695 #12698]: #12699
-#12703 := [monotonicity #12700]: #12702
-#12707 := [trans #12703 #12705]: #12706
-#12710 := [monotonicity #12707]: #12709
-#12715 := [trans #12710 #12713]: #12714
-#12718 := [monotonicity #12715]: #12717
-#12724 := [trans #12718 #12722]: #12723
-#12727 := [monotonicity #12724]: #12726
-#12732 := [trans #12727 #12730]: #12731
-#12735 := [monotonicity #12732]: #12734
-#12740 := [trans #12735 #12738]: #12739
-#12743 := [monotonicity #12740]: #12742
-#12747 := [trans #12743 #12745]: #12746
-#12750 := [monotonicity #12747]: #12749
-#12755 := [trans #12750 #12753]: #12754
-#12557 := (iff #3120 #12556)
-#12554 := (iff #3119 #12553)
-#12555 := [rewrite]: #12554
-#12333 := (iff #2979 #12332)
-#12334 := [rewrite]: #12333
-#12558 := [monotonicity #12334 #12555]: #12557
-#13448 := [monotonicity #12558 #12755]: #13447
-#13453 := [trans #13448 #13451]: #13452
-#13456 := [monotonicity #13453]: #13455
-#13461 := [trans #13456 #13459]: #13460
-#13464 := [monotonicity #13461]: #13463
-#13468 := [trans #13464 #13466]: #13467
-#13471 := [monotonicity #13468]: #13470
-#13476 := [trans #13471 #13474]: #13475
-#13479 := [monotonicity #13445 #13476]: #13478
-#13483 := [trans #13479 #13481]: #13482
-#13486 := [monotonicity #13483]: #13485
-#13490 := [trans #13486 #13488]: #13489
-#13493 := [monotonicity #13490]: #13492
-#13497 := [trans #13493 #13495]: #13496
-#13442 := (iff #3293 #13432)
-#13437 := (implies true #13432)
-#13440 := (iff #13437 #13432)
-#13441 := [rewrite]: #13440
-#13438 := (iff #3293 #13437)
-#13435 := (iff #3292 #13432)
-#13429 := (implies #3060 #13417)
-#13433 := (iff #13429 #13432)
-#13434 := [rewrite]: #13433
-#13430 := (iff #3292 #13429)
-#13427 := (iff #3291 #13417)
-#13422 := (implies true #13417)
-#13425 := (iff #13422 #13417)
-#13426 := [rewrite]: #13425
-#13423 := (iff #3291 #13422)
-#13420 := (iff #3290 #13417)
-#13414 := (implies #3060 #13402)
-#13418 := (iff #13414 #13417)
-#13419 := [rewrite]: #13418
-#13415 := (iff #3290 #13414)
-#13412 := (iff #3289 #13402)
-#13407 := (implies true #13402)
-#13410 := (iff #13407 #13402)
-#13411 := [rewrite]: #13410
-#13408 := (iff #3289 #13407)
-#13405 := (iff #3288 #13402)
-#13399 := (implies #3060 #13394)
-#13403 := (iff #13399 #13402)
-#13404 := [rewrite]: #13403
-#13400 := (iff #3288 #13399)
-#13397 := (iff #3287 #13394)
-#13391 := (implies #12544 #13386)
-#13395 := (iff #13391 #13394)
-#13396 := [rewrite]: #13395
-#13392 := (iff #3287 #13391)
-#13389 := (iff #3286 #13386)
-#13382 := (implies #12544 #13377)
-#13387 := (iff #13382 #13386)
-#13388 := [rewrite]: #13387
-#13383 := (iff #3286 #13382)
-#13380 := (iff #3285 #13377)
-#13373 := (implies #12556 #13368)
-#13378 := (iff #13373 #13377)
+#13610 := (iff #12623 #13609)
+#13607 := (iff #3190 #13603)
+#13608 := [rewrite]: #13607
+#13611 := [monotonicity #13608]: #13610
+#13615 := [trans #13611 #13613]: #13614
+#13624 := [monotonicity #13615 #13621]: #13623
+#13627 := [monotonicity #13419 #13624]: #13626
+#13632 := [trans #13627 #13630]: #13631
+#13665 := [monotonicity #13632 #13662]: #13664
+#13668 := [monotonicity #13419 #13665]: #13667
+#13671 := [monotonicity #13668]: #13670
+#13676 := [trans #13671 #13674]: #13675
+#13679 := [monotonicity #13676]: #13678
+#13684 := [trans #13679 #13682]: #13683
+#13687 := [monotonicity #13684]: #13686
+#13690 := [monotonicity #13687]: #13689
+#13695 := [trans #13690 #13693]: #13694
+#13710 := [monotonicity #13419 #13695]: #13709
+#13713 := [monotonicity #13419 #13710]: #13712
+#13706 := (iff #12789 #13697)
+#13701 := (not #13698)
+#13704 := (iff #13701 #13697)
+#13705 := [rewrite]: #13704
+#13702 := (iff #12789 #13701)
+#13699 := (iff #3179 #13698)
+#13700 := [rewrite]: #13699
+#13703 := [monotonicity #13700]: #13702
+#13707 := [trans #13703 #13705]: #13706
+#13716 := [monotonicity #13707 #13713]: #13715
+#13719 := [monotonicity #13419 #13716]: #13718
+#13724 := [trans #13719 #13722]: #13723
+#13848 := [monotonicity #13724 #13845]: #13847
+#13978 := [monotonicity #13419 #13848]: #13977
+#13981 := [monotonicity #13978]: #13980
+#13984 := [monotonicity #13981]: #13983
+#13987 := [monotonicity #13984]: #13986
+#13990 := [monotonicity #13987]: #13989
+#13993 := [monotonicity #13990]: #13992
+#13996 := [monotonicity #13993]: #13995
+#13871 := (iff #12931 #13870)
+#13868 := (iff #12312 #12306)
+#13860 := (and true #12306)
+#13863 := (and true #13860)
+#13866 := (iff #13863 #12306)
+#13867 := [rewrite]: #13866
+#13864 := (iff #12312 #13863)
+#13861 := (iff #12309 #13860)
+#13856 := (iff #3160 true)
+#13851 := (forall (vars (?x784 T5)) (:pat #3158) true)
+#13854 := (iff #13851 true)
+#13855 := [elim-unused]: #13854
+#13852 := (iff #3160 #13851)
+#13849 := (iff #3159 true)
+#13850 := [rewrite]: #13849
+#13853 := [quant-intro #13850]: #13852
+#13857 := [trans #13853 #13855]: #13856
+#13862 := [monotonicity #13857]: #13861
+#13858 := (iff #3156 true)
+#13859 := [rewrite]: #13858
+#13865 := [monotonicity #13859 #13862]: #13864
+#13869 := [trans #13865 #13867]: #13868
+#13872 := [monotonicity #13869]: #13871
+#13999 := [monotonicity #13872 #13996]: #13998
+#14002 := [monotonicity #13872 #13999]: #14001
+#14005 := [monotonicity #13419 #14002]: #14004
+#14008 := [monotonicity #13419 #14005]: #14007
+#14011 := [monotonicity #13419 #14008]: #14010
+#14014 := [monotonicity #13419 #14011]: #14013
+#13888 := (iff #13008 #13887)
+#13885 := (iff #11995 #13882)
+#13879 := (and #13876 #11992)
+#13883 := (iff #13879 #13882)
+#13884 := [rewrite]: #13883
+#13880 := (iff #11995 #13879)
+#13877 := (iff #3072 #13876)
+#13878 := [rewrite]: #13877
+#13881 := [monotonicity #13878]: #13880
+#13886 := [trans #13881 #13884]: #13885
+#13889 := [monotonicity #13886]: #13888
+#14017 := [monotonicity #13889 #14014]: #14016
+#13922 := (iff #13017 #13921)
+#13919 := (iff #11989 #13918)
+#13916 := (iff #11984 #13913)
+#13907 := (or #13890 #13904)
+#13910 := (or #5601 #13907)
+#13914 := (iff #13910 #13913)
+#13915 := [rewrite]: #13914
+#13911 := (iff #11984 #13910)
+#13908 := (iff #11978 #13907)
+#13905 := (iff #3068 #13904)
+#13906 := [rewrite]: #13905
+#13900 := (iff #11977 #13890)
+#13892 := (not #13890)
+#13895 := (not #13892)
+#13898 := (iff #13895 #13890)
+#13899 := [rewrite]: #13898
+#13896 := (iff #11977 #13895)
+#13893 := (iff #3067 #13892)
+#13894 := [rewrite]: #13893
+#13897 := [monotonicity #13894]: #13896
+#13901 := [trans #13897 #13899]: #13900
+#13909 := [monotonicity #13901 #13906]: #13908
+#13912 := [monotonicity #5603 #13909]: #13911
+#13917 := [trans #13912 #13915]: #13916
+#13920 := [quant-intro #13917]: #13919
+#13923 := [monotonicity #13920]: #13922
+#14020 := [monotonicity #13923 #14017]: #14019
+#13928 := (iff #13026 #13927)
+#13925 := (iff #3066 #13924)
+#13926 := [rewrite]: #13925
+#13929 := [monotonicity #13926]: #13928
+#14023 := [monotonicity #13929 #14020]: #14022
+#14026 := [monotonicity #13419 #14023]: #14025
+#13940 := (iff #13043 #13939)
+#13937 := (iff #3063 #13936)
+#13934 := (iff #3062 #13933)
+#13935 := [rewrite]: #13934
+#13931 := (iff #3061 #13930)
+#13932 := [rewrite]: #13931
+#13938 := [monotonicity #13932 #13935]: #13937
+#13941 := [monotonicity #13938]: #13940
+#14029 := [monotonicity #13941 #14026]: #14028
+#13950 := (iff #13052 #13949)
+#13947 := (iff #3059 #13946)
+#13944 := (iff #3058 #13942)
+#13945 := [rewrite]: #13944
+#13948 := [monotonicity #13410 #13945]: #13947
+#13951 := [monotonicity #13948]: #13950
+#14032 := [monotonicity #13951 #14029]: #14031
+#13963 := (iff #13061 #13962)
+#13960 := (iff #3055 #13959)
+#13957 := (iff #3054 #13955)
+#13958 := [rewrite]: #13957
+#13953 := (iff #3053 #13952)
+#13954 := [rewrite]: #13953
+#13961 := [monotonicity #13954 #13958]: #13960
+#13964 := [monotonicity #13961]: #13963
+#14035 := [monotonicity #13964 #14032]: #14034
+#13974 := (iff #13077 #13973)
+#13971 := (iff #11971 #13968)
+#13969 := (iff #13965 #13968)
+#13970 := [rewrite]: #13969
+#13966 := (iff #11971 #13965)
+#13406 := (iff #2956 #13405)
+#13407 := [rewrite]: #13406
+#13967 := [monotonicity #13407]: #13966
+#13972 := [trans #13967 #13970]: #13971
+#13975 := [monotonicity #13972]: #13974
+#14038 := [monotonicity #13975 #14035]: #14037
+#14043 := [trans #14038 #14041]: #14042
+#14046 := [monotonicity #13967 #14043]: #14045
+#14051 := [trans #14046 #14049]: #14050
+#13402 := (iff #13089 #13401)
+#13399 := (iff #11966 #13398)
+#13396 := (iff #11961 #13393)
+#13387 := (or #13371 #13383)
+#13390 := (or #5601 #13387)
+#13394 := (iff #13390 #13393)
+#13395 := [rewrite]: #13394
+#13391 := (iff #11961 #13390)
+#13388 := (iff #11955 #13387)
+#13382 := (iff #3046 #13383)
+#13386 := [rewrite]: #13382
+#13380 := (iff #11954 #13371)
+#13372 := (not #13371)
+#13375 := (not #13372)
+#13378 := (iff #13375 #13371)
#13379 := [rewrite]: #13378
-#13374 := (iff #3285 #13373)
-#13371 := (iff #3284 #13368)
-#13364 := (implies #3121 #13359)
-#13369 := (iff #13364 #13368)
-#13370 := [rewrite]: #13369
-#13365 := (iff #3284 #13364)
-#13362 := (iff #3283 #13359)
-#13355 := (implies #3122 #13350)
-#13360 := (iff #13355 #13359)
-#13361 := [rewrite]: #13360
-#13356 := (iff #3283 #13355)
-#13353 := (iff #3282 #13350)
-#13346 := (implies #3123 #13341)
-#13351 := (iff #13346 #13350)
-#13352 := [rewrite]: #13351
-#13347 := (iff #3282 #13346)
-#13344 := (iff #3281 #13341)
-#13337 := (implies #3124 #13332)
-#13342 := (iff #13337 #13341)
-#13343 := [rewrite]: #13342
-#13338 := (iff #3281 #13337)
-#13335 := (iff #3280 #13332)
-#13328 := (implies #3127 #13316)
-#13333 := (iff #13328 #13332)
-#13334 := [rewrite]: #13333
-#13329 := (iff #3280 #13328)
-#13326 := (iff #3279 #13316)
-#13321 := (implies true #13316)
-#13324 := (iff #13321 #13316)
-#13325 := [rewrite]: #13324
-#13322 := (iff #3279 #13321)
-#13319 := (iff #3278 #13316)
-#13313 := (implies #3060 #13310)
-#13317 := (iff #13313 #13316)
-#13318 := [rewrite]: #13317
-#13314 := (iff #3278 #13313)
-#13311 := (iff #3277 #13310)
-#13308 := (iff #3276 #13298)
-#13303 := (implies true #13298)
-#13306 := (iff #13303 #13298)
-#13307 := [rewrite]: #13306
-#13304 := (iff #3276 #13303)
-#13301 := (iff #3275 #13298)
-#13295 := (implies #3060 #13290)
-#13299 := (iff #13295 #13298)
-#13300 := [rewrite]: #13299
-#13296 := (iff #3275 #13295)
-#13293 := (iff #3274 #13290)
-#13286 := (implies #3174 #13281)
-#13291 := (iff #13286 #13290)
-#13292 := [rewrite]: #13291
-#13287 := (iff #3274 #13286)
-#13284 := (iff #3273 #13281)
-#13278 := (implies #3060 #13266)
-#13282 := (iff #13278 #13281)
-#13283 := [rewrite]: #13282
-#13279 := (iff #3273 #13278)
-#13276 := (iff #3272 #13266)
-#13271 := (implies true #13266)
-#13274 := (iff #13271 #13266)
-#13275 := [rewrite]: #13274
-#13272 := (iff #3272 #13271)
-#13269 := (iff #3271 #13266)
-#13263 := (implies #3060 #13258)
-#13267 := (iff #13263 #13266)
-#13268 := [rewrite]: #13267
-#13264 := (iff #3271 #13263)
-#13261 := (iff #3270 #13258)
-#13255 := (and #13250 #12809)
-#13259 := (iff #13255 #13258)
+#13376 := (iff #11954 #13375)
+#13373 := (iff #3043 #13372)
+#13374 := [rewrite]: #13373
+#13377 := [monotonicity #13374]: #13376
+#13381 := [trans #13377 #13379]: #13380
+#13389 := [monotonicity #13381 #13386]: #13388
+#13392 := [monotonicity #5603 #13389]: #13391
+#13397 := [trans #13392 #13395]: #13396
+#13400 := [quant-intro #13397]: #13399
+#13403 := [monotonicity #13400]: #13402
+#14054 := [monotonicity #13403 #14051]: #14053
+#14057 := [monotonicity #13400 #14054]: #14056
+#13369 := (iff #13101 #13368)
+#13366 := (iff #3042 #13365)
+#13367 := [rewrite]: #13366
+#13370 := [monotonicity #13367]: #13369
+#14060 := [monotonicity #13370 #14057]: #14059
+#14063 := [monotonicity #13367 #14060]: #14062
+#13363 := (iff #13113 false)
+#11998 := (iff #3077 false)
+#11999 := [rewrite]: #11998
+#13361 := (iff #13113 #3077)
+#13359 := (iff #11951 true)
+#12338 := (and true true)
+#13354 := (and true #12338)
+#13357 := (iff #13354 true)
+#13358 := [rewrite]: #13357
+#13355 := (iff #11951 #13354)
+#13352 := (iff #11948 #12338)
+#13350 := (iff #3038 true)
+#13351 := [rewrite]: #13350
+#13348 := (iff #3037 true)
+#13349 := [rewrite]: #13348
+#13353 := [monotonicity #13349 #13351]: #13352
+#13356 := [monotonicity #13349 #13353]: #13355
+#13360 := [trans #13356 #13358]: #13359
+#13362 := [monotonicity #13360]: #13361
+#13364 := [trans #13362 #11999]: #13363
+#14066 := [monotonicity #13364 #14063]: #14065
+#14069 := [monotonicity #14066]: #14068
+#14072 := [monotonicity #14069]: #14071
+#14075 := [monotonicity #14072]: #14074
+#14078 := [monotonicity #14075]: #14077
+#14081 := [monotonicity #14078]: #14080
+#14086 := [trans #14081 #14084]: #14085
+#14089 := [monotonicity #14086]: #14088
+#14094 := [trans #14089 #14092]: #14093
+#14097 := [monotonicity #14094]: #14096
+#14100 := [monotonicity #14097]: #14099
+#14105 := [trans #14100 #14103]: #14104
+#14108 := [monotonicity #14105]: #14107
+#14111 := [monotonicity #14108]: #14110
+#13346 := (iff #13194 #13345)
+#13343 := (iff #3012 #13342)
+#13340 := (iff #3011 #13337)
+#13341 := [rewrite]: #13340
+#13334 := (iff #3010 #13335)
+#13336 := [rewrite]: #13334
+#13344 := [monotonicity #13336 #13341]: #13343
+#13347 := [monotonicity #13344]: #13346
+#14192 := [monotonicity #13347 #14111]: #14191
+#14195 := [monotonicity #14192]: #14194
+#14198 := [monotonicity #14195]: #14197
+#14201 := [monotonicity #14198]: #14200
+#14204 := [monotonicity #14201]: #14203
+#14122 := (iff #13239 #14121)
+#14119 := (iff #2994 #14118)
+#14116 := (iff #2993 #14112)
+#14117 := [rewrite]: #14116
+#14120 := [quant-intro #14117]: #14119
+#14123 := [monotonicity #14120]: #14122
+#14207 := [monotonicity #14123 #14204]: #14206
+#14210 := [monotonicity #14207]: #14209
+#14213 := [monotonicity #14210]: #14212
+#14128 := (iff #13273 #14127)
+#14125 := (iff #11899 #14124)
+#14126 := [rewrite]: #14125
+#14129 := [monotonicity #14126]: #14128
+#14216 := [monotonicity #14129 #14213]: #14215
+#14135 := (iff #13282 #13404)
+#14130 := (not #13405)
+#14133 := (iff #14130 #13404)
+#14134 := [rewrite]: #14133
+#14131 := (iff #13282 #14130)
+#14132 := [monotonicity #13407]: #14131
+#14136 := [trans #14132 #14134]: #14135
+#14219 := [monotonicity #14136 #14216]: #14218
+#14146 := (iff #13291 #14137)
+#14138 := (not #14137)
+#14141 := (not #14138)
+#14144 := (iff #14141 #14137)
+#14145 := [rewrite]: #14144
+#14142 := (iff #13291 #14141)
+#14139 := (iff #2955 #14138)
+#14140 := [rewrite]: #14139
+#14143 := [monotonicity #14140]: #14142
+#14147 := [trans #14143 #14145]: #14146
+#14222 := [monotonicity #14147 #14219]: #14221
+#14160 := (iff #13300 #14159)
+#14157 := (iff #2953 #14156)
+#14154 := (iff #2952 #14151)
+#14155 := [rewrite]: #14154
+#14148 := (iff #2951 #14149)
+#14150 := [rewrite]: #14148
+#14158 := [monotonicity #14150 #14155]: #14157
+#14161 := [monotonicity #14158]: #14160
+#14225 := [monotonicity #14161 #14222]: #14224
+#14174 := (iff #13309 #14173)
+#14171 := (iff #2949 #14170)
+#14168 := (iff #2948 #14165)
+#14169 := [rewrite]: #14168
+#14162 := (iff #2947 #14163)
+#14164 := [rewrite]: #14162
+#14172 := [monotonicity #14164 #14169]: #14171
+#14175 := [monotonicity #14172]: #14174
+#14228 := [monotonicity #14175 #14225]: #14227
+#14188 := (iff #13318 #14187)
+#14185 := (iff #2945 #14184)
+#14182 := (iff #2944 #14179)
+#14183 := [rewrite]: #14182
+#14176 := (iff #2943 #14177)
+#14178 := [rewrite]: #14176
+#14186 := [monotonicity #14178 #14183]: #14185
+#14189 := [monotonicity #14186]: #14188
+#14231 := [monotonicity #14189 #14228]: #14230
+#14236 := [trans #14231 #14234]: #14235
+#14239 := [monotonicity #14236]: #14238
+#13332 := (iff #3349 #13331)
+#13329 := (iff #3348 #13319)
+#13324 := (implies true #13319)
+#13327 := (iff #13324 #13319)
+#13328 := [rewrite]: #13327
+#13325 := (iff #3348 #13324)
+#13322 := (iff #3347 #13319)
+#13315 := (implies #2945 #13310)
+#13320 := (iff #13315 #13319)
+#13321 := [rewrite]: #13320
+#13316 := (iff #3347 #13315)
+#13313 := (iff #3346 #13310)
+#13306 := (implies #2949 #13301)
+#13311 := (iff #13306 #13310)
+#13312 := [rewrite]: #13311
+#13307 := (iff #3346 #13306)
+#13304 := (iff #3345 #13301)
+#13297 := (implies #2953 #13292)
+#13302 := (iff #13297 #13301)
+#13303 := [rewrite]: #13302
+#13298 := (iff #3345 #13297)
+#13295 := (iff #3344 #13292)
+#13288 := (implies #2955 #13283)
+#13293 := (iff #13288 #13292)
+#13294 := [rewrite]: #13293
+#13289 := (iff #3344 #13288)
+#13286 := (iff #3343 #13283)
+#13279 := (implies #2956 #13274)
+#13284 := (iff #13279 #13283)
+#13285 := [rewrite]: #13284
+#13280 := (iff #3343 #13279)
+#13277 := (iff #3342 #13274)
+#13270 := (implies #11899 #13258)
+#13275 := (iff #13270 #13274)
+#13276 := [rewrite]: #13275
+#13271 := (iff #3342 #13270)
+#13268 := (iff #3341 #13258)
+#13263 := (implies true #13258)
+#13266 := (iff #13263 #13258)
+#13267 := [rewrite]: #13266
+#13264 := (iff #3341 #13263)
+#13261 := (iff #3340 #13258)
+#13254 := (implies #11902 #13249)
+#13259 := (iff #13254 #13258)
#13260 := [rewrite]: #13259
-#13256 := (iff #3270 #13255)
-#12810 := (iff #3180 #12809)
-#12807 := (iff #3179 #12806)
-#12808 := [rewrite]: #12807
-#12804 := (iff #3177 #12803)
-#12805 := [rewrite]: #12804
-#12811 := [monotonicity #12805 #12808]: #12810
-#13253 := (iff #3269 #13250)
-#13247 := (implies #12809 #13242)
-#13251 := (iff #13247 #13250)
-#13252 := [rewrite]: #13251
-#13248 := (iff #3269 #13247)
-#13245 := (iff #3268 #13242)
-#13239 := (and #13234 #12818)
-#13243 := (iff #13239 #13242)
-#13244 := [rewrite]: #13243
-#13240 := (iff #3268 #13239)
-#12821 := (iff #3183 #12818)
-#12815 := (and #12812 #12806)
-#12819 := (iff #12815 #12818)
-#12820 := [rewrite]: #12819
-#12816 := (iff #3183 #12815)
-#12813 := (iff #3182 #12812)
-#12814 := [rewrite]: #12813
-#12817 := [monotonicity #12814 #12808]: #12816
-#12822 := [trans #12817 #12820]: #12821
-#13237 := (iff #3267 #13234)
-#13231 := (implies #12818 #13226)
-#13235 := (iff #13231 #13234)
-#13236 := [rewrite]: #13235
-#13232 := (iff #3267 #13231)
-#13229 := (iff #3266 #13226)
-#13223 := (implies #3060 #13220)
-#13227 := (iff #13223 #13226)
-#13228 := [rewrite]: #13227
-#13224 := (iff #3266 #13223)
-#13221 := (iff #3265 #13220)
-#13218 := (iff #3264 #13208)
-#13213 := (implies true #13208)
-#13216 := (iff #13213 #13208)
-#13217 := [rewrite]: #13216
-#13214 := (iff #3264 #13213)
-#13211 := (iff #3263 #13208)
-#13205 := (implies #3060 #13200)
-#13209 := (iff #13205 #13208)
-#13210 := [rewrite]: #13209
-#13206 := (iff #3263 #13205)
-#13203 := (iff #3262 #13200)
-#13196 := (implies #3238 #13191)
-#13201 := (iff #13196 #13200)
-#13202 := [rewrite]: #13201
-#13197 := (iff #3262 #13196)
-#13194 := (iff #3261 #13191)
-#13188 := (implies #3060 #13176)
-#13192 := (iff #13188 #13191)
-#13193 := [rewrite]: #13192
-#13189 := (iff #3261 #13188)
-#13186 := (iff #3260 #13176)
-#13181 := (implies true #13176)
-#13184 := (iff #13181 #13176)
+#13255 := (iff #3340 #13254)
+#13252 := (iff #3339 #13249)
+#13245 := (implies #11911 #13240)
+#13250 := (iff #13245 #13249)
+#13251 := [rewrite]: #13250
+#13246 := (iff #3339 #13245)
+#13243 := (iff #3338 #13240)
+#13236 := (implies #2994 #13231)
+#13241 := (iff #13236 #13240)
+#13242 := [rewrite]: #13241
+#13237 := (iff #3338 #13236)
+#13234 := (iff #3337 #13231)
+#13227 := (implies #2999 #13222)
+#13232 := (iff #13227 #13231)
+#13233 := [rewrite]: #13232
+#13228 := (iff #3337 #13227)
+#13225 := (iff #3336 #13222)
+#13218 := (implies #3001 #13213)
+#13223 := (iff #13218 #13222)
+#13224 := [rewrite]: #13223
+#13219 := (iff #3336 #13218)
+#13216 := (iff #3335 #13213)
+#13209 := (implies #3004 #13204)
+#13214 := (iff #13209 #13213)
+#13215 := [rewrite]: #13214
+#13210 := (iff #3335 #13209)
+#13207 := (iff #3334 #13204)
+#13200 := (implies #11925 #13195)
+#13205 := (iff #13200 #13204)
+#13206 := [rewrite]: #13205
+#13201 := (iff #3334 #13200)
+#13198 := (iff #3333 #13195)
+#13191 := (implies #3012 #13188)
+#13196 := (iff #13191 #13195)
+#13197 := [rewrite]: #13196
+#13192 := (iff #3333 #13191)
+#13189 := (iff #3332 #13188)
+#13186 := (iff #3331 #13183)
+#13179 := (implies #11928 #13176)
+#13184 := (iff #13179 #13183)
#13185 := [rewrite]: #13184
-#13182 := (iff #3260 #13181)
-#13179 := (iff #3259 #13176)
-#13173 := (implies #3060 #13168)
-#13177 := (iff #13173 #13176)
-#13178 := [rewrite]: #13177
-#13174 := (iff #3259 #13173)
-#13171 := (iff #3258 #13168)
-#13165 := (and #13160 #12809)
-#13169 := (iff #13165 #13168)
-#13170 := [rewrite]: #13169
-#13166 := (iff #3258 #13165)
-#13163 := (iff #3257 #13160)
-#13156 := (implies #12809 #13151)
-#13161 := (iff #13156 #13160)
-#13162 := [rewrite]: #13161
-#13157 := (iff #3257 #13156)
-#13154 := (iff #3256 #13151)
-#13148 := (and #13143 #12818)
-#13152 := (iff #13148 #13151)
-#13153 := [rewrite]: #13152
-#13149 := (iff #3256 #13148)
-#13146 := (iff #3255 #13143)
-#13139 := (implies #12818 #13134)
-#13144 := (iff #13139 #13143)
-#13145 := [rewrite]: #13144
-#13140 := (iff #3255 #13139)
-#13137 := (iff #3254 #13134)
-#13130 := (implies #13070 #13125)
-#13135 := (iff #13130 #13134)
-#13136 := [rewrite]: #13135
-#13131 := (iff #3254 #13130)
-#13128 := (iff #3253 #13125)
-#13121 := (implies #3242 #13116)
-#13126 := (iff #13121 #13125)
-#13127 := [rewrite]: #13126
-#13122 := (iff #3253 #13121)
-#13119 := (iff #3252 #13116)
-#13112 := (implies #3244 #13107)
-#13117 := (iff #13112 #13116)
-#13118 := [rewrite]: #13117
-#13113 := (iff #3252 #13112)
-#13110 := (iff #3251 #13107)
-#13103 := (implies #3059 #13091)
-#13108 := (iff #13103 #13107)
-#13109 := [rewrite]: #13108
-#13104 := (iff #3251 #13103)
-#13101 := (iff #3250 #13091)
-#13096 := (implies true #13091)
-#13099 := (iff #13096 #13091)
-#13100 := [rewrite]: #13099
-#13097 := (iff #3250 #13096)
-#13094 := (iff #3249 #13091)
-#13087 := (implies #3246 #13082)
-#13092 := (iff #13087 #13091)
-#13093 := [rewrite]: #13092
-#13088 := (iff #3249 #13087)
-#13085 := (iff #3248 #13082)
-#13078 := (implies #13075 #12978)
-#13083 := (iff #13078 #13082)
-#13084 := [rewrite]: #13083
-#13079 := (iff #3248 #13078)
-#12988 := (iff #3227 #12978)
+#13180 := (iff #3331 #13179)
+#13177 := (iff #3330 #13176)
+#13174 := (iff #3329 #13171)
+#13167 := (implies #11937 #13164)
+#13172 := (iff #13167 #13171)
+#13173 := [rewrite]: #13172
+#13168 := (iff #3329 #13167)
+#13165 := (iff #3328 #13164)
+#13162 := (iff #3327 #13159)
+#13155 := (implies #11943 #13150)
+#13160 := (iff #13155 #13159)
+#13161 := [rewrite]: #13160
+#13156 := (iff #3327 #13155)
+#13153 := (iff #3326 #13150)
+#13146 := (implies #3027 #13141)
+#13151 := (iff #13146 #13150)
+#13152 := [rewrite]: #13151
+#13147 := (iff #3326 #13146)
+#13144 := (iff #3325 #13141)
+#13137 := (implies #3030 #13132)
+#13142 := (iff #13137 #13141)
+#13143 := [rewrite]: #13142
+#13138 := (iff #3325 #13137)
+#13135 := (iff #3324 #13132)
+#13128 := (implies #3033 #13123)
+#13133 := (iff #13128 #13132)
+#13134 := [rewrite]: #13133
+#13129 := (iff #3324 #13128)
+#13126 := (iff #3323 #13123)
+#13119 := (implies #3036 #13114)
+#13124 := (iff #13119 #13123)
+#13125 := [rewrite]: #13124
+#13120 := (iff #3323 #13119)
+#13117 := (iff #3322 #13114)
+#13110 := (implies #11951 #13107)
+#13115 := (iff #13110 #13114)
+#13116 := [rewrite]: #13115
+#13111 := (iff #3322 #13110)
+#13108 := (iff #3321 #13107)
+#13105 := (iff #3320 #13102)
+#13098 := (implies #3042 #13095)
+#13103 := (iff #13098 #13102)
+#13104 := [rewrite]: #13103
+#13099 := (iff #3320 #13098)
+#13096 := (iff #3319 #13095)
+#13093 := (iff #3318 #13090)
+#13086 := (implies #11966 #13083)
+#13091 := (iff #13086 #13090)
+#13092 := [rewrite]: #13091
+#13087 := (iff #3318 #13086)
+#13084 := (iff #3317 #13083)
+#13081 := (iff #3316 #13078)
+#13074 := (implies #11971 #13062)
+#13079 := (iff #13074 #13078)
+#13080 := [rewrite]: #13079
+#13075 := (iff #3316 #13074)
+#13072 := (iff #3315 #13062)
+#13067 := (implies true #13062)
+#13070 := (iff #13067 #13062)
+#13071 := [rewrite]: #13070
+#13068 := (iff #3315 #13067)
+#13065 := (iff #3314 #13062)
+#13058 := (implies #3055 #13053)
+#13063 := (iff #13058 #13062)
+#13064 := [rewrite]: #13063
+#13059 := (iff #3314 #13058)
+#13056 := (iff #3313 #13053)
+#13049 := (implies #3059 #13044)
+#13054 := (iff #13049 #13053)
+#13055 := [rewrite]: #13054
+#13050 := (iff #3313 #13049)
+#13047 := (iff #3312 #13044)
+#13040 := (implies #3063 #13035)
+#13045 := (iff #13040 #13044)
+#13046 := [rewrite]: #13045
+#13041 := (iff #3312 #13040)
+#13038 := (iff #3311 #13035)
+#13032 := (implies #11974 #13027)
+#13036 := (iff #13032 #13035)
+#13037 := [rewrite]: #13036
+#13033 := (iff #3311 #13032)
+#13030 := (iff #3310 #13027)
+#13023 := (implies #3066 #13018)
+#13028 := (iff #13023 #13027)
+#13029 := [rewrite]: #13028
+#13024 := (iff #3310 #13023)
+#13021 := (iff #3309 #13018)
+#13014 := (implies #11989 #13009)
+#13019 := (iff #13014 #13018)
+#13020 := [rewrite]: #13019
+#13015 := (iff #3309 #13014)
+#13012 := (iff #3308 #13009)
+#13005 := (implies #11995 #13000)
+#13010 := (iff #13005 #13009)
+#13011 := [rewrite]: #13010
+#13006 := (iff #3308 #13005)
+#13003 := (iff #3307 #13000)
+#12997 := (implies #11974 #12978)
+#13001 := (iff #12997 #13000)
+#13002 := [rewrite]: #13001
+#12998 := (iff #3307 #12997)
+#12995 := (iff #3306 #12978)
+#12990 := (and true #12978)
+#12993 := (iff #12990 #12978)
+#12994 := [rewrite]: #12993
+#12991 := (iff #3306 #12990)
+#12988 := (iff #3305 #12978)
#12983 := (implies true #12978)
#12986 := (iff #12983 #12978)
#12987 := [rewrite]: #12986
-#12984 := (iff #3227 #12983)
-#12981 := (iff #3226 #12978)
-#12974 := (implies #12829 #12969)
-#12979 := (iff #12974 #12978)
+#12984 := (iff #3305 #12983)
+#12981 := (iff #3304 #12978)
+#12975 := (implies #11974 #12963)
+#12979 := (iff #12975 #12978)
#12980 := [rewrite]: #12979
-#12975 := (iff #3226 #12974)
-#12972 := (iff #3225 #12969)
-#12966 := (and #12961 #12841)
-#12970 := (iff #12966 #12969)
-#12971 := [rewrite]: #12970
-#12967 := (iff #3225 #12966)
-#12842 := (iff #3195 #12841)
-#12839 := (iff #3194 #12838)
-#12833 := (= #3192 #12832)
-#12834 := [rewrite]: #12833
-#12840 := [monotonicity #12834]: #12839
-#12836 := (iff #3193 #12835)
-#12837 := [monotonicity #12834]: #12836
-#12843 := [monotonicity #12837 #12840]: #12842
-#12964 := (iff #3224 #12961)
-#12957 := (implies #12841 #12952)
-#12962 := (iff #12957 #12961)
-#12963 := [rewrite]: #12962
-#12958 := (iff #3224 #12957)
-#12955 := (iff #3223 #12952)
-#12948 := (implies #12844 #12943)
-#12953 := (iff #12948 #12952)
-#12954 := [rewrite]: #12953
-#12949 := (iff #3223 #12948)
-#12946 := (iff #3222 #12943)
-#12939 := (implies #3199 #12934)
-#12944 := (iff #12939 #12943)
-#12945 := [rewrite]: #12944
-#12940 := (iff #3222 #12939)
-#12937 := (iff #3221 #12934)
-#12930 := (implies #3201 #12918)
-#12935 := (iff #12930 #12934)
-#12936 := [rewrite]: #12935
-#12931 := (iff #3221 #12930)
-#12928 := (iff #3220 #12918)
-#12923 := (implies true #12918)
-#12926 := (iff #12923 #12918)
-#12927 := [rewrite]: #12926
-#12924 := (iff #3220 #12923)
-#12921 := (iff #3219 #12918)
-#12915 := (and #12910 #3202)
-#12919 := (iff #12915 #12918)
-#12920 := [rewrite]: #12919
-#12916 := (iff #3219 #12915)
-#12913 := (iff #3218 #12910)
-#12906 := (implies #3202 #12901)
-#12911 := (iff #12906 #12910)
-#12912 := [rewrite]: #12911
-#12907 := (iff #3218 #12906)
-#12904 := (iff #3217 #12901)
-#12898 := (and #12893 #12859)
-#12902 := (iff #12898 #12901)
-#12903 := [rewrite]: #12902
-#12899 := (iff #3217 #12898)
-#12860 := (iff #3207 #12859)
-#12857 := (iff #3206 #12854)
-#12851 := (implies #5718 #12848)
-#12855 := (iff #12851 #12854)
-#12856 := [rewrite]: #12855
-#12852 := (iff #3206 #12851)
-#12849 := (iff #3205 #12848)
-#12850 := [rewrite]: #12849
-#12853 := [monotonicity #5720 #12850]: #12852
-#12858 := [trans #12853 #12856]: #12857
-#12861 := [quant-intro #12858]: #12860
-#12896 := (iff #3216 #12893)
-#12889 := (implies #12859 #12868)
-#12894 := (iff #12889 #12893)
-#12895 := [rewrite]: #12894
-#12890 := (iff #3216 #12889)
-#12887 := (iff #3215 #12868)
-#12882 := (and true #12868)
-#12885 := (iff #12882 #12868)
-#12886 := [rewrite]: #12885
-#12883 := (iff #3215 #12882)
-#12871 := (iff #3212 #12868)
-#12865 := (and #12862 #3211)
-#12869 := (iff #12865 #12868)
-#12870 := [rewrite]: #12869
-#12866 := (iff #3212 #12865)
-#12863 := (iff #3210 #12862)
-#12864 := [rewrite]: #12863
-#12867 := [monotonicity #12864]: #12866
-#12872 := [trans #12867 #12870]: #12871
-#12880 := (iff #3214 true)
-#12875 := (implies #12868 true)
-#12878 := (iff #12875 true)
-#12879 := [rewrite]: #12878
-#12876 := (iff #3214 #12875)
-#12873 := (iff #3213 true)
-#12874 := [rewrite]: #12873
-#12877 := [monotonicity #12872 #12874]: #12876
-#12881 := [trans #12877 #12879]: #12880
-#12884 := [monotonicity #12881 #12872]: #12883
-#12888 := [trans #12884 #12886]: #12887
-#12891 := [monotonicity #12861 #12888]: #12890
-#12897 := [trans #12891 #12895]: #12896
-#12900 := [monotonicity #12897 #12861]: #12899
-#12905 := [trans #12900 #12903]: #12904
-#12908 := [monotonicity #12905]: #12907
-#12914 := [trans #12908 #12912]: #12913
-#12917 := [monotonicity #12914]: #12916
-#12922 := [trans #12917 #12920]: #12921
-#12925 := [monotonicity #12922]: #12924
-#12929 := [trans #12925 #12927]: #12928
-#12932 := [monotonicity #12929]: #12931
-#12938 := [trans #12932 #12936]: #12937
-#12941 := [monotonicity #12938]: #12940
-#12947 := [trans #12941 #12945]: #12946
-#12845 := (iff #3197 #12844)
-#12846 := [monotonicity #12834]: #12845
-#12950 := [monotonicity #12846 #12947]: #12949
-#12956 := [trans #12950 #12954]: #12955
-#12959 := [monotonicity #12843 #12956]: #12958
-#12965 := [trans #12959 #12963]: #12964
-#12968 := [monotonicity #12965 #12843]: #12967
-#12973 := [trans #12968 #12971]: #12972
-#12830 := (iff #3191 #12829)
-#12831 := [rewrite]: #12830
-#12976 := [monotonicity #12831 #12973]: #12975
-#12982 := [trans #12976 #12980]: #12981
+#12976 := (iff #3304 #12975)
+#12973 := (iff #3303 #12963)
+#12968 := (implies true #12963)
+#12971 := (iff #12968 #12963)
+#12972 := [rewrite]: #12971
+#12969 := (iff #3303 #12968)
+#12966 := (iff #3302 #12963)
+#12960 := (implies #11974 #12948)
+#12964 := (iff #12960 #12963)
+#12965 := [rewrite]: #12964
+#12961 := (iff #3302 #12960)
+#12958 := (iff #3301 #12948)
+#12953 := (implies true #12948)
+#12956 := (iff #12953 #12948)
+#12957 := [rewrite]: #12956
+#12954 := (iff #3301 #12953)
+#12951 := (iff #3300 #12948)
+#12945 := (implies #11974 #12940)
+#12949 := (iff #12945 #12948)
+#12950 := [rewrite]: #12949
+#12946 := (iff #3300 #12945)
+#12943 := (iff #3299 #12940)
+#12937 := (implies #12312 #12932)
+#12941 := (iff #12937 #12940)
+#12942 := [rewrite]: #12941
+#12938 := (iff #3299 #12937)
+#12935 := (iff #3298 #12932)
+#12928 := (implies #12312 #12923)
+#12933 := (iff #12928 #12932)
+#12934 := [rewrite]: #12933
+#12929 := (iff #3298 #12928)
+#12926 := (iff #3297 #12923)
+#12920 := (implies #12006 #12915)
+#12924 := (iff #12920 #12923)
+#12925 := [rewrite]: #12924
+#12921 := (iff #3297 #12920)
+#12918 := (iff #3296 #12915)
+#12911 := (implies #3169 #12906)
+#12916 := (iff #12911 #12915)
+#12917 := [rewrite]: #12916
+#12912 := (iff #3296 #12911)
+#12909 := (iff #3295 #12906)
+#12902 := (implies #3170 #12897)
+#12907 := (iff #12902 #12906)
+#12908 := [rewrite]: #12907
+#12903 := (iff #3295 #12902)
+#12900 := (iff #3294 #12897)
+#12893 := (implies #3171 #12888)
+#12898 := (iff #12893 #12897)
+#12899 := [rewrite]: #12898
+#12894 := (iff #3294 #12893)
+#12891 := (iff #3293 #12888)
+#12884 := (implies #3172 #12879)
+#12889 := (iff #12884 #12888)
+#12890 := [rewrite]: #12889
+#12885 := (iff #3293 #12884)
+#12882 := (iff #3292 #12879)
+#12875 := (implies #3175 #12863)
+#12880 := (iff #12875 #12879)
+#12881 := [rewrite]: #12880
+#12876 := (iff #3292 #12875)
+#12873 := (iff #3291 #12863)
+#12868 := (implies true #12863)
+#12871 := (iff #12868 #12863)
+#12872 := [rewrite]: #12871
+#12869 := (iff #3291 #12868)
+#12866 := (iff #3290 #12863)
+#12860 := (implies #11974 #12857)
+#12864 := (iff #12860 #12863)
+#12865 := [rewrite]: #12864
+#12861 := (iff #3290 #12860)
+#12858 := (iff #3289 #12857)
+#12855 := (iff #3288 #12845)
+#12850 := (implies true #12845)
+#12853 := (iff #12850 #12845)
+#12854 := [rewrite]: #12853
+#12851 := (iff #3288 #12850)
+#12848 := (iff #3287 #12845)
+#12842 := (implies #11974 #12837)
+#12846 := (iff #12842 #12845)
+#12847 := [rewrite]: #12846
+#12843 := (iff #3287 #12842)
+#12840 := (iff #3286 #12837)
+#12833 := (implies #3282 #12828)
+#12838 := (iff #12833 #12837)
+#12839 := [rewrite]: #12838
+#12834 := (iff #3286 #12833)
+#12831 := (iff #3285 #12828)
+#12825 := (implies #11974 #12813)
+#12829 := (iff #12825 #12828)
+#12830 := [rewrite]: #12829
+#12826 := (iff #3285 #12825)
+#12823 := (iff #3284 #12813)
+#12818 := (implies true #12813)
+#12821 := (iff #12818 #12813)
+#12822 := [rewrite]: #12821
+#12819 := (iff #3284 #12818)
+#12816 := (iff #3283 #12813)
+#12810 := (implies #11974 #12171)
+#12814 := (iff #12810 #12813)
+#12815 := [rewrite]: #12814
+#12811 := (iff #3283 #12810)
+#12174 := (iff #3118 #12171)
+#12168 := (implies #11974 #12156)
+#12172 := (iff #12168 #12171)
+#12173 := [rewrite]: #12172
+#12169 := (iff #3118 #12168)
+#12166 := (iff #3117 #12156)
+#12161 := (implies true #12156)
+#12164 := (iff #12161 #12156)
+#12165 := [rewrite]: #12164
+#12162 := (iff #3117 #12161)
+#12159 := (iff #3116 #12156)
+#12153 := (implies #11974 #12150)
+#12157 := (iff #12153 #12156)
+#12158 := [rewrite]: #12157
+#12154 := (iff #3116 #12153)
+#12151 := (iff #3115 #12150)
+#12148 := (iff #3114 #12145)
+#12141 := (implies up_216 #12136)
+#12146 := (iff #12141 #12145)
+#12147 := [rewrite]: #12146
+#12142 := (iff #3114 #12141)
+#12139 := (iff #3113 #12136)
+#12133 := (implies #11974 #12121)
+#12137 := (iff #12133 #12136)
+#12138 := [rewrite]: #12137
+#12134 := (iff #3113 #12133)
+#12131 := (iff #3112 #12121)
+#12126 := (implies true #12121)
+#12129 := (iff #12126 #12121)
+#12130 := [rewrite]: #12129
+#12127 := (iff #3112 #12126)
+#12124 := (iff #3111 #12121)
+#12118 := (implies #11974 #12113)
+#12122 := (iff #12118 #12121)
+#12123 := [rewrite]: #12122
+#12119 := (iff #3111 #12118)
+#12116 := (iff #3110 #12113)
+#12109 := (implies #11974 #12097)
+#12114 := (iff #12109 #12113)
+#12115 := [rewrite]: #12114
+#12110 := (iff #3110 #12109)
+#12107 := (iff #3109 #12097)
+#12102 := (implies true #12097)
+#12105 := (iff #12102 #12097)
+#12106 := [rewrite]: #12105
+#12103 := (iff #3109 #12102)
+#12100 := (iff #3108 #12097)
+#12093 := (implies #12011 #12088)
+#12098 := (iff #12093 #12097)
+#12099 := [rewrite]: #12098
+#12094 := (iff #3108 #12093)
+#12091 := (iff #3107 #12088)
+#12084 := (implies #12014 #12079)
+#12089 := (iff #12084 #12088)
+#12090 := [rewrite]: #12089
+#12085 := (iff #3107 #12084)
+#12082 := (iff #3106 #12079)
+#12075 := (implies #12017 #12070)
+#12080 := (iff #12075 #12079)
+#12081 := [rewrite]: #12080
+#12076 := (iff #3106 #12075)
+#12073 := (iff #3105 #12070)
+#12066 := (implies #12020 #12056)
+#12071 := (iff #12066 #12070)
+#12072 := [rewrite]: #12071
+#12067 := (iff #3105 #12066)
+#12064 := (iff #3104 #12056)
+#12059 := (implies true #12056)
+#12062 := (iff #12059 #12056)
+#12063 := [rewrite]: #12062
+#12060 := (iff #3104 #12059)
+#12057 := (iff #3103 #12056)
+#12054 := (iff #3102 #12051)
+#12047 := (implies #12035 #3099)
+#12052 := (iff #12047 #12051)
+#12053 := [rewrite]: #12052
+#12048 := (iff #3102 #12047)
+#12045 := (iff #3101 #3099)
+#12040 := (and #3099 true)
+#12043 := (iff #12040 #3099)
+#12044 := [rewrite]: #12043
+#12041 := (iff #3101 #12040)
+#12038 := (iff #3100 true)
+#12039 := [rewrite]: #12038
+#12042 := [monotonicity #12039]: #12041
+#12046 := [trans #12042 #12044]: #12045
+#12036 := (iff #3094 #12035)
+#12033 := (iff #3093 #12030)
+#12027 := (implies #412 #12024)
+#12031 := (iff #12027 #12030)
+#12032 := [rewrite]: #12031
+#12028 := (iff #3093 #12027)
+#12025 := (iff #3092 #12024)
+#12026 := [rewrite]: #12025
+#12029 := [monotonicity #12026]: #12028
+#12034 := [trans #12029 #12032]: #12033
+#12037 := [quant-intro #12034]: #12036
+#12049 := [monotonicity #12037 #12046]: #12048
+#12055 := [trans #12049 #12053]: #12054
+#12058 := [monotonicity #12037 #12055]: #12057
+#12061 := [monotonicity #12058]: #12060
+#12065 := [trans #12061 #12063]: #12064
+#12021 := (iff #3089 #12020)
+#12022 := [rewrite]: #12021
+#12068 := [monotonicity #12022 #12065]: #12067
+#12074 := [trans #12068 #12072]: #12073
+#12018 := (iff #3087 #12017)
+#12019 := [rewrite]: #12018
+#12077 := [monotonicity #12019 #12074]: #12076
+#12083 := [trans #12077 #12081]: #12082
+#12015 := (iff #3085 #12014)
+#12016 := [rewrite]: #12015
+#12086 := [monotonicity #12016 #12083]: #12085
+#12092 := [trans #12086 #12090]: #12091
+#12012 := (iff #3083 #12011)
+#12013 := [rewrite]: #12012
+#12095 := [monotonicity #12013 #12092]: #12094
+#12101 := [trans #12095 #12099]: #12100
+#12104 := [monotonicity #12101]: #12103
+#12108 := [trans #12104 #12106]: #12107
+#11975 := (iff #3065 #11974)
+#11976 := [rewrite]: #11975
+#12111 := [monotonicity #11976 #12108]: #12110
+#12117 := [trans #12111 #12115]: #12116
+#12120 := [monotonicity #11976 #12117]: #12119
+#12125 := [trans #12120 #12123]: #12124
+#12128 := [monotonicity #12125]: #12127
+#12132 := [trans #12128 #12130]: #12131
+#12135 := [monotonicity #11976 #12132]: #12134
+#12140 := [trans #12135 #12138]: #12139
+#12143 := [monotonicity #12140]: #12142
+#12149 := [trans #12143 #12147]: #12148
+#12152 := [monotonicity #12149]: #12151
+#12155 := [monotonicity #11976 #12152]: #12154
+#12160 := [trans #12155 #12158]: #12159
+#12163 := [monotonicity #12160]: #12162
+#12167 := [trans #12163 #12165]: #12166
+#12170 := [monotonicity #11976 #12167]: #12169
+#12175 := [trans #12170 #12173]: #12174
+#12812 := [monotonicity #11976 #12175]: #12811
+#12817 := [trans #12812 #12815]: #12816
+#12820 := [monotonicity #12817]: #12819
+#12824 := [trans #12820 #12822]: #12823
+#12827 := [monotonicity #11976 #12824]: #12826
+#12832 := [trans #12827 #12830]: #12831
+#12835 := [monotonicity #12832]: #12834
+#12841 := [trans #12835 #12839]: #12840
+#12844 := [monotonicity #11976 #12841]: #12843
+#12849 := [trans #12844 #12847]: #12848
+#12852 := [monotonicity #12849]: #12851
+#12856 := [trans #12852 #12854]: #12855
+#12808 := (iff #3281 #12798)
+#12803 := (implies true #12798)
+#12806 := (iff #12803 #12798)
+#12807 := [rewrite]: #12806
+#12804 := (iff #3281 #12803)
+#12801 := (iff #3280 #12798)
+#12795 := (implies #11974 #12790)
+#12799 := (iff #12795 #12798)
+#12800 := [rewrite]: #12799
+#12796 := (iff #3280 #12795)
+#12793 := (iff #3279 #12790)
+#12786 := (implies #3179 #12781)
+#12791 := (iff #12786 #12790)
+#12792 := [rewrite]: #12791
+#12787 := (iff #3279 #12786)
+#12784 := (iff #3278 #12781)
+#12778 := (implies #11974 #12766)
+#12782 := (iff #12778 #12781)
+#12783 := [rewrite]: #12782
+#12779 := (iff #3278 #12778)
+#12776 := (iff #3277 #12766)
+#12771 := (implies true #12766)
+#12774 := (iff #12771 #12766)
+#12775 := [rewrite]: #12774
+#12772 := (iff #3277 #12771)
+#12769 := (iff #3276 #12766)
+#12763 := (implies #11974 #12760)
+#12767 := (iff #12763 #12766)
+#12768 := [rewrite]: #12767
+#12764 := (iff #3276 #12763)
+#12761 := (iff #3275 #12760)
+#12758 := (iff #3274 #12755)
+#12752 := (implies #12351 #12749)
+#12756 := (iff #12752 #12755)
+#12757 := [rewrite]: #12756
+#12753 := (iff #3274 #12752)
+#12750 := (iff #3273 #12749)
+#12747 := (iff #3272 #12744)
+#12741 := (implies #12357 #12736)
+#12745 := (iff #12741 #12744)
+#12746 := [rewrite]: #12745
+#12742 := (iff #3272 #12741)
+#12739 := (iff #3271 #12736)
+#12733 := (implies #11974 #12730)
+#12737 := (iff #12733 #12736)
+#12738 := [rewrite]: #12737
+#12734 := (iff #3271 #12733)
+#12731 := (iff #3270 #12730)
+#12728 := (iff #3269 #12718)
+#12723 := (implies true #12718)
+#12726 := (iff #12723 #12718)
+#12727 := [rewrite]: #12726
+#12724 := (iff #3269 #12723)
+#12721 := (iff #3268 #12718)
+#12715 := (implies #11974 #12710)
+#12719 := (iff #12715 #12718)
+#12720 := [rewrite]: #12719
+#12716 := (iff #3268 #12715)
+#12713 := (iff #3267 #12710)
+#12706 := (implies #3257 #12701)
+#12711 := (iff #12706 #12710)
+#12712 := [rewrite]: #12711
+#12707 := (iff #3267 #12706)
+#12704 := (iff #3266 #12701)
+#12698 := (implies #11974 #12686)
+#12702 := (iff #12698 #12701)
+#12703 := [rewrite]: #12702
+#12699 := (iff #3266 #12698)
+#12696 := (iff #3265 #12686)
+#12691 := (implies true #12686)
+#12694 := (iff #12691 #12686)
+#12695 := [rewrite]: #12694
+#12692 := (iff #3265 #12691)
+#12689 := (iff #3264 #12686)
+#12683 := (implies #11974 #12678)
+#12687 := (iff #12683 #12686)
+#12688 := [rewrite]: #12687
+#12684 := (iff #3264 #12683)
+#12681 := (iff #3263 #12678)
+#12675 := (implies #11974 #12663)
+#12679 := (iff #12675 #12678)
+#12680 := [rewrite]: #12679
+#12676 := (iff #3263 #12675)
+#12673 := (iff #3262 #12663)
+#12668 := (implies true #12663)
+#12671 := (iff #12668 #12663)
+#12672 := [rewrite]: #12671
+#12669 := (iff #3262 #12668)
+#12666 := (iff #3261 #12663)
+#12659 := (implies #12644 #12654)
+#12664 := (iff #12659 #12663)
+#12665 := [rewrite]: #12664
+#12660 := (iff #3261 #12659)
+#12657 := (iff #3260 #12654)
+#12650 := (implies #12647 #12500)
+#12655 := (iff #12650 #12654)
+#12656 := [rewrite]: #12655
+#12651 := (iff #3260 #12650)
+#12510 := (iff #3239 #12500)
+#12505 := (implies true #12500)
+#12508 := (iff #12505 #12500)
+#12509 := [rewrite]: #12508
+#12506 := (iff #3239 #12505)
+#12503 := (iff #3238 #12500)
+#12496 := (implies #3203 #12493)
+#12501 := (iff #12496 #12500)
+#12502 := [rewrite]: #12501
+#12497 := (iff #3238 #12496)
+#12494 := (iff #3237 #12493)
+#12491 := (iff #3236 #12488)
+#12484 := (implies #12380 #12479)
+#12489 := (iff #12484 #12488)
+#12490 := [rewrite]: #12489
+#12485 := (iff #3236 #12484)
+#12482 := (iff #3235 #12479)
+#12475 := (implies #12383 #12470)
+#12480 := (iff #12475 #12479)
+#12481 := [rewrite]: #12480
+#12476 := (iff #3235 #12475)
+#12473 := (iff #3234 #12470)
+#12466 := (implies #3211 #12461)
+#12471 := (iff #12466 #12470)
+#12472 := [rewrite]: #12471
+#12467 := (iff #3234 #12466)
+#12464 := (iff #3233 #12461)
+#12457 := (implies #12386 #12447)
+#12462 := (iff #12457 #12461)
+#12463 := [rewrite]: #12462
+#12458 := (iff #3233 #12457)
+#12455 := (iff #3232 #12447)
+#12450 := (implies true #12447)
+#12453 := (iff #12450 #12447)
+#12454 := [rewrite]: #12453
+#12451 := (iff #3232 #12450)
+#12448 := (iff #3231 #12447)
+#12445 := (iff #3230 #12442)
+#12438 := (implies #3214 #12435)
+#12443 := (iff #12438 #12442)
+#12444 := [rewrite]: #12443
+#12439 := (iff #3230 #12438)
+#12436 := (iff #3229 #12435)
+#12433 := (iff #3228 #12430)
+#12426 := (implies #12401 #12407)
+#12431 := (iff #12426 #12430)
+#12432 := [rewrite]: #12431
+#12427 := (iff #3228 #12426)
+#12424 := (iff #3227 #12407)
+#12419 := (and #12407 true)
+#12422 := (iff #12419 #12407)
+#12423 := [rewrite]: #12422
+#12420 := (iff #3227 #12419)
+#12417 := (iff #3226 true)
+#12412 := (implies #12407 true)
+#12415 := (iff #12412 true)
+#12416 := [rewrite]: #12415
+#12413 := (iff #3226 #12412)
+#12410 := (iff #3225 true)
+#12411 := [rewrite]: #12410
+#12408 := (iff #3224 #12407)
+#12405 := (iff #3223 #12404)
+#12406 := [rewrite]: #12405
+#12409 := [monotonicity #12406]: #12408
+#12414 := [monotonicity #12409 #12411]: #12413
+#12418 := [trans #12414 #12416]: #12417
+#12421 := [monotonicity #12409 #12418]: #12420
+#12425 := [trans #12421 #12423]: #12424
+#12402 := (iff #3219 #12401)
+#12399 := (iff #3218 #12396)
+#12393 := (implies #412 #12390)
+#12397 := (iff #12393 #12396)
+#12398 := [rewrite]: #12397
+#12394 := (iff #3218 #12393)
+#12391 := (iff #3217 #12390)
+#12392 := [rewrite]: #12391
+#12395 := [monotonicity #12392]: #12394
+#12400 := [trans #12395 #12398]: #12399
+#12403 := [quant-intro #12400]: #12402
+#12428 := [monotonicity #12403 #12425]: #12427
+#12434 := [trans #12428 #12432]: #12433
+#12437 := [monotonicity #12403 #12434]: #12436
+#12440 := [monotonicity #12437]: #12439
+#12446 := [trans #12440 #12444]: #12445
+#12449 := [monotonicity #12446]: #12448
+#12452 := [monotonicity #12449]: #12451
+#12456 := [trans #12452 #12454]: #12455
+#12387 := (iff #3213 #12386)
+#12388 := [rewrite]: #12387
+#12459 := [monotonicity #12388 #12456]: #12458
+#12465 := [trans #12459 #12463]: #12464
+#12468 := [monotonicity #12465]: #12467
+#12474 := [trans #12468 #12472]: #12473
+#12384 := (iff #3209 #12383)
+#12372 := (= #3204 #12371)
+#12373 := [rewrite]: #12372
+#12385 := [monotonicity #12373]: #12384
+#12477 := [monotonicity #12385 #12474]: #12476
+#12483 := [trans #12477 #12481]: #12482
+#12381 := (iff #3207 #12380)
+#12378 := (iff #3206 #12377)
+#12379 := [monotonicity #12373]: #12378
+#12375 := (iff #3205 #12374)
+#12376 := [monotonicity #12373]: #12375
+#12382 := [monotonicity #12376 #12379]: #12381
+#12486 := [monotonicity #12382 #12483]: #12485
+#12492 := [trans #12486 #12490]: #12491
+#12495 := [monotonicity #12382 #12492]: #12494
+#12498 := [monotonicity #12495]: #12497
+#12504 := [trans #12498 #12502]: #12503
+#12507 := [monotonicity #12504]: #12506
+#12511 := [trans #12507 #12509]: #12510
+#12648 := (iff #3259 #12647)
+#12649 := [rewrite]: #12648
+#12652 := [monotonicity #12649 #12511]: #12651
+#12658 := [trans #12652 #12656]: #12657
+#12645 := (iff #3258 #12644)
+#12646 := [rewrite]: #12645
+#12661 := [monotonicity #12646 #12658]: #12660
+#12667 := [trans #12661 #12665]: #12666
+#12670 := [monotonicity #12667]: #12669
+#12674 := [trans #12670 #12672]: #12673
+#12677 := [monotonicity #11976 #12674]: #12676
+#12682 := [trans #12677 #12680]: #12681
+#12685 := [monotonicity #11976 #12682]: #12684
+#12690 := [trans #12685 #12688]: #12689
+#12693 := [monotonicity #12690]: #12692
+#12697 := [trans #12693 #12695]: #12696
+#12700 := [monotonicity #11976 #12697]: #12699
+#12705 := [trans #12700 #12703]: #12704
+#12708 := [monotonicity #12705]: #12707
+#12714 := [trans #12708 #12712]: #12713
+#12717 := [monotonicity #11976 #12714]: #12716
+#12722 := [trans #12717 #12720]: #12721
+#12725 := [monotonicity #12722]: #12724
+#12729 := [trans #12725 #12727]: #12728
+#12642 := (iff #3256 #12632)
+#12637 := (implies true #12632)
+#12640 := (iff #12637 #12632)
+#12641 := [rewrite]: #12640
+#12638 := (iff #3256 #12637)
+#12635 := (iff #3255 #12632)
+#12629 := (implies #11974 #12624)
+#12633 := (iff #12629 #12632)
+#12634 := [rewrite]: #12633
+#12630 := (iff #3255 #12629)
+#12627 := (iff #3254 #12624)
+#12620 := (implies #3190 #12615)
+#12625 := (iff #12620 #12624)
+#12626 := [rewrite]: #12625
+#12621 := (iff #3254 #12620)
+#12618 := (iff #3253 #12615)
+#12612 := (implies #11974 #12600)
+#12616 := (iff #12612 #12615)
+#12617 := [rewrite]: #12616
+#12613 := (iff #3253 #12612)
+#12610 := (iff #3252 #12600)
+#12605 := (implies true #12600)
+#12608 := (iff #12605 #12600)
+#12609 := [rewrite]: #12608
+#12606 := (iff #3252 #12605)
+#12603 := (iff #3251 #12600)
+#12597 := (implies #11974 #12594)
+#12601 := (iff #12597 #12600)
+#12602 := [rewrite]: #12601
+#12598 := (iff #3251 #12597)
+#12595 := (iff #3250 #12594)
+#12592 := (iff #3249 #12589)
+#12585 := (implies #12351 #12582)
+#12590 := (iff #12585 #12589)
+#12591 := [rewrite]: #12590
+#12586 := (iff #3249 #12585)
+#12583 := (iff #3248 #12582)
+#12580 := (iff #3247 #12577)
+#12573 := (implies #12357 #12568)
+#12578 := (iff #12573 #12577)
+#12579 := [rewrite]: #12578
+#12574 := (iff #3247 #12573)
+#12571 := (iff #3246 #12568)
+#12564 := (implies #12360 #12559)
+#12569 := (iff #12564 #12568)
+#12570 := [rewrite]: #12569
+#12565 := (iff #3246 #12564)
+#12562 := (iff #3245 #12559)
+#12555 := (implies #3194 #12550)
+#12560 := (iff #12555 #12559)
+#12561 := [rewrite]: #12560
+#12556 := (iff #3245 #12555)
+#12553 := (iff #3244 #12550)
+#12546 := (implies #3196 #12541)
+#12551 := (iff #12546 #12550)
+#12552 := [rewrite]: #12551
+#12547 := (iff #3244 #12546)
+#12544 := (iff #3243 #12541)
+#12537 := (implies #3064 #12525)
+#12542 := (iff #12537 #12541)
+#12543 := [rewrite]: #12542
+#12538 := (iff #3243 #12537)
+#12535 := (iff #3242 #12525)
+#12530 := (implies true #12525)
+#12533 := (iff #12530 #12525)
+#12534 := [rewrite]: #12533
+#12531 := (iff #3242 #12530)
+#12528 := (iff #3241 #12525)
+#12521 := (implies #12365 #12516)
+#12526 := (iff #12521 #12525)
+#12527 := [rewrite]: #12526
+#12522 := (iff #3241 #12521)
+#12519 := (iff #3240 #12516)
+#12512 := (implies #12368 #12500)
+#12517 := (iff #12512 #12516)
+#12518 := [rewrite]: #12517
+#12513 := (iff #3240 #12512)
+#12369 := (iff #3201 #12368)
+#12370 := [rewrite]: #12369
+#12514 := [monotonicity #12370 #12511]: #12513
+#12520 := [trans #12514 #12518]: #12519
+#12366 := (iff #3199 #12365)
+#12367 := [rewrite]: #12366
+#12523 := [monotonicity #12367 #12520]: #12522
+#12529 := [trans #12523 #12527]: #12528
+#12532 := [monotonicity #12529]: #12531
+#12536 := [trans #12532 #12534]: #12535
+#12363 := (iff #3197 #3064)
+#12364 := [rewrite]: #12363
+#12539 := [monotonicity #12364 #12536]: #12538
+#12545 := [trans #12539 #12543]: #12544
+#12548 := [monotonicity #12545]: #12547
+#12554 := [trans #12548 #12552]: #12553
+#12557 := [monotonicity #12554]: #12556
+#12563 := [trans #12557 #12561]: #12562
+#12361 := (iff #3192 #12360)
+#12362 := [rewrite]: #12361
+#12566 := [monotonicity #12362 #12563]: #12565
+#12572 := [trans #12566 #12570]: #12571
+#12358 := (iff #3188 #12357)
+#12355 := (iff #3187 #12354)
+#12356 := [rewrite]: #12355
+#12346 := (iff #3182 #12345)
+#12347 := [rewrite]: #12346
+#12359 := [monotonicity #12347 #12356]: #12358
+#12575 := [monotonicity #12359 #12572]: #12574
+#12581 := [trans #12575 #12579]: #12580
+#12584 := [monotonicity #12359 #12581]: #12583
+#12352 := (iff #3185 #12351)
+#12349 := (iff #3184 #12348)
+#12350 := [rewrite]: #12349
+#12353 := [monotonicity #12347 #12350]: #12352
+#12587 := [monotonicity #12353 #12584]: #12586
+#12593 := [trans #12587 #12591]: #12592
+#12596 := [monotonicity #12353 #12593]: #12595
+#12599 := [monotonicity #11976 #12596]: #12598
+#12604 := [trans #12599 #12602]: #12603
+#12607 := [monotonicity #12604]: #12606
+#12611 := [trans #12607 #12609]: #12610
+#12614 := [monotonicity #11976 #12611]: #12613
+#12619 := [trans #12614 #12617]: #12618
+#12622 := [monotonicity #12619]: #12621
+#12628 := [trans #12622 #12626]: #12627
+#12631 := [monotonicity #11976 #12628]: #12630
+#12636 := [trans #12631 #12634]: #12635
+#12639 := [monotonicity #12636]: #12638
+#12643 := [trans #12639 #12641]: #12642
+#12732 := [monotonicity #12643 #12729]: #12731
+#12735 := [monotonicity #11976 #12732]: #12734
+#12740 := [trans #12735 #12738]: #12739
+#12743 := [monotonicity #12359 #12740]: #12742
+#12748 := [trans #12743 #12746]: #12747
+#12751 := [monotonicity #12359 #12748]: #12750
+#12754 := [monotonicity #12353 #12751]: #12753
+#12759 := [trans #12754 #12757]: #12758
+#12762 := [monotonicity #12353 #12759]: #12761
+#12765 := [monotonicity #11976 #12762]: #12764
+#12770 := [trans #12765 #12768]: #12769
+#12773 := [monotonicity #12770]: #12772
+#12777 := [trans #12773 #12775]: #12776
+#12780 := [monotonicity #11976 #12777]: #12779
+#12785 := [trans #12780 #12783]: #12784
+#12788 := [monotonicity #12785]: #12787
+#12794 := [trans #12788 #12792]: #12793
+#12797 := [monotonicity #11976 #12794]: #12796
+#12802 := [trans #12797 #12800]: #12801
+#12805 := [monotonicity #12802]: #12804
+#12809 := [trans #12805 #12807]: #12808
+#12859 := [monotonicity #12809 #12856]: #12858
+#12862 := [monotonicity #11976 #12859]: #12861
+#12867 := [trans #12862 #12865]: #12866
+#12343 := (iff #3178 true)
+#12341 := (iff #12338 true)
+#12342 := [rewrite]: #12341
+#12339 := (iff #3178 #12338)
+#12336 := (iff #3177 true)
+#12337 := [rewrite]: #12336
+#12334 := (iff #3176 true)
+#12335 := [rewrite]: #12334
+#12340 := [monotonicity #12335 #12337]: #12339
+#12344 := [trans #12340 #12342]: #12343
+#12870 := [monotonicity #12344 #12867]: #12869
+#12874 := [trans #12870 #12872]: #12873
+#12877 := [monotonicity #12874]: #12876
+#12883 := [trans #12877 #12881]: #12882
+#12886 := [monotonicity #12883]: #12885
+#12892 := [trans #12886 #12890]: #12891
+#12895 := [monotonicity #12892]: #12894
+#12901 := [trans #12895 #12899]: #12900
+#12904 := [monotonicity #12901]: #12903
+#12910 := [trans #12904 #12908]: #12909
+#12913 := [monotonicity #12910]: #12912
+#12919 := [trans #12913 #12917]: #12918
+#12009 := (iff #3081 #12006)
+#12003 := (and #12000 #11908)
+#12007 := (iff #12003 #12006)
+#12008 := [rewrite]: #12007
+#12004 := (iff #3081 #12003)
+#11909 := (iff #2987 #11908)
+#11910 := [rewrite]: #11909
+#12001 := (iff #3080 #12000)
+#12002 := [rewrite]: #12001
+#12005 := [monotonicity #12002 #11910]: #12004
+#12010 := [trans #12005 #12008]: #12009
+#12922 := [monotonicity #12010 #12919]: #12921
+#12927 := [trans #12922 #12925]: #12926
+#12313 := (iff #3164 #12312)
+#12310 := (iff #3163 #12309)
+#12307 := (iff #3162 #12306)
+#12308 := [rewrite]: #12307
+#12311 := [monotonicity #12308]: #12310
+#12314 := [monotonicity #12311]: #12313
+#12930 := [monotonicity #12314 #12927]: #12929
+#12936 := [trans #12930 #12934]: #12935
+#12332 := (iff #3168 #12312)
+#12315 := (and true #12312)
+#12318 := (iff #12315 #12312)
+#12319 := [rewrite]: #12318
+#12330 := (iff #3168 #12315)
+#12328 := (iff #3167 #12312)
+#12326 := (iff #3167 #12315)
+#12324 := (iff #3166 #12312)
+#12322 := (iff #3166 #12315)
+#12320 := (iff #3165 #12312)
+#12316 := (iff #3165 #12315)
+#12304 := (iff #3155 true)
+#12299 := (forall (vars (?x783 T5)) (:pat #3151) true)
+#12302 := (iff #12299 true)
+#12303 := [elim-unused]: #12302
+#12300 := (iff #3155 #12299)
+#12297 := (iff #3154 true)
+#12249 := (= uf_9 #3139)
+#12261 := (implies #12249 #12249)
+#12264 := (iff #12261 true)
+#12265 := [rewrite]: #12264
+#12295 := (iff #3154 #12261)
+#12293 := (iff #3153 #12249)
+#12254 := (and true #12249)
+#12257 := (iff #12254 #12249)
+#12258 := [rewrite]: #12257
+#12291 := (iff #3153 #12254)
+#12250 := (iff #3140 #12249)
+#12251 := [rewrite]: #12250
+#12289 := (iff #3152 true)
+#12290 := [rewrite]: #12289
+#12292 := [monotonicity #12290 #12251]: #12291
+#12294 := [trans #12292 #12258]: #12293
+#12296 := [monotonicity #12251 #12294]: #12295
+#12298 := [trans #12296 #12265]: #12297
+#12301 := [quant-intro #12298]: #12300
+#12305 := [trans #12301 #12303]: #12304
+#12317 := [monotonicity #12305 #12314]: #12316
+#12321 := [trans #12317 #12319]: #12320
+#12287 := (iff #3148 true)
+#12242 := (forall (vars (?x780 T5)) (:pat #3128) true)
+#12245 := (iff #12242 true)
+#12246 := [elim-unused]: #12245
+#12285 := (iff #3148 #12242)
+#12283 := (iff #3147 true)
+#12281 := (iff #3147 #12261)
+#12279 := (iff #3146 #12249)
+#12277 := (iff #3146 #12254)
+#12275 := (iff #3145 true)
+#12276 := [rewrite]: #12275
+#12278 := [monotonicity #12276 #12251]: #12277
+#12280 := [trans #12278 #12258]: #12279
+#12282 := [monotonicity #12251 #12280]: #12281
+#12284 := [trans #12282 #12265]: #12283
+#12286 := [quant-intro #12284]: #12285
+#12288 := [trans #12286 #12246]: #12287
+#12323 := [monotonicity #12288 #12321]: #12322
+#12325 := [trans #12323 #12319]: #12324
+#12273 := (iff #3144 true)
+#12268 := (forall (vars (?x781 T5)) (:pat #3138) true)
+#12271 := (iff #12268 true)
+#12272 := [elim-unused]: #12271
+#12269 := (iff #3144 #12268)
+#12266 := (iff #3143 true)
+#12262 := (iff #3143 #12261)
+#12259 := (iff #3142 #12249)
+#12255 := (iff #3142 #12254)
+#12252 := (iff #3141 true)
+#12253 := [rewrite]: #12252
+#12256 := [monotonicity #12253 #12251]: #12255
+#12260 := [trans #12256 #12258]: #12259
+#12263 := [monotonicity #12251 #12260]: #12262
+#12267 := [trans #12263 #12265]: #12266
+#12270 := [quant-intro #12267]: #12269
+#12274 := [trans #12270 #12272]: #12273
+#12327 := [monotonicity #12274 #12325]: #12326
+#12329 := [trans #12327 #12319]: #12328
+#12247 := (iff #3135 true)
+#12243 := (iff #3135 #12242)
+#12240 := (iff #3134 true)
+#12229 := (= uf_261 #3131)
+#12232 := (not #12229)
+#12235 := (implies #12232 #12232)
+#12238 := (iff #12235 true)
+#12239 := [rewrite]: #12238
+#12236 := (iff #3134 #12235)
+#12233 := (iff #3133 #12232)
+#12230 := (iff #3132 #12229)
+#12231 := [rewrite]: #12230
+#12234 := [monotonicity #12231]: #12233
+#12237 := [monotonicity #12234 #12234]: #12236
+#12241 := [trans #12237 #12239]: #12240
+#12244 := [quant-intro #12241]: #12243
+#12248 := [trans #12244 #12246]: #12247
+#12331 := [monotonicity #12248 #12329]: #12330
+#12333 := [trans #12331 #12319]: #12332
+#12939 := [monotonicity #12333 #12936]: #12938
+#12944 := [trans #12939 #12942]: #12943
+#12947 := [monotonicity #11976 #12944]: #12946
+#12952 := [trans #12947 #12950]: #12951
+#12955 := [monotonicity #12952]: #12954
+#12959 := [trans #12955 #12957]: #12958
+#12962 := [monotonicity #11976 #12959]: #12961
+#12967 := [trans #12962 #12965]: #12966
+#12970 := [monotonicity #12967]: #12969
+#12974 := [trans #12970 #12972]: #12973
+#12977 := [monotonicity #11976 #12974]: #12976
+#12982 := [trans #12977 #12980]: #12981
#12985 := [monotonicity #12982]: #12984
#12989 := [trans #12985 #12987]: #12988
-#13076 := (iff #3247 #13075)
-#13077 := [rewrite]: #13076
-#13080 := [monotonicity #13077 #12989]: #13079
-#13086 := [trans #13080 #13084]: #13085
-#13089 := [monotonicity #13086]: #13088
-#13095 := [trans #13089 #13093]: #13094
-#13098 := [monotonicity #13095]: #13097
-#13102 := [trans #13098 #13100]: #13101
-#13073 := (iff #3245 #3059)
-#13074 := [rewrite]: #13073
-#13105 := [monotonicity #13074 #13102]: #13104
-#13111 := [trans #13105 #13109]: #13110
-#13114 := [monotonicity #13111]: #13113
-#13120 := [trans #13114 #13118]: #13119
-#13123 := [monotonicity #13120]: #13122
-#13129 := [trans #13123 #13127]: #13128
-#13071 := (iff #3240 #13070)
-#13072 := [rewrite]: #13071
-#13132 := [monotonicity #13072 #13129]: #13131
-#13138 := [trans #13132 #13136]: #13137
-#13141 := [monotonicity #12822 #13138]: #13140
-#13147 := [trans #13141 #13145]: #13146
-#13150 := [monotonicity #13147 #12822]: #13149
-#13155 := [trans #13150 #13153]: #13154
-#13158 := [monotonicity #12811 #13155]: #13157
-#13164 := [trans #13158 #13162]: #13163
-#13167 := [monotonicity #13164 #12811]: #13166
-#13172 := [trans #13167 #13170]: #13171
-#13175 := [monotonicity #13172]: #13174
-#13180 := [trans #13175 #13178]: #13179
-#13183 := [monotonicity #13180]: #13182
-#13187 := [trans #13183 #13185]: #13186
-#13190 := [monotonicity #13187]: #13189
-#13195 := [trans #13190 #13193]: #13194
-#13198 := [monotonicity #13195]: #13197
-#13204 := [trans #13198 #13202]: #13203
-#13207 := [monotonicity #13204]: #13206
-#13212 := [trans #13207 #13210]: #13211
-#13215 := [monotonicity #13212]: #13214
-#13219 := [trans #13215 #13217]: #13218
-#13068 := (iff #3237 #13058)
-#13063 := (implies true #13058)
-#13066 := (iff #13063 #13058)
-#13067 := [rewrite]: #13066
-#13064 := (iff #3237 #13063)
-#13061 := (iff #3236 #13058)
-#13055 := (implies #3060 #13050)
-#13059 := (iff #13055 #13058)
-#13060 := [rewrite]: #13059
-#13056 := (iff #3236 #13055)
-#13053 := (iff #3235 #13050)
-#13046 := (implies #3185 #13041)
-#13051 := (iff #13046 #13050)
-#13052 := [rewrite]: #13051
-#13047 := (iff #3235 #13046)
-#13044 := (iff #3234 #13041)
-#13038 := (implies #3060 #13026)
-#13042 := (iff #13038 #13041)
-#13043 := [rewrite]: #13042
-#13039 := (iff #3234 #13038)
-#13036 := (iff #3233 #13026)
-#13031 := (implies true #13026)
-#13034 := (iff #13031 #13026)
-#13035 := [rewrite]: #13034
-#13032 := (iff #3233 #13031)
-#13029 := (iff #3232 #13026)
-#13023 := (implies #3060 #13018)
-#13027 := (iff #13023 #13026)
-#13028 := [rewrite]: #13027
-#13024 := (iff #3232 #13023)
-#13021 := (iff #3231 #13018)
-#13015 := (implies #3060 #13003)
-#13019 := (iff #13015 #13018)
-#13020 := [rewrite]: #13019
-#13016 := (iff #3231 #13015)
-#13013 := (iff #3230 #13003)
-#13008 := (implies true #13003)
-#13011 := (iff #13008 #13003)
-#13012 := [rewrite]: #13011
-#13009 := (iff #3230 #13008)
-#13006 := (iff #3229 #13003)
-#12999 := (implies #12823 #12994)
-#13004 := (iff #12999 #13003)
-#13005 := [rewrite]: #13004
-#13000 := (iff #3229 #12999)
-#12997 := (iff #3228 #12994)
-#12990 := (implies #12826 #12978)
-#12995 := (iff #12990 #12994)
-#12996 := [rewrite]: #12995
-#12991 := (iff #3228 #12990)
-#12827 := (iff #3189 #12826)
-#12828 := [rewrite]: #12827
-#12992 := [monotonicity #12828 #12989]: #12991
-#12998 := [trans #12992 #12996]: #12997
-#12824 := (iff #3187 #12823)
-#12825 := [rewrite]: #12824
-#13001 := [monotonicity #12825 #12998]: #13000
-#13007 := [trans #13001 #13005]: #13006
-#13010 := [monotonicity #13007]: #13009
-#13014 := [trans #13010 #13012]: #13013
-#13017 := [monotonicity #13014]: #13016
-#13022 := [trans #13017 #13020]: #13021
+#12227 := (iff #3125 true)
+#12222 := (implies true true)
+#12225 := (iff #12222 true)
+#12226 := [rewrite]: #12225
+#12223 := (iff #3125 #12222)
+#12220 := (iff #3124 true)
+#12215 := (implies #11974 true)
+#12218 := (iff #12215 true)
+#12219 := [rewrite]: #12218
+#12216 := (iff #3124 #12215)
+#12213 := (iff #3123 true)
+#12180 := (or #12179 #12171)
+#12188 := (or #12112 #12180)
+#12203 := (or #12112 #12188)
+#12208 := (implies false #12203)
+#12211 := (iff #12208 true)
+#12212 := [rewrite]: #12211
+#12209 := (iff #3123 #12208)
+#12206 := (iff #3122 #12203)
+#12200 := (implies #11974 #12188)
+#12204 := (iff #12200 #12203)
+#12205 := [rewrite]: #12204
+#12201 := (iff #3122 #12200)
+#12198 := (iff #3121 #12188)
+#12193 := (implies true #12188)
+#12196 := (iff #12193 #12188)
+#12197 := [rewrite]: #12196
+#12194 := (iff #3121 #12193)
+#12191 := (iff #3120 #12188)
+#12185 := (implies #11974 #12180)
+#12189 := (iff #12185 #12188)
+#12190 := [rewrite]: #12189
+#12186 := (iff #3120 #12185)
+#12183 := (iff #3119 #12180)
+#12176 := (implies #12006 #12171)
+#12181 := (iff #12176 #12180)
+#12182 := [rewrite]: #12181
+#12177 := (iff #3119 #12176)
+#12178 := [monotonicity #12010 #12175]: #12177
+#12184 := [trans #12178 #12182]: #12183
+#12187 := [monotonicity #11976 #12184]: #12186
+#12192 := [trans #12187 #12190]: #12191
+#12195 := [monotonicity #12192]: #12194
+#12199 := [trans #12195 #12197]: #12198
+#12202 := [monotonicity #11976 #12199]: #12201
+#12207 := [trans #12202 #12205]: #12206
+#12210 := [monotonicity #11999 #12207]: #12209
+#12214 := [trans #12210 #12212]: #12213
+#12217 := [monotonicity #11976 #12214]: #12216
+#12221 := [trans #12217 #12219]: #12220
+#12224 := [monotonicity #12221]: #12223
+#12228 := [trans #12224 #12226]: #12227
+#12992 := [monotonicity #12228 #12989]: #12991
+#12996 := [trans #12992 #12994]: #12995
+#12999 := [monotonicity #11976 #12996]: #12998
+#13004 := [trans #12999 #13002]: #13003
+#11996 := (iff #3076 #11995)
+#11993 := (iff #3075 #11992)
+#11994 := [rewrite]: #11993
+#11997 := [monotonicity #11994]: #11996
+#13007 := [monotonicity #11997 #13004]: #13006
+#13013 := [trans #13007 #13011]: #13012
+#11990 := (iff #3071 #11989)
+#11987 := (iff #3070 #11984)
+#11981 := (implies #412 #11978)
+#11985 := (iff #11981 #11984)
+#11986 := [rewrite]: #11985
+#11982 := (iff #3070 #11981)
+#11979 := (iff #3069 #11978)
+#11980 := [rewrite]: #11979
+#11983 := [monotonicity #11980]: #11982
+#11988 := [trans #11983 #11986]: #11987
+#11991 := [quant-intro #11988]: #11990
+#13016 := [monotonicity #11991 #13013]: #13015
+#13022 := [trans #13016 #13020]: #13021
#13025 := [monotonicity #13022]: #13024
-#13030 := [trans #13025 #13028]: #13029
-#13033 := [monotonicity #13030]: #13032
-#13037 := [trans #13033 #13035]: #13036
-#13040 := [monotonicity #13037]: #13039
-#13045 := [trans #13040 #13043]: #13044
-#13048 := [monotonicity #13045]: #13047
-#13054 := [trans #13048 #13052]: #13053
-#13057 := [monotonicity #13054]: #13056
-#13062 := [trans #13057 #13060]: #13061
-#13065 := [monotonicity #13062]: #13064
-#13069 := [trans #13065 #13067]: #13068
-#13222 := [monotonicity #13069 #13219]: #13221
-#13225 := [monotonicity #13222]: #13224
-#13230 := [trans #13225 #13228]: #13229
-#13233 := [monotonicity #12822 #13230]: #13232
-#13238 := [trans #13233 #13236]: #13237
-#13241 := [monotonicity #13238 #12822]: #13240
-#13246 := [trans #13241 #13244]: #13245
-#13249 := [monotonicity #12811 #13246]: #13248
-#13254 := [trans #13249 #13252]: #13253
-#13257 := [monotonicity #13254 #12811]: #13256
-#13262 := [trans #13257 #13260]: #13261
+#13031 := [trans #13025 #13029]: #13030
+#13034 := [monotonicity #11976 #13031]: #13033
+#13039 := [trans #13034 #13037]: #13038
+#13042 := [monotonicity #13039]: #13041
+#13048 := [trans #13042 #13046]: #13047
+#13051 := [monotonicity #13048]: #13050
+#13057 := [trans #13051 #13055]: #13056
+#13060 := [monotonicity #13057]: #13059
+#13066 := [trans #13060 #13064]: #13065
+#13069 := [monotonicity #13066]: #13068
+#13073 := [trans #13069 #13071]: #13072
+#11972 := (iff #3051 #11971)
+#11969 := (iff #3050 #3027)
+#11970 := [rewrite]: #11969
+#11973 := [monotonicity #11970]: #11972
+#13076 := [monotonicity #11973 #13073]: #13075
+#13082 := [trans #13076 #13080]: #13081
+#13085 := [monotonicity #11973 #13082]: #13084
+#11967 := (iff #3049 #11966)
+#11964 := (iff #3048 #11961)
+#11958 := (implies #412 #11955)
+#11962 := (iff #11958 #11961)
+#11963 := [rewrite]: #11962
+#11959 := (iff #3048 #11958)
+#11956 := (iff #3047 #11955)
+#11957 := [rewrite]: #11956
+#11960 := [monotonicity #11957]: #11959
+#11965 := [trans #11960 #11963]: #11964
+#11968 := [quant-intro #11965]: #11967
+#13088 := [monotonicity #11968 #13085]: #13087
+#13094 := [trans #13088 #13092]: #13093
+#13097 := [monotonicity #11968 #13094]: #13096
+#13100 := [monotonicity #13097]: #13099
+#13106 := [trans #13100 #13104]: #13105
+#13109 := [monotonicity #13106]: #13108
+#11952 := (iff #3041 #11951)
+#11949 := (iff #3040 #11948)
+#11946 := (iff #3039 #3038)
+#11947 := [rewrite]: #11946
+#11950 := [monotonicity #11947]: #11949
+#11953 := [monotonicity #11950]: #11952
+#13112 := [monotonicity #11953 #13109]: #13111
+#13118 := [trans #13112 #13116]: #13117
+#13121 := [monotonicity #13118]: #13120
+#13127 := [trans #13121 #13125]: #13126
+#13130 := [monotonicity #13127]: #13129
+#13136 := [trans #13130 #13134]: #13135
+#13139 := [monotonicity #13136]: #13138
+#13145 := [trans #13139 #13143]: #13144
+#13148 := [monotonicity #13145]: #13147
+#13154 := [trans #13148 #13152]: #13153
+#11944 := (iff #3024 #11943)
+#11941 := (iff #3023 #11940)
+#11942 := [rewrite]: #11941
+#11932 := (iff #3018 #11931)
+#11933 := [rewrite]: #11932
+#11945 := [monotonicity #11933 #11942]: #11944
+#13157 := [monotonicity #11945 #13154]: #13156
+#13163 := [trans #13157 #13161]: #13162
+#13166 := [monotonicity #11945 #13163]: #13165
+#11938 := (iff #3021 #11937)
+#11935 := (iff #3020 #11934)
+#11936 := [rewrite]: #11935
+#11939 := [monotonicity #11933 #11936]: #11938
+#13169 := [monotonicity #11939 #13166]: #13168
+#13175 := [trans #13169 #13173]: #13174
+#13178 := [monotonicity #11939 #13175]: #13177
+#11929 := (iff #3015 #11928)
+#11930 := [rewrite]: #11929
+#13181 := [monotonicity #11930 #13178]: #13180
+#13187 := [trans #13181 #13185]: #13186
+#13190 := [monotonicity #11930 #13187]: #13189
+#13193 := [monotonicity #13190]: #13192
+#13199 := [trans #13193 #13197]: #13198
+#11926 := (iff #3009 #11925)
+#11923 := (iff #3008 #11920)
+#11917 := (iff #11914 false)
+#11921 := (iff #11917 #11920)
+#11922 := [rewrite]: #11921
+#11918 := (iff #3008 #11917)
+#11915 := (iff #3007 #11914)
+#11916 := [rewrite]: #11915
+#11919 := [monotonicity #11916]: #11918
+#11924 := [trans #11919 #11922]: #11923
+#11927 := [quant-intro #11924]: #11926
+#13202 := [monotonicity #11927 #13199]: #13201
+#13208 := [trans #13202 #13206]: #13207
+#13211 := [monotonicity #13208]: #13210
+#13217 := [trans #13211 #13215]: #13216
+#13220 := [monotonicity #13217]: #13219
+#13226 := [trans #13220 #13224]: #13225
+#13229 := [monotonicity #13226]: #13228
+#13235 := [trans #13229 #13233]: #13234
+#13238 := [monotonicity #13235]: #13237
+#13244 := [trans #13238 #13242]: #13243
+#11912 := (iff #2988 #11911)
+#11906 := (iff #2985 #11905)
+#11907 := [rewrite]: #11906
+#11913 := [monotonicity #11907 #11910]: #11912
+#13247 := [monotonicity #11913 #13244]: #13246
+#13253 := [trans #13247 #13251]: #13252
+#11903 := (iff #2982 #11902)
+#11904 := [rewrite]: #11903
+#13256 := [monotonicity #11904 #13253]: #13255
+#13262 := [trans #13256 #13260]: #13261
#13265 := [monotonicity #13262]: #13264
-#13270 := [trans #13265 #13268]: #13269
-#13273 := [monotonicity #13270]: #13272
-#13277 := [trans #13273 #13275]: #13276
-#13280 := [monotonicity #13277]: #13279
-#13285 := [trans #13280 #13283]: #13284
-#13288 := [monotonicity #13285]: #13287
-#13294 := [trans #13288 #13292]: #13293
-#13297 := [monotonicity #13294]: #13296
-#13302 := [trans #13297 #13300]: #13301
-#13305 := [monotonicity #13302]: #13304
-#13309 := [trans #13305 #13307]: #13308
-#12801 := (iff #3173 #12791)
-#12796 := (implies true #12791)
-#12799 := (iff #12796 #12791)
-#12800 := [rewrite]: #12799
-#12797 := (iff #3173 #12796)
-#12794 := (iff #3172 #12791)
-#12788 := (implies #3060 #12783)
-#12792 := (iff #12788 #12791)
-#12793 := [rewrite]: #12792
-#12789 := (iff #3172 #12788)
-#12786 := (iff #3171 #12783)
-#12779 := (implies #3131 #12774)
-#12784 := (iff #12779 #12783)
-#12785 := [rewrite]: #12784
-#12780 := (iff #3171 #12779)
-#12777 := (iff #3170 #12774)
-#12771 := (implies #3060 #12759)
-#12775 := (iff #12771 #12774)
-#12776 := [rewrite]: #12775
-#12772 := (iff #3170 #12771)
-#12769 := (iff #3169 #12759)
-#12764 := (implies true #12759)
-#12767 := (iff #12764 #12759)
-#12768 := [rewrite]: #12767
-#12765 := (iff #3169 #12764)
-#12762 := (iff #3168 #12759)
-#12756 := (implies #3060 #12751)
-#12760 := (iff #12756 #12759)
-#12761 := [rewrite]: #12760
-#12757 := (iff #3168 #12756)
-#12758 := [monotonicity #12755]: #12757
-#12763 := [trans #12758 #12761]: #12762
-#12766 := [monotonicity #12763]: #12765
-#12770 := [trans #12766 #12768]: #12769
-#12773 := [monotonicity #12770]: #12772
-#12778 := [trans #12773 #12776]: #12777
-#12781 := [monotonicity #12778]: #12780
-#12787 := [trans #12781 #12785]: #12786
-#12790 := [monotonicity #12787]: #12789
-#12795 := [trans #12790 #12793]: #12794
-#12798 := [monotonicity #12795]: #12797
-#12802 := [trans #12798 #12800]: #12801
-#13312 := [monotonicity #12802 #13309]: #13311
-#13315 := [monotonicity #13312]: #13314
-#13320 := [trans #13315 #13318]: #13319
-#12565 := (iff #3130 true)
-#12520 := (iff #12517 true)
-#12521 := [rewrite]: #12520
-#12563 := (iff #3130 #12517)
-#12561 := (iff #3129 true)
-#12562 := [rewrite]: #12561
-#12559 := (iff #3128 true)
-#12560 := [rewrite]: #12559
-#12564 := [monotonicity #12560 #12562]: #12563
-#12566 := [trans #12564 #12521]: #12565
-#13323 := [monotonicity #12566 #13320]: #13322
-#13327 := [trans #13323 #13325]: #13326
-#13330 := [monotonicity #13327]: #13329
-#13336 := [trans #13330 #13334]: #13335
-#13339 := [monotonicity #13336]: #13338
-#13345 := [trans #13339 #13343]: #13344
-#13348 := [monotonicity #13345]: #13347
-#13354 := [trans #13348 #13352]: #13353
-#13357 := [monotonicity #13354]: #13356
-#13363 := [trans #13357 #13361]: #13362
-#13366 := [monotonicity #13363]: #13365
-#13372 := [trans #13366 #13370]: #13371
-#13375 := [monotonicity #12558 #13372]: #13374
-#13381 := [trans #13375 #13379]: #13380
-#12551 := (iff #3116 #12544)
-#12541 := (and #12437 #3115)
-#12545 := (iff #12541 #12544)
-#12546 := [rewrite]: #12545
-#12549 := (iff #3116 #12541)
-#12438 := (iff #3073 #12437)
-#12439 := [rewrite]: #12438
-#12550 := [monotonicity #12439]: #12549
-#12552 := [trans #12550 #12546]: #12551
-#13384 := [monotonicity #12552 #13381]: #13383
-#13390 := [trans #13384 #13388]: #13389
-#12547 := (iff #3114 #12544)
-#12542 := (iff #3114 #12541)
-#12539 := (iff #3113 #3115)
-#12537 := (iff #3112 #3078)
-#12532 := (and #3078 true)
-#12535 := (iff #12532 #3078)
-#12536 := [rewrite]: #12535
-#12533 := (iff #3112 #12532)
-#12530 := (iff #3111 true)
-#12528 := (iff #3111 #12517)
-#12526 := (iff #3110 true)
-#12524 := (iff #3110 #12517)
-#12522 := (iff #3109 true)
-#12518 := (iff #3109 #12517)
-#12515 := (iff #3108 true)
-#12476 := (forall (vars (?x777 T5)) (:pat #3090) true)
-#12479 := (iff #12476 true)
-#12480 := [elim-unused]: #12479
-#12513 := (iff #3108 #12476)
-#12511 := (iff #3107 true)
-#12500 := (= uf_261 #3104)
-#12503 := (not #12500)
-#12506 := (implies #12503 #12503)
-#12509 := (iff #12506 true)
-#12510 := [rewrite]: #12509
-#12507 := (iff #3107 #12506)
-#12504 := (iff #3106 #12503)
-#12501 := (iff #3105 #12500)
-#12502 := [rewrite]: #12501
-#12505 := [monotonicity #12502]: #12504
-#12508 := [monotonicity #12505 #12505]: #12507
-#12512 := [trans #12508 #12510]: #12511
-#12514 := [quant-intro #12512]: #12513
-#12516 := [trans #12514 #12480]: #12515
-#12498 := (iff #3101 true)
-#12493 := (forall (vars (?x778 T5)) (:pat #3097) true)
-#12496 := (iff #12493 true)
-#12497 := [elim-unused]: #12496
-#12494 := (iff #3101 #12493)
-#12491 := (iff #3100 true)
-#12440 := (= uf_9 #3082)
-#12452 := (implies #12440 #12440)
-#12455 := (iff #12452 true)
-#12456 := [rewrite]: #12455
-#12489 := (iff #3100 #12452)
-#12487 := (iff #3099 #12440)
-#12445 := (and #12440 true)
-#12448 := (iff #12445 #12440)
-#12449 := [rewrite]: #12448
-#12485 := (iff #3099 #12445)
-#12483 := (iff #3098 true)
-#12484 := [rewrite]: #12483
-#12441 := (iff #3083 #12440)
-#12442 := [rewrite]: #12441
-#12486 := [monotonicity #12442 #12484]: #12485
-#12488 := [trans #12486 #12449]: #12487
-#12490 := [monotonicity #12442 #12488]: #12489
-#12492 := [trans #12490 #12456]: #12491
-#12495 := [quant-intro #12492]: #12494
-#12499 := [trans #12495 #12497]: #12498
-#12519 := [monotonicity #12499 #12516]: #12518
-#12523 := [trans #12519 #12521]: #12522
-#12481 := (iff #3094 true)
-#12477 := (iff #3094 #12476)
-#12474 := (iff #3093 true)
-#12472 := (iff #3093 #12452)
-#12470 := (iff #3092 #12440)
-#12468 := (iff #3092 #12445)
-#12466 := (iff #3091 true)
-#12467 := [rewrite]: #12466
-#12469 := [monotonicity #12442 #12467]: #12468
-#12471 := [trans #12469 #12449]: #12470
-#12473 := [monotonicity #12442 #12471]: #12472
-#12475 := [trans #12473 #12456]: #12474
-#12478 := [quant-intro #12475]: #12477
-#12482 := [trans #12478 #12480]: #12481
-#12525 := [monotonicity #12482 #12523]: #12524
-#12527 := [trans #12525 #12521]: #12526
-#12464 := (iff #3087 true)
-#12459 := (forall (vars (?x776 T5)) (:pat #3081) true)
-#12462 := (iff #12459 true)
-#12463 := [elim-unused]: #12462
-#12460 := (iff #3087 #12459)
-#12457 := (iff #3086 true)
-#12453 := (iff #3086 #12452)
-#12450 := (iff #3085 #12440)
-#12446 := (iff #3085 #12445)
-#12443 := (iff #3084 true)
-#12444 := [rewrite]: #12443
-#12447 := [monotonicity #12442 #12444]: #12446
-#12451 := [trans #12447 #12449]: #12450
-#12454 := [monotonicity #12442 #12451]: #12453
-#12458 := [trans #12454 #12456]: #12457
-#12461 := [quant-intro #12458]: #12460
-#12465 := [trans #12461 #12463]: #12464
-#12529 := [monotonicity #12465 #12527]: #12528
-#12531 := [trans #12529 #12521]: #12530
-#12534 := [monotonicity #12531]: #12533
-#12538 := [trans #12534 #12536]: #12537
-#12540 := [monotonicity #12538]: #12539
-#12543 := [monotonicity #12439 #12540]: #12542
-#12548 := [trans #12543 #12546]: #12547
-#13393 := [monotonicity #12548 #13390]: #13392
-#13398 := [trans #13393 #13396]: #13397
-#13401 := [monotonicity #13398]: #13400
-#13406 := [trans #13401 #13404]: #13405
-#13409 := [monotonicity #13406]: #13408
-#13413 := [trans #13409 #13411]: #13412
-#13416 := [monotonicity #13413]: #13415
-#13421 := [trans #13416 #13419]: #13420
-#13424 := [monotonicity #13421]: #13423
-#13428 := [trans #13424 #13426]: #13427
-#13431 := [monotonicity #13428]: #13430
-#13436 := [trans #13431 #13434]: #13435
-#13439 := [monotonicity #13436]: #13438
-#13443 := [trans #13439 #13441]: #13442
-#13500 := [monotonicity #13443 #13497]: #13499
-#13504 := [trans #13500 #13502]: #13503
-#13507 := [monotonicity #13504]: #13506
-#13512 := [trans #13507 #13510]: #13511
-#12435 := (iff #3071 #12432)
-#12429 := (and #12426 #3070)
-#12433 := (iff #12429 #12432)
-#12434 := [rewrite]: #12433
-#12430 := (iff #3071 #12429)
-#12427 := (iff #3069 #12426)
-#12428 := [rewrite]: #12427
-#12431 := [monotonicity #12428]: #12430
-#12436 := [trans #12431 #12434]: #12435
-#13515 := [monotonicity #12436 #13512]: #13514
-#13521 := [trans #13515 #13519]: #13520
-#12424 := (iff #3066 #12423)
-#12421 := (iff #3065 #12418)
-#12415 := (implies #5718 #12412)
-#12419 := (iff #12415 #12418)
-#12420 := [rewrite]: #12419
-#12416 := (iff #3065 #12415)
-#12413 := (iff #3064 #12412)
-#12414 := [rewrite]: #12413
-#12417 := [monotonicity #5720 #12414]: #12416
-#12422 := [trans #12417 #12420]: #12421
-#12425 := [quant-intro #12422]: #12424
-#13524 := [monotonicity #12425 #13521]: #13523
-#13530 := [trans #13524 #13528]: #13529
-#13533 := [monotonicity #13530]: #13532
-#13539 := [trans #13533 #13537]: #13538
-#13542 := [monotonicity #13539]: #13541
-#13547 := [trans #13542 #13545]: #13546
-#13550 := [monotonicity #13547]: #13549
-#13556 := [trans #13550 #13554]: #13555
-#13559 := [monotonicity #13556]: #13558
-#13565 := [trans #13559 #13563]: #13564
-#13568 := [monotonicity #13565]: #13567
-#13574 := [trans #13568 #13572]: #13573
-#13577 := [monotonicity #13574]: #13576
-#13581 := [trans #13577 #13579]: #13580
-#13584 := [monotonicity #12410 #13581]: #13583
-#13590 := [trans #13584 #13588]: #13589
-#13593 := [monotonicity #13590 #12410]: #13592
-#13598 := [trans #13593 #13596]: #13597
-#13601 := [monotonicity #12400 #13598]: #13600
-#13607 := [trans #13601 #13605]: #13606
-#13610 := [monotonicity #13607 #12400]: #13609
-#13615 := [trans #13610 #13613]: #13614
-#13618 := [monotonicity #13615]: #13617
-#13624 := [trans #13618 #13622]: #13623
-#13627 := [monotonicity #13624]: #13626
-#13632 := [trans #13627 #13630]: #13631
-#12384 := (iff #3036 #12383)
-#12381 := (iff #3035 #12380)
-#12378 := (iff #3034 #3033)
-#12379 := [rewrite]: #12378
-#12382 := [monotonicity #12379]: #12381
-#12385 := [monotonicity #12382]: #12384
-#13635 := [monotonicity #12385 #13632]: #13634
-#13641 := [trans #13635 #13639]: #13640
-#13644 := [monotonicity #13641]: #13643
-#13650 := [trans #13644 #13648]: #13649
-#13653 := [monotonicity #13650]: #13652
-#13659 := [trans #13653 #13657]: #13658
-#13662 := [monotonicity #13659]: #13661
-#13668 := [trans #13662 #13666]: #13667
-#13671 := [monotonicity #13668]: #13670
-#13677 := [trans #13671 #13675]: #13676
-#13680 := [monotonicity #12377 #13677]: #13679
-#13686 := [trans #13680 #13684]: #13685
-#13689 := [monotonicity #13686 #12377]: #13688
-#13694 := [trans #13689 #13692]: #13693
-#13697 := [monotonicity #12366 #13694]: #13696
-#13703 := [trans #13697 #13701]: #13702
-#13706 := [monotonicity #13703 #12366]: #13705
-#13711 := [trans #13706 #13709]: #13710
-#13714 := [monotonicity #12357 #13711]: #13713
-#13720 := [trans #13714 #13718]: #13719
-#13723 := [monotonicity #13720 #12357]: #13722
-#13728 := [trans #13723 #13726]: #13727
-#13731 := [monotonicity #13728]: #13730
-#13737 := [trans #13731 #13735]: #13736
-#12353 := (iff #3004 #12352)
-#12350 := (iff #3003 #12347)
-#12344 := (iff #12341 false)
-#12348 := (iff #12344 #12347)
-#12349 := [rewrite]: #12348
-#12345 := (iff #3003 #12344)
-#12342 := (iff #3002 #12341)
-#12343 := [rewrite]: #12342
-#12346 := [monotonicity #12343]: #12345
-#12351 := [trans #12346 #12349]: #12350
-#12354 := [quant-intro #12351]: #12353
-#13740 := [monotonicity #12354 #13737]: #13739
-#13746 := [trans #13740 #13744]: #13745
-#13749 := [monotonicity #13746]: #13748
-#13755 := [trans #13749 #13753]: #13754
-#13758 := [monotonicity #13755]: #13757
-#13764 := [trans #13758 #13762]: #13763
-#13767 := [monotonicity #13764]: #13766
-#13773 := [trans #13767 #13771]: #13772
-#13776 := [monotonicity #13773]: #13775
-#13782 := [trans #13776 #13780]: #13781
-#12339 := (iff #2983 #12338)
-#12336 := (iff #2982 #12335)
-#12337 := [rewrite]: #12336
-#12340 := [monotonicity #12334 #12337]: #12339
-#13785 := [monotonicity #12340 #13782]: #13784
-#13791 := [trans #13785 #13789]: #13790
-#12330 := (iff #2977 #12329)
-#12331 := [rewrite]: #12330
-#13794 := [monotonicity #12331 #13791]: #13793
-#13800 := [trans #13794 #13798]: #13799
-#13803 := [monotonicity #13800]: #13802
-#13807 := [trans #13803 #13805]: #13806
-#12327 := (iff #2975 #12326)
-#12324 := (iff #2974 #12323)
-#12321 := (iff #2973 #12320)
-#12318 := (iff #2972 #12317)
-#12315 := (iff #2971 #12314)
-#12312 := (iff #2970 #12311)
-#12313 := [rewrite]: #12312
-#12309 := (iff #2968 #12308)
-#12310 := [rewrite]: #12309
-#12316 := [monotonicity #12310 #12313]: #12315
-#12306 := (iff #2966 #12305)
-#12307 := [rewrite]: #12306
-#12319 := [monotonicity #12307 #12316]: #12318
-#12303 := (iff #2964 #12302)
-#12304 := [rewrite]: #12303
-#12322 := [monotonicity #12304 #12319]: #12321
-#12300 := (iff #2957 #12299)
-#12297 := (iff #2956 #12296)
-#12298 := [rewrite]: #12297
-#12301 := [monotonicity #12298]: #12300
-#12325 := [monotonicity #12301 #12322]: #12324
-#12294 := (iff #2954 #12293)
-#12295 := [rewrite]: #12294
-#12328 := [monotonicity #12295 #12325]: #12327
-#13810 := [monotonicity #12328 #13807]: #13809
-#13816 := [trans #13810 #13814]: #13815
-#13819 := [monotonicity #13816]: #13818
-#13825 := [trans #13819 #13823]: #13824
-#13828 := [monotonicity #13825]: #13827
-#13834 := [trans #13828 #13832]: #13833
-#13837 := [monotonicity #13834]: #13836
-#13843 := [trans #13837 #13841]: #13842
-#13846 := [monotonicity #13843]: #13845
-#13852 := [trans #13846 #13850]: #13851
-#13855 := [monotonicity #13852]: #13854
-#13861 := [trans #13855 #13859]: #13860
-#13864 := [monotonicity #13861]: #13863
-#13868 := [trans #13864 #13866]: #13867
-#13871 := [monotonicity #13868]: #13870
-#14775 := [trans #13871 #14773]: #14774
-#12292 := [asserted]: #3345
-#14776 := [mp #12292 #14775]: #14771
-#14794 := [not-or-elim #14776]: #14658
-#14798 := [and-elim #14794]: #12305
+#13269 := [trans #13265 #13267]: #13268
+#11900 := (iff #2980 #11899)
+#11897 := (iff #2979 #11896)
+#11894 := (iff #2978 #11893)
+#11891 := (iff #2977 #11890)
+#11888 := (iff #2976 #11887)
+#11885 := (iff #2975 #11884)
+#11886 := [rewrite]: #11885
+#11882 := (iff #2973 #11881)
+#11879 := (iff #2972 #11878)
+#11880 := [rewrite]: #11879
+#11883 := [monotonicity #11880]: #11882
+#11889 := [monotonicity #11883 #11886]: #11888
+#11876 := (iff #2970 #11875)
+#11877 := [rewrite]: #11876
+#11892 := [monotonicity #11877 #11889]: #11891
+#11873 := (iff #2968 #11872)
+#11874 := [rewrite]: #11873
+#11895 := [monotonicity #11874 #11892]: #11894
+#11870 := (iff #2966 #11869)
+#11871 := [rewrite]: #11870
+#11898 := [monotonicity #11871 #11895]: #11897
+#11867 := (iff #2964 #11866)
+#11868 := [rewrite]: #11867
+#11901 := [monotonicity #11868 #11898]: #11900
+#13272 := [monotonicity #11901 #13269]: #13271
+#13278 := [trans #13272 #13276]: #13277
+#13281 := [monotonicity #13278]: #13280
+#13287 := [trans #13281 #13285]: #13286
+#13290 := [monotonicity #13287]: #13289
+#13296 := [trans #13290 #13294]: #13295
+#13299 := [monotonicity #13296]: #13298
+#13305 := [trans #13299 #13303]: #13304
+#13308 := [monotonicity #13305]: #13307
+#13314 := [trans #13308 #13312]: #13313
+#13317 := [monotonicity #13314]: #13316
+#13323 := [trans #13317 #13321]: #13322
+#13326 := [monotonicity #13323]: #13325
+#13330 := [trans #13326 #13328]: #13329
+#13333 := [monotonicity #13330]: #13332
+#14241 := [trans #13333 #14239]: #14240
+#11865 := [asserted]: #3349
+#14242 := [mp #11865 #14241]: #14237
+#14260 := [not-or-elim #14242]: #14124
+#14264 := [and-elim #14260]: #11875
+#27446 := [trans #14264 #27445]: #25896
+#27208 := (>= #27025 0::int)
+decl ?x776!15 :: int
+#18607 := ?x776!15
+#18612 := (uf_66 #2960 ?x776!15 uf_7)
+#18613 := (uf_110 uf_273 #18612)
+#18958 := (* -1::int #18613)
+#18959 := (+ uf_299 #18958)
+#18960 := (>= #18959 0::int)
+#18945 := (* -1::int ?x776!15)
+#18946 := (+ uf_272 #18945)
+#18947 := (<= #18946 0::int)
+#18609 := (>= ?x776!15 0::int)
+#22442 := (not #18609)
+#18608 := (<= ?x776!15 4294967295::int)
+#22441 := (not #18608)
+#22457 := (or #22441 #22442 #18947 #18960)
+#22462 := (not #22457)
+#22415 := (not #3095)
+#22416 := (or #22415 #4987 #13725 #19482)
+#23335 := (forall (vars (?x778 int)) (:pat #23194) #22416)
+#23340 := (not #23335)
+#22407 := (or #4987 #13725 #13739 #19482)
+#23327 := (forall (vars (?x776 int)) (:pat #23194) #22407)
+#23332 := (not #23327)
+#23343 := (or #23332 #23340)
+#23346 := (not #23343)
+#23349 := (or #23346 #22462)
+#23352 := (not #23349)
+#22348 := (not #13409)
+#23355 := (or #12096 #12087 #12078 #12069 #22348 #13552 #13698 #23352)
+#23358 := (not #23355)
+#23285 := (or #12662 #12653 #22348 #13552 #22307 #13603 #23252)
+#23288 := (not #23285)
+#23261 := (or #18425 #18434 #23258)
+#23264 := (not #23261)
+#23267 := (or #18425 #18428 #23264)
+#23270 := (not #23267)
+#23273 := (or #18425 #18428 #23270)
+#23276 := (not #23273)
+#23279 := (or #22348 #13552 #13604 #23276)
+#23282 := (not #23279)
+#23291 := (or #23282 #23288)
+#23294 := (not #23291)
+#23297 := (or #18425 #18434 #22348 #13552 #23294)
+#23300 := (not #23297)
+#23303 := (or #18425 #18434 #23300)
+#23306 := (not #23303)
+#23309 := (or #18425 #18428 #23306)
+#23312 := (not #23309)
+#23315 := (or #18425 #18428 #23312)
+#23318 := (not #23315)
+#23321 := (or #22348 #13552 #13697 #23318)
+#23324 := (not #23321)
+#23361 := (or #23324 #23358)
+#23364 := (not #23361)
+#22223 := (or #4987 #13890 #13904 #19482)
+#23203 := (forall (vars (?x775 int)) (:pat #23194) #22223)
+#23208 := (not #23203)
+#1331 := 255::int
+#15781 := (<= uf_292 255::int)
+#22492 := (not #15781)
+#15764 := (<= uf_293 4294967295::int)
+#22491 := (not #15764)
+#15747 := (<= uf_294 4294967295::int)
+#22490 := (not #15747)
+#22488 := (not #13952)
+#22487 := (not #13930)
+#15177 := (not #12000)
+#22486 := (not #11992)
+#22485 := (not #3174)
+#22484 := (not #3173)
+#23367 := (or #13149 #12914 #12905 #12896 #12887 #22484 #22485 #22486 #15177 #13870 #13404 #22348 #13552 #13875 #13927 #22487 #22488 #22490 #22491 #22492 #23208 #23364)
+#23370 := (not #23367)
+#23373 := (or #13149 #13404 #23370)
+#23376 := (not #23373)
+#22212 := (or #4987 #13371 #13383 #19482)
+#23195 := (forall (vars (?x773 int)) (:pat #23194) #22212)
+#23200 := (not #23195)
+#23379 := (or #23200 #23376)
+#23382 := (not #23379)
+decl ?x773!13 :: int
+#18346 := ?x773!13
+#18356 := (>= ?x773!13 1::int)
+#18351 := (uf_66 #2960 ?x773!13 uf_7)
+#18352 := (uf_110 uf_273 #18351)
+#18353 := (* -1::int #18352)
+#18354 := (+ uf_285 #18353)
+#18355 := (>= #18354 0::int)
+#18348 := (>= ?x773!13 0::int)
+#22186 := (not #18348)
+#18347 := (<= ?x773!13 4294967295::int)
+#22185 := (not #18347)
+#22201 := (or #22185 #22186 #18355 #18356)
+#22206 := (not #22201)
+#23385 := (or #22206 #23382)
+#23388 := (not #23385)
+#23391 := (or #13368 #23388)
+#23394 := (not #23391)
+#23397 := (or #13368 #23394)
+#23400 := (not #23397)
+#18323 := (not #11940)
+#18314 := (not #11931)
+#23403 := (or #13149 #13140 #13131 #13122 #18314 #18323 #23400)
+#23406 := (not #23403)
+#23409 := (or #18314 #18323 #23406)
+#23412 := (not #23409)
+#18317 := (not #11934)
+#23415 := (or #18314 #18317 #23412)
+#23418 := (not #23415)
+#23421 := (or #18314 #18317 #23418)
+#23424 := (not #23421)
+#23427 := (or #13182 #23424)
+#23430 := (not #23427)
+#23468 := (uf_116 #2962)
+#24856 := (uf_43 #2958 #23468)
+#25434 := (uf_200 uf_273 #24856 #24856 uf_284)
+#25872 := (= #25434 #3014)
+#25946 := (= #3014 #25434)
+#24863 := (= #2962 #24856)
+#14263 := [and-elim #14260]: #11872
#233 := (:var 0 T3)
#15 := (:var 1 T5)
-#2661 := (uf_48 #15 #233)
-#2662 := (pattern #2661)
-#11594 := (= uf_9 #2661)
-#11601 := (not #11594)
-#1250 := (uf_116 #15)
-#2664 := (uf_43 #233 #1250)
-#2665 := (= #15 #2664)
-#11602 := (or #2665 #11601)
-#11607 := (forall (vars (?x710 T5) (?x711 T3)) (:pat #2662) #11602)
-#18734 := (~ #11607 #11607)
-#18732 := (~ #11602 #11602)
-#18733 := [refl]: #18732
-#18735 := [nnf-pos #18733]: #18734
-#2663 := (= #2661 uf_9)
-#2666 := (implies #2663 #2665)
-#2667 := (forall (vars (?x710 T5) (?x711 T3)) (:pat #2662) #2666)
-#11608 := (iff #2667 #11607)
-#11605 := (iff #2666 #11602)
-#11598 := (implies #11594 #2665)
-#11603 := (iff #11598 #11602)
-#11604 := [rewrite]: #11603
-#11599 := (iff #2666 #11598)
-#11596 := (iff #2663 #11594)
-#11597 := [rewrite]: #11596
-#11600 := [monotonicity #11597]: #11599
-#11606 := [trans #11600 #11604]: #11605
-#11609 := [quant-intro #11606]: #11608
-#11593 := [asserted]: #2667
-#11612 := [mp #11593 #11609]: #11607
-#18736 := [mp~ #11612 #18735]: #11607
-#25403 := (not #12305)
-#25416 := (not #11607)
-#25417 := (or #25416 #25403 #25411)
-#25412 := (or #25411 #25403)
-#25418 := (or #25416 #25412)
-#25425 := (iff #25418 #25417)
-#25413 := (or #25403 #25411)
-#25420 := (or #25416 #25413)
-#25423 := (iff #25420 #25417)
-#25424 := [rewrite]: #25423
-#25421 := (iff #25418 #25420)
-#25414 := (iff #25412 #25413)
-#25415 := [rewrite]: #25414
-#25422 := [monotonicity #25415]: #25421
-#25426 := [trans #25422 #25424]: #25425
-#25419 := [quant-inst]: #25418
-#25427 := [mp #25419 #25426]: #25417
-#27939 := [unit-resolution #25427 #18736 #14798]: #25411
-#27941 := [symm #27939]: #27940
-#26337 := [monotonicity #27941]: #26336
-#26339 := [trans #26337 #28359]: #26338
-#26341 := [monotonicity #26339]: #26340
-#26306 := [monotonicity #26341]: #26342
-#26296 := [symm #26306]: #26293
-#26299 := [monotonicity #26296]: #26298
-#14796 := [and-elim #14794]: #12299
-#26307 := [mp #14796 #26299]: #26297
+#2666 := (uf_48 #15 #233)
+#2667 := (pattern #2666)
+#11162 := (= uf_9 #2666)
+#11169 := (not #11162)
+#1259 := (uf_116 #15)
+#2669 := (uf_43 #233 #1259)
+#2670 := (= #15 #2669)
+#11170 := (or #2670 #11169)
+#11175 := (forall (vars (?x710 T5) (?x711 T3)) (:pat #2667) #11170)
+#18151 := (~ #11175 #11175)
+#18149 := (~ #11170 #11170)
+#18150 := [refl]: #18149
+#18152 := [nnf-pos #18150]: #18151
+#2668 := (= #2666 uf_9)
+#2671 := (implies #2668 #2670)
+#2672 := (forall (vars (?x710 T5) (?x711 T3)) (:pat #2667) #2671)
+#11176 := (iff #2672 #11175)
+#11173 := (iff #2671 #11170)
+#11166 := (implies #11162 #2670)
+#11171 := (iff #11166 #11170)
+#11172 := [rewrite]: #11171
+#11167 := (iff #2671 #11166)
+#11164 := (iff #2668 #11162)
+#11165 := [rewrite]: #11164
+#11168 := [monotonicity #11165]: #11167
+#11174 := [trans #11168 #11172]: #11173
+#11177 := [quant-intro #11174]: #11176
+#11161 := [asserted]: #2672
+#11180 := [mp #11161 #11177]: #11175
+#18153 := [mp~ #11180 #18152]: #11175
+#24855 := (not #11872)
+#24868 := (not #11175)
+#24869 := (or #24868 #24855 #24863)
+#24864 := (or #24863 #24855)
+#24870 := (or #24868 #24864)
+#24877 := (iff #24870 #24869)
+#24865 := (or #24855 #24863)
+#24872 := (or #24868 #24865)
+#24875 := (iff #24872 #24869)
+#24876 := [rewrite]: #24875
+#24873 := (iff #24870 #24872)
+#24866 := (iff #24864 #24865)
+#24867 := [rewrite]: #24866
+#24874 := [monotonicity #24867]: #24873
+#24878 := [trans #24874 #24876]: #24877
+#24871 := [quant-inst]: #24870
+#24879 := [mp #24871 #24878]: #24869
+#25847 := [unit-resolution #24879 #18153 #14263]: #24863
+#25533 := [monotonicity #25847 #25847]: #25946
+#25593 := [symm #25533]: #25872
+#25435 := (= uf_9 #25434)
decl uf_196 :: (-> T4 T5 T5 T2)
-#25980 := (uf_196 uf_273 #25404 #25404)
-#25981 := (= uf_9 #25980)
-#26002 := (not #25981)
-#25982 := (uf_200 uf_273 #25404 #25404 uf_284)
-#25983 := (= uf_9 #25982)
-#25985 := (iff #25981 #25983)
-#2240 := (:var 0 T16)
-#24 := (:var 2 T5)
+#25432 := (uf_196 uf_273 #24856 #24856)
+#25433 := (= uf_9 #25432)
+#25437 := (iff #25433 #25435)
+#2245 := (:var 0 T16)
+#21 := (:var 2 T5)
#13 := (:var 3 T4)
-#2251 := (uf_200 #13 #24 #15 #2240)
-#2252 := (pattern #2251)
-#2254 := (uf_196 #13 #24 #15)
-#10555 := (= uf_9 #2254)
-#10551 := (= uf_9 #2251)
-#10558 := (iff #10551 #10555)
-#10561 := (forall (vars (?x586 T4) (?x587 T5) (?x588 T5) (?x589 T16)) (:pat #2252) #10558)
-#18376 := (~ #10561 #10561)
-#18374 := (~ #10558 #10558)
-#18375 := [refl]: #18374
-#18377 := [nnf-pos #18375]: #18376
-#2255 := (= #2254 uf_9)
-#2253 := (= #2251 uf_9)
-#2256 := (iff #2253 #2255)
-#2257 := (forall (vars (?x586 T4) (?x587 T5) (?x588 T5) (?x589 T16)) (:pat #2252) #2256)
-#10562 := (iff #2257 #10561)
-#10559 := (iff #2256 #10558)
-#10556 := (iff #2255 #10555)
-#10557 := [rewrite]: #10556
-#10553 := (iff #2253 #10551)
-#10554 := [rewrite]: #10553
-#10560 := [monotonicity #10554 #10557]: #10559
-#10563 := [quant-intro #10560]: #10562
-#10550 := [asserted]: #2257
-#10566 := [mp #10550 #10563]: #10561
-#18378 := [mp~ #10566 #18377]: #10561
-#25995 := (not #10561)
-#25996 := (or #25995 #25985)
-#25984 := (iff #25983 #25981)
-#25997 := (or #25995 #25984)
-#26025 := (iff #25997 #25996)
-#26077 := (iff #25996 #25996)
-#26078 := [rewrite]: #26077
-#25986 := (iff #25984 #25985)
-#25987 := [rewrite]: #25986
-#26076 := [monotonicity #25987]: #26025
-#26079 := [trans #26076 #26078]: #26025
-#26023 := [quant-inst]: #25997
-#26015 := [mp #26023 #26079]: #25996
-#27937 := [unit-resolution #26015 #18378]: #25985
-#25999 := (not #25983)
-#26332 := (iff #13715 #25999)
-#26334 := (iff #12355 #25983)
-#26301 := (iff #25983 #12355)
-#27942 := (= #25982 #3009)
-#27943 := [monotonicity #27941 #27941]: #27942
-#26333 := [monotonicity #27943]: #26301
-#26335 := [symm #26333]: #26334
-#26349 := [monotonicity #26335]: #26332
-#26300 := [hypothesis]: #13715
-#26350 := [mp #26300 #26349]: #25999
-#26022 := (not #25985)
-#25991 := (or #26022 #26002 #25983)
-#25989 := [def-axiom]: #25991
-#26348 := [unit-resolution #25989 #26350 #27937]: #26002
-#26086 := (uf_48 #25404 #25815)
-#26087 := (= uf_9 #26086)
-#26398 := (= #2965 #26086)
-#26351 := (= #26086 #2965)
-#26352 := [monotonicity #27941 #26339]: #26351
-#26399 := [symm #26352]: #26398
-#26400 := [trans #14798 #26399]: #26087
-#26089 := (uf_27 uf_273 #25404)
-#26090 := (= uf_9 #26089)
-#26324 := (= #2963 #26089)
-#26323 := (= #26089 #2963)
-#26325 := [monotonicity #27941]: #26323
-#26327 := [symm #26325]: #26324
-#14797 := [and-elim #14794]: #12302
-#26322 := [trans #14797 #26327]: #26090
-#26091 := (not #26090)
-#26088 := (not #26087)
-#26490 := (or #25981 #26088 #26091 #26095)
-#25827 := (uf_25 uf_273 #25404)
-#26084 := (= uf_26 #25827)
-#26331 := (= #2967 #25827)
-#26328 := (= #25827 #2967)
-#26329 := [monotonicity #27941]: #26328
-#26401 := [symm #26329]: #26331
-#14799 := [and-elim #14794]: #12308
-#26403 := [trans #14799 #26401]: #26084
-#25853 := (uf_24 uf_273 #25404)
-#25854 := (= uf_9 #25853)
-#26391 := (= #2969 #25853)
-#26388 := (= #25853 #2969)
-#26402 := [monotonicity #27941]: #26388
-#26389 := [symm #26402]: #26391
-#14800 := [and-elim #14794]: #12311
-#26392 := [trans #14800 #26389]: #25854
-#25816 := (uf_22 #25815)
-#25823 := (= uf_9 #25816)
-#26413 := (= #2953 #25816)
-#26393 := (= #25816 #2953)
-#26394 := [monotonicity #26339]: #26393
-#26414 := [symm #26394]: #26413
-#14795 := [and-elim #14794]: #12293
-#26488 := [trans #14795 #26414]: #25823
-#14783 := [not-or-elim #14776]: #12338
-#14784 := [and-elim #14783]: #12332
-#47 := (:var 1 T4)
-#2213 := (uf_196 #47 #26 #26)
-#2214 := (pattern #2213)
-#10431 := (= uf_9 #2213)
+#2256 := (uf_200 #13 #21 #15 #2245)
+#2257 := (pattern #2256)
+#2259 := (uf_196 #13 #21 #15)
+#10125 := (= uf_9 #2259)
+#10121 := (= uf_9 #2256)
+#10128 := (iff #10121 #10125)
+#10131 := (forall (vars (?x586 T4) (?x587 T5) (?x588 T5) (?x589 T16)) (:pat #2257) #10128)
+#17793 := (~ #10131 #10131)
+#17791 := (~ #10128 #10128)
+#17792 := [refl]: #17791
+#17794 := [nnf-pos #17792]: #17793
+#2260 := (= #2259 uf_9)
+#2258 := (= #2256 uf_9)
+#2261 := (iff #2258 #2260)
+#2262 := (forall (vars (?x586 T4) (?x587 T5) (?x588 T5) (?x589 T16)) (:pat #2257) #2261)
+#10132 := (iff #2262 #10131)
+#10129 := (iff #2261 #10128)
+#10126 := (iff #2260 #10125)
+#10127 := [rewrite]: #10126
+#10123 := (iff #2258 #10121)
+#10124 := [rewrite]: #10123
+#10130 := [monotonicity #10124 #10127]: #10129
+#10133 := [quant-intro #10130]: #10132
+#10120 := [asserted]: #2262
+#10136 := [mp #10120 #10133]: #10131
+#17795 := [mp~ #10136 #17794]: #10131
+#25449 := (not #10131)
+#25475 := (or #25449 #25437)
+#25436 := (iff #25435 #25433)
+#25448 := (or #25449 #25436)
+#25528 := (iff #25448 #25475)
+#25530 := (iff #25475 #25475)
+#25531 := [rewrite]: #25530
+#25438 := (iff #25436 #25437)
+#25439 := [rewrite]: #25438
+#25529 := [monotonicity #25439]: #25528
+#25467 := [trans #25529 #25531]: #25528
+#25477 := [quant-inst]: #25448
+#25474 := [mp #25477 #25467]: #25475
+#25951 := [unit-resolution #25474 #17795]: #25437
+#25473 := (not #25437)
+#25516 := (or #25473 #25435)
+#25267 := (uf_13 #24856)
+#25544 := (uf_12 #25267)
+#25547 := (= uf_14 #25544)
+#25790 := (not #25547)
+#25792 := (iff #11881 #25790)
+#25854 := (iff #11878 #25547)
+#25852 := (iff #25547 #11878)
+#25851 := (= #25544 #2971)
+#25787 := (= #25267 #2958)
+#23686 := (uf_13 #2962)
+#25785 := (= #23686 #2958)
+#23689 := (= #2958 #23686)
+#2697 := (uf_43 #326 #161)
+#23131 := (pattern #2697)
+#2701 := (uf_13 #2697)
+#11240 := (= #326 #2701)
+#23138 := (forall (vars (?x720 T3) (?x721 int)) (:pat #23131) #11240)
+#11244 := (forall (vars (?x720 T3) (?x721 int)) #11240)
+#23141 := (iff #11244 #23138)
+#23139 := (iff #11240 #11240)
+#23140 := [refl]: #23139
+#23142 := [quant-intro #23140]: #23141
+#18176 := (~ #11244 #11244)
+#18174 := (~ #11240 #11240)
+#18175 := [refl]: #18174
+#18177 := [nnf-pos #18175]: #18176
+#2702 := (= #2701 #326)
+#2703 := (forall (vars (?x720 T3) (?x721 int)) #2702)
+#11245 := (iff #2703 #11244)
+#11242 := (iff #2702 #11240)
+#11243 := [rewrite]: #11242
+#11246 := [quant-intro #11243]: #11245
+#11239 := [asserted]: #2703
+#11249 := [mp #11239 #11246]: #11244
+#18178 := [mp~ #11249 #18177]: #11244
+#23143 := [mp #18178 #23142]: #23138
+#23633 := (not #23138)
+#23694 := (or #23633 #23689)
+#23695 := [quant-inst]: #23694
+#25772 := [unit-resolution #23695 #23143]: #23689
+#25786 := [symm #25772]: #25785
+#25773 := (= #25267 #23686)
+#25870 := (= #24856 #2962)
+#25871 := [symm #25847]: #25870
+#25789 := [monotonicity #25871]: #25773
+#25788 := [trans #25789 #25786]: #25787
+#25784 := [monotonicity #25788]: #25851
+#25853 := [monotonicity #25784]: #25852
+#25855 := [symm #25853]: #25854
+#25794 := [monotonicity #25855]: #25792
+#14265 := [and-elim #14260]: #11881
+#25795 := [mp #14265 #25794]: #25790
+#25536 := (uf_24 uf_273 #24856)
+#25537 := (= uf_9 #25536)
+#25793 := (= #2969 #25536)
+#25796 := (= #25536 #2969)
+#25791 := [monotonicity #25871]: #25796
+#25798 := [symm #25791]: #25793
+#25781 := [trans #14264 #25798]: #25537
+#25539 := (uf_48 #24856 #25267)
+#25540 := (= uf_9 #25539)
+#25841 := (= #2967 #25539)
+#25782 := (= #25539 #2967)
+#25780 := [monotonicity #25871 #25788]: #25782
+#26004 := [symm #25780]: #25841
+#26005 := [trans #14263 #26004]: #25540
+#25541 := (not #25540)
+#25538 := (not #25537)
+#26027 := (or #25538 #25541 #25547)
+#25279 := (uf_25 uf_273 #24856)
+#25542 := (= uf_26 #25279)
+#25938 := (= #2965 #25279)
+#26006 := (= #25279 #2965)
+#25934 := [monotonicity #25871]: #26006
+#25939 := [symm #25934]: #25938
+#14262 := [and-elim #14260]: #11869
+#25940 := [trans #14262 #25939]: #25542
+#25454 := (not #25433)
+#25935 := [hypothesis]: #25454
+#25305 := (uf_27 uf_273 #24856)
+#25306 := (= uf_9 #25305)
+#25943 := (= #2963 #25305)
+#25936 := (= #25305 #2963)
+#25941 := [monotonicity #25871]: #25936
+#25944 := [symm #25941]: #25943
+#14261 := [and-elim #14260]: #11866
+#25945 := [trans #14261 #25944]: #25306
+#25268 := (uf_23 #25267)
+#25275 := (= uf_9 #25268)
+#26035 := (= #2974 #25268)
+#26030 := (= #25268 #2974)
+#26031 := [monotonicity #25788]: #26030
+#26036 := [symm #26031]: #26035
+#14266 := [and-elim #14260]: #11884
+#26026 := [trans #14266 #26036]: #25275
+#14249 := [not-or-elim #14242]: #11911
+#14251 := [and-elim #14249]: #11908
+#2217 := (uf_196 #47 #23 #23)
+#2218 := (pattern #2217)
+#10006 := (= uf_9 #2217)
#227 := (uf_55 #47)
-#3939 := (= uf_9 #227)
-#19933 := (not #3939)
-#150 := (uf_25 #47 #26)
-#3656 := (= uf_26 #150)
-#19808 := (not #3656)
-#33 := (uf_15 #26)
-#148 := (uf_48 #26 #33)
-#3653 := (= uf_9 #148)
-#19807 := (not #3653)
-#146 := (uf_27 #47 #26)
-#3650 := (= uf_9 #146)
-#11522 := (not #3650)
-#135 := (uf_24 #47 #26)
-#3635 := (= uf_9 #135)
-#11145 := (not #3635)
-#69 := (uf_22 #33)
-#3470 := (= uf_9 #69)
-#11200 := (not #3470)
-#34 := (uf_14 #33)
-#36 := (= #34 uf_16)
-#22334 := (or #36 #11200 #11145 #11522 #19807 #19808 #19933 #10431)
-#22339 := (forall (vars (?x572 T4) (?x573 T5)) (:pat #2214) #22334)
-#52 := (not #36)
-#10446 := (and #52 #3470 #3635 #3650 #3653 #3656 #3939)
-#10449 := (not #10446)
-#10455 := (or #10431 #10449)
-#10460 := (forall (vars (?x572 T4) (?x573 T5)) (:pat #2214) #10455)
-#22340 := (iff #10460 #22339)
-#22337 := (iff #10455 #22334)
-#22320 := (or #36 #11200 #11145 #11522 #19807 #19808 #19933)
-#22331 := (or #10431 #22320)
-#22335 := (iff #22331 #22334)
-#22336 := [rewrite]: #22335
-#22332 := (iff #10455 #22331)
-#22329 := (iff #10449 #22320)
-#22321 := (not #22320)
-#22324 := (not #22321)
-#22327 := (iff #22324 #22320)
-#22328 := [rewrite]: #22327
-#22325 := (iff #10449 #22324)
-#22322 := (iff #10446 #22321)
-#22323 := [rewrite]: #22322
-#22326 := [monotonicity #22323]: #22325
-#22330 := [trans #22326 #22328]: #22329
-#22333 := [monotonicity #22330]: #22332
-#22338 := [trans #22333 #22336]: #22337
-#22341 := [quant-intro #22338]: #22340
-#18344 := (~ #10460 #10460)
-#18342 := (~ #10455 #10455)
-#18343 := [refl]: #18342
-#18345 := [nnf-pos #18343]: #18344
-#2220 := (= #2213 uf_9)
-#229 := (= #227 uf_9)
+#3921 := (= uf_9 #227)
+#19350 := (not #3921)
+#144 := (uf_48 #23 #26)
+#3642 := (= uf_9 #144)
+#19225 := (not #3642)
+#19224 := (not #3639)
+#135 := (uf_27 #47 #23)
+#3624 := (= uf_9 #135)
+#10715 := (not #3624)
+#71 := (uf_23 #26)
+#3477 := (= uf_9 #71)
+#10770 := (not #3477)
+#21783 := (or #29 #10770 #10715 #19224 #19225 #11090 #19350 #10006)
+#21788 := (forall (vars (?x572 T4) (?x573 T5)) (:pat #2218) #21783)
+#10021 := (and #52 #3477 #3624 #3639 #3642 #3645 #3921)
+#10024 := (not #10021)
+#10030 := (or #10006 #10024)
+#10035 := (forall (vars (?x572 T4) (?x573 T5)) (:pat #2218) #10030)
+#21789 := (iff #10035 #21788)
+#21786 := (iff #10030 #21783)
+#21769 := (or #29 #10770 #10715 #19224 #19225 #11090 #19350)
+#21780 := (or #10006 #21769)
+#21784 := (iff #21780 #21783)
+#21785 := [rewrite]: #21784
+#21781 := (iff #10030 #21780)
+#21778 := (iff #10024 #21769)
+#21770 := (not #21769)
+#21773 := (not #21770)
+#21776 := (iff #21773 #21769)
+#21777 := [rewrite]: #21776
+#21774 := (iff #10024 #21773)
+#21771 := (iff #10021 #21770)
+#21772 := [rewrite]: #21771
+#21775 := [monotonicity #21772]: #21774
+#21779 := [trans #21775 #21777]: #21778
+#21782 := [monotonicity #21779]: #21781
+#21787 := [trans #21782 #21785]: #21786
+#21790 := [quant-intro #21787]: #21789
+#17761 := (~ #10035 #10035)
+#17759 := (~ #10030 #10030)
+#17760 := [refl]: #17759
+#17762 := [nnf-pos #17760]: #17761
+#2225 := (= #2217 uf_9)
+#72 := (= #71 uf_9)
+#2219 := (and #52 #72)
+#2220 := (and #147 #2219)
+#145 := (= #144 uf_9)
+#2221 := (and #145 #2220)
+#2222 := (and #143 #2221)
#136 := (= #135 uf_9)
-#230 := (and #136 #229)
-#151 := (= #150 uf_26)
-#2215 := (and #151 #230)
-#149 := (= #148 uf_9)
-#2216 := (and #149 #2215)
-#147 := (= #146 uf_9)
-#2217 := (and #147 #2216)
-#2218 := (and #52 #2217)
-#70 := (= #69 uf_9)
-#2219 := (and #70 #2218)
-#2221 := (implies #2219 #2220)
-#2222 := (forall (vars (?x572 T4) (?x573 T5)) (:pat #2214) #2221)
-#10463 := (iff #2222 #10460)
-#3943 := (and #3635 #3939)
-#10415 := (and #3656 #3943)
-#10419 := (and #3653 #10415)
-#10422 := (and #3650 #10419)
-#10425 := (and #52 #10422)
-#10428 := (and #3470 #10425)
-#10437 := (not #10428)
-#10438 := (or #10437 #10431)
-#10443 := (forall (vars (?x572 T4) (?x573 T5)) (:pat #2214) #10438)
-#10461 := (iff #10443 #10460)
-#10458 := (iff #10438 #10455)
-#10452 := (or #10449 #10431)
-#10456 := (iff #10452 #10455)
-#10457 := [rewrite]: #10456
-#10453 := (iff #10438 #10452)
-#10450 := (iff #10437 #10449)
-#10447 := (iff #10428 #10446)
-#10448 := [rewrite]: #10447
-#10451 := [monotonicity #10448]: #10450
-#10454 := [monotonicity #10451]: #10453
-#10459 := [trans #10454 #10457]: #10458
-#10462 := [quant-intro #10459]: #10461
-#10444 := (iff #2222 #10443)
-#10441 := (iff #2221 #10438)
-#10434 := (implies #10428 #10431)
-#10439 := (iff #10434 #10438)
-#10440 := [rewrite]: #10439
-#10435 := (iff #2221 #10434)
-#10432 := (iff #2220 #10431)
-#10433 := [rewrite]: #10432
-#10429 := (iff #2219 #10428)
-#10426 := (iff #2218 #10425)
-#10423 := (iff #2217 #10422)
-#10420 := (iff #2216 #10419)
-#10417 := (iff #2215 #10415)
-#3944 := (iff #230 #3943)
-#3941 := (iff #229 #3939)
-#3942 := [rewrite]: #3941
-#3637 := (iff #136 #3635)
-#3638 := [rewrite]: #3637
-#3945 := [monotonicity #3638 #3942]: #3944
-#3657 := (iff #151 #3656)
-#3658 := [rewrite]: #3657
-#10418 := [monotonicity #3658 #3945]: #10417
-#3654 := (iff #149 #3653)
-#3655 := [rewrite]: #3654
-#10421 := [monotonicity #3655 #10418]: #10420
-#3651 := (iff #147 #3650)
-#3652 := [rewrite]: #3651
-#10424 := [monotonicity #3652 #10421]: #10423
-#10427 := [monotonicity #10424]: #10426
-#3471 := (iff #70 #3470)
-#3472 := [rewrite]: #3471
-#10430 := [monotonicity #3472 #10427]: #10429
-#10436 := [monotonicity #10430 #10433]: #10435
-#10442 := [trans #10436 #10440]: #10441
-#10445 := [quant-intro #10442]: #10444
-#10464 := [trans #10445 #10462]: #10463
-#10414 := [asserted]: #2222
-#10465 := [mp #10414 #10464]: #10460
-#18346 := [mp~ #10465 #18345]: #10460
-#22342 := [mp #18346 #22341]: #22339
-#26085 := (not #26084)
-#25880 := (not #25854)
-#25824 := (not #25823)
-#23209 := (not #12332)
-#26081 := (not #22339)
-#26110 := (or #26081 #23209 #25824 #25880 #25981 #26085 #26088 #26091 #26095)
-#26093 := (= #26092 uf_16)
-#26094 := (or #26093 #25824 #25880 #26091 #26088 #26085 #23209 #25981)
-#26111 := (or #26081 #26094)
-#26219 := (iff #26111 #26110)
-#26101 := (or #23209 #25824 #25880 #25981 #26085 #26088 #26091 #26095)
-#26107 := (or #26081 #26101)
-#26215 := (iff #26107 #26110)
-#26218 := [rewrite]: #26215
-#26113 := (iff #26111 #26107)
-#26104 := (iff #26094 #26101)
-#26098 := (or #26095 #25824 #25880 #26091 #26088 #26085 #23209 #25981)
-#26102 := (iff #26098 #26101)
-#26103 := [rewrite]: #26102
-#26099 := (iff #26094 #26098)
-#26096 := (iff #26093 #26095)
-#26097 := [rewrite]: #26096
-#26100 := [monotonicity #26097]: #26099
-#26105 := [trans #26100 #26103]: #26104
-#26150 := [monotonicity #26105]: #26113
-#26181 := [trans #26150 #26218]: #26219
-#26112 := [quant-inst]: #26111
-#26165 := [mp #26112 #26181]: #26110
-#26491 := [unit-resolution #26165 #22342 #14784 #26488 #26392 #26403]: #26490
-#26493 := [unit-resolution #26491 #26322 #26400 #26348 #26307]: false
-#26494 := [lemma #26493]: #12355
-#23984 := (or #13715 #23981)
-#22978 := (forall (vars (?x782 int)) #22967)
-#22985 := (not #22978)
-#22963 := (forall (vars (?x781 int)) #22958)
-#22984 := (not #22963)
-#22986 := (or #22984 #22985)
-#22987 := (not #22986)
-#23016 := (or #22987 #23013)
-#23022 := (not #23016)
-#23023 := (or #12671 #12662 #12653 #12644 #22873 #14243 #14049 #23022)
-#23024 := (not #23023)
-#22802 := (forall (vars (?x785 int)) #22797)
-#22808 := (not #22802)
-#22809 := (or #22784 #22808)
-#22810 := (not #22809)
-#22839 := (or #22810 #22836)
-#22845 := (not #22839)
-#22846 := (or #14105 #22845)
-#22847 := (not #22846)
-#22852 := (or #14105 #22847)
-#22860 := (not #22852)
-#22861 := (or #12942 #22858 #19034 #22859 #14172 #19037 #22860)
-#22862 := (not #22861)
-#22867 := (or #19034 #19037 #22862)
-#22874 := (not #22867)
-#22884 := (or #13124 #13115 #13090 #19011 #19017 #13133 #13081 #14243 #22858 #22874)
-#22885 := (not #22884)
-#22890 := (or #19011 #19017 #22885)
-#22896 := (not #22890)
-#22897 := (or #19008 #19011 #22896)
-#22898 := (not #22897)
-#22903 := (or #19008 #19011 #22898)
-#22909 := (not #22903)
-#22910 := (or #22873 #14243 #14207 #22909)
-#22911 := (not #22910)
-#22875 := (or #13002 #12993 #22873 #14243 #22858 #14211 #22874)
-#22876 := (not #22875)
-#22916 := (or #22876 #22911)
-#22922 := (not #22916)
-#22923 := (or #19011 #19017 #22873 #14243 #22922)
-#22924 := (not #22923)
-#22929 := (or #19011 #19017 #22924)
-#22935 := (not #22929)
-#22936 := (or #19008 #19011 #22935)
-#22937 := (not #22936)
-#22942 := (or #19008 #19011 #22937)
-#22948 := (not #22942)
-#22949 := (or #22873 #14243 #14046 #22948)
-#22950 := (not #22949)
-#23029 := (or #22950 #23024)
-#23044 := (not #23029)
-#22779 := (forall (vars (?x774 int)) #22774)
-#23040 := (not #22779)
-#23045 := (or #13672 #13367 #13358 #13349 #13340 #23035 #23036 #23037 #14399 #15709 #13942 #22873 #14243 #14404 #14456 #23038 #23039 #23041 #23042 #23043 #23040 #23044)
-#23046 := (not #23045)
-#23051 := (or #13672 #13942 #23046)
-#23058 := (not #23051)
-#22768 := (forall (vars (?x773 int)) #22763)
-#23057 := (not #22768)
-#23059 := (or #23057 #23058)
-#23060 := (not #23059)
-#23065 := (or #22757 #23060)
-#23071 := (not #23065)
-#23072 := (or #13906 #23071)
-#23073 := (not #23072)
-#23078 := (or #13906 #23073)
-#23084 := (not #23078)
-#23085 := (or #13672 #13663 #13654 #13645 #18900 #18906 #23084)
-#23086 := (not #23085)
-#23091 := (or #18900 #18906 #23086)
-#23097 := (not #23091)
-#23098 := (or #18897 #18900 #23097)
-#23099 := (not #23098)
-#23104 := (or #18897 #18900 #23099)
-#23110 := (not #23104)
-#23111 := (or #13715 #23110)
-#23112 := (not #23111)
-#23117 := (or #13715 #23112)
-#23985 := (iff #23117 #23984)
-#23982 := (iff #23112 #23981)
-#23979 := (iff #23111 #23978)
-#23976 := (iff #23110 #23975)
-#23973 := (iff #23104 #23972)
-#23970 := (iff #23099 #23969)
-#23967 := (iff #23098 #23966)
-#23964 := (iff #23097 #23963)
-#23961 := (iff #23091 #23960)
-#23958 := (iff #23086 #23957)
-#23955 := (iff #23085 #23954)
-#23952 := (iff #23084 #23951)
-#23949 := (iff #23078 #23948)
-#23946 := (iff #23073 #23945)
-#23943 := (iff #23072 #23942)
-#23940 := (iff #23071 #23939)
-#23937 := (iff #23065 #23936)
-#23934 := (iff #23060 #23933)
-#23931 := (iff #23059 #23930)
-#23928 := (iff #23058 #23927)
-#23925 := (iff #23051 #23924)
-#23922 := (iff #23046 #23921)
-#23919 := (iff #23045 #23918)
-#23916 := (iff #23044 #23915)
-#23913 := (iff #23029 #23912)
-#23910 := (iff #23024 #23909)
-#23907 := (iff #23023 #23906)
-#23904 := (iff #23022 #23903)
-#23901 := (iff #23016 #23900)
-#23898 := (iff #22987 #23897)
-#23895 := (iff #22986 #23894)
-#23892 := (iff #22985 #23891)
-#23889 := (iff #22978 #23886)
-#23887 := (iff #22967 #22967)
-#23888 := [refl]: #23887
-#23890 := [quant-intro #23888]: #23889
-#23893 := [monotonicity #23890]: #23892
-#23884 := (iff #22984 #23883)
-#23881 := (iff #22963 #23878)
-#23879 := (iff #22958 #22958)
-#23880 := [refl]: #23879
-#23882 := [quant-intro #23880]: #23881
-#23885 := [monotonicity #23882]: #23884
-#23896 := [monotonicity #23885 #23893]: #23895
-#23899 := [monotonicity #23896]: #23898
-#23902 := [monotonicity #23899]: #23901
-#23905 := [monotonicity #23902]: #23904
-#23908 := [monotonicity #23905]: #23907
-#23911 := [monotonicity #23908]: #23910
-#23876 := (iff #22950 #23875)
-#23873 := (iff #22949 #23872)
-#23870 := (iff #22948 #23869)
-#23867 := (iff #22942 #23866)
-#23864 := (iff #22937 #23863)
-#23861 := (iff #22936 #23860)
-#23858 := (iff #22935 #23857)
-#23855 := (iff #22929 #23854)
-#23852 := (iff #22924 #23851)
-#23849 := (iff #22923 #23848)
-#23846 := (iff #22922 #23845)
-#23843 := (iff #22916 #23842)
-#23840 := (iff #22911 #23839)
-#23837 := (iff #22910 #23836)
-#23834 := (iff #22909 #23833)
-#23831 := (iff #22903 #23830)
-#23828 := (iff #22898 #23827)
-#23825 := (iff #22897 #23824)
-#23822 := (iff #22896 #23821)
-#23819 := (iff #22890 #23818)
-#23816 := (iff #22885 #23815)
-#23813 := (iff #22884 #23812)
-#23804 := (iff #22874 #23803)
-#23801 := (iff #22867 #23800)
-#23798 := (iff #22862 #23797)
-#23795 := (iff #22861 #23794)
-#23792 := (iff #22860 #23791)
-#23789 := (iff #22852 #23788)
-#23786 := (iff #22847 #23785)
-#23783 := (iff #22846 #23782)
-#23780 := (iff #22845 #23779)
-#23777 := (iff #22839 #23776)
-#23774 := (iff #22810 #23773)
-#23771 := (iff #22809 #23770)
-#23768 := (iff #22808 #23767)
-#23765 := (iff #22802 #23762)
-#23763 := (iff #22797 #22797)
-#23764 := [refl]: #23763
-#23766 := [quant-intro #23764]: #23765
-#23769 := [monotonicity #23766]: #23768
-#23772 := [monotonicity #23769]: #23771
-#23775 := [monotonicity #23772]: #23774
-#23778 := [monotonicity #23775]: #23777
-#23781 := [monotonicity #23778]: #23780
-#23784 := [monotonicity #23781]: #23783
-#23787 := [monotonicity #23784]: #23786
-#23790 := [monotonicity #23787]: #23789
-#23793 := [monotonicity #23790]: #23792
-#23796 := [monotonicity #23793]: #23795
-#23799 := [monotonicity #23796]: #23798
-#23802 := [monotonicity #23799]: #23801
-#23805 := [monotonicity #23802]: #23804
-#23814 := [monotonicity #23805]: #23813
-#23817 := [monotonicity #23814]: #23816
-#23820 := [monotonicity #23817]: #23819
-#23823 := [monotonicity #23820]: #23822
-#23826 := [monotonicity #23823]: #23825
-#23829 := [monotonicity #23826]: #23828
-#23832 := [monotonicity #23829]: #23831
-#23835 := [monotonicity #23832]: #23834
-#23838 := [monotonicity #23835]: #23837
-#23841 := [monotonicity #23838]: #23840
-#23810 := (iff #22876 #23809)
-#23807 := (iff #22875 #23806)
-#23808 := [monotonicity #23805]: #23807
-#23811 := [monotonicity #23808]: #23810
-#23844 := [monotonicity #23811 #23841]: #23843
-#23847 := [monotonicity #23844]: #23846
-#23850 := [monotonicity #23847]: #23849
-#23853 := [monotonicity #23850]: #23852
-#23856 := [monotonicity #23853]: #23855
-#23859 := [monotonicity #23856]: #23858
-#23862 := [monotonicity #23859]: #23861
-#23865 := [monotonicity #23862]: #23864
-#23868 := [monotonicity #23865]: #23867
-#23871 := [monotonicity #23868]: #23870
-#23874 := [monotonicity #23871]: #23873
-#23877 := [monotonicity #23874]: #23876
-#23914 := [monotonicity #23877 #23911]: #23913
-#23917 := [monotonicity #23914]: #23916
-#23760 := (iff #23040 #23759)
-#23757 := (iff #22779 #23754)
-#23755 := (iff #22774 #22774)
-#23756 := [refl]: #23755
-#23758 := [quant-intro #23756]: #23757
-#23761 := [monotonicity #23758]: #23760
-#23920 := [monotonicity #23761 #23917]: #23919
-#23923 := [monotonicity #23920]: #23922
-#23926 := [monotonicity #23923]: #23925
-#23929 := [monotonicity #23926]: #23928
-#23752 := (iff #23057 #23751)
-#23749 := (iff #22768 #23746)
-#23747 := (iff #22763 #22763)
-#23748 := [refl]: #23747
-#23750 := [quant-intro #23748]: #23749
-#23753 := [monotonicity #23750]: #23752
-#23932 := [monotonicity #23753 #23929]: #23931
-#23935 := [monotonicity #23932]: #23934
-#23938 := [monotonicity #23935]: #23937
-#23941 := [monotonicity #23938]: #23940
-#23944 := [monotonicity #23941]: #23943
-#23947 := [monotonicity #23944]: #23946
-#23950 := [monotonicity #23947]: #23949
-#23953 := [monotonicity #23950]: #23952
-#23956 := [monotonicity #23953]: #23955
-#23959 := [monotonicity #23956]: #23958
-#23962 := [monotonicity #23959]: #23961
-#23965 := [monotonicity #23962]: #23964
-#23968 := [monotonicity #23965]: #23967
-#23971 := [monotonicity #23968]: #23970
-#23974 := [monotonicity #23971]: #23973
-#23977 := [monotonicity #23974]: #23976
-#23980 := [monotonicity #23977]: #23979
-#23983 := [monotonicity #23980]: #23982
-#23986 := [monotonicity #23983]: #23985
-#19548 := (and #19191 #19192)
-#19551 := (not #19548)
-#19554 := (or #19530 #19543 #19551)
-#19557 := (not #19554)
-#16489 := (and #3145 #4084 #13958 #15606)
-#19214 := (not #16489)
-#19217 := (forall (vars (?x782 int)) #19214)
-#14858 := (and #4084 #15606)
-#14857 := (not #14858)
-#16475 := (or #13959 #13972 #14857)
-#16480 := (forall (vars (?x781 int)) #16475)
-#19221 := (and #16480 #19217)
-#19563 := (or #19221 #19557)
-#19571 := (and #12567 #12570 #12573 #12576 #13947 #13950 #14046 #19563)
-#19392 := (and #19055 #19056)
-#19395 := (not #19392)
-#19398 := (or #19374 #19387 #19395)
-#19401 := (not #19398)
-#16376 := (or #14109 #14122 #14857)
-#16381 := (forall (vars (?x785 int)) #16376)
-#19071 := (not #14151)
-#19081 := (and #19071 #16381)
-#19407 := (or #19081 #19401)
-#19412 := (and #14100 #19407)
-#19415 := (or #14105 #19412)
-#19423 := (and #3199 #14076 #14088 #14092 #14168 #16368 #19415)
-#19428 := (or #19034 #19037 #19423)
-#19454 := (and #3242 #3244 #3246 #12806 #12812 #13070 #13075 #13950 #14076 #19428)
-#19459 := (or #19011 #19017 #19454)
-#19465 := (and #12803 #12806 #19459)
-#19470 := (or #19008 #19011 #19465)
-#19476 := (and #13947 #13950 #14211 #19470)
-#19434 := (and #12823 #12826 #13947 #13950 #14076 #14207 #19428)
-#19481 := (or #19434 #19476)
-#19487 := (and #12806 #12812 #13947 #13950 #19481)
-#19492 := (or #19011 #19017 #19487)
-#19498 := (and #12803 #12806 #19492)
-#19503 := (or #19008 #19011 #19498)
-#19509 := (and #13947 #13950 #14049 #19503)
-#19576 := (or #19509 #19571)
-#16293 := (or #14420 #14433 #14857)
-#16298 := (forall (vars (?x774 int)) #16293)
-#19582 := (and #3022 #3121 #3122 #3123 #3124 #3125 #3126 #12426 #12437 #12553 #13943 #13947 #13950 #14405 #14453 #14462 #14490 #16298 #16310 #16332 #16349 #19576)
-#19587 := (or #13672 #13942 #19582)
-#16279 := (or #13910 #13921 #14857)
-#16284 := (forall (vars (?x773 int)) #16279)
-#19590 := (and #16284 #19587)
-#19303 := (and #18930 #18931)
-#19306 := (not #19303)
-#19312 := (or #18938 #18939 #19306)
-#19317 := (not #19312)
-#19593 := (or #19317 #19590)
-#19596 := (and #13903 #19593)
-#19599 := (or #13906 #19596)
-#19605 := (and #3022 #3025 #3028 #3031 #12361 #12367 #19599)
-#19610 := (or #18900 #18906 #19605)
-#19616 := (and #12358 #12361 #19610)
-#19621 := (or #18897 #18900 #19616)
-#19624 := (and #12355 #19621)
-#19627 := (or #13715 #19624)
-#23118 := (iff #19627 #23117)
-#23115 := (iff #19624 #23112)
-#23107 := (and #12355 #23104)
-#23113 := (iff #23107 #23112)
-#23114 := [rewrite]: #23113
-#23108 := (iff #19624 #23107)
-#23105 := (iff #19621 #23104)
-#23102 := (iff #19616 #23099)
-#23094 := (and #12358 #12361 #23091)
-#23100 := (iff #23094 #23099)
-#23101 := [rewrite]: #23100
-#23095 := (iff #19616 #23094)
-#23092 := (iff #19610 #23091)
-#23089 := (iff #19605 #23086)
-#23081 := (and #3022 #3025 #3028 #3031 #12361 #12367 #23078)
-#23087 := (iff #23081 #23086)
-#23088 := [rewrite]: #23087
-#23082 := (iff #19605 #23081)
-#23079 := (iff #19599 #23078)
-#23076 := (iff #19596 #23073)
-#23068 := (and #13903 #23065)
-#23074 := (iff #23068 #23073)
-#23075 := [rewrite]: #23074
-#23069 := (iff #19596 #23068)
-#23066 := (iff #19593 #23065)
-#23063 := (iff #19590 #23060)
-#23054 := (and #22768 #23051)
-#23061 := (iff #23054 #23060)
-#23062 := [rewrite]: #23061
-#23055 := (iff #19590 #23054)
-#23052 := (iff #19587 #23051)
-#23049 := (iff #19582 #23046)
-#23032 := (and #3022 #3121 #3122 #3123 #3124 #3125 #3126 #12426 #12437 #12553 #13943 #13947 #13950 #14405 #14453 #14462 #14490 #22779 #16310 #16332 #16349 #23029)
-#23047 := (iff #23032 #23046)
-#23048 := [rewrite]: #23047
-#23033 := (iff #19582 #23032)
-#23030 := (iff #19576 #23029)
-#23027 := (iff #19571 #23024)
-#23019 := (and #12567 #12570 #12573 #12576 #13947 #13950 #14046 #23016)
-#23025 := (iff #23019 #23024)
-#23026 := [rewrite]: #23025
-#23020 := (iff #19571 #23019)
-#23017 := (iff #19563 #23016)
-#23014 := (iff #19557 #23013)
-#23011 := (iff #19554 #23008)
-#22994 := (or #22992 #22993)
-#23005 := (or #19530 #19543 #22994)
-#23009 := (iff #23005 #23008)
-#23010 := [rewrite]: #23009
-#23006 := (iff #19554 #23005)
-#23003 := (iff #19551 #22994)
-#22995 := (not #22994)
-#22998 := (not #22995)
-#23001 := (iff #22998 #22994)
-#23002 := [rewrite]: #23001
-#22999 := (iff #19551 #22998)
-#22996 := (iff #19548 #22995)
-#22997 := [rewrite]: #22996
-#23000 := [monotonicity #22997]: #22999
-#23004 := [trans #23000 #23002]: #23003
-#23007 := [monotonicity #23004]: #23006
-#23012 := [trans #23007 #23010]: #23011
-#23015 := [monotonicity #23012]: #23014
-#22990 := (iff #19221 #22987)
-#22981 := (and #22963 #22978)
-#22988 := (iff #22981 #22987)
-#22989 := [rewrite]: #22988
-#22982 := (iff #19221 #22981)
-#22979 := (iff #19217 #22978)
-#22976 := (iff #19214 #22967)
-#22968 := (not #22967)
-#22971 := (not #22968)
-#22974 := (iff #22971 #22967)
-#22975 := [rewrite]: #22974
-#22972 := (iff #19214 #22971)
-#22969 := (iff #16489 #22968)
-#22970 := [rewrite]: #22969
-#22973 := [monotonicity #22970]: #22972
-#22977 := [trans #22973 #22975]: #22976
-#22980 := [quant-intro #22977]: #22979
-#22964 := (iff #16480 #22963)
-#22961 := (iff #16475 #22958)
-#20695 := (or #5113 #20064)
-#22955 := (or #13959 #13972 #20695)
-#22959 := (iff #22955 #22958)
-#22960 := [rewrite]: #22959
-#22956 := (iff #16475 #22955)
-#20704 := (iff #14857 #20695)
-#20696 := (not #20695)
-#20699 := (not #20696)
-#20702 := (iff #20699 #20695)
-#20703 := [rewrite]: #20702
-#20700 := (iff #14857 #20699)
-#20697 := (iff #14858 #20696)
-#20698 := [rewrite]: #20697
-#20701 := [monotonicity #20698]: #20700
-#20705 := [trans #20701 #20703]: #20704
-#22957 := [monotonicity #20705]: #22956
-#22962 := [trans #22957 #22960]: #22961
-#22965 := [quant-intro #22962]: #22964
-#22983 := [monotonicity #22965 #22980]: #22982
-#22991 := [trans #22983 #22989]: #22990
-#23018 := [monotonicity #22991 #23015]: #23017
-#23021 := [monotonicity #23018]: #23020
-#23028 := [trans #23021 #23026]: #23027
-#22953 := (iff #19509 #22950)
-#22945 := (and #13947 #13950 #14049 #22942)
-#22951 := (iff #22945 #22950)
-#22952 := [rewrite]: #22951
-#22946 := (iff #19509 #22945)
-#22943 := (iff #19503 #22942)
-#22940 := (iff #19498 #22937)
-#22932 := (and #12803 #12806 #22929)
-#22938 := (iff #22932 #22937)
-#22939 := [rewrite]: #22938
-#22933 := (iff #19498 #22932)
-#22930 := (iff #19492 #22929)
-#22927 := (iff #19487 #22924)
-#22919 := (and #12806 #12812 #13947 #13950 #22916)
-#22925 := (iff #22919 #22924)
-#22926 := [rewrite]: #22925
-#22920 := (iff #19487 #22919)
-#22917 := (iff #19481 #22916)
-#22914 := (iff #19476 #22911)
-#22906 := (and #13947 #13950 #14211 #22903)
-#22912 := (iff #22906 #22911)
-#22913 := [rewrite]: #22912
-#22907 := (iff #19476 #22906)
-#22904 := (iff #19470 #22903)
-#22901 := (iff #19465 #22898)
-#22893 := (and #12803 #12806 #22890)
-#22899 := (iff #22893 #22898)
-#22900 := [rewrite]: #22899
-#22894 := (iff #19465 #22893)
-#22891 := (iff #19459 #22890)
-#22888 := (iff #19454 #22885)
-#22881 := (and #3242 #3244 #3246 #12806 #12812 #13070 #13075 #13950 #14076 #22867)
-#22886 := (iff #22881 #22885)
-#22887 := [rewrite]: #22886
-#22882 := (iff #19454 #22881)
-#22868 := (iff #19428 #22867)
-#22865 := (iff #19423 #22862)
-#22855 := (and #3199 #14076 #14088 #14092 #14168 #16368 #22852)
-#22863 := (iff #22855 #22862)
-#22864 := [rewrite]: #22863
-#22856 := (iff #19423 #22855)
-#22853 := (iff #19415 #22852)
-#22850 := (iff #19412 #22847)
-#22842 := (and #14100 #22839)
-#22848 := (iff #22842 #22847)
-#22849 := [rewrite]: #22848
-#22843 := (iff #19412 #22842)
-#22840 := (iff #19407 #22839)
-#22837 := (iff #19401 #22836)
-#22834 := (iff #19398 #22831)
-#22817 := (or #22815 #22816)
-#22828 := (or #19374 #19387 #22817)
-#22832 := (iff #22828 #22831)
-#22833 := [rewrite]: #22832
-#22829 := (iff #19398 #22828)
-#22826 := (iff #19395 #22817)
-#22818 := (not #22817)
-#22821 := (not #22818)
-#22824 := (iff #22821 #22817)
-#22825 := [rewrite]: #22824
-#22822 := (iff #19395 #22821)
-#22819 := (iff #19392 #22818)
-#22820 := [rewrite]: #22819
-#22823 := [monotonicity #22820]: #22822
-#22827 := [trans #22823 #22825]: #22826
-#22830 := [monotonicity #22827]: #22829
-#22835 := [trans #22830 #22833]: #22834
-#22838 := [monotonicity #22835]: #22837
-#22813 := (iff #19081 #22810)
-#22805 := (and #22783 #22802)
-#22811 := (iff #22805 #22810)
-#22812 := [rewrite]: #22811
-#22806 := (iff #19081 #22805)
-#22803 := (iff #16381 #22802)
-#22800 := (iff #16376 #22797)
-#22794 := (or #14109 #14122 #20695)
-#22798 := (iff #22794 #22797)
-#22799 := [rewrite]: #22798
-#22795 := (iff #16376 #22794)
-#22796 := [monotonicity #20705]: #22795
-#22801 := [trans #22796 #22799]: #22800
-#22804 := [quant-intro #22801]: #22803
-#22792 := (iff #19071 #22783)
-#22787 := (not #22784)
-#22790 := (iff #22787 #22783)
-#22791 := [rewrite]: #22790
-#22788 := (iff #19071 #22787)
-#22785 := (iff #14151 #22784)
-#22786 := [rewrite]: #22785
-#22789 := [monotonicity #22786]: #22788
-#22793 := [trans #22789 #22791]: #22792
-#22807 := [monotonicity #22793 #22804]: #22806
-#22814 := [trans #22807 #22812]: #22813
-#22841 := [monotonicity #22814 #22838]: #22840
-#22844 := [monotonicity #22841]: #22843
-#22851 := [trans #22844 #22849]: #22850
-#22854 := [monotonicity #22851]: #22853
-#22857 := [monotonicity #22854]: #22856
-#22866 := [trans #22857 #22864]: #22865
-#22869 := [monotonicity #22866]: #22868
-#22883 := [monotonicity #22869]: #22882
-#22889 := [trans #22883 #22887]: #22888
-#22892 := [monotonicity #22889]: #22891
-#22895 := [monotonicity #22892]: #22894
-#22902 := [trans #22895 #22900]: #22901
-#22905 := [monotonicity #22902]: #22904
-#22908 := [monotonicity #22905]: #22907
-#22915 := [trans #22908 #22913]: #22914
-#22879 := (iff #19434 #22876)
-#22870 := (and #12823 #12826 #13947 #13950 #14076 #14207 #22867)
-#22877 := (iff #22870 #22876)
-#22878 := [rewrite]: #22877
-#22871 := (iff #19434 #22870)
-#22872 := [monotonicity #22869]: #22871
-#22880 := [trans #22872 #22878]: #22879
-#22918 := [monotonicity #22880 #22915]: #22917
-#22921 := [monotonicity #22918]: #22920
-#22928 := [trans #22921 #22926]: #22927
-#22931 := [monotonicity #22928]: #22930
-#22934 := [monotonicity #22931]: #22933
-#22941 := [trans #22934 #22939]: #22940
-#22944 := [monotonicity #22941]: #22943
-#22947 := [monotonicity #22944]: #22946
-#22954 := [trans #22947 #22952]: #22953
-#23031 := [monotonicity #22954 #23028]: #23030
-#22780 := (iff #16298 #22779)
-#22777 := (iff #16293 #22774)
-#22771 := (or #14420 #14433 #20695)
-#22775 := (iff #22771 #22774)
-#22776 := [rewrite]: #22775
-#22772 := (iff #16293 #22771)
-#22773 := [monotonicity #20705]: #22772
-#22778 := [trans #22773 #22776]: #22777
-#22781 := [quant-intro #22778]: #22780
-#23034 := [monotonicity #22781 #23031]: #23033
-#23050 := [trans #23034 #23048]: #23049
-#23053 := [monotonicity #23050]: #23052
-#22769 := (iff #16284 #22768)
-#22766 := (iff #16279 #22763)
-#22760 := (or #13910 #13921 #20695)
-#22764 := (iff #22760 #22763)
-#22765 := [rewrite]: #22764
-#22761 := (iff #16279 #22760)
-#22762 := [monotonicity #20705]: #22761
-#22767 := [trans #22762 #22765]: #22766
-#22770 := [quant-intro #22767]: #22769
-#23056 := [monotonicity #22770 #23053]: #23055
-#23064 := [trans #23056 #23062]: #23063
-#22758 := (iff #19317 #22757)
-#22755 := (iff #19312 #22752)
-#22738 := (or #22736 #22737)
-#22749 := (or #18938 #18939 #22738)
-#22753 := (iff #22749 #22752)
-#22754 := [rewrite]: #22753
-#22750 := (iff #19312 #22749)
-#22747 := (iff #19306 #22738)
-#22739 := (not #22738)
-#22742 := (not #22739)
-#22745 := (iff #22742 #22738)
-#22746 := [rewrite]: #22745
-#22743 := (iff #19306 #22742)
-#22740 := (iff #19303 #22739)
-#22741 := [rewrite]: #22740
-#22744 := [monotonicity #22741]: #22743
-#22748 := [trans #22744 #22746]: #22747
-#22751 := [monotonicity #22748]: #22750
-#22756 := [trans #22751 #22754]: #22755
-#22759 := [monotonicity #22756]: #22758
-#23067 := [monotonicity #22759 #23064]: #23066
-#23070 := [monotonicity #23067]: #23069
-#23077 := [trans #23070 #23075]: #23076
-#23080 := [monotonicity #23077]: #23079
-#23083 := [monotonicity #23080]: #23082
-#23090 := [trans #23083 #23088]: #23089
-#23093 := [monotonicity #23090]: #23092
-#23096 := [monotonicity #23093]: #23095
-#23103 := [trans #23096 #23101]: #23102
-#23106 := [monotonicity #23103]: #23105
-#23109 := [monotonicity #23106]: #23108
-#23116 := [trans #23109 #23114]: #23115
-#23119 := [monotonicity #23116]: #23118
-#19193 := (and #19192 #19191)
-#19194 := (not #19193)
-#19197 := (+ #19196 #13970)
-#19198 := (<= #19197 0::int)
-#19199 := (+ ?x781!15 #13873)
-#19200 := (>= #19199 0::int)
-#19201 := (or #19200 #19198 #19194)
-#19202 := (not #19201)
-#19225 := (or #19202 #19221)
-#18978 := (not #13955)
-#19185 := (not #12644)
-#19182 := (not #12653)
-#19179 := (not #12662)
-#19176 := (not #12671)
-#19229 := (and #19176 #19179 #19182 #19185 #18978 #14352 #19225)
-#16407 := (and #14088 #16368)
-#16412 := (not #16407)
-#19097 := (not #16412)
-#19057 := (and #19056 #19055)
-#19058 := (not #19057)
-#19061 := (+ #19060 #14120)
-#19062 := (<= #19061 0::int)
-#19063 := (+ ?x785!14 #14101)
-#19064 := (>= #19063 0::int)
-#19065 := (or #19064 #19062 #19058)
-#19066 := (not #19065)
-#19085 := (or #19066 #19081)
-#19051 := (not #14105)
-#19089 := (and #19051 #19085)
-#19093 := (or #14105 #19089)
-#19046 := (not #14172)
-#19043 := (not #14097)
-#19040 := (not #12942)
-#19100 := (and #19040 #19043 #19046 #19093 #19097)
-#19104 := (or #19034 #19037 #19100)
-#19029 := (not #14081)
-#19129 := (not #14243)
-#19126 := (not #13081)
-#19123 := (not #13133)
-#19020 := (not #13142)
-#19120 := (not #13090)
-#19117 := (not #13115)
-#19114 := (not #13124)
-#19132 := (and #19114 #19117 #19120 #19020 #19123 #19126 #19129 #19029 #19104)
-#19136 := (or #19011 #19017 #19132)
-#19014 := (not #13159)
-#19140 := (and #19014 #19136)
-#19144 := (or #19008 #19011 #19140)
-#19148 := (and #18978 #14211 #19144)
-#19026 := (not #12993)
-#19023 := (not #13002)
-#19108 := (and #19023 #19026 #18978 #19029 #14293 #19104)
-#19152 := (or #19108 #19148)
-#19156 := (and #19020 #18978 #19152)
-#19160 := (or #19011 #19017 #19156)
-#19164 := (and #19014 #19160)
-#19168 := (or #19008 #19011 #19164)
-#19172 := (and #18978 #14049 #19168)
-#19233 := (or #19172 #19229)
-#16357 := (and #14490 #16349)
-#16362 := (not #16357)
-#19003 := (not #16362)
-#16337 := (and #13947 #16332)
-#16340 := (not #16337)
-#19000 := (not #16340)
-#16318 := (and #14462 #16310)
-#16323 := (not #16318)
-#18997 := (not #16323)
-#18987 := (not #14507)
-#18984 := (not #14456)
-#18981 := (not #14416)
-#18975 := (not #15709)
-#18972 := (not #14399)
-#18969 := (not #13331)
-#18966 := (not #13340)
-#18963 := (not #13349)
-#18960 := (not #13358)
-#18957 := (not #13367)
-#19237 := (and #18957 #18960 #18963 #18966 #18969 #18972 #18975 #18978 #18981 #18984 #18987 #16298 #18997 #19000 #19003 #19233)
-#19241 := (or #13672 #14664 #19237)
-#19245 := (and #16284 #19241)
-#18932 := (and #18931 #18930)
-#18933 := (not #18932)
-#18940 := (or #18939 #18938 #18933)
-#18941 := (not #18940)
-#19249 := (or #18941 #19245)
-#18926 := (not #13906)
-#19253 := (and #18926 #19249)
-#19257 := (or #13906 #19253)
-#18921 := (not #13681)
-#18918 := (not #13645)
-#18915 := (not #13654)
-#18912 := (not #13663)
-#18909 := (not #13672)
-#19261 := (and #18909 #18912 #18915 #18918 #18921 #19257)
-#19265 := (or #18900 #18906 #19261)
-#18903 := (not #13698)
-#19269 := (and #18903 #19265)
-#19273 := (or #18897 #18900 #19269)
-#18894 := (not #13715)
-#19277 := (and #18894 #19273)
-#19281 := (or #13715 #19277)
-#19628 := (iff #19281 #19627)
-#19625 := (iff #19277 #19624)
-#19622 := (iff #19273 #19621)
-#19619 := (iff #19269 #19616)
-#19613 := (and #12364 #19610)
-#19617 := (iff #19613 #19616)
-#19618 := [rewrite]: #19617
-#19614 := (iff #19269 #19613)
-#19611 := (iff #19265 #19610)
-#19608 := (iff #19261 #19605)
-#19602 := (and #3022 #3025 #3028 #3031 #12373 #19599)
-#19606 := (iff #19602 #19605)
-#19607 := [rewrite]: #19606
-#19603 := (iff #19261 #19602)
-#19600 := (iff #19257 #19599)
-#19597 := (iff #19253 #19596)
-#19594 := (iff #19249 #19593)
-#19591 := (iff #19245 #19590)
-#19588 := (iff #19241 #19587)
-#19585 := (iff #19237 #19582)
-#19579 := (and #3121 #3122 #3123 #3124 #3127 #12437 #12553 #13952 #14411 #14453 #14502 #16298 #16318 #16337 #16357 #19576)
-#19583 := (iff #19579 #19582)
-#19584 := [rewrite]: #19583
-#19580 := (iff #19237 #19579)
-#19577 := (iff #19233 #19576)
-#19574 := (iff #19229 #19571)
-#19568 := (and #12567 #12570 #12573 #12576 #13952 #14046 #19563)
-#19572 := (iff #19568 #19571)
-#19573 := [rewrite]: #19572
-#19569 := (iff #19229 #19568)
-#19566 := (iff #19225 #19563)
-#19560 := (or #19557 #19221)
-#19564 := (iff #19560 #19563)
-#19565 := [rewrite]: #19564
-#19561 := (iff #19225 #19560)
-#19558 := (iff #19202 #19557)
-#19555 := (iff #19201 #19554)
-#19552 := (iff #19194 #19551)
-#19549 := (iff #19193 #19548)
-#19550 := [rewrite]: #19549
-#19553 := [monotonicity #19550]: #19552
-#19546 := (iff #19198 #19543)
-#19535 := (+ #13970 #19196)
-#19538 := (<= #19535 0::int)
-#19544 := (iff #19538 #19543)
-#19545 := [rewrite]: #19544
-#19539 := (iff #19198 #19538)
-#19536 := (= #19197 #19535)
-#19537 := [rewrite]: #19536
-#19540 := [monotonicity #19537]: #19539
-#19547 := [trans #19540 #19545]: #19546
-#19533 := (iff #19200 #19530)
-#19522 := (+ #13873 ?x781!15)
-#19525 := (>= #19522 0::int)
-#19531 := (iff #19525 #19530)
-#19532 := [rewrite]: #19531
-#19526 := (iff #19200 #19525)
-#19523 := (= #19199 #19522)
-#19524 := [rewrite]: #19523
-#19527 := [monotonicity #19524]: #19526
-#19534 := [trans #19527 #19532]: #19533
-#19556 := [monotonicity #19534 #19547 #19553]: #19555
-#19559 := [monotonicity #19556]: #19558
-#19562 := [monotonicity #19559]: #19561
-#19567 := [trans #19562 #19565]: #19566
-#19334 := (iff #18978 #13952)
-#19335 := [rewrite]: #19334
-#19520 := (iff #19185 #12576)
-#19521 := [rewrite]: #19520
-#19518 := (iff #19182 #12573)
-#19519 := [rewrite]: #19518
-#19516 := (iff #19179 #12570)
-#19517 := [rewrite]: #19516
-#19514 := (iff #19176 #12567)
-#19515 := [rewrite]: #19514
-#19570 := [monotonicity #19515 #19517 #19519 #19521 #19335 #14356 #19567]: #19569
-#19575 := [trans #19570 #19573]: #19574
-#19512 := (iff #19172 #19509)
-#19506 := (and #13952 #14049 #19503)
-#19510 := (iff #19506 #19509)
-#19511 := [rewrite]: #19510
-#19507 := (iff #19172 #19506)
-#19504 := (iff #19168 #19503)
-#19501 := (iff #19164 #19498)
-#19495 := (and #12809 #19492)
-#19499 := (iff #19495 #19498)
-#19500 := [rewrite]: #19499
-#19496 := (iff #19164 #19495)
-#19493 := (iff #19160 #19492)
-#19490 := (iff #19156 #19487)
-#19484 := (and #12818 #13952 #19481)
-#19488 := (iff #19484 #19487)
-#19489 := [rewrite]: #19488
-#19485 := (iff #19156 #19484)
-#19482 := (iff #19152 #19481)
-#19479 := (iff #19148 #19476)
-#19473 := (and #13952 #14211 #19470)
-#19477 := (iff #19473 #19476)
-#19478 := [rewrite]: #19477
-#19474 := (iff #19148 #19473)
-#19471 := (iff #19144 #19470)
-#19468 := (iff #19140 #19465)
-#19462 := (and #12809 #19459)
-#19466 := (iff #19462 #19465)
-#19467 := [rewrite]: #19466
-#19463 := (iff #19140 #19462)
-#19460 := (iff #19136 #19459)
-#19457 := (iff #19132 #19454)
-#19451 := (and #3242 #3244 #3246 #12818 #13070 #13075 #13950 #14078 #19428)
-#19455 := (iff #19451 #19454)
-#19456 := [rewrite]: #19455
-#19452 := (iff #19132 #19451)
-#19429 := (iff #19104 #19428)
-#19426 := (iff #19100 #19423)
-#19420 := (and #3199 #14094 #14168 #19415 #16407)
-#19424 := (iff #19420 #19423)
-#19425 := [rewrite]: #19424
-#19421 := (iff #19100 #19420)
-#19418 := (iff #19097 #16407)
-#19419 := [rewrite]: #19418
-#19416 := (iff #19093 #19415)
-#19413 := (iff #19089 #19412)
-#19410 := (iff #19085 #19407)
-#19404 := (or #19401 #19081)
-#19408 := (iff #19404 #19407)
-#19409 := [rewrite]: #19408
-#19405 := (iff #19085 #19404)
-#19402 := (iff #19066 #19401)
-#19399 := (iff #19065 #19398)
-#19396 := (iff #19058 #19395)
-#19393 := (iff #19057 #19392)
-#19394 := [rewrite]: #19393
-#19397 := [monotonicity #19394]: #19396
-#19390 := (iff #19062 #19387)
-#19379 := (+ #14120 #19060)
-#19382 := (<= #19379 0::int)
-#19388 := (iff #19382 #19387)
-#19389 := [rewrite]: #19388
-#19383 := (iff #19062 #19382)
-#19380 := (= #19061 #19379)
-#19381 := [rewrite]: #19380
-#19384 := [monotonicity #19381]: #19383
-#19391 := [trans #19384 #19389]: #19390
-#19377 := (iff #19064 #19374)
-#19366 := (+ #14101 ?x785!14)
-#19369 := (>= #19366 0::int)
-#19375 := (iff #19369 #19374)
-#19376 := [rewrite]: #19375
-#19370 := (iff #19064 #19369)
-#19367 := (= #19063 #19366)
-#19368 := [rewrite]: #19367
-#19371 := [monotonicity #19368]: #19370
-#19378 := [trans #19371 #19376]: #19377
-#19400 := [monotonicity #19378 #19391 #19397]: #19399
-#19403 := [monotonicity #19400]: #19402
-#19406 := [monotonicity #19403]: #19405
-#19411 := [trans #19406 #19409]: #19410
-#19364 := (iff #19051 #14100)
-#19365 := [rewrite]: #19364
-#19414 := [monotonicity #19365 #19411]: #19413
-#19417 := [monotonicity #19414]: #19416
-#19362 := (iff #19046 #14168)
-#19363 := [rewrite]: #19362
-#19360 := (iff #19043 #14094)
-#19361 := [rewrite]: #19360
-#19358 := (iff #19040 #3199)
-#19359 := [rewrite]: #19358
-#19422 := [monotonicity #19359 #19361 #19363 #19417 #19419]: #19421
-#19427 := [trans #19422 #19425]: #19426
-#19430 := [monotonicity #19427]: #19429
-#19356 := (iff #19029 #14078)
-#19357 := [rewrite]: #19356
-#19449 := (iff #19129 #13950)
-#19450 := [rewrite]: #19449
-#19447 := (iff #19126 #13075)
-#19448 := [rewrite]: #19447
-#19445 := (iff #19123 #13070)
-#19446 := [rewrite]: #19445
-#19350 := (iff #19020 #12818)
-#19351 := [rewrite]: #19350
-#19443 := (iff #19120 #3246)
-#19444 := [rewrite]: #19443
-#19441 := (iff #19117 #3244)
-#19442 := [rewrite]: #19441
-#19439 := (iff #19114 #3242)
-#19440 := [rewrite]: #19439
-#19453 := [monotonicity #19440 #19442 #19444 #19351 #19446 #19448 #19450 #19357 #19430]: #19452
-#19458 := [trans #19453 #19456]: #19457
-#19461 := [monotonicity #19458]: #19460
-#19348 := (iff #19014 #12809)
-#19349 := [rewrite]: #19348
-#19464 := [monotonicity #19349 #19461]: #19463
-#19469 := [trans #19464 #19467]: #19468
-#19472 := [monotonicity #19469]: #19471
-#19475 := [monotonicity #19335 #19472]: #19474
-#19480 := [trans #19475 #19478]: #19479
-#19437 := (iff #19108 #19434)
-#19431 := (and #12823 #12826 #13952 #14078 #14207 #19428)
-#19435 := (iff #19431 #19434)
-#19436 := [rewrite]: #19435
-#19432 := (iff #19108 #19431)
-#19354 := (iff #19026 #12826)
-#19355 := [rewrite]: #19354
-#19352 := (iff #19023 #12823)
-#19353 := [rewrite]: #19352
-#19433 := [monotonicity #19353 #19355 #19335 #19357 #14297 #19430]: #19432
-#19438 := [trans #19433 #19436]: #19437
-#19483 := [monotonicity #19438 #19480]: #19482
-#19486 := [monotonicity #19351 #19335 #19483]: #19485
-#19491 := [trans #19486 #19489]: #19490
-#19494 := [monotonicity #19491]: #19493
-#19497 := [monotonicity #19349 #19494]: #19496
-#19502 := [trans #19497 #19500]: #19501
-#19505 := [monotonicity #19502]: #19504
-#19508 := [monotonicity #19335 #19505]: #19507
-#19513 := [trans #19508 #19511]: #19512
-#19578 := [monotonicity #19513 #19575]: #19577
-#19346 := (iff #19003 #16357)
-#19347 := [rewrite]: #19346
-#19344 := (iff #19000 #16337)
-#19345 := [rewrite]: #19344
-#19342 := (iff #18997 #16318)
-#19343 := [rewrite]: #19342
-#19340 := (iff #18987 #14502)
-#19341 := [rewrite]: #19340
-#19338 := (iff #18984 #14453)
-#19339 := [rewrite]: #19338
-#19336 := (iff #18981 #14411)
-#19337 := [rewrite]: #19336
-#19332 := (iff #18975 #12553)
-#19333 := [rewrite]: #19332
-#19330 := (iff #18972 #12437)
-#19331 := [rewrite]: #19330
-#19328 := (iff #18969 #3127)
-#19329 := [rewrite]: #19328
-#19326 := (iff #18966 #3124)
-#19327 := [rewrite]: #19326
-#19324 := (iff #18963 #3123)
-#19325 := [rewrite]: #19324
-#19322 := (iff #18960 #3122)
-#19323 := [rewrite]: #19322
-#19320 := (iff #18957 #3121)
-#19321 := [rewrite]: #19320
-#19581 := [monotonicity #19321 #19323 #19325 #19327 #19329 #19331 #19333 #19335 #19337 #19339 #19341 #19343 #19345 #19347 #19578]: #19580
-#19586 := [trans #19581 #19584]: #19585
-#19589 := [monotonicity #14668 #19586]: #19588
-#19592 := [monotonicity #19589]: #19591
-#19318 := (iff #18941 #19317)
-#19315 := (iff #18940 #19312)
-#19309 := (or #18939 #18938 #19306)
-#19313 := (iff #19309 #19312)
-#19314 := [rewrite]: #19313
-#19310 := (iff #18940 #19309)
-#19307 := (iff #18933 #19306)
-#19304 := (iff #18932 #19303)
-#19305 := [rewrite]: #19304
-#19308 := [monotonicity #19305]: #19307
-#19311 := [monotonicity #19308]: #19310
-#19316 := [trans #19311 #19314]: #19315
-#19319 := [monotonicity #19316]: #19318
-#19595 := [monotonicity #19319 #19592]: #19594
-#19301 := (iff #18926 #13903)
-#19302 := [rewrite]: #19301
-#19598 := [monotonicity #19302 #19595]: #19597
-#19601 := [monotonicity #19598]: #19600
-#19299 := (iff #18921 #12373)
-#19300 := [rewrite]: #19299
-#19297 := (iff #18918 #3031)
-#19298 := [rewrite]: #19297
-#19295 := (iff #18915 #3028)
-#19296 := [rewrite]: #19295
-#19293 := (iff #18912 #3025)
-#19294 := [rewrite]: #19293
-#19291 := (iff #18909 #3022)
-#19292 := [rewrite]: #19291
-#19604 := [monotonicity #19292 #19294 #19296 #19298 #19300 #19601]: #19603
-#19609 := [trans #19604 #19607]: #19608
-#19612 := [monotonicity #19609]: #19611
-#19289 := (iff #18903 #12364)
-#19290 := [rewrite]: #19289
-#19615 := [monotonicity #19290 #19612]: #19614
-#19620 := [trans #19615 #19618]: #19619
-#19623 := [monotonicity #19620]: #19622
-#19287 := (iff #18894 #12355)
-#19288 := [rewrite]: #19287
-#19626 := [monotonicity #19288 #19623]: #19625
-#19629 := [monotonicity #19626]: #19628
-#16494 := (exists (vars (?x782 int)) #16489)
-#16483 := (not #16480)
-#16497 := (or #16483 #16494)
-#16500 := (and #16480 #16497)
-#16506 := (or #12671 #12662 #12653 #12644 #13955 #14049 #16500)
-#16384 := (not #16381)
-#16390 := (or #14151 #16384)
-#16395 := (and #16381 #16390)
-#16398 := (or #14105 #16395)
-#16401 := (and #14100 #16398)
-#16418 := (or #12942 #14097 #14172 #16401 #16412)
-#16426 := (and #14088 #16368 #16418)
-#16439 := (or #13124 #13115 #13090 #13142 #13133 #13081 #14243 #14081 #16426)
-#16442 := (and #12806 #12812 #16439)
-#16445 := (or #13159 #16442)
-#16448 := (and #12803 #12806 #16445)
-#16451 := (or #13955 #14207 #16448)
-#16434 := (or #13002 #12993 #13955 #14081 #14211 #16426)
-#16454 := (and #16434 #16451)
-#16457 := (or #13142 #13955 #16454)
-#16460 := (and #12806 #12812 #16457)
-#16463 := (or #13159 #16460)
-#16466 := (and #12803 #12806 #16463)
-#16469 := (or #13955 #14046 #16466)
-#16511 := (and #16469 #16506)
-#16301 := (not #16298)
-#16517 := (or #13367 #13358 #13349 #13340 #13331 #14399 #15709 #13955 #14416 #14456 #14507 #16301 #16323 #16340 #16362 #16511)
-#16522 := (and #3022 #13943 #16517)
-#16287 := (not #16284)
-#16525 := (or #16287 #16522)
-#16528 := (and #16284 #16525)
-#16531 := (or #13906 #16528)
-#16534 := (and #13903 #16531)
-#16537 := (or #13672 #13663 #13654 #13645 #13681 #16534)
-#16540 := (and #12361 #12367 #16537)
-#16543 := (or #13698 #16540)
-#16546 := (and #12358 #12361 #16543)
-#16549 := (or #13715 #16546)
-#16552 := (and #12355 #16549)
-#16555 := (not #16552)
-#19282 := (~ #16555 #19281)
-#19278 := (not #16549)
-#19279 := (~ #19278 #19277)
-#19274 := (not #16546)
-#19275 := (~ #19274 #19273)
-#19270 := (not #16543)
-#19271 := (~ #19270 #19269)
-#19266 := (not #16540)
-#19267 := (~ #19266 #19265)
-#19262 := (not #16537)
-#19263 := (~ #19262 #19261)
-#19258 := (not #16534)
-#19259 := (~ #19258 #19257)
-#19254 := (not #16531)
-#19255 := (~ #19254 #19253)
-#19250 := (not #16528)
-#19251 := (~ #19250 #19249)
-#19246 := (not #16525)
-#19247 := (~ #19246 #19245)
-#19242 := (not #16522)
-#19243 := (~ #19242 #19241)
-#19238 := (not #16517)
-#19239 := (~ #19238 #19237)
-#19234 := (not #16511)
-#19235 := (~ #19234 #19233)
-#19230 := (not #16506)
-#19231 := (~ #19230 #19229)
-#19226 := (not #16500)
-#19227 := (~ #19226 #19225)
-#19222 := (not #16497)
-#19223 := (~ #19222 #19221)
-#19218 := (not #16494)
-#19219 := (~ #19218 #19217)
-#19215 := (~ #19214 #19214)
-#19216 := [refl]: #19215
-#19220 := [nnf-neg #19216]: #19219
-#19211 := (not #16483)
-#19212 := (~ #19211 #16480)
-#19209 := (~ #16480 #16480)
-#19207 := (~ #16475 #16475)
-#19208 := [refl]: #19207
-#19210 := [nnf-pos #19208]: #19209
-#19213 := [nnf-neg #19210]: #19212
-#19224 := [nnf-neg #19213 #19220]: #19223
-#19203 := (~ #16483 #19202)
-#19204 := [sk]: #19203
-#19228 := [nnf-neg #19204 #19224]: #19227
-#19188 := (~ #14352 #14352)
-#19189 := [refl]: #19188
-#18979 := (~ #18978 #18978)
-#18980 := [refl]: #18979
-#19186 := (~ #19185 #19185)
-#19187 := [refl]: #19186
-#19183 := (~ #19182 #19182)
-#19184 := [refl]: #19183
-#19180 := (~ #19179 #19179)
-#19181 := [refl]: #19180
-#19177 := (~ #19176 #19176)
-#19178 := [refl]: #19177
-#19232 := [nnf-neg #19178 #19181 #19184 #19187 #18980 #19189 #19228]: #19231
-#19173 := (not #16469)
-#19174 := (~ #19173 #19172)
-#19169 := (not #16466)
-#19170 := (~ #19169 #19168)
-#19165 := (not #16463)
-#19166 := (~ #19165 #19164)
-#19161 := (not #16460)
-#19162 := (~ #19161 #19160)
-#19157 := (not #16457)
-#19158 := (~ #19157 #19156)
-#19153 := (not #16454)
-#19154 := (~ #19153 #19152)
-#19149 := (not #16451)
-#19150 := (~ #19149 #19148)
-#19145 := (not #16448)
-#19146 := (~ #19145 #19144)
-#19141 := (not #16445)
-#19142 := (~ #19141 #19140)
-#19137 := (not #16442)
-#19138 := (~ #19137 #19136)
-#19133 := (not #16439)
-#19134 := (~ #19133 #19132)
-#19105 := (not #16426)
-#19106 := (~ #19105 #19104)
-#19101 := (not #16418)
-#19102 := (~ #19101 #19100)
-#19098 := (~ #19097 #19097)
-#19099 := [refl]: #19098
-#19094 := (not #16401)
-#19095 := (~ #19094 #19093)
-#19090 := (not #16398)
-#19091 := (~ #19090 #19089)
-#19086 := (not #16395)
-#19087 := (~ #19086 #19085)
-#19082 := (not #16390)
-#19083 := (~ #19082 #19081)
-#19078 := (not #16384)
-#19079 := (~ #19078 #16381)
-#19076 := (~ #16381 #16381)
-#19074 := (~ #16376 #16376)
-#19075 := [refl]: #19074
-#19077 := [nnf-pos #19075]: #19076
-#19080 := [nnf-neg #19077]: #19079
-#19072 := (~ #19071 #19071)
-#19073 := [refl]: #19072
-#19084 := [nnf-neg #19073 #19080]: #19083
-#19067 := (~ #16384 #19066)
-#19068 := [sk]: #19067
-#19088 := [nnf-neg #19068 #19084]: #19087
-#19052 := (~ #19051 #19051)
-#19053 := [refl]: #19052
-#19092 := [nnf-neg #19053 #19088]: #19091
-#19049 := (~ #14105 #14105)
-#19050 := [refl]: #19049
-#19096 := [nnf-neg #19050 #19092]: #19095
-#19047 := (~ #19046 #19046)
-#19048 := [refl]: #19047
-#19044 := (~ #19043 #19043)
-#19045 := [refl]: #19044
-#19041 := (~ #19040 #19040)
-#19042 := [refl]: #19041
-#19103 := [nnf-neg #19042 #19045 #19048 #19096 #19099]: #19102
-#19038 := (~ #19037 #19037)
-#19039 := [refl]: #19038
-#19035 := (~ #19034 #19034)
-#19036 := [refl]: #19035
-#19107 := [nnf-neg #19036 #19039 #19103]: #19106
-#19030 := (~ #19029 #19029)
-#19031 := [refl]: #19030
-#19130 := (~ #19129 #19129)
-#19131 := [refl]: #19130
-#19127 := (~ #19126 #19126)
-#19128 := [refl]: #19127
-#19124 := (~ #19123 #19123)
-#19125 := [refl]: #19124
-#19021 := (~ #19020 #19020)
-#19022 := [refl]: #19021
-#19121 := (~ #19120 #19120)
-#19122 := [refl]: #19121
-#19118 := (~ #19117 #19117)
-#19119 := [refl]: #19118
-#19115 := (~ #19114 #19114)
-#19116 := [refl]: #19115
-#19135 := [nnf-neg #19116 #19119 #19122 #19022 #19125 #19128 #19131 #19031 #19107]: #19134
-#19018 := (~ #19017 #19017)
-#19019 := [refl]: #19018
-#19012 := (~ #19011 #19011)
-#19013 := [refl]: #19012
-#19139 := [nnf-neg #19013 #19019 #19135]: #19138
-#19015 := (~ #19014 #19014)
-#19016 := [refl]: #19015
-#19143 := [nnf-neg #19016 #19139]: #19142
-#19009 := (~ #19008 #19008)
-#19010 := [refl]: #19009
-#19147 := [nnf-neg #19010 #19013 #19143]: #19146
-#19112 := (~ #14211 #14211)
-#19113 := [refl]: #19112
-#19151 := [nnf-neg #18980 #19113 #19147]: #19150
-#19109 := (not #16434)
-#19110 := (~ #19109 #19108)
-#19032 := (~ #14293 #14293)
-#19033 := [refl]: #19032
-#19027 := (~ #19026 #19026)
-#19028 := [refl]: #19027
-#19024 := (~ #19023 #19023)
-#19025 := [refl]: #19024
-#19111 := [nnf-neg #19025 #19028 #18980 #19031 #19033 #19107]: #19110
-#19155 := [nnf-neg #19111 #19151]: #19154
-#19159 := [nnf-neg #19022 #18980 #19155]: #19158
-#19163 := [nnf-neg #19013 #19019 #19159]: #19162
-#19167 := [nnf-neg #19016 #19163]: #19166
-#19171 := [nnf-neg #19010 #19013 #19167]: #19170
-#19006 := (~ #14049 #14049)
-#19007 := [refl]: #19006
-#19175 := [nnf-neg #18980 #19007 #19171]: #19174
-#19236 := [nnf-neg #19175 #19232]: #19235
-#19004 := (~ #19003 #19003)
-#19005 := [refl]: #19004
-#19001 := (~ #19000 #19000)
-#19002 := [refl]: #19001
-#18998 := (~ #18997 #18997)
-#18999 := [refl]: #18998
-#18994 := (not #16301)
-#18995 := (~ #18994 #16298)
-#18992 := (~ #16298 #16298)
-#18990 := (~ #16293 #16293)
-#18991 := [refl]: #18990
-#18993 := [nnf-pos #18991]: #18992
-#18996 := [nnf-neg #18993]: #18995
-#18988 := (~ #18987 #18987)
-#18989 := [refl]: #18988
-#18985 := (~ #18984 #18984)
-#18986 := [refl]: #18985
-#18982 := (~ #18981 #18981)
-#18983 := [refl]: #18982
-#18976 := (~ #18975 #18975)
-#18977 := [refl]: #18976
-#18973 := (~ #18972 #18972)
-#18974 := [refl]: #18973
-#18970 := (~ #18969 #18969)
-#18971 := [refl]: #18970
-#18967 := (~ #18966 #18966)
-#18968 := [refl]: #18967
-#18964 := (~ #18963 #18963)
-#18965 := [refl]: #18964
-#18961 := (~ #18960 #18960)
-#18962 := [refl]: #18961
-#18958 := (~ #18957 #18957)
-#18959 := [refl]: #18958
-#19240 := [nnf-neg #18959 #18962 #18965 #18968 #18971 #18974 #18977 #18980 #18983 #18986 #18989 #18996 #18999 #19002 #19005 #19236]: #19239
-#18955 := (~ #14664 #14664)
-#18956 := [refl]: #18955
-#18953 := (~ #13672 #13672)
-#18954 := [refl]: #18953
-#19244 := [nnf-neg #18954 #18956 #19240]: #19243
-#18950 := (not #16287)
-#18951 := (~ #18950 #16284)
-#18948 := (~ #16284 #16284)
-#18946 := (~ #16279 #16279)
-#18947 := [refl]: #18946
-#18949 := [nnf-pos #18947]: #18948
-#18952 := [nnf-neg #18949]: #18951
-#19248 := [nnf-neg #18952 #19244]: #19247
-#18942 := (~ #16287 #18941)
-#18943 := [sk]: #18942
-#19252 := [nnf-neg #18943 #19248]: #19251
-#18927 := (~ #18926 #18926)
-#18928 := [refl]: #18927
-#19256 := [nnf-neg #18928 #19252]: #19255
-#18924 := (~ #13906 #13906)
-#18925 := [refl]: #18924
-#19260 := [nnf-neg #18925 #19256]: #19259
-#18922 := (~ #18921 #18921)
-#18923 := [refl]: #18922
-#18919 := (~ #18918 #18918)
-#18920 := [refl]: #18919
-#18916 := (~ #18915 #18915)
-#18917 := [refl]: #18916
-#18913 := (~ #18912 #18912)
-#18914 := [refl]: #18913
-#18910 := (~ #18909 #18909)
-#18911 := [refl]: #18910
-#19264 := [nnf-neg #18911 #18914 #18917 #18920 #18923 #19260]: #19263
-#18907 := (~ #18906 #18906)
-#18908 := [refl]: #18907
-#18901 := (~ #18900 #18900)
-#18902 := [refl]: #18901
-#19268 := [nnf-neg #18902 #18908 #19264]: #19267
-#18904 := (~ #18903 #18903)
-#18905 := [refl]: #18904
-#19272 := [nnf-neg #18905 #19268]: #19271
-#18898 := (~ #18897 #18897)
-#18899 := [refl]: #18898
-#19276 := [nnf-neg #18899 #18902 #19272]: #19275
-#18895 := (~ #18894 #18894)
-#18896 := [refl]: #18895
-#19280 := [nnf-neg #18896 #19276]: #19279
-#18892 := (~ #13715 #13715)
-#18893 := [refl]: #18892
-#19283 := [nnf-neg #18893 #19280]: #19282
-#15734 := (or #12671 #12662 #12653 #12644 #13955 #14009 #14049)
-#15742 := (and #14371 #15734)
-#15750 := (or #13367 #13358 #13349 #13340 #13331 #14399 #15709 #13955 #14416 #14450 #14456 #14468 #14483 #14496 #14507 #15742)
-#15755 := (and #3022 #13943 #15750)
-#15758 := (or #13939 #15755)
-#15761 := (and #13936 #15758)
-#15764 := (or #13906 #15761)
-#15767 := (and #13903 #15764)
-#15770 := (or #13672 #13663 #13654 #13645 #13681 #15767)
-#15773 := (and #12361 #12367 #15770)
-#15776 := (or #13698 #15773)
-#15779 := (and #12358 #12361 #15776)
-#15782 := (or #13715 #15779)
-#15785 := (and #12355 #15782)
-#15788 := (not #15785)
-#16556 := (iff #15788 #16555)
-#16553 := (iff #15785 #16552)
-#16550 := (iff #15782 #16549)
-#16547 := (iff #15779 #16546)
-#16544 := (iff #15776 #16543)
-#16541 := (iff #15773 #16540)
-#16538 := (iff #15770 #16537)
-#16535 := (iff #15767 #16534)
-#16532 := (iff #15764 #16531)
-#16529 := (iff #15761 #16528)
-#16526 := (iff #15758 #16525)
-#16523 := (iff #15755 #16522)
-#16520 := (iff #15750 #16517)
-#16514 := (or #13367 #13358 #13349 #13340 #13331 #14399 #15709 #13955 #14416 #16301 #14456 #16323 #16340 #16362 #14507 #16511)
-#16518 := (iff #16514 #16517)
-#16519 := [rewrite]: #16518
-#16515 := (iff #15750 #16514)
-#16512 := (iff #15742 #16511)
-#16509 := (iff #15734 #16506)
-#16503 := (or #12671 #12662 #12653 #12644 #13955 #16500 #14049)
-#16507 := (iff #16503 #16506)
-#16508 := [rewrite]: #16507
-#16504 := (iff #15734 #16503)
-#16501 := (iff #14009 #16500)
-#16498 := (iff #14006 #16497)
-#16495 := (iff #14003 #16494)
-#16492 := (iff #13998 #16489)
-#16486 := (and #3145 #4084 #15606 #13958)
-#16490 := (iff #16486 #16489)
-#16491 := [rewrite]: #16490
-#16487 := (iff #13998 #16486)
-#15605 := (iff #4419 #15606)
-#15638 := -131073::int
-#15614 := (+ -131073::int #161)
-#15611 := (<= #15614 0::int)
-#15607 := (iff #15611 #15606)
-#15604 := [rewrite]: #15607
-#15608 := (iff #4419 #15611)
-#15613 := (= #4418 #15614)
-#15619 := (+ #161 -131073::int)
-#15615 := (= #15619 #15614)
-#15612 := [rewrite]: #15615
-#15616 := (= #4418 #15619)
-#15637 := (= #4413 -131073::int)
-#15643 := (* -1::int 131073::int)
-#15639 := (= #15643 -131073::int)
-#15636 := [rewrite]: #15639
-#15640 := (= #4413 #15643)
-#7883 := (= uf_76 131073::int)
-#1070 := 65536::int
-#1313 := (+ 65536::int 65536::int)
-#1318 := (+ #1313 1::int)
-#1319 := (= uf_76 #1318)
-#7884 := (iff #1319 #7883)
-#7881 := (= #1318 131073::int)
-#7874 := (+ 131072::int 1::int)
-#7879 := (= #7874 131073::int)
-#7880 := [rewrite]: #7879
-#7876 := (= #1318 #7874)
-#7845 := (= #1313 131072::int)
-#7846 := [rewrite]: #7845
-#7877 := [monotonicity #7846]: #7876
-#7882 := [trans #7877 #7880]: #7881
-#7885 := [monotonicity #7882]: #7884
-#7873 := [asserted]: #1319
-#7888 := [mp #7873 #7885]: #7883
-#15641 := [monotonicity #7888]: #15640
-#15634 := [trans #15641 #15636]: #15637
-#15617 := [monotonicity #15634]: #15616
-#15610 := [trans #15617 #15612]: #15613
-#15609 := [monotonicity #15610]: #15608
-#15602 := [trans #15609 #15604]: #15605
-#16488 := [monotonicity #15602]: #16487
-#16493 := [trans #16488 #16491]: #16492
-#16496 := [quant-intro #16493]: #16495
-#16484 := (iff #13989 #16483)
-#16481 := (iff #13986 #16480)
-#16478 := (iff #13981 #16475)
-#16472 := (or #14857 #13959 #13972)
-#16476 := (iff #16472 #16475)
-#16477 := [rewrite]: #16476
-#16473 := (iff #13981 #16472)
-#14854 := (iff #5739 #14857)
-#14859 := (iff #5736 #14858)
-#14856 := [monotonicity #15602]: #14859
-#14855 := [monotonicity #14856]: #14854
-#16474 := [monotonicity #14855]: #16473
-#16479 := [trans #16474 #16477]: #16478
-#16482 := [quant-intro #16479]: #16481
-#16485 := [monotonicity #16482]: #16484
-#16499 := [monotonicity #16485 #16496]: #16498
-#16502 := [monotonicity #16482 #16499]: #16501
-#16505 := [monotonicity #16502]: #16504
-#16510 := [trans #16505 #16508]: #16509
-#16470 := (iff #14371 #16469)
-#16467 := (iff #14345 #16466)
-#16464 := (iff #14339 #16463)
-#16461 := (iff #14334 #16460)
-#16458 := (iff #14326 #16457)
-#16455 := (iff #14317 #16454)
-#16452 := (iff #14312 #16451)
-#16449 := (iff #14286 #16448)
-#16446 := (iff #14280 #16445)
-#16443 := (iff #14275 #16442)
-#16440 := (iff #14267 #16439)
-#16429 := (iff #14201 #16426)
-#16423 := (and #16368 #14088 #16418)
-#16427 := (iff #16423 #16426)
-#16428 := [rewrite]: #16427
-#16424 := (iff #14201 #16423)
-#16421 := (iff #14193 #16418)
-#16415 := (or #12942 #14097 #16401 #14172 #16412)
-#16419 := (iff #16415 #16418)
-#16420 := [rewrite]: #16419
-#16416 := (iff #14193 #16415)
-#16413 := (iff #14178 #16412)
-#16410 := (iff #14175 #16407)
-#16404 := (and #16368 #14088)
-#16408 := (iff #16404 #16407)
-#16409 := [rewrite]: #16408
-#16405 := (iff #14175 #16404)
-#16371 := (iff #14084 #16368)
-#16304 := (+ 131073::int #14044)
-#16365 := (>= #16304 1::int)
-#16369 := (iff #16365 #16368)
-#16370 := [rewrite]: #16369
-#16366 := (iff #14084 #16365)
-#16305 := (= #14085 #16304)
-#16306 := [monotonicity #7888]: #16305
-#16367 := [monotonicity #16306]: #16366
-#16372 := [trans #16367 #16370]: #16371
-#16406 := [monotonicity #16372]: #16405
-#16411 := [trans #16406 #16409]: #16410
-#16414 := [monotonicity #16411]: #16413
-#16402 := (iff #14165 #16401)
-#16399 := (iff #14162 #16398)
-#16396 := (iff #14159 #16395)
-#16393 := (iff #14156 #16390)
-#16387 := (or #16384 #14151)
-#16391 := (iff #16387 #16390)
-#16392 := [rewrite]: #16391
-#16388 := (iff #14156 #16387)
-#16385 := (iff #14139 #16384)
-#16382 := (iff #14136 #16381)
-#16379 := (iff #14131 #16376)
-#16373 := (or #14857 #14109 #14122)
-#16377 := (iff #16373 #16376)
-#16378 := [rewrite]: #16377
-#16374 := (iff #14131 #16373)
-#16375 := [monotonicity #14855]: #16374
-#16380 := [trans #16375 #16378]: #16379
-#16383 := [quant-intro #16380]: #16382
-#16386 := [monotonicity #16383]: #16385
-#16389 := [monotonicity #16386]: #16388
-#16394 := [trans #16389 #16392]: #16393
-#16397 := [monotonicity #16383 #16394]: #16396
-#16400 := [monotonicity #16397]: #16399
-#16403 := [monotonicity #16400]: #16402
-#16417 := [monotonicity #16403 #16414]: #16416
-#16422 := [trans #16417 #16420]: #16421
-#16425 := [monotonicity #16372 #16422]: #16424
-#16430 := [trans #16425 #16428]: #16429
-#16441 := [monotonicity #16430]: #16440
-#16444 := [monotonicity #16441]: #16443
-#16447 := [monotonicity #16444]: #16446
-#16450 := [monotonicity #16447]: #16449
-#16453 := [monotonicity #16450]: #16452
-#16437 := (iff #14238 #16434)
-#16431 := (or #13002 #12993 #13955 #14081 #16426 #14211)
-#16435 := (iff #16431 #16434)
-#16436 := [rewrite]: #16435
-#16432 := (iff #14238 #16431)
-#16433 := [monotonicity #16430]: #16432
-#16438 := [trans #16433 #16436]: #16437
-#16456 := [monotonicity #16438 #16453]: #16455
-#16459 := [monotonicity #16456]: #16458
-#16462 := [monotonicity #16459]: #16461
-#16465 := [monotonicity #16462]: #16464
-#16468 := [monotonicity #16465]: #16467
-#16471 := [monotonicity #16468]: #16470
-#16513 := [monotonicity #16471 #16510]: #16512
-#16363 := (iff #14496 #16362)
-#16360 := (iff #14493 #16357)
-#16354 := (and #16349 #14490)
-#16358 := (iff #16354 #16357)
-#16359 := [rewrite]: #16358
-#16355 := (iff #14493 #16354)
-#16352 := (iff #14486 #16349)
-#16343 := (+ 255::int #14431)
-#16346 := (>= #16343 0::int)
-#16350 := (iff #16346 #16349)
-#16351 := [rewrite]: #16350
-#16347 := (iff #14486 #16346)
-#16344 := (= #14487 #16343)
-#1323 := (= uf_78 255::int)
-#7887 := [asserted]: #1323
-#16345 := [monotonicity #7887]: #16344
-#16348 := [monotonicity #16345]: #16347
-#16353 := [trans #16348 #16351]: #16352
-#16356 := [monotonicity #16353]: #16355
-#16361 := [trans #16356 #16359]: #16360
-#16364 := [monotonicity #16361]: #16363
-#16341 := (iff #14483 #16340)
-#16338 := (iff #14478 #16337)
-#16335 := (iff #14471 #16332)
-#16326 := (+ 131073::int #14402)
-#16329 := (>= #16326 0::int)
-#16333 := (iff #16329 #16332)
-#16334 := [rewrite]: #16333
-#16330 := (iff #14471 #16329)
-#16327 := (= #14472 #16326)
-#16328 := [monotonicity #7888]: #16327
-#16331 := [monotonicity #16328]: #16330
-#16336 := [trans #16331 #16334]: #16335
-#16339 := [monotonicity #16336]: #16338
-#16342 := [monotonicity #16339]: #16341
-#16324 := (iff #14468 #16323)
-#16321 := (iff #14465 #16318)
-#16315 := (and #16310 #14462)
-#16319 := (iff #16315 #16318)
-#16320 := [rewrite]: #16319
-#16316 := (iff #14465 #16315)
-#16313 := (iff #14459 #16310)
-#16307 := (>= #16304 0::int)
-#16311 := (iff #16307 #16310)
-#16312 := [rewrite]: #16311
-#16308 := (iff #14459 #16307)
-#16309 := [monotonicity #16306]: #16308
-#16314 := [trans #16309 #16312]: #16313
-#16317 := [monotonicity #16314]: #16316
-#16322 := [trans #16317 #16320]: #16321
-#16325 := [monotonicity #16322]: #16324
-#16302 := (iff #14450 #16301)
-#16299 := (iff #14447 #16298)
-#16296 := (iff #14442 #16293)
-#16290 := (or #14857 #14420 #14433)
-#16294 := (iff #16290 #16293)
-#16295 := [rewrite]: #16294
-#16291 := (iff #14442 #16290)
-#16292 := [monotonicity #14855]: #16291
-#16297 := [trans #16292 #16295]: #16296
-#16300 := [quant-intro #16297]: #16299
-#16303 := [monotonicity #16300]: #16302
-#16516 := [monotonicity #16303 #16325 #16342 #16364 #16513]: #16515
-#16521 := [trans #16516 #16519]: #16520
-#16524 := [monotonicity #16521]: #16523
-#16288 := (iff #13939 #16287)
-#16285 := (iff #13936 #16284)
-#16282 := (iff #13931 #16279)
-#16276 := (or #14857 #13910 #13921)
-#16280 := (iff #16276 #16279)
-#16281 := [rewrite]: #16280
-#16277 := (iff #13931 #16276)
-#16278 := [monotonicity #14855]: #16277
-#16283 := [trans #16278 #16281]: #16282
-#16286 := [quant-intro #16283]: #16285
-#16289 := [monotonicity #16286]: #16288
-#16527 := [monotonicity #16289 #16524]: #16526
-#16530 := [monotonicity #16286 #16527]: #16529
-#16533 := [monotonicity #16530]: #16532
-#16536 := [monotonicity #16533]: #16535
-#16539 := [monotonicity #16536]: #16538
-#16542 := [monotonicity #16539]: #16541
-#16545 := [monotonicity #16542]: #16544
-#16548 := [monotonicity #16545]: #16547
-#16551 := [monotonicity #16548]: #16550
-#16554 := [monotonicity #16551]: #16553
-#16557 := [monotonicity #16554]: #16556
-#14791 := (not #14643)
-#15789 := (iff #14791 #15788)
-#15786 := (iff #14643 #15785)
-#15783 := (iff #14640 #15782)
-#15780 := (iff #14635 #15779)
-#15777 := (iff #14629 #15776)
-#15774 := (iff #14624 #15773)
-#15771 := (iff #14616 #15770)
-#15768 := (iff #14595 #15767)
-#15765 := (iff #14592 #15764)
-#15762 := (iff #14589 #15761)
-#15759 := (iff #14586 #15758)
-#15756 := (iff #14581 #15755)
-#15753 := (iff #14573 #15750)
-#15747 := (or #13367 #13358 #13349 #13340 #13331 #14399 #15709 #13955 #15742 #14416 #14450 #14456 #14468 #14483 #14496 #14507)
-#15751 := (iff #15747 #15750)
-#15752 := [rewrite]: #15751
-#15748 := (iff #14573 #15747)
-#15745 := (iff #14376 #15742)
-#15739 := (and #15734 #14371)
-#15743 := (iff #15739 #15742)
-#15744 := [rewrite]: #15743
-#15740 := (iff #14376 #15739)
-#15737 := (iff #14070 #15734)
-#15719 := (or #12671 #12662 #12653 #12644 #13955 #14009)
-#15731 := (or #13955 #15719 #14049)
-#15735 := (iff #15731 #15734)
-#15736 := [rewrite]: #15735
-#15732 := (iff #14070 #15731)
-#15729 := (iff #14041 #15719)
-#15724 := (and true #15719)
-#15727 := (iff #15724 #15719)
-#15728 := [rewrite]: #15727
-#15725 := (iff #14041 #15724)
-#15722 := (iff #14036 #15719)
-#15716 := (or false #12671 #12662 #12653 #12644 #13955 #14009)
-#15720 := (iff #15716 #15719)
-#15721 := [rewrite]: #15720
-#15717 := (iff #14036 #15716)
-#15714 := (iff #12719 false)
-#15712 := (iff #12719 #3294)
-#15456 := (iff up_216 true)
-#11194 := [asserted]: up_216
-#15457 := [iff-true #11194]: #15456
-#15713 := [monotonicity #15457]: #15712
-#15715 := [trans #15713 #13445]: #15714
-#15718 := [monotonicity #15715]: #15717
-#15723 := [trans #15718 #15721]: #15722
-#15726 := [monotonicity #15457 #15723]: #15725
-#15730 := [trans #15726 #15728]: #15729
-#15733 := [monotonicity #15730]: #15732
-#15738 := [trans #15733 #15736]: #15737
-#15741 := [monotonicity #15738]: #15740
-#15746 := [trans #15741 #15744]: #15745
-#15710 := (iff #13376 #15709)
-#15707 := (iff #12556 #12553)
-#15702 := (and true #12553)
-#15705 := (iff #15702 #12553)
-#15706 := [rewrite]: #15705
-#15703 := (iff #12556 #15702)
-#15690 := (iff #12332 true)
-#15691 := [iff-true #14784]: #15690
-#15704 := [monotonicity #15691]: #15703
-#15708 := [trans #15704 #15706]: #15707
-#15711 := [monotonicity #15708]: #15710
-#15749 := [monotonicity #15711 #15746]: #15748
-#15754 := [trans #15749 #15752]: #15753
+#2223 := (and #136 #2222)
+#229 := (= #227 uf_9)
+#2224 := (and #229 #2223)
+#2226 := (implies #2224 #2225)
+#2227 := (forall (vars (?x572 T4) (?x573 T5)) (:pat #2218) #2226)
+#10038 := (iff #2227 #10035)
+#9987 := (and #52 #3477)
+#9991 := (and #3645 #9987)
+#9994 := (and #3642 #9991)
+#9997 := (and #3639 #9994)
+#10000 := (and #3624 #9997)
+#10003 := (and #3921 #10000)
+#10012 := (not #10003)
+#10013 := (or #10012 #10006)
+#10018 := (forall (vars (?x572 T4) (?x573 T5)) (:pat #2218) #10013)
+#10036 := (iff #10018 #10035)
+#10033 := (iff #10013 #10030)
+#10027 := (or #10024 #10006)
+#10031 := (iff #10027 #10030)
+#10032 := [rewrite]: #10031
+#10028 := (iff #10013 #10027)
+#10025 := (iff #10012 #10024)
+#10022 := (iff #10003 #10021)
+#10023 := [rewrite]: #10022
+#10026 := [monotonicity #10023]: #10025
+#10029 := [monotonicity #10026]: #10028
+#10034 := [trans #10029 #10032]: #10033
+#10037 := [quant-intro #10034]: #10036
+#10019 := (iff #2227 #10018)
+#10016 := (iff #2226 #10013)
+#10009 := (implies #10003 #10006)
+#10014 := (iff #10009 #10013)
+#10015 := [rewrite]: #10014
+#10010 := (iff #2226 #10009)
+#10007 := (iff #2225 #10006)
+#10008 := [rewrite]: #10007
+#10004 := (iff #2224 #10003)
+#10001 := (iff #2223 #10000)
+#9998 := (iff #2222 #9997)
+#9995 := (iff #2221 #9994)
+#9992 := (iff #2220 #9991)
+#9989 := (iff #2219 #9987)
+#3478 := (iff #72 #3477)
+#3479 := [rewrite]: #3478
+#9990 := [monotonicity #3479]: #9989
+#9993 := [monotonicity #3647 #9990]: #9992
+#3643 := (iff #145 #3642)
+#3644 := [rewrite]: #3643
+#9996 := [monotonicity #3644 #9993]: #9995
+#9999 := [monotonicity #3641 #9996]: #9998
+#3626 := (iff #136 #3624)
+#3627 := [rewrite]: #3626
+#10002 := [monotonicity #3627 #9999]: #10001
+#3923 := (iff #229 #3921)
+#3924 := [rewrite]: #3923
+#10005 := [monotonicity #3924 #10002]: #10004
+#10011 := [monotonicity #10005 #10008]: #10010
+#10017 := [trans #10011 #10015]: #10016
+#10020 := [quant-intro #10017]: #10019
+#10039 := [trans #10020 #10037]: #10038
+#9986 := [asserted]: #2227
+#10040 := [mp #9986 #10039]: #10035
+#17763 := [mp~ #10040 #17762]: #10035
+#21791 := [mp #17763 #21790]: #21788
+#25543 := (not #25542)
+#25332 := (not #25306)
+#25276 := (not #25275)
+#22661 := (not #11908)
+#25535 := (not #21788)
+#25562 := (or #25535 #22661 #25276 #25332 #25433 #25538 #25541 #25543 #25547)
+#25545 := (= #25544 uf_14)
+#25546 := (or #25545 #25276 #25332 #25543 #25541 #25538 #22661 #25433)
+#25563 := (or #25535 #25546)
+#25625 := (iff #25563 #25562)
+#25553 := (or #22661 #25276 #25332 #25433 #25538 #25541 #25543 #25547)
+#25559 := (or #25535 #25553)
+#25618 := (iff #25559 #25562)
+#25624 := [rewrite]: #25618
+#25565 := (iff #25563 #25559)
+#25556 := (iff #25546 #25553)
+#25550 := (or #25547 #25276 #25332 #25543 #25541 #25538 #22661 #25433)
+#25554 := (iff #25550 #25553)
+#25555 := [rewrite]: #25554
+#25551 := (iff #25546 #25550)
+#25548 := (iff #25545 #25547)
+#25549 := [rewrite]: #25548
+#25552 := [monotonicity #25549]: #25551
+#25557 := [trans #25552 #25555]: #25556
+#25623 := [monotonicity #25557]: #25565
+#25601 := [trans #25623 #25624]: #25625
+#25564 := [quant-inst]: #25563
+#25626 := [mp #25564 #25601]: #25562
+#26028 := [unit-resolution #25626 #21791 #14251 #26026 #25945 #25935 #25940]: #26027
+#26029 := [unit-resolution #26028 #26005 #25781 #25795]: false
+#26048 := [lemma #26029]: #25433
+#25441 := (or #25473 #25454 #25435)
+#25442 := [def-axiom]: #25441
+#25561 := [unit-resolution #25442 #26048]: #25516
+#25532 := [unit-resolution #25561 #25951]: #25435
+#25581 := [trans #25532 #25593]: #11928
+#25476 := [hypothesis]: #13182
+#25585 := [unit-resolution #25476 #25581]: false
+#25596 := [lemma #25585]: #11928
+#23433 := (or #13182 #23430)
+#22427 := (forall (vars (?x778 int)) #22416)
+#22434 := (not #22427)
+#22412 := (forall (vars (?x776 int)) #22407)
+#22433 := (not #22412)
+#22435 := (or #22433 #22434)
+#22436 := (not #22435)
+#22465 := (or #22436 #22462)
+#22471 := (not #22465)
+#22472 := (or #12096 #12087 #12078 #12069 #22348 #13552 #13698 #22471)
+#22473 := (not #22472)
+#22251 := (forall (vars (?x786 int)) #22246)
+#22257 := (not #22251)
+#22258 := (or #22233 #22257)
+#22259 := (not #22258)
+#22288 := (or #22259 #22285)
+#22294 := (not #22288)
+#22295 := (or #13451 #22294)
+#22296 := (not #22295)
+#22301 := (or #13451 #22296)
+#22309 := (not #22301)
+#22310 := (or #12469 #22307 #18463 #22308 #13518 #18466 #22309)
+#22311 := (not #22310)
+#22316 := (or #18463 #18466 #22311)
+#22322 := (not #22316)
+#22359 := (or #12662 #12653 #22348 #13552 #22307 #13603 #22322)
+#22360 := (not #22359)
+#22323 := (or #12558 #12549 #18425 #18434 #12567 #12524 #12515 #13552 #22307 #22322)
+#22324 := (not #22323)
+#22329 := (or #18425 #18434 #22324)
+#22335 := (not #22329)
+#22336 := (or #18425 #18428 #22335)
+#22337 := (not #22336)
+#22342 := (or #18425 #18428 #22337)
+#22349 := (not #22342)
+#22350 := (or #22348 #13552 #13604 #22349)
+#22351 := (not #22350)
+#22365 := (or #22351 #22360)
+#22371 := (not #22365)
+#22372 := (or #18425 #18434 #22348 #13552 #22371)
+#22373 := (not #22372)
+#22378 := (or #18425 #18434 #22373)
+#22384 := (not #22378)
+#22385 := (or #18425 #18428 #22384)
+#22386 := (not #22385)
+#22391 := (or #18425 #18428 #22386)
+#22397 := (not #22391)
+#22398 := (or #22348 #13552 #13697 #22397)
+#22399 := (not #22398)
+#22478 := (or #22399 #22473)
+#22493 := (not #22478)
+#22228 := (forall (vars (?x775 int)) #22223)
+#22489 := (not #22228)
+#22494 := (or #13149 #12914 #12905 #12896 #12887 #22484 #22485 #22486 #15177 #13870 #13404 #22348 #13552 #13875 #13927 #22487 #22488 #22490 #22491 #22492 #22489 #22493)
+#22495 := (not #22494)
+#22500 := (or #13149 #13404 #22495)
+#22507 := (not #22500)
+#22217 := (forall (vars (?x773 int)) #22212)
+#22506 := (not #22217)
+#22508 := (or #22506 #22507)
+#22509 := (not #22508)
+#22514 := (or #22206 #22509)
+#22520 := (not #22514)
+#22521 := (or #13368 #22520)
+#22522 := (not #22521)
+#22527 := (or #13368 #22522)
+#22533 := (not #22527)
+#22534 := (or #13149 #13140 #13131 #13122 #18314 #18323 #22533)
+#22535 := (not #22534)
+#22540 := (or #18314 #18323 #22535)
+#22546 := (not #22540)
+#22547 := (or #18314 #18317 #22546)
+#22548 := (not #22547)
+#22553 := (or #18314 #18317 #22548)
+#22559 := (not #22553)
+#22560 := (or #13182 #22559)
+#22561 := (not #22560)
+#22566 := (or #13182 #22561)
+#23434 := (iff #22566 #23433)
+#23431 := (iff #22561 #23430)
+#23428 := (iff #22560 #23427)
+#23425 := (iff #22559 #23424)
+#23422 := (iff #22553 #23421)
+#23419 := (iff #22548 #23418)
+#23416 := (iff #22547 #23415)
+#23413 := (iff #22546 #23412)
+#23410 := (iff #22540 #23409)
+#23407 := (iff #22535 #23406)
+#23404 := (iff #22534 #23403)
+#23401 := (iff #22533 #23400)
+#23398 := (iff #22527 #23397)
+#23395 := (iff #22522 #23394)
+#23392 := (iff #22521 #23391)
+#23389 := (iff #22520 #23388)
+#23386 := (iff #22514 #23385)
+#23383 := (iff #22509 #23382)
+#23380 := (iff #22508 #23379)
+#23377 := (iff #22507 #23376)
+#23374 := (iff #22500 #23373)
+#23371 := (iff #22495 #23370)
+#23368 := (iff #22494 #23367)
+#23365 := (iff #22493 #23364)
+#23362 := (iff #22478 #23361)
+#23359 := (iff #22473 #23358)
+#23356 := (iff #22472 #23355)
+#23353 := (iff #22471 #23352)
+#23350 := (iff #22465 #23349)
+#23347 := (iff #22436 #23346)
+#23344 := (iff #22435 #23343)
+#23341 := (iff #22434 #23340)
+#23338 := (iff #22427 #23335)
+#23336 := (iff #22416 #22416)
+#23337 := [refl]: #23336
+#23339 := [quant-intro #23337]: #23338
+#23342 := [monotonicity #23339]: #23341
+#23333 := (iff #22433 #23332)
+#23330 := (iff #22412 #23327)
+#23328 := (iff #22407 #22407)
+#23329 := [refl]: #23328
+#23331 := [quant-intro #23329]: #23330
+#23334 := [monotonicity #23331]: #23333
+#23345 := [monotonicity #23334 #23342]: #23344
+#23348 := [monotonicity #23345]: #23347
+#23351 := [monotonicity #23348]: #23350
+#23354 := [monotonicity #23351]: #23353
+#23357 := [monotonicity #23354]: #23356
+#23360 := [monotonicity #23357]: #23359
+#23325 := (iff #22399 #23324)
+#23322 := (iff #22398 #23321)
+#23319 := (iff #22397 #23318)
+#23316 := (iff #22391 #23315)
+#23313 := (iff #22386 #23312)
+#23310 := (iff #22385 #23309)
+#23307 := (iff #22384 #23306)
+#23304 := (iff #22378 #23303)
+#23301 := (iff #22373 #23300)
+#23298 := (iff #22372 #23297)
+#23295 := (iff #22371 #23294)
+#23292 := (iff #22365 #23291)
+#23289 := (iff #22360 #23288)
+#23286 := (iff #22359 #23285)
+#23253 := (iff #22322 #23252)
+#23250 := (iff #22316 #23249)
+#23247 := (iff #22311 #23246)
+#23244 := (iff #22310 #23243)
+#23241 := (iff #22309 #23240)
+#23238 := (iff #22301 #23237)
+#23235 := (iff #22296 #23234)
+#23232 := (iff #22295 #23231)
+#23229 := (iff #22294 #23228)
+#23226 := (iff #22288 #23225)
+#23223 := (iff #22259 #23222)
+#23220 := (iff #22258 #23219)
+#23217 := (iff #22257 #23216)
+#23214 := (iff #22251 #23211)
+#23212 := (iff #22246 #22246)
+#23213 := [refl]: #23212
+#23215 := [quant-intro #23213]: #23214
+#23218 := [monotonicity #23215]: #23217
+#23221 := [monotonicity #23218]: #23220
+#23224 := [monotonicity #23221]: #23223
+#23227 := [monotonicity #23224]: #23226
+#23230 := [monotonicity #23227]: #23229
+#23233 := [monotonicity #23230]: #23232
+#23236 := [monotonicity #23233]: #23235
+#23239 := [monotonicity #23236]: #23238
+#23242 := [monotonicity #23239]: #23241
+#23245 := [monotonicity #23242]: #23244
+#23248 := [monotonicity #23245]: #23247
+#23251 := [monotonicity #23248]: #23250
+#23254 := [monotonicity #23251]: #23253
+#23287 := [monotonicity #23254]: #23286
+#23290 := [monotonicity #23287]: #23289
+#23283 := (iff #22351 #23282)
+#23280 := (iff #22350 #23279)
+#23277 := (iff #22349 #23276)
+#23274 := (iff #22342 #23273)
+#23271 := (iff #22337 #23270)
+#23268 := (iff #22336 #23267)
+#23265 := (iff #22335 #23264)
+#23262 := (iff #22329 #23261)
+#23259 := (iff #22324 #23258)
+#23256 := (iff #22323 #23255)
+#23257 := [monotonicity #23254]: #23256
+#23260 := [monotonicity #23257]: #23259
+#23263 := [monotonicity #23260]: #23262
+#23266 := [monotonicity #23263]: #23265
+#23269 := [monotonicity #23266]: #23268
+#23272 := [monotonicity #23269]: #23271
+#23275 := [monotonicity #23272]: #23274
+#23278 := [monotonicity #23275]: #23277
+#23281 := [monotonicity #23278]: #23280
+#23284 := [monotonicity #23281]: #23283
+#23293 := [monotonicity #23284 #23290]: #23292
+#23296 := [monotonicity #23293]: #23295
+#23299 := [monotonicity #23296]: #23298
+#23302 := [monotonicity #23299]: #23301
+#23305 := [monotonicity #23302]: #23304
+#23308 := [monotonicity #23305]: #23307
+#23311 := [monotonicity #23308]: #23310
+#23314 := [monotonicity #23311]: #23313
+#23317 := [monotonicity #23314]: #23316
+#23320 := [monotonicity #23317]: #23319
+#23323 := [monotonicity #23320]: #23322
+#23326 := [monotonicity #23323]: #23325
+#23363 := [monotonicity #23326 #23360]: #23362
+#23366 := [monotonicity #23363]: #23365
+#23209 := (iff #22489 #23208)
+#23206 := (iff #22228 #23203)
+#23204 := (iff #22223 #22223)
+#23205 := [refl]: #23204
+#23207 := [quant-intro #23205]: #23206
+#23210 := [monotonicity #23207]: #23209
+#23369 := [monotonicity #23210 #23366]: #23368
+#23372 := [monotonicity #23369]: #23371
+#23375 := [monotonicity #23372]: #23374
+#23378 := [monotonicity #23375]: #23377
+#23201 := (iff #22506 #23200)
+#23198 := (iff #22217 #23195)
+#23196 := (iff #22212 #22212)
+#23197 := [refl]: #23196
+#23199 := [quant-intro #23197]: #23198
+#23202 := [monotonicity #23199]: #23201
+#23381 := [monotonicity #23202 #23378]: #23380
+#23384 := [monotonicity #23381]: #23383
+#23387 := [monotonicity #23384]: #23386
+#23390 := [monotonicity #23387]: #23389
+#23393 := [monotonicity #23390]: #23392
+#23396 := [monotonicity #23393]: #23395
+#23399 := [monotonicity #23396]: #23398
+#23402 := [monotonicity #23399]: #23401
+#23405 := [monotonicity #23402]: #23404
+#23408 := [monotonicity #23405]: #23407
+#23411 := [monotonicity #23408]: #23410
+#23414 := [monotonicity #23411]: #23413
+#23417 := [monotonicity #23414]: #23416
+#23420 := [monotonicity #23417]: #23419
+#23423 := [monotonicity #23420]: #23422
+#23426 := [monotonicity #23423]: #23425
+#23429 := [monotonicity #23426]: #23428
+#23432 := [monotonicity #23429]: #23431
+#23435 := [monotonicity #23432]: #23434
+#18965 := (and #18608 #18609)
+#18968 := (not #18965)
+#18971 := (or #18947 #18960 #18968)
+#18974 := (not #18971)
+#15917 := (and #3095 #4065 #13727 #15097)
+#18631 := (not #15917)
+#18634 := (forall (vars (?x778 int)) #18631)
+#14340 := (and #4065 #15097)
+#14339 := (not #14340)
+#15903 := (or #13725 #13739 #14339)
+#15908 := (forall (vars (?x776 int)) #15903)
+#18638 := (and #15908 #18634)
+#18980 := (or #18638 #18974)
+#18988 := (and #12011 #12014 #12017 #12020 #13409 #13412 #13697 #18980)
+#18817 := (and #18484 #18485)
+#18820 := (not #18817)
+#18823 := (or #18799 #18812 #18820)
+#18826 := (not #18823)
+#15804 := (or #13454 #13468 #14339)
+#15809 := (forall (vars (?x786 int)) #15804)
+#18500 := (not #13497)
+#18510 := (and #18500 #15809)
+#18832 := (or #18510 #18826)
+#18837 := (and #13446 #18832)
+#18840 := (or #13451 #18837)
+#18848 := (and #3211 #13421 #13430 #13438 #13514 #15796 #18840)
+#18853 := (or #18463 #18466 #18848)
+#18893 := (and #12644 #12647 #13409 #13412 #13421 #13604 #18853)
+#18859 := (and #3194 #3196 #12345 #12354 #12360 #12365 #12368 #13412 #13421 #18853)
+#18864 := (or #18425 #18434 #18859)
+#18870 := (and #12345 #12348 #18864)
+#18875 := (or #18425 #18428 #18870)
+#18881 := (and #13409 #13412 #13603 #18875)
+#18898 := (or #18881 #18893)
+#18904 := (and #12345 #12354 #13409 #13412 #18898)
+#18909 := (or #18425 #18434 #18904)
+#18915 := (and #12345 #12348 #18909)
+#18920 := (or #18425 #18428 #18915)
+#18926 := (and #13409 #13412 #13698 #18920)
+#18993 := (or #18926 #18988)
+#15730 := (or #13890 #13904 #14339)
+#15735 := (forall (vars (?x775 int)) #15730)
+#18999 := (and #3027 #3169 #3170 #3171 #3172 #3173 #3174 #11992 #12000 #12306 #13405 #13409 #13412 #13876 #13924 #13930 #13952 #15735 #15747 #15764 #15781 #18993)
+#19004 := (or #13149 #13404 #18999)
+#15716 := (or #13371 #13383 #14339)
+#15721 := (forall (vars (?x773 int)) #15716)
+#19007 := (and #15721 #19004)
+#18720 := (and #18347 #18348)
+#18723 := (not #18720)
+#18729 := (or #18355 #18356 #18723)
+#18734 := (not #18729)
+#19010 := (or #18734 #19007)
+#19013 := (and #13365 #19010)
+#19016 := (or #13368 #19013)
+#19022 := (and #3027 #3030 #3033 #3036 #11931 #11940 #19016)
+#19027 := (or #18314 #18323 #19022)
+#19033 := (and #11931 #11934 #19027)
+#19038 := (or #18314 #18317 #19033)
+#19041 := (and #11928 #19038)
+#19044 := (or #13182 #19041)
+#22567 := (iff #19044 #22566)
+#22564 := (iff #19041 #22561)
+#22556 := (and #11928 #22553)
+#22562 := (iff #22556 #22561)
+#22563 := [rewrite]: #22562
+#22557 := (iff #19041 #22556)
+#22554 := (iff #19038 #22553)
+#22551 := (iff #19033 #22548)
+#22543 := (and #11931 #11934 #22540)
+#22549 := (iff #22543 #22548)
+#22550 := [rewrite]: #22549
+#22544 := (iff #19033 #22543)
+#22541 := (iff #19027 #22540)
+#22538 := (iff #19022 #22535)
+#22530 := (and #3027 #3030 #3033 #3036 #11931 #11940 #22527)
+#22536 := (iff #22530 #22535)
+#22537 := [rewrite]: #22536
+#22531 := (iff #19022 #22530)
+#22528 := (iff #19016 #22527)
+#22525 := (iff #19013 #22522)
+#22517 := (and #13365 #22514)
+#22523 := (iff #22517 #22522)
+#22524 := [rewrite]: #22523
+#22518 := (iff #19013 #22517)
+#22515 := (iff #19010 #22514)
+#22512 := (iff #19007 #22509)
+#22503 := (and #22217 #22500)
+#22510 := (iff #22503 #22509)
+#22511 := [rewrite]: #22510
+#22504 := (iff #19007 #22503)
+#22501 := (iff #19004 #22500)
+#22498 := (iff #18999 #22495)
+#22481 := (and #3027 #3169 #3170 #3171 #3172 #3173 #3174 #11992 #12000 #12306 #13405 #13409 #13412 #13876 #13924 #13930 #13952 #22228 #15747 #15764 #15781 #22478)
+#22496 := (iff #22481 #22495)
+#22497 := [rewrite]: #22496
+#22482 := (iff #18999 #22481)
+#22479 := (iff #18993 #22478)
+#22476 := (iff #18988 #22473)
+#22468 := (and #12011 #12014 #12017 #12020 #13409 #13412 #13697 #22465)
+#22474 := (iff #22468 #22473)
+#22475 := [rewrite]: #22474
+#22469 := (iff #18988 #22468)
+#22466 := (iff #18980 #22465)
+#22463 := (iff #18974 #22462)
+#22460 := (iff #18971 #22457)
+#22443 := (or #22441 #22442)
+#22454 := (or #18947 #18960 #22443)
+#22458 := (iff #22454 #22457)
+#22459 := [rewrite]: #22458
+#22455 := (iff #18971 #22454)
+#22452 := (iff #18968 #22443)
+#22444 := (not #22443)
+#22447 := (not #22444)
+#22450 := (iff #22447 #22443)
+#22451 := [rewrite]: #22450
+#22448 := (iff #18968 #22447)
+#22445 := (iff #18965 #22444)
+#22446 := [rewrite]: #22445
+#22449 := [monotonicity #22446]: #22448
+#22453 := [trans #22449 #22451]: #22452
+#22456 := [monotonicity #22453]: #22455
+#22461 := [trans #22456 #22459]: #22460
+#22464 := [monotonicity #22461]: #22463
+#22439 := (iff #18638 #22436)
+#22430 := (and #22412 #22427)
+#22437 := (iff #22430 #22436)
+#22438 := [rewrite]: #22437
+#22431 := (iff #18638 #22430)
+#22428 := (iff #18634 #22427)
+#22425 := (iff #18631 #22416)
+#22417 := (not #22416)
+#22420 := (not #22417)
+#22423 := (iff #22420 #22416)
+#22424 := [rewrite]: #22423
+#22421 := (iff #18631 #22420)
+#22418 := (iff #15917 #22417)
+#22419 := [rewrite]: #22418
+#22422 := [monotonicity #22419]: #22421
+#22426 := [trans #22422 #22424]: #22425
+#22429 := [quant-intro #22426]: #22428
+#22413 := (iff #15908 #22412)
+#22410 := (iff #15903 #22407)
+#20120 := (or #4987 #19482)
+#22404 := (or #13725 #13739 #20120)
+#22408 := (iff #22404 #22407)
+#22409 := [rewrite]: #22408
+#22405 := (iff #15903 #22404)
+#20129 := (iff #14339 #20120)
+#20121 := (not #20120)
+#20124 := (not #20121)
+#20127 := (iff #20124 #20120)
+#20128 := [rewrite]: #20127
+#20125 := (iff #14339 #20124)
+#20122 := (iff #14340 #20121)
+#20123 := [rewrite]: #20122
+#20126 := [monotonicity #20123]: #20125
+#20130 := [trans #20126 #20128]: #20129
+#22406 := [monotonicity #20130]: #22405
+#22411 := [trans #22406 #22409]: #22410
+#22414 := [quant-intro #22411]: #22413
+#22432 := [monotonicity #22414 #22429]: #22431
+#22440 := [trans #22432 #22438]: #22439
+#22467 := [monotonicity #22440 #22464]: #22466
+#22470 := [monotonicity #22467]: #22469
+#22477 := [trans #22470 #22475]: #22476
+#22402 := (iff #18926 #22399)
+#22394 := (and #13409 #13412 #13698 #22391)
+#22400 := (iff #22394 #22399)
+#22401 := [rewrite]: #22400
+#22395 := (iff #18926 #22394)
+#22392 := (iff #18920 #22391)
+#22389 := (iff #18915 #22386)
+#22381 := (and #12345 #12348 #22378)
+#22387 := (iff #22381 #22386)
+#22388 := [rewrite]: #22387
+#22382 := (iff #18915 #22381)
+#22379 := (iff #18909 #22378)
+#22376 := (iff #18904 #22373)
+#22368 := (and #12345 #12354 #13409 #13412 #22365)
+#22374 := (iff #22368 #22373)
+#22375 := [rewrite]: #22374
+#22369 := (iff #18904 #22368)
+#22366 := (iff #18898 #22365)
+#22363 := (iff #18893 #22360)
+#22356 := (and #12644 #12647 #13409 #13412 #13421 #13604 #22316)
+#22361 := (iff #22356 #22360)
+#22362 := [rewrite]: #22361
+#22357 := (iff #18893 #22356)
+#22317 := (iff #18853 #22316)
+#22314 := (iff #18848 #22311)
+#22304 := (and #3211 #13421 #13430 #13438 #13514 #15796 #22301)
+#22312 := (iff #22304 #22311)
+#22313 := [rewrite]: #22312
+#22305 := (iff #18848 #22304)
+#22302 := (iff #18840 #22301)
+#22299 := (iff #18837 #22296)
+#22291 := (and #13446 #22288)
+#22297 := (iff #22291 #22296)
+#22298 := [rewrite]: #22297
+#22292 := (iff #18837 #22291)
+#22289 := (iff #18832 #22288)
+#22286 := (iff #18826 #22285)
+#22283 := (iff #18823 #22280)
+#22266 := (or #22264 #22265)
+#22277 := (or #18799 #18812 #22266)
+#22281 := (iff #22277 #22280)
+#22282 := [rewrite]: #22281
+#22278 := (iff #18823 #22277)
+#22275 := (iff #18820 #22266)
+#22267 := (not #22266)
+#22270 := (not #22267)
+#22273 := (iff #22270 #22266)
+#22274 := [rewrite]: #22273
+#22271 := (iff #18820 #22270)
+#22268 := (iff #18817 #22267)
+#22269 := [rewrite]: #22268
+#22272 := [monotonicity #22269]: #22271
+#22276 := [trans #22272 #22274]: #22275
+#22279 := [monotonicity #22276]: #22278
+#22284 := [trans #22279 #22282]: #22283
+#22287 := [monotonicity #22284]: #22286
+#22262 := (iff #18510 #22259)
+#22254 := (and #22232 #22251)
+#22260 := (iff #22254 #22259)
+#22261 := [rewrite]: #22260
+#22255 := (iff #18510 #22254)
+#22252 := (iff #15809 #22251)
+#22249 := (iff #15804 #22246)
+#22243 := (or #13454 #13468 #20120)
+#22247 := (iff #22243 #22246)
+#22248 := [rewrite]: #22247
+#22244 := (iff #15804 #22243)
+#22245 := [monotonicity #20130]: #22244
+#22250 := [trans #22245 #22248]: #22249
+#22253 := [quant-intro #22250]: #22252
+#22241 := (iff #18500 #22232)
+#22236 := (not #22233)
+#22239 := (iff #22236 #22232)
+#22240 := [rewrite]: #22239
+#22237 := (iff #18500 #22236)
+#22234 := (iff #13497 #22233)
+#22235 := [rewrite]: #22234
+#22238 := [monotonicity #22235]: #22237
+#22242 := [trans #22238 #22240]: #22241
+#22256 := [monotonicity #22242 #22253]: #22255
+#22263 := [trans #22256 #22261]: #22262
+#22290 := [monotonicity #22263 #22287]: #22289
+#22293 := [monotonicity #22290]: #22292
+#22300 := [trans #22293 #22298]: #22299
+#22303 := [monotonicity #22300]: #22302
+#22306 := [monotonicity #22303]: #22305
+#22315 := [trans #22306 #22313]: #22314
+#22318 := [monotonicity #22315]: #22317
+#22358 := [monotonicity #22318]: #22357
+#22364 := [trans #22358 #22362]: #22363
+#22354 := (iff #18881 #22351)
+#22345 := (and #13409 #13412 #13603 #22342)
+#22352 := (iff #22345 #22351)
+#22353 := [rewrite]: #22352
+#22346 := (iff #18881 #22345)
+#22343 := (iff #18875 #22342)
+#22340 := (iff #18870 #22337)
+#22332 := (and #12345 #12348 #22329)
+#22338 := (iff #22332 #22337)
+#22339 := [rewrite]: #22338
+#22333 := (iff #18870 #22332)
+#22330 := (iff #18864 #22329)
+#22327 := (iff #18859 #22324)
+#22319 := (and #3194 #3196 #12345 #12354 #12360 #12365 #12368 #13412 #13421 #22316)
+#22325 := (iff #22319 #22324)
+#22326 := [rewrite]: #22325
+#22320 := (iff #18859 #22319)
+#22321 := [monotonicity #22318]: #22320
+#22328 := [trans #22321 #22326]: #22327
+#22331 := [monotonicity #22328]: #22330
+#22334 := [monotonicity #22331]: #22333
+#22341 := [trans #22334 #22339]: #22340
+#22344 := [monotonicity #22341]: #22343
+#22347 := [monotonicity #22344]: #22346
+#22355 := [trans #22347 #22353]: #22354
+#22367 := [monotonicity #22355 #22364]: #22366
+#22370 := [monotonicity #22367]: #22369
+#22377 := [trans #22370 #22375]: #22376
+#22380 := [monotonicity #22377]: #22379
+#22383 := [monotonicity #22380]: #22382
+#22390 := [trans #22383 #22388]: #22389
+#22393 := [monotonicity #22390]: #22392
+#22396 := [monotonicity #22393]: #22395
+#22403 := [trans #22396 #22401]: #22402
+#22480 := [monotonicity #22403 #22477]: #22479
+#22229 := (iff #15735 #22228)
+#22226 := (iff #15730 #22223)
+#22220 := (or #13890 #13904 #20120)
+#22224 := (iff #22220 #22223)
+#22225 := [rewrite]: #22224
+#22221 := (iff #15730 #22220)
+#22222 := [monotonicity #20130]: #22221
+#22227 := [trans #22222 #22225]: #22226
+#22230 := [quant-intro #22227]: #22229
+#22483 := [monotonicity #22230 #22480]: #22482
+#22499 := [trans #22483 #22497]: #22498
+#22502 := [monotonicity #22499]: #22501
+#22218 := (iff #15721 #22217)
+#22215 := (iff #15716 #22212)
+#22209 := (or #13371 #13383 #20120)
+#22213 := (iff #22209 #22212)
+#22214 := [rewrite]: #22213
+#22210 := (iff #15716 #22209)
+#22211 := [monotonicity #20130]: #22210
+#22216 := [trans #22211 #22214]: #22215
+#22219 := [quant-intro #22216]: #22218
+#22505 := [monotonicity #22219 #22502]: #22504
+#22513 := [trans #22505 #22511]: #22512
+#22207 := (iff #18734 #22206)
+#22204 := (iff #18729 #22201)
+#22187 := (or #22185 #22186)
+#22198 := (or #18355 #18356 #22187)
+#22202 := (iff #22198 #22201)
+#22203 := [rewrite]: #22202
+#22199 := (iff #18729 #22198)
+#22196 := (iff #18723 #22187)
+#22188 := (not #22187)
+#22191 := (not #22188)
+#22194 := (iff #22191 #22187)
+#22195 := [rewrite]: #22194
+#22192 := (iff #18723 #22191)
+#22189 := (iff #18720 #22188)
+#22190 := [rewrite]: #22189
+#22193 := [monotonicity #22190]: #22192
+#22197 := [trans #22193 #22195]: #22196
+#22200 := [monotonicity #22197]: #22199
+#22205 := [trans #22200 #22203]: #22204
+#22208 := [monotonicity #22205]: #22207
+#22516 := [monotonicity #22208 #22513]: #22515
+#22519 := [monotonicity #22516]: #22518
+#22526 := [trans #22519 #22524]: #22525
+#22529 := [monotonicity #22526]: #22528
+#22532 := [monotonicity #22529]: #22531
+#22539 := [trans #22532 #22537]: #22538
+#22542 := [monotonicity #22539]: #22541
+#22545 := [monotonicity #22542]: #22544
+#22552 := [trans #22545 #22550]: #22551
+#22555 := [monotonicity #22552]: #22554
+#22558 := [monotonicity #22555]: #22557
+#22565 := [trans #22558 #22563]: #22564
+#22568 := [monotonicity #22565]: #22567
+#18610 := (and #18609 #18608)
+#18611 := (not #18610)
+#18614 := (+ #18613 #13737)
+#18615 := (<= #18614 0::int)
+#18616 := (+ ?x776!15 #13338)
+#18617 := (>= #18616 0::int)
+#18618 := (or #18617 #18615 #18611)
+#18619 := (not #18618)
+#18642 := (or #18619 #18638)
+#18395 := (not #13417)
+#18602 := (not #12069)
+#18599 := (not #12078)
+#18596 := (not #12087)
+#18593 := (not #12096)
+#18646 := (and #18593 #18596 #18599 #18602 #18395 #13701 #18642)
+#15832 := (and #13430 #15796)
+#15835 := (not #15832)
+#18526 := (not #15835)
+#18486 := (and #18485 #18484)
+#18487 := (not #18486)
+#18490 := (+ #18489 #13466)
+#18491 := (<= #18490 0::int)
+#18492 := (+ ?x786!14 #13447)
+#18493 := (>= #18492 0::int)
+#18494 := (or #18493 #18491 #18487)
+#18495 := (not #18494)
+#18514 := (or #18495 #18510)
+#18480 := (not #13451)
+#18518 := (and #18480 #18514)
+#18522 := (or #13451 #18518)
+#18475 := (not #13518)
+#18472 := (not #13443)
+#18469 := (not #12469)
+#18529 := (and #18469 #18472 #18475 #18522 #18526)
+#18533 := (or #18463 #18466 #18529)
+#18460 := (not #13426)
+#18560 := (not #12653)
+#18557 := (not #12662)
+#18565 := (and #18557 #18560 #18395 #18460 #13609 #18533)
+#18457 := (not #13552)
+#18454 := (not #12515)
+#18451 := (not #12524)
+#18448 := (not #12567)
+#18437 := (not #12576)
+#18445 := (not #12549)
+#18442 := (not #12558)
+#18537 := (and #18442 #18445 #18437 #18448 #18451 #18454 #18457 #18460 #18533)
+#18541 := (or #18425 #18434 #18537)
+#18431 := (not #12588)
+#18545 := (and #18431 #18541)
+#18549 := (or #18425 #18428 #18545)
+#18553 := (and #18395 #13603 #18549)
+#18569 := (or #18553 #18565)
+#18573 := (and #18437 #18395 #18569)
+#18577 := (or #18425 #18434 #18573)
+#18581 := (and #18431 #18577)
+#18585 := (or #18425 #18428 #18581)
+#18589 := (and #18395 #13698 #18585)
+#18650 := (or #18589 #18646)
+#15786 := (and #13952 #15781)
+#15789 := (not #15786)
+#18420 := (not #15789)
+#15769 := (and #13409 #15764)
+#15772 := (not #15769)
+#18417 := (not #15772)
+#15752 := (and #13930 #15747)
+#15755 := (not #15752)
+#18414 := (not #15755)
+#18404 := (not #13973)
+#18401 := (not #13927)
+#18398 := (not #13887)
+#18392 := (not #13870)
+#18389 := (not #15177)
+#18386 := (not #12878)
+#18383 := (not #12887)
+#18380 := (not #12896)
+#18377 := (not #12905)
+#18374 := (not #12914)
+#18654 := (and #18374 #18377 #18380 #18383 #18386 #18389 #18392 #18395 #18398 #18401 #18404 #15735 #18414 #18417 #18420 #18650)
+#18658 := (or #13149 #14130 #18654)
+#18662 := (and #15721 #18658)
+#18349 := (and #18348 #18347)
+#18350 := (not #18349)
+#18357 := (or #18356 #18355 #18350)
+#18358 := (not #18357)
+#18666 := (or #18358 #18662)
+#18343 := (not #13368)
+#18670 := (and #18343 #18666)
+#18674 := (or #13368 #18670)
+#18338 := (not #13158)
+#18335 := (not #13122)
+#18332 := (not #13131)
+#18329 := (not #13140)
+#18326 := (not #13149)
+#18678 := (and #18326 #18329 #18332 #18335 #18338 #18674)
+#18682 := (or #18314 #18323 #18678)
+#18320 := (not #13170)
+#18686 := (and #18320 #18682)
+#18690 := (or #18314 #18317 #18686)
+#18311 := (not #13182)
+#18694 := (and #18311 #18690)
+#18698 := (or #13182 #18694)
+#19045 := (iff #18698 #19044)
+#19042 := (iff #18694 #19041)
+#19039 := (iff #18690 #19038)
+#19036 := (iff #18686 #19033)
+#19030 := (and #11937 #19027)
+#19034 := (iff #19030 #19033)
+#19035 := [rewrite]: #19034
+#19031 := (iff #18686 #19030)
+#19028 := (iff #18682 #19027)
+#19025 := (iff #18678 #19022)
+#19019 := (and #3027 #3030 #3033 #3036 #11943 #19016)
+#19023 := (iff #19019 #19022)
+#19024 := [rewrite]: #19023
+#19020 := (iff #18678 #19019)
+#19017 := (iff #18674 #19016)
+#19014 := (iff #18670 #19013)
+#19011 := (iff #18666 #19010)
+#19008 := (iff #18662 #19007)
+#19005 := (iff #18658 #19004)
+#19002 := (iff #18654 #18999)
+#18996 := (and #3169 #3170 #3171 #3172 #3175 #12000 #12306 #13414 #13882 #13924 #13968 #15735 #15752 #15769 #15786 #18993)
+#19000 := (iff #18996 #18999)
+#19001 := [rewrite]: #19000
+#18997 := (iff #18654 #18996)
+#18994 := (iff #18650 #18993)
+#18991 := (iff #18646 #18988)
+#18985 := (and #12011 #12014 #12017 #12020 #13414 #13697 #18980)
+#18989 := (iff #18985 #18988)
+#18990 := [rewrite]: #18989
+#18986 := (iff #18646 #18985)
+#18983 := (iff #18642 #18980)
+#18977 := (or #18974 #18638)
+#18981 := (iff #18977 #18980)
+#18982 := [rewrite]: #18981
+#18978 := (iff #18642 #18977)
+#18975 := (iff #18619 #18974)
+#18972 := (iff #18618 #18971)
+#18969 := (iff #18611 #18968)
+#18966 := (iff #18610 #18965)
+#18967 := [rewrite]: #18966
+#18970 := [monotonicity #18967]: #18969
+#18963 := (iff #18615 #18960)
+#18952 := (+ #13737 #18613)
+#18955 := (<= #18952 0::int)
+#18961 := (iff #18955 #18960)
+#18962 := [rewrite]: #18961
+#18956 := (iff #18615 #18955)
+#18953 := (= #18614 #18952)
+#18954 := [rewrite]: #18953
+#18957 := [monotonicity #18954]: #18956
+#18964 := [trans #18957 #18962]: #18963
+#18950 := (iff #18617 #18947)
+#18939 := (+ #13338 ?x776!15)
+#18942 := (>= #18939 0::int)
+#18948 := (iff #18942 #18947)
+#18949 := [rewrite]: #18948
+#18943 := (iff #18617 #18942)
+#18940 := (= #18616 #18939)
+#18941 := [rewrite]: #18940
+#18944 := [monotonicity #18941]: #18943
+#18951 := [trans #18944 #18949]: #18950
+#18973 := [monotonicity #18951 #18964 #18970]: #18972
+#18976 := [monotonicity #18973]: #18975
+#18979 := [monotonicity #18976]: #18978
+#18984 := [trans #18979 #18982]: #18983
+#18751 := (iff #18395 #13414)
+#18752 := [rewrite]: #18751
+#18937 := (iff #18602 #12020)
+#18938 := [rewrite]: #18937
+#18935 := (iff #18599 #12017)
+#18936 := [rewrite]: #18935
+#18933 := (iff #18596 #12014)
+#18934 := [rewrite]: #18933
+#18931 := (iff #18593 #12011)
+#18932 := [rewrite]: #18931
+#18987 := [monotonicity #18932 #18934 #18936 #18938 #18752 #13705 #18984]: #18986
+#18992 := [trans #18987 #18990]: #18991
+#18929 := (iff #18589 #18926)
+#18923 := (and #13414 #13698 #18920)
+#18927 := (iff #18923 #18926)
+#18928 := [rewrite]: #18927
+#18924 := (iff #18589 #18923)
+#18921 := (iff #18585 #18920)
+#18918 := (iff #18581 #18915)
+#18912 := (and #12351 #18909)
+#18916 := (iff #18912 #18915)
+#18917 := [rewrite]: #18916
+#18913 := (iff #18581 #18912)
+#18910 := (iff #18577 #18909)
+#18907 := (iff #18573 #18904)
+#18901 := (and #12357 #13414 #18898)
+#18905 := (iff #18901 #18904)
+#18906 := [rewrite]: #18905
+#18902 := (iff #18573 #18901)
+#18899 := (iff #18569 #18898)
+#18896 := (iff #18565 #18893)
+#18890 := (and #12644 #12647 #13414 #13423 #13604 #18853)
+#18894 := (iff #18890 #18893)
+#18895 := [rewrite]: #18894
+#18891 := (iff #18565 #18890)
+#18854 := (iff #18533 #18853)
+#18851 := (iff #18529 #18848)
+#18845 := (and #3211 #13440 #13514 #18840 #15832)
+#18849 := (iff #18845 #18848)
+#18850 := [rewrite]: #18849
+#18846 := (iff #18529 #18845)
+#18843 := (iff #18526 #15832)
+#18844 := [rewrite]: #18843
+#18841 := (iff #18522 #18840)
+#18838 := (iff #18518 #18837)
+#18835 := (iff #18514 #18832)
+#18829 := (or #18826 #18510)
+#18833 := (iff #18829 #18832)
+#18834 := [rewrite]: #18833
+#18830 := (iff #18514 #18829)
+#18827 := (iff #18495 #18826)
+#18824 := (iff #18494 #18823)
+#18821 := (iff #18487 #18820)
+#18818 := (iff #18486 #18817)
+#18819 := [rewrite]: #18818
+#18822 := [monotonicity #18819]: #18821
+#18815 := (iff #18491 #18812)
+#18804 := (+ #13466 #18489)
+#18807 := (<= #18804 0::int)
+#18813 := (iff #18807 #18812)
+#18814 := [rewrite]: #18813
+#18808 := (iff #18491 #18807)
+#18805 := (= #18490 #18804)
+#18806 := [rewrite]: #18805
+#18809 := [monotonicity #18806]: #18808
+#18816 := [trans #18809 #18814]: #18815
+#18802 := (iff #18493 #18799)
+#18791 := (+ #13447 ?x786!14)
+#18794 := (>= #18791 0::int)
+#18800 := (iff #18794 #18799)
+#18801 := [rewrite]: #18800
+#18795 := (iff #18493 #18794)
+#18792 := (= #18492 #18791)
+#18793 := [rewrite]: #18792
+#18796 := [monotonicity #18793]: #18795
+#18803 := [trans #18796 #18801]: #18802
+#18825 := [monotonicity #18803 #18816 #18822]: #18824
+#18828 := [monotonicity #18825]: #18827
+#18831 := [monotonicity #18828]: #18830
+#18836 := [trans #18831 #18834]: #18835
+#18789 := (iff #18480 #13446)
+#18790 := [rewrite]: #18789
+#18839 := [monotonicity #18790 #18836]: #18838
+#18842 := [monotonicity #18839]: #18841
+#18787 := (iff #18475 #13514)
+#18788 := [rewrite]: #18787
+#18785 := (iff #18472 #13440)
+#18786 := [rewrite]: #18785
+#18783 := (iff #18469 #3211)
+#18784 := [rewrite]: #18783
+#18847 := [monotonicity #18784 #18786 #18788 #18842 #18844]: #18846
+#18852 := [trans #18847 #18850]: #18851
+#18855 := [monotonicity #18852]: #18854
+#18781 := (iff #18460 #13423)
+#18782 := [rewrite]: #18781
+#18888 := (iff #18560 #12647)
+#18889 := [rewrite]: #18888
+#18886 := (iff #18557 #12644)
+#18887 := [rewrite]: #18886
+#18892 := [monotonicity #18887 #18889 #18752 #18782 #13613 #18855]: #18891
+#18897 := [trans #18892 #18895]: #18896
+#18884 := (iff #18553 #18881)
+#18878 := (and #13414 #13603 #18875)
+#18882 := (iff #18878 #18881)
+#18883 := [rewrite]: #18882
+#18879 := (iff #18553 #18878)
+#18876 := (iff #18549 #18875)
+#18873 := (iff #18545 #18870)
+#18867 := (and #12351 #18864)
+#18871 := (iff #18867 #18870)
+#18872 := [rewrite]: #18871
+#18868 := (iff #18545 #18867)
+#18865 := (iff #18541 #18864)
+#18862 := (iff #18537 #18859)
+#18856 := (and #3194 #3196 #12357 #12360 #12365 #12368 #13412 #13423 #18853)
+#18860 := (iff #18856 #18859)
+#18861 := [rewrite]: #18860
+#18857 := (iff #18537 #18856)
+#18779 := (iff #18457 #13412)
+#18780 := [rewrite]: #18779
+#18777 := (iff #18454 #12368)
+#18778 := [rewrite]: #18777
+#18775 := (iff #18451 #12365)
+#18776 := [rewrite]: #18775
+#18773 := (iff #18448 #12360)
+#18774 := [rewrite]: #18773
+#18767 := (iff #18437 #12357)
+#18768 := [rewrite]: #18767
+#18771 := (iff #18445 #3196)
+#18772 := [rewrite]: #18771
+#18769 := (iff #18442 #3194)
+#18770 := [rewrite]: #18769
+#18858 := [monotonicity #18770 #18772 #18768 #18774 #18776 #18778 #18780 #18782 #18855]: #18857
+#18863 := [trans #18858 #18861]: #18862
+#18866 := [monotonicity #18863]: #18865
+#18765 := (iff #18431 #12351)
+#18766 := [rewrite]: #18765
+#18869 := [monotonicity #18766 #18866]: #18868
+#18874 := [trans #18869 #18872]: #18873
+#18877 := [monotonicity #18874]: #18876
+#18880 := [monotonicity #18752 #18877]: #18879
+#18885 := [trans #18880 #18883]: #18884
+#18900 := [monotonicity #18885 #18897]: #18899
+#18903 := [monotonicity #18768 #18752 #18900]: #18902
+#18908 := [trans #18903 #18906]: #18907
+#18911 := [monotonicity #18908]: #18910
+#18914 := [monotonicity #18766 #18911]: #18913
+#18919 := [trans #18914 #18917]: #18918
+#18922 := [monotonicity #18919]: #18921
+#18925 := [monotonicity #18752 #18922]: #18924
+#18930 := [trans #18925 #18928]: #18929
+#18995 := [monotonicity #18930 #18992]: #18994
+#18763 := (iff #18420 #15786)
+#18764 := [rewrite]: #18763
+#18761 := (iff #18417 #15769)
+#18762 := [rewrite]: #18761
+#18759 := (iff #18414 #15752)
+#18760 := [rewrite]: #18759
+#18757 := (iff #18404 #13968)
+#18758 := [rewrite]: #18757
+#18755 := (iff #18401 #13924)
+#18756 := [rewrite]: #18755
+#18753 := (iff #18398 #13882)
+#18754 := [rewrite]: #18753
+#18749 := (iff #18392 #12306)
+#18750 := [rewrite]: #18749
+#18747 := (iff #18389 #12000)
+#18748 := [rewrite]: #18747
+#18745 := (iff #18386 #3175)
+#18746 := [rewrite]: #18745
+#18743 := (iff #18383 #3172)
+#18744 := [rewrite]: #18743
+#18741 := (iff #18380 #3171)
+#18742 := [rewrite]: #18741
+#18739 := (iff #18377 #3170)
+#18740 := [rewrite]: #18739
+#18737 := (iff #18374 #3169)
+#18738 := [rewrite]: #18737
+#18998 := [monotonicity #18738 #18740 #18742 #18744 #18746 #18748 #18750 #18752 #18754 #18756 #18758 #18760 #18762 #18764 #18995]: #18997
+#19003 := [trans #18998 #19001]: #19002
+#19006 := [monotonicity #14134 #19003]: #19005
+#19009 := [monotonicity #19006]: #19008
+#18735 := (iff #18358 #18734)
+#18732 := (iff #18357 #18729)
+#18726 := (or #18356 #18355 #18723)
+#18730 := (iff #18726 #18729)
+#18731 := [rewrite]: #18730
+#18727 := (iff #18357 #18726)
+#18724 := (iff #18350 #18723)
+#18721 := (iff #18349 #18720)
+#18722 := [rewrite]: #18721
+#18725 := [monotonicity #18722]: #18724
+#18728 := [monotonicity #18725]: #18727
+#18733 := [trans #18728 #18731]: #18732
+#18736 := [monotonicity #18733]: #18735
+#19012 := [monotonicity #18736 #19009]: #19011
+#18718 := (iff #18343 #13365)
+#18719 := [rewrite]: #18718
+#19015 := [monotonicity #18719 #19012]: #19014
+#19018 := [monotonicity #19015]: #19017
+#18716 := (iff #18338 #11943)
+#18717 := [rewrite]: #18716
+#18714 := (iff #18335 #3036)
+#18715 := [rewrite]: #18714
+#18712 := (iff #18332 #3033)
+#18713 := [rewrite]: #18712
+#18710 := (iff #18329 #3030)
+#18711 := [rewrite]: #18710
+#18708 := (iff #18326 #3027)
+#18709 := [rewrite]: #18708
+#19021 := [monotonicity #18709 #18711 #18713 #18715 #18717 #19018]: #19020
+#19026 := [trans #19021 #19024]: #19025
+#19029 := [monotonicity #19026]: #19028
+#18706 := (iff #18320 #11937)
+#18707 := [rewrite]: #18706
+#19032 := [monotonicity #18707 #19029]: #19031
+#19037 := [trans #19032 #19035]: #19036
+#19040 := [monotonicity #19037]: #19039
+#18704 := (iff #18311 #11928)
+#18705 := [rewrite]: #18704
+#19043 := [monotonicity #18705 #19040]: #19042
+#19046 := [monotonicity #19043]: #19045
+#15922 := (exists (vars (?x778 int)) #15917)
+#15911 := (not #15908)
+#15925 := (or #15911 #15922)
+#15928 := (and #15908 #15925)
+#15931 := (or #12096 #12087 #12078 #12069 #13417 #13698 #15928)
+#15812 := (not #15809)
+#15818 := (or #13497 #15812)
+#15823 := (and #15809 #15818)
+#15826 := (or #13451 #15823)
+#15829 := (and #13446 #15826)
+#15841 := (or #12469 #13443 #13518 #15829 #15835)
+#15846 := (and #13430 #15796 #15841)
+#15872 := (or #12662 #12653 #13417 #13426 #13603 #15846)
+#15849 := (or #12558 #12549 #12576 #12567 #12524 #12515 #13552 #13426 #15846)
+#15852 := (and #12345 #12354 #15849)
+#15855 := (or #12588 #15852)
+#15858 := (and #12345 #12348 #15855)
+#15864 := (or #13417 #13604 #15858)
+#15877 := (and #15864 #15872)
+#15880 := (or #12576 #13417 #15877)
+#15883 := (and #12345 #12354 #15880)
+#15886 := (or #12588 #15883)
+#15889 := (and #12345 #12348 #15886)
+#15895 := (or #13417 #13697 #15889)
+#15934 := (and #15895 #15931)
+#15738 := (not #15735)
+#15940 := (or #12914 #12905 #12896 #12887 #12878 #15177 #13870 #13417 #13887 #13927 #13973 #15738 #15755 #15772 #15789 #15934)
+#15945 := (and #3027 #13405 #15940)
+#15724 := (not #15721)
+#15948 := (or #15724 #15945)
+#15951 := (and #15721 #15948)
+#15954 := (or #13368 #15951)
+#15957 := (and #13365 #15954)
+#15960 := (or #13149 #13140 #13131 #13122 #13158 #15957)
+#15963 := (and #11931 #11940 #15960)
+#15966 := (or #13170 #15963)
+#15969 := (and #11931 #11934 #15966)
+#15972 := (or #13182 #15969)
+#15975 := (and #11928 #15972)
+#15978 := (not #15975)
+#18699 := (~ #15978 #18698)
+#18695 := (not #15972)
+#18696 := (~ #18695 #18694)
+#18691 := (not #15969)
+#18692 := (~ #18691 #18690)
+#18687 := (not #15966)
+#18688 := (~ #18687 #18686)
+#18683 := (not #15963)
+#18684 := (~ #18683 #18682)
+#18679 := (not #15960)
+#18680 := (~ #18679 #18678)
+#18675 := (not #15957)
+#18676 := (~ #18675 #18674)
+#18671 := (not #15954)
+#18672 := (~ #18671 #18670)
+#18667 := (not #15951)
+#18668 := (~ #18667 #18666)
+#18663 := (not #15948)
+#18664 := (~ #18663 #18662)
+#18659 := (not #15945)
+#18660 := (~ #18659 #18658)
+#18655 := (not #15940)
+#18656 := (~ #18655 #18654)
+#18651 := (not #15934)
+#18652 := (~ #18651 #18650)
+#18647 := (not #15931)
+#18648 := (~ #18647 #18646)
+#18643 := (not #15928)
+#18644 := (~ #18643 #18642)
+#18639 := (not #15925)
+#18640 := (~ #18639 #18638)
+#18635 := (not #15922)
+#18636 := (~ #18635 #18634)
+#18632 := (~ #18631 #18631)
+#18633 := [refl]: #18632
+#18637 := [nnf-neg #18633]: #18636
+#18628 := (not #15911)
+#18629 := (~ #18628 #15908)
+#18626 := (~ #15908 #15908)
+#18624 := (~ #15903 #15903)
+#18625 := [refl]: #18624
+#18627 := [nnf-pos #18625]: #18626
+#18630 := [nnf-neg #18627]: #18629
+#18641 := [nnf-neg #18630 #18637]: #18640
+#18620 := (~ #15911 #18619)
+#18621 := [sk]: #18620
+#18645 := [nnf-neg #18621 #18641]: #18644
+#18605 := (~ #13701 #13701)
+#18606 := [refl]: #18605
+#18396 := (~ #18395 #18395)
+#18397 := [refl]: #18396
+#18603 := (~ #18602 #18602)
+#18604 := [refl]: #18603
+#18600 := (~ #18599 #18599)
+#18601 := [refl]: #18600
+#18597 := (~ #18596 #18596)
+#18598 := [refl]: #18597
+#18594 := (~ #18593 #18593)
+#18595 := [refl]: #18594
+#18649 := [nnf-neg #18595 #18598 #18601 #18604 #18397 #18606 #18645]: #18648
+#18590 := (not #15895)
+#18591 := (~ #18590 #18589)
+#18586 := (not #15889)
+#18587 := (~ #18586 #18585)
+#18582 := (not #15886)
+#18583 := (~ #18582 #18581)
+#18578 := (not #15883)
+#18579 := (~ #18578 #18577)
+#18574 := (not #15880)
+#18575 := (~ #18574 #18573)
+#18570 := (not #15877)
+#18571 := (~ #18570 #18569)
+#18566 := (not #15872)
+#18567 := (~ #18566 #18565)
+#18534 := (not #15846)
+#18535 := (~ #18534 #18533)
+#18530 := (not #15841)
+#18531 := (~ #18530 #18529)
+#18527 := (~ #18526 #18526)
+#18528 := [refl]: #18527
+#18523 := (not #15829)
+#18524 := (~ #18523 #18522)
+#18519 := (not #15826)
+#18520 := (~ #18519 #18518)
+#18515 := (not #15823)
+#18516 := (~ #18515 #18514)
+#18511 := (not #15818)
+#18512 := (~ #18511 #18510)
+#18507 := (not #15812)
+#18508 := (~ #18507 #15809)
+#18505 := (~ #15809 #15809)
+#18503 := (~ #15804 #15804)
+#18504 := [refl]: #18503
+#18506 := [nnf-pos #18504]: #18505
+#18509 := [nnf-neg #18506]: #18508
+#18501 := (~ #18500 #18500)
+#18502 := [refl]: #18501
+#18513 := [nnf-neg #18502 #18509]: #18512
+#18496 := (~ #15812 #18495)
+#18497 := [sk]: #18496
+#18517 := [nnf-neg #18497 #18513]: #18516
+#18481 := (~ #18480 #18480)
+#18482 := [refl]: #18481
+#18521 := [nnf-neg #18482 #18517]: #18520
+#18478 := (~ #13451 #13451)
+#18479 := [refl]: #18478
+#18525 := [nnf-neg #18479 #18521]: #18524
+#18476 := (~ #18475 #18475)
+#18477 := [refl]: #18476
+#18473 := (~ #18472 #18472)
+#18474 := [refl]: #18473
+#18470 := (~ #18469 #18469)
+#18471 := [refl]: #18470
+#18532 := [nnf-neg #18471 #18474 #18477 #18525 #18528]: #18531
+#18467 := (~ #18466 #18466)
+#18468 := [refl]: #18467
+#18464 := (~ #18463 #18463)
+#18465 := [refl]: #18464
+#18536 := [nnf-neg #18465 #18468 #18532]: #18535
+#18563 := (~ #13609 #13609)
+#18564 := [refl]: #18563
+#18461 := (~ #18460 #18460)
+#18462 := [refl]: #18461
+#18561 := (~ #18560 #18560)
+#18562 := [refl]: #18561
+#18558 := (~ #18557 #18557)
+#18559 := [refl]: #18558
+#18568 := [nnf-neg #18559 #18562 #18397 #18462 #18564 #18536]: #18567
+#18554 := (not #15864)
+#18555 := (~ #18554 #18553)
+#18550 := (not #15858)
+#18551 := (~ #18550 #18549)
+#18546 := (not #15855)
+#18547 := (~ #18546 #18545)
+#18542 := (not #15852)
+#18543 := (~ #18542 #18541)
+#18538 := (not #15849)
+#18539 := (~ #18538 #18537)
+#18458 := (~ #18457 #18457)
+#18459 := [refl]: #18458
+#18455 := (~ #18454 #18454)
+#18456 := [refl]: #18455
+#18452 := (~ #18451 #18451)
+#18453 := [refl]: #18452
+#18449 := (~ #18448 #18448)
+#18450 := [refl]: #18449
+#18438 := (~ #18437 #18437)
+#18439 := [refl]: #18438
+#18446 := (~ #18445 #18445)
+#18447 := [refl]: #18446
+#18443 := (~ #18442 #18442)
+#18444 := [refl]: #18443
+#18540 := [nnf-neg #18444 #18447 #18439 #18450 #18453 #18456 #18459 #18462 #18536]: #18539
+#18435 := (~ #18434 #18434)
+#18436 := [refl]: #18435
+#18426 := (~ #18425 #18425)
+#18427 := [refl]: #18426
+#18544 := [nnf-neg #18427 #18436 #18540]: #18543
+#18432 := (~ #18431 #18431)
+#18433 := [refl]: #18432
+#18548 := [nnf-neg #18433 #18544]: #18547
+#18429 := (~ #18428 #18428)
+#18430 := [refl]: #18429
+#18552 := [nnf-neg #18427 #18430 #18548]: #18551
+#18440 := (~ #13603 #13603)
+#18441 := [refl]: #18440
+#18556 := [nnf-neg #18397 #18441 #18552]: #18555
+#18572 := [nnf-neg #18556 #18568]: #18571
+#18576 := [nnf-neg #18439 #18397 #18572]: #18575
+#18580 := [nnf-neg #18427 #18436 #18576]: #18579
+#18584 := [nnf-neg #18433 #18580]: #18583
+#18588 := [nnf-neg #18427 #18430 #18584]: #18587
+#18423 := (~ #13698 #13698)
+#18424 := [refl]: #18423
+#18592 := [nnf-neg #18397 #18424 #18588]: #18591
+#18653 := [nnf-neg #18592 #18649]: #18652
+#18421 := (~ #18420 #18420)
+#18422 := [refl]: #18421
+#18418 := (~ #18417 #18417)
+#18419 := [refl]: #18418
+#18415 := (~ #18414 #18414)
+#18416 := [refl]: #18415
+#18411 := (not #15738)
+#18412 := (~ #18411 #15735)
+#18409 := (~ #15735 #15735)
+#18407 := (~ #15730 #15730)
+#18408 := [refl]: #18407
+#18410 := [nnf-pos #18408]: #18409
+#18413 := [nnf-neg #18410]: #18412
+#18405 := (~ #18404 #18404)
+#18406 := [refl]: #18405
+#18402 := (~ #18401 #18401)
+#18403 := [refl]: #18402
+#18399 := (~ #18398 #18398)
+#18400 := [refl]: #18399
+#18393 := (~ #18392 #18392)
+#18394 := [refl]: #18393
+#18390 := (~ #18389 #18389)
+#18391 := [refl]: #18390
+#18387 := (~ #18386 #18386)
+#18388 := [refl]: #18387
+#18384 := (~ #18383 #18383)
+#18385 := [refl]: #18384
+#18381 := (~ #18380 #18380)
+#18382 := [refl]: #18381
+#18378 := (~ #18377 #18377)
+#18379 := [refl]: #18378
+#18375 := (~ #18374 #18374)
+#18376 := [refl]: #18375
+#18657 := [nnf-neg #18376 #18379 #18382 #18385 #18388 #18391 #18394 #18397 #18400 #18403 #18406 #18413 #18416 #18419 #18422 #18653]: #18656
+#18372 := (~ #14130 #14130)
+#18373 := [refl]: #18372
+#18370 := (~ #13149 #13149)
+#18371 := [refl]: #18370
+#18661 := [nnf-neg #18371 #18373 #18657]: #18660
+#18367 := (not #15724)
+#18368 := (~ #18367 #15721)
+#18365 := (~ #15721 #15721)
+#18363 := (~ #15716 #15716)
+#18364 := [refl]: #18363
+#18366 := [nnf-pos #18364]: #18365
+#18369 := [nnf-neg #18366]: #18368
+#18665 := [nnf-neg #18369 #18661]: #18664
+#18359 := (~ #15724 #18358)
+#18360 := [sk]: #18359
+#18669 := [nnf-neg #18360 #18665]: #18668
+#18344 := (~ #18343 #18343)
+#18345 := [refl]: #18344
+#18673 := [nnf-neg #18345 #18669]: #18672
+#18341 := (~ #13368 #13368)
+#18342 := [refl]: #18341
+#18677 := [nnf-neg #18342 #18673]: #18676
+#18339 := (~ #18338 #18338)
+#18340 := [refl]: #18339
+#18336 := (~ #18335 #18335)
+#18337 := [refl]: #18336
+#18333 := (~ #18332 #18332)
+#18334 := [refl]: #18333
+#18330 := (~ #18329 #18329)
+#18331 := [refl]: #18330
+#18327 := (~ #18326 #18326)
+#18328 := [refl]: #18327
+#18681 := [nnf-neg #18328 #18331 #18334 #18337 #18340 #18677]: #18680
+#18324 := (~ #18323 #18323)
+#18325 := [refl]: #18324
+#18315 := (~ #18314 #18314)
+#18316 := [refl]: #18315
+#18685 := [nnf-neg #18316 #18325 #18681]: #18684
+#18321 := (~ #18320 #18320)
+#18322 := [refl]: #18321
+#18689 := [nnf-neg #18322 #18685]: #18688
+#18318 := (~ #18317 #18317)
+#18319 := [refl]: #18318
+#18693 := [nnf-neg #18316 #18319 #18689]: #18692
+#18312 := (~ #18311 #18311)
+#18313 := [refl]: #18312
+#18697 := [nnf-neg #18313 #18693]: #18696
+#18309 := (~ #13182 #13182)
+#18310 := [refl]: #18309
+#18700 := [nnf-neg #18310 #18697]: #18699
+#15202 := (or #12096 #12087 #12078 #12069 #13417 #13698 #13784)
+#15207 := (and #13720 #15202)
+#15213 := (or #12914 #12905 #12896 #12887 #12878 #15177 #13870 #13417 #13887 #13921 #13927 #13939 #13949 #13962 #13973 #15207)
+#15218 := (and #3027 #13405 #15213)
+#15221 := (or #13401 #15218)
+#15224 := (and #13398 #15221)
+#15227 := (or #13368 #15224)
+#15230 := (and #13365 #15227)
+#15233 := (or #13149 #13140 #13131 #13122 #13158 #15230)
+#15236 := (and #11931 #11940 #15233)
+#15239 := (or #13170 #15236)
+#15242 := (and #11931 #11934 #15239)
+#15245 := (or #13182 #15242)
+#15248 := (and #11928 #15245)
+#15251 := (not #15248)
+#15979 := (iff #15251 #15978)
+#15976 := (iff #15248 #15975)
+#15973 := (iff #15245 #15972)
+#15970 := (iff #15242 #15969)
+#15967 := (iff #15239 #15966)
+#15964 := (iff #15236 #15963)
+#15961 := (iff #15233 #15960)
+#15958 := (iff #15230 #15957)
+#15955 := (iff #15227 #15954)
+#15952 := (iff #15224 #15951)
+#15949 := (iff #15221 #15948)
+#15946 := (iff #15218 #15945)
+#15943 := (iff #15213 #15940)
+#15937 := (or #12914 #12905 #12896 #12887 #12878 #15177 #13870 #13417 #13887 #15738 #13927 #15755 #15772 #15789 #13973 #15934)
+#15941 := (iff #15937 #15940)
+#15942 := [rewrite]: #15941
+#15938 := (iff #15213 #15937)
+#15935 := (iff #15207 #15934)
+#15932 := (iff #15202 #15931)
+#15929 := (iff #13784 #15928)
+#15926 := (iff #13779 #15925)
+#15923 := (iff #13770 #15922)
+#15920 := (iff #13765 #15917)
+#15914 := (and #3095 #4065 #15097 #13727)
+#15918 := (iff #15914 #15917)
+#15919 := [rewrite]: #15918
+#15915 := (iff #13765 #15914)
+#15092 := (iff #4379 #15097)
+#15113 := -4294967295::int
+#15105 := (+ -4294967295::int #161)
+#15098 := (<= #15105 0::int)
+#15094 := (iff #15098 #15097)
+#15095 := [rewrite]: #15094
+#15099 := (iff #4379 #15098)
+#15100 := (= #4378 #15105)
+#15106 := (+ #161 -4294967295::int)
+#15102 := (= #15106 #15105)
+#15103 := [rewrite]: #15102
+#15107 := (= #4378 #15106)
+#15108 := (= #4377 -4294967295::int)
+#15114 := (* -1::int 4294967295::int)
+#15110 := (= #15114 -4294967295::int)
+#15111 := [rewrite]: #15110
+#15115 := (= #4377 #15114)
+#7500 := (= uf_76 4294967295::int)
+#947 := 65536::int
+#1322 := (* 65536::int 65536::int)
+#1327 := (- #1322 1::int)
+#1328 := (= uf_76 #1327)
+#7501 := (iff #1328 #7500)
+#7498 := (= #1327 4294967295::int)
+#1010 := 4294967296::int
+#7491 := (- 4294967296::int 1::int)
+#7496 := (= #7491 4294967295::int)
+#7497 := [rewrite]: #7496
+#7493 := (= #1327 #7491)
+#7462 := (= #1322 4294967296::int)
+#7463 := [rewrite]: #7462
+#7494 := [monotonicity #7463]: #7493
+#7499 := [trans #7494 #7497]: #7498
+#7502 := [monotonicity #7499]: #7501
+#7490 := [asserted]: #1328
+#7505 := [mp #7490 #7502]: #7500
+#15112 := [monotonicity #7505]: #15115
+#15109 := [trans #15112 #15111]: #15108
+#15104 := [monotonicity #15109]: #15107
+#15101 := [trans #15104 #15103]: #15100
+#15096 := [monotonicity #15101]: #15099
+#15093 := [trans #15096 #15095]: #15092
+#15916 := [monotonicity #15093]: #15915
+#15921 := [trans #15916 #15919]: #15920
+#15924 := [quant-intro #15921]: #15923
+#15912 := (iff #13773 #15911)
+#15909 := (iff #13753 #15908)
+#15906 := (iff #13748 #15903)
+#15900 := (or #14339 #13725 #13739)
+#15904 := (iff #15900 #15903)
+#15905 := [rewrite]: #15904
+#15901 := (iff #13748 #15900)
+#14336 := (iff #5601 #14339)
+#14341 := (iff #4386 #14340)
+#14338 := [monotonicity #15093]: #14341
+#14337 := [monotonicity #14338]: #14336
+#15902 := [monotonicity #14337]: #15901
+#15907 := [trans #15902 #15905]: #15906
+#15910 := [quant-intro #15907]: #15909
+#15913 := [monotonicity #15910]: #15912
+#15927 := [monotonicity #15913 #15924]: #15926
+#15930 := [monotonicity #15910 #15927]: #15929
+#15933 := [monotonicity #15930]: #15932
+#15898 := (iff #13720 #15895)
+#15892 := (or #13417 #15889 #13697)
+#15896 := (iff #15892 #15895)
+#15897 := [rewrite]: #15896
+#15893 := (iff #13720 #15892)
+#15890 := (iff #13691 #15889)
+#15887 := (iff #13685 #15886)
+#15884 := (iff #13680 #15883)
+#15881 := (iff #13672 #15880)
+#15878 := (iff #13663 #15877)
+#15875 := (iff #13658 #15872)
+#15869 := (or #12662 #12653 #13417 #13426 #15846 #13603)
+#15873 := (iff #15869 #15872)
+#15874 := [rewrite]: #15873
+#15870 := (iff #13658 #15869)
+#15847 := (iff #13547 #15846)
+#15844 := (iff #13539 #15841)
+#15838 := (or #12469 #13443 #15829 #13518 #15835)
+#15842 := (iff #15838 #15841)
+#15843 := [rewrite]: #15842
+#15839 := (iff #13539 #15838)
+#15836 := (iff #13524 #15835)
+#15833 := (iff #13521 #15832)
+#15799 := (iff #13432 #15796)
+#15741 := (+ 4294967295::int #13433)
+#15792 := (>= #15741 1::int)
+#15797 := (iff #15792 #15796)
+#15798 := [rewrite]: #15797
+#15793 := (iff #13432 #15792)
+#15742 := (= #13434 #15741)
+#15743 := [monotonicity #7505]: #15742
+#15794 := [monotonicity #15743]: #15793
+#15800 := [trans #15794 #15798]: #15799
+#15834 := [monotonicity #15800]: #15833
+#15837 := [monotonicity #15834]: #15836
+#15830 := (iff #13511 #15829)
+#15827 := (iff #13508 #15826)
+#15824 := (iff #13505 #15823)
+#15821 := (iff #13502 #15818)
+#15815 := (or #15812 #13497)
+#15819 := (iff #15815 #15818)
+#15820 := [rewrite]: #15819
+#15816 := (iff #13502 #15815)
+#15813 := (iff #13485 #15812)
+#15810 := (iff #13482 #15809)
+#15807 := (iff #13477 #15804)
+#15801 := (or #14339 #13454 #13468)
+#15805 := (iff #15801 #15804)
+#15806 := [rewrite]: #15805
+#15802 := (iff #13477 #15801)
+#15803 := [monotonicity #14337]: #15802
+#15808 := [trans #15803 #15806]: #15807
+#15811 := [quant-intro #15808]: #15810
+#15814 := [monotonicity #15811]: #15813
+#15817 := [monotonicity #15814]: #15816
+#15822 := [trans #15817 #15820]: #15821
+#15825 := [monotonicity #15811 #15822]: #15824
+#15828 := [monotonicity #15825]: #15827
+#15831 := [monotonicity #15828]: #15830
+#15840 := [monotonicity #15831 #15837]: #15839
+#15845 := [trans #15840 #15843]: #15844
+#15848 := [monotonicity #15800 #15845]: #15847
+#15871 := [monotonicity #15848]: #15870
+#15876 := [trans #15871 #15874]: #15875
+#15867 := (iff #13628 #15864)
+#15861 := (or #13417 #15858 #13604)
+#15865 := (iff #15861 #15864)
+#15866 := [rewrite]: #15865
+#15862 := (iff #13628 #15861)
+#15859 := (iff #13598 #15858)
+#15856 := (iff #13592 #15855)
+#15853 := (iff #13587 #15852)
+#15850 := (iff #13579 #15849)
+#15851 := [monotonicity #15848]: #15850
+#15854 := [monotonicity #15851]: #15853
+#15857 := [monotonicity #15854]: #15856
+#15860 := [monotonicity #15857]: #15859
+#15863 := [monotonicity #15860]: #15862
+#15868 := [trans #15863 #15866]: #15867
+#15879 := [monotonicity #15868 #15876]: #15878
+#15882 := [monotonicity #15879]: #15881
+#15885 := [monotonicity #15882]: #15884
+#15888 := [monotonicity #15885]: #15887
+#15891 := [monotonicity #15888]: #15890
+#15894 := [monotonicity #15891]: #15893
+#15899 := [trans #15894 #15897]: #15898
+#15936 := [monotonicity #15899 #15933]: #15935
+#15790 := (iff #13962 #15789)
+#15787 := (iff #13959 #15786)
+#15784 := (iff #13955 #15781)
+#15775 := (+ 255::int #13902)
+#15778 := (>= #15775 0::int)
+#15782 := (iff #15778 #15781)
+#15783 := [rewrite]: #15782
+#15779 := (iff #13955 #15778)
+#15776 := (= #13956 #15775)
+#1332 := (= uf_78 255::int)
+#7504 := [asserted]: #1332
+#15777 := [monotonicity #7504]: #15776
+#15780 := [monotonicity #15777]: #15779
+#15785 := [trans #15780 #15783]: #15784
+#15788 := [monotonicity #15785]: #15787
+#15791 := [monotonicity #15788]: #15790
+#15773 := (iff #13949 #15772)
+#15770 := (iff #13946 #15769)
+#15767 := (iff #13942 #15764)
+#15758 := (+ 4294967295::int #13873)
+#15761 := (>= #15758 0::int)
+#15765 := (iff #15761 #15764)
+#15766 := [rewrite]: #15765
+#15762 := (iff #13942 #15761)
+#15759 := (= #13943 #15758)
+#15760 := [monotonicity #7505]: #15759
+#15763 := [monotonicity #15760]: #15762
+#15768 := [trans #15763 #15766]: #15767
+#15771 := [monotonicity #15768]: #15770
+#15774 := [monotonicity #15771]: #15773
+#15756 := (iff #13939 #15755)
+#15753 := (iff #13936 #15752)
+#15750 := (iff #13933 #15747)
+#15744 := (>= #15741 0::int)
+#15748 := (iff #15744 #15747)
+#15749 := [rewrite]: #15748
+#15745 := (iff #13933 #15744)
+#15746 := [monotonicity #15743]: #15745
+#15751 := [trans #15746 #15749]: #15750
+#15754 := [monotonicity #15751]: #15753
#15757 := [monotonicity #15754]: #15756
-#15760 := [monotonicity #15757]: #15759
-#15763 := [monotonicity #15760]: #15762
-#15766 := [monotonicity #15763]: #15765
-#15769 := [monotonicity #15766]: #15768
-#15772 := [monotonicity #15769]: #15771
-#15775 := [monotonicity #15772]: #15774
-#15778 := [monotonicity #15775]: #15777
-#15781 := [monotonicity #15778]: #15780
-#15784 := [monotonicity #15781]: #15783
-#15787 := [monotonicity #15784]: #15786
-#15790 := [monotonicity #15787]: #15789
-#14792 := [not-or-elim #14776]: #14791
-#15791 := [mp #14792 #15790]: #15788
-#16558 := [mp #15791 #16557]: #16555
-#19284 := [mp~ #16558 #19283]: #19281
-#19285 := [mp #19284 #19629]: #19627
-#23120 := [mp #19285 #23119]: #23117
-#23987 := [mp #23120 #23986]: #23984
-#28241 := [unit-resolution #23987 #26494]: #23981
-#28348 := (or #23978 #23957)
-decl uf_136 :: (-> T14 T5)
-#26312 := (uf_58 #3079 #3011)
-#26553 := (uf_136 #26312)
-#26565 := (uf_24 uf_273 #26553)
-#26566 := (= uf_9 #26565)
-#26600 := (not #26566)
-decl uf_135 :: (-> T14 T2)
-#26546 := (uf_135 #26312)
-#26551 := (= uf_9 #26546)
-#26552 := (not #26551)
-#26788 := (or #26552 #26600)
-#26791 := (not #26788)
-decl uf_210 :: (-> T4 T5 T2)
-#26631 := (uf_210 uf_273 #26553)
-#26632 := (= uf_9 #26631)
-#26630 := (uf_25 uf_273 #26553)
-#26610 := (= uf_26 #26630)
-#26753 := (or #26610 #26632)
-#26766 := (not #26753)
-#26287 := (uf_15 #3011)
-#26634 := (uf_14 #26287)
-#26726 := (= uf_16 #26634)
-#26750 := (not #26726)
-#26608 := (uf_15 #26553)
-#26609 := (uf_14 #26608)
-#26629 := (= uf_16 #26609)
-#26796 := (or #26629 #26750 #26766 #26791)
-#26807 := (not #26796)
-#26557 := (uf_25 uf_273 #3011)
-#26558 := (= uf_26 #26557)
-#26555 := (uf_210 uf_273 #3011)
-#26556 := (= uf_9 #26555)
-#26756 := (or #26556 #26558)
-#26759 := (not #26756)
-#26745 := (or #26726 #26759)
-#26748 := (not #26745)
-#26809 := (or #26748 #26807)
-#26812 := (not #26809)
-#26819 := (or #18897 #26812)
-#26823 := (not #26819)
-#26851 := (iff #12367 #26823)
-#2376 := (uf_67 #47 #26)
-#2377 := (pattern #2376)
-#281 := (uf_59 #47)
-#2383 := (uf_58 #281 #26)
-#2397 := (uf_135 #2383)
-#10938 := (= uf_9 #2397)
-#10941 := (not #10938)
-#2384 := (uf_136 #2383)
-#2394 := (uf_24 #47 #2384)
-#10932 := (= uf_9 #2394)
-#10935 := (not #10932)
-#10944 := (or #10935 #10941)
-#22490 := (not #10944)
-#2390 := (uf_15 #2384)
-#2391 := (uf_14 #2390)
-#10926 := (= uf_16 #2391)
-#2387 := (uf_25 #47 #2384)
-#10920 := (= uf_26 #2387)
-#2385 := (uf_210 #47 #2384)
-#10917 := (= uf_9 #2385)
-#10923 := (or #10917 #10920)
-#22489 := (not #10923)
-#22491 := (or #52 #22489 #10926 #22490)
-#22492 := (not #22491)
-#2379 := (uf_210 #47 #26)
-#10898 := (= uf_9 #2379)
-#10904 := (or #3656 #10898)
-#22484 := (not #10904)
-#22485 := (or #36 #22484)
-#22486 := (not #22485)
-#22495 := (or #22486 #22492)
-#22501 := (not #22495)
-#22502 := (or #11522 #22501)
-#22503 := (not #22502)
-#10894 := (= uf_9 #2376)
-#22508 := (iff #10894 #22503)
-#22511 := (forall (vars (?x632 T4) (?x633 T5)) (:pat #2377) #22508)
-#10929 := (not #10926)
-#10978 := (and #36 #10923 #10929 #10944)
-#10912 := (and #52 #10904)
-#10981 := (or #10912 #10978)
-#10984 := (and #3650 #10981)
-#10987 := (iff #10894 #10984)
-#10990 := (forall (vars (?x632 T4) (?x633 T5)) (:pat #2377) #10987)
-#22512 := (iff #10990 #22511)
-#22509 := (iff #10987 #22508)
-#22506 := (iff #10984 #22503)
-#22498 := (and #3650 #22495)
-#22504 := (iff #22498 #22503)
-#22505 := [rewrite]: #22504
-#22499 := (iff #10984 #22498)
-#22496 := (iff #10981 #22495)
-#22493 := (iff #10978 #22492)
-#22494 := [rewrite]: #22493
-#22487 := (iff #10912 #22486)
-#22488 := [rewrite]: #22487
-#22497 := [monotonicity #22488 #22494]: #22496
-#22500 := [monotonicity #22497]: #22499
-#22507 := [trans #22500 #22505]: #22506
-#22510 := [monotonicity #22507]: #22509
-#22513 := [quant-intro #22510]: #22512
-#18466 := (~ #10990 #10990)
-#18464 := (~ #10987 #10987)
-#18465 := [refl]: #18464
-#18467 := [nnf-pos #18465]: #18466
-#2398 := (= #2397 uf_9)
-#2399 := (not #2398)
-#2395 := (= #2394 uf_9)
-#2396 := (not #2395)
-#2400 := (or #2396 #2399)
-#2401 := (and #2400 #36)
-#2392 := (= #2391 uf_16)
-#2393 := (not #2392)
-#2402 := (and #2393 #2401)
-#2388 := (= #2387 uf_26)
-#2386 := (= #2385 uf_9)
-#2389 := (or #2386 #2388)
-#2403 := (and #2389 #2402)
-#2380 := (= #2379 uf_9)
-#2381 := (or #2380 #151)
-#2382 := (and #2381 #52)
-#2404 := (or #2382 #2403)
-#2405 := (and #2404 #147)
-#2378 := (= #2376 uf_9)
-#2406 := (iff #2378 #2405)
-#2407 := (forall (vars (?x632 T4) (?x633 T5)) (:pat #2377) #2406)
-#10993 := (iff #2407 #10990)
-#10950 := (and #36 #10944)
-#10955 := (and #10929 #10950)
-#10958 := (and #10923 #10955)
-#10961 := (or #10912 #10958)
-#10967 := (and #3650 #10961)
-#10972 := (iff #10894 #10967)
-#10975 := (forall (vars (?x632 T4) (?x633 T5)) (:pat #2377) #10972)
-#10991 := (iff #10975 #10990)
-#10988 := (iff #10972 #10987)
-#10985 := (iff #10967 #10984)
-#10982 := (iff #10961 #10981)
-#10979 := (iff #10958 #10978)
-#10980 := [rewrite]: #10979
-#10983 := [monotonicity #10980]: #10982
-#10986 := [monotonicity #10983]: #10985
-#10989 := [monotonicity #10986]: #10988
-#10992 := [quant-intro #10989]: #10991
-#10976 := (iff #2407 #10975)
-#10973 := (iff #2406 #10972)
-#10970 := (iff #2405 #10967)
-#10964 := (and #10961 #3650)
-#10968 := (iff #10964 #10967)
-#10969 := [rewrite]: #10968
-#10965 := (iff #2405 #10964)
-#10962 := (iff #2404 #10961)
-#10959 := (iff #2403 #10958)
-#10956 := (iff #2402 #10955)
-#10953 := (iff #2401 #10950)
-#10947 := (and #10944 #36)
-#10951 := (iff #10947 #10950)
-#10952 := [rewrite]: #10951
-#10948 := (iff #2401 #10947)
-#10945 := (iff #2400 #10944)
-#10942 := (iff #2399 #10941)
-#10939 := (iff #2398 #10938)
-#10940 := [rewrite]: #10939
-#10943 := [monotonicity #10940]: #10942
-#10936 := (iff #2396 #10935)
-#10933 := (iff #2395 #10932)
-#10934 := [rewrite]: #10933
-#10937 := [monotonicity #10934]: #10936
-#10946 := [monotonicity #10937 #10943]: #10945
-#10949 := [monotonicity #10946]: #10948
-#10954 := [trans #10949 #10952]: #10953
-#10930 := (iff #2393 #10929)
-#10927 := (iff #2392 #10926)
-#10928 := [rewrite]: #10927
-#10931 := [monotonicity #10928]: #10930
-#10957 := [monotonicity #10931 #10954]: #10956
-#10924 := (iff #2389 #10923)
-#10921 := (iff #2388 #10920)
-#10922 := [rewrite]: #10921
-#10918 := (iff #2386 #10917)
-#10919 := [rewrite]: #10918
-#10925 := [monotonicity #10919 #10922]: #10924
-#10960 := [monotonicity #10925 #10957]: #10959
-#10915 := (iff #2382 #10912)
-#10909 := (and #10904 #52)
-#10913 := (iff #10909 #10912)
-#10914 := [rewrite]: #10913
-#10910 := (iff #2382 #10909)
-#10907 := (iff #2381 #10904)
-#10901 := (or #10898 #3656)
-#10905 := (iff #10901 #10904)
-#10906 := [rewrite]: #10905
-#10902 := (iff #2381 #10901)
-#10899 := (iff #2380 #10898)
-#10900 := [rewrite]: #10899
-#10903 := [monotonicity #10900 #3658]: #10902
-#10908 := [trans #10903 #10906]: #10907
-#10911 := [monotonicity #10908]: #10910
-#10916 := [trans #10911 #10914]: #10915
-#10963 := [monotonicity #10916 #10960]: #10962
-#10966 := [monotonicity #10963 #3652]: #10965
-#10971 := [trans #10966 #10969]: #10970
-#10896 := (iff #2378 #10894)
-#10897 := [rewrite]: #10896
-#10974 := [monotonicity #10897 #10971]: #10973
-#10977 := [quant-intro #10974]: #10976
-#10994 := [trans #10977 #10992]: #10993
-#10893 := [asserted]: #2407
-#10995 := [mp #10893 #10994]: #10990
-#18468 := [mp~ #10995 #18467]: #10990
-#22514 := [mp #18468 #22513]: #22511
-#26854 := (not #22511)
-#26855 := (or #26854 #26851)
-#26606 := (or #26600 #26552)
-#26607 := (not #26606)
-#26633 := (or #26632 #26610)
-#26628 := (not #26633)
-#26635 := (= #26634 uf_16)
-#26684 := (not #26635)
-#26685 := (or #26684 #26628 #26629 #26607)
-#26554 := (not #26685)
-#26559 := (or #26558 #26556)
-#26560 := (not #26559)
-#26544 := (or #26635 #26560)
-#26636 := (not #26544)
-#26637 := (or #26636 #26554)
-#26681 := (not #26637)
-#26713 := (or #18897 #26681)
-#26714 := (not #26713)
-#26725 := (iff #12367 #26714)
-#26840 := (or #26854 #26725)
-#26842 := (iff #26840 #26855)
-#26844 := (iff #26855 #26855)
-#26839 := [rewrite]: #26844
-#26852 := (iff #26725 #26851)
-#26824 := (iff #26714 #26823)
-#26820 := (iff #26713 #26819)
-#26813 := (iff #26681 #26812)
-#26810 := (iff #26637 #26809)
-#26808 := (iff #26554 #26807)
-#26805 := (iff #26685 #26796)
-#26793 := (or #26750 #26766 #26629 #26791)
-#26802 := (iff #26793 #26796)
-#26804 := [rewrite]: #26802
-#26794 := (iff #26685 #26793)
-#26786 := (iff #26607 #26791)
-#26789 := (iff #26606 #26788)
-#26790 := [rewrite]: #26789
-#26792 := [monotonicity #26790]: #26786
-#26785 := (iff #26628 #26766)
-#26764 := (iff #26633 #26753)
-#26765 := [rewrite]: #26764
-#26787 := [monotonicity #26765]: #26785
-#26751 := (iff #26684 #26750)
-#26754 := (iff #26635 #26726)
-#26755 := [rewrite]: #26754
-#26752 := [monotonicity #26755]: #26751
-#26795 := [monotonicity #26752 #26787 #26792]: #26794
-#26806 := [trans #26795 #26804]: #26805
-#26803 := [monotonicity #26806]: #26808
-#26743 := (iff #26636 #26748)
-#26746 := (iff #26544 #26745)
-#26742 := (iff #26560 #26759)
-#26757 := (iff #26559 #26756)
-#26758 := [rewrite]: #26757
-#26744 := [monotonicity #26758]: #26742
-#26747 := [monotonicity #26755 #26744]: #26746
-#26749 := [monotonicity #26747]: #26743
-#26811 := [monotonicity #26749 #26803]: #26810
-#26818 := [monotonicity #26811]: #26813
-#26822 := [monotonicity #26818]: #26820
-#26850 := [monotonicity #26822]: #26824
-#26853 := [monotonicity #26850]: #26852
-#26843 := [monotonicity #26853]: #26842
-#26845 := [trans #26843 #26839]: #26842
-#26841 := [quant-inst]: #26840
-#26846 := [mp #26841 #26845]: #26855
-#27857 := [unit-resolution #26846 #22514]: #26851
-#27023 := (not #26851)
-#27960 := (or #27023 #26819)
-#27858 := [hypothesis]: #23954
-decl uf_144 :: (-> T3 T3)
-#24114 := (uf_144 #2952)
-#26288 := (= #24114 #26287)
-#26263 := (uf_48 #3011 #24114)
-#26264 := (= uf_9 #26263)
-#26290 := (iff #26264 #26288)
-#26074 := (not #26290)
-#26175 := [hypothesis]: #26074
-#1381 := (uf_15 #15)
-#9506 := (= #233 #1381)
-#11615 := (iff #9506 #11594)
-#23676 := (forall (vars (?x712 T5) (?x713 T3)) (:pat #2662) #11615)
-#11620 := (forall (vars (?x712 T5) (?x713 T3)) #11615)
-#23679 := (iff #11620 #23676)
-#23677 := (iff #11615 #11615)
-#23678 := [refl]: #23677
-#23680 := [quant-intro #23678]: #23679
-#18739 := (~ #11620 #11620)
-#18737 := (~ #11615 #11615)
-#18738 := [refl]: #18737
-#18740 := [nnf-pos #18738]: #18739
-#1882 := (= #1381 #233)
-#2668 := (iff #2663 #1882)
-#2669 := (forall (vars (?x712 T5) (?x713 T3)) #2668)
-#11621 := (iff #2669 #11620)
-#11618 := (iff #2668 #11615)
-#11611 := (iff #11594 #9506)
-#11616 := (iff #11611 #11615)
-#11617 := [rewrite]: #11616
-#11613 := (iff #2668 #11611)
-#9507 := (iff #1882 #9506)
-#9508 := [rewrite]: #9507
-#11614 := [monotonicity #11597 #9508]: #11613
-#11619 := [trans #11614 #11617]: #11618
-#11622 := [quant-intro #11619]: #11621
-#11610 := [asserted]: #2669
-#11625 := [mp #11610 #11622]: #11620
-#18741 := [mp~ #11625 #18740]: #11620
-#23681 := [mp #18741 #23680]: #23676
-#25432 := (not #23676)
-#26067 := (or #25432 #26290)
-#26289 := (iff #26288 #26264)
-#26068 := (or #25432 #26289)
-#26069 := (iff #26068 #26067)
-#26065 := (iff #26067 #26067)
-#26071 := [rewrite]: #26065
-#26291 := (iff #26289 #26290)
-#26292 := [rewrite]: #26291
-#26070 := [monotonicity #26292]: #26069
-#26072 := [trans #26070 #26071]: #26069
-#26066 := [quant-inst]: #26068
-#26073 := [mp #26066 #26072]: #26067
-#26176 := [unit-resolution #26073 #23681 #26175]: false
-#26214 := [lemma #26176]: #26290
-#26294 := (or #26074 #12361)
-#26357 := (uf_116 #23223)
-decl uf_138 :: (-> T3 int)
-#26356 := (uf_138 #24114)
-#26365 := (+ #26356 #26357)
-#26368 := (uf_43 #24114 #26365)
-#26561 := (uf_15 #26368)
-#26308 := (= #26561 #26287)
-#26304 := (= #26287 #26561)
-#26302 := (= #3011 #26368)
-#26346 := (uf_66 #23223 0::int #24114)
-#26371 := (= #26346 #26368)
-#26374 := (not #26371)
-decl uf_139 :: (-> T5 T5 T2)
-#26347 := (uf_139 #26346 #23223)
-#26354 := (= uf_9 #26347)
-#26355 := (not #26354)
-#26380 := (or #26355 #26374)
-#26385 := (not #26380)
+#15739 := (iff #13921 #15738)
+#15736 := (iff #13918 #15735)
+#15733 := (iff #13913 #15730)
+#15727 := (or #14339 #13890 #13904)
+#15731 := (iff #15727 #15730)
+#15732 := [rewrite]: #15731
+#15728 := (iff #13913 #15727)
+#15729 := [monotonicity #14337]: #15728
+#15734 := [trans #15729 #15732]: #15733
+#15737 := [quant-intro #15734]: #15736
+#15740 := [monotonicity #15737]: #15739
+#15939 := [monotonicity #15740 #15757 #15774 #15791 #15936]: #15938
+#15944 := [trans #15939 #15942]: #15943
+#15947 := [monotonicity #15944]: #15946
+#15725 := (iff #13401 #15724)
+#15722 := (iff #13398 #15721)
+#15719 := (iff #13393 #15716)
+#15713 := (or #14339 #13371 #13383)
+#15717 := (iff #15713 #15716)
+#15718 := [rewrite]: #15717
+#15714 := (iff #13393 #15713)
+#15715 := [monotonicity #14337]: #15714
+#15720 := [trans #15715 #15718]: #15719
+#15723 := [quant-intro #15720]: #15722
+#15726 := [monotonicity #15723]: #15725
+#15950 := [monotonicity #15726 #15947]: #15949
+#15953 := [monotonicity #15723 #15950]: #15952
+#15956 := [monotonicity #15953]: #15955
+#15959 := [monotonicity #15956]: #15958
+#15962 := [monotonicity #15959]: #15961
+#15965 := [monotonicity #15962]: #15964
+#15968 := [monotonicity #15965]: #15967
+#15971 := [monotonicity #15968]: #15970
+#15974 := [monotonicity #15971]: #15973
+#15977 := [monotonicity #15974]: #15976
+#15980 := [monotonicity #15977]: #15979
+#14257 := (not #14109)
+#15252 := (iff #14257 #15251)
+#15249 := (iff #14109 #15248)
+#15246 := (iff #14106 #15245)
+#15243 := (iff #14101 #15242)
+#15240 := (iff #14095 #15239)
+#15237 := (iff #14090 #15236)
+#15234 := (iff #14082 #15233)
+#15231 := (iff #14061 #15230)
+#15228 := (iff #14058 #15227)
+#15225 := (iff #14055 #15224)
+#15222 := (iff #14052 #15221)
+#15219 := (iff #14047 #15218)
+#15216 := (iff #14039 #15213)
+#15210 := (or #12914 #12905 #12896 #12887 #12878 #15177 #13870 #13417 #15207 #13887 #13921 #13927 #13939 #13949 #13962 #13973)
+#15214 := (iff #15210 #15213)
+#15215 := [rewrite]: #15214
+#15211 := (iff #14039 #15210)
+#15208 := (iff #13846 #15207)
+#15205 := (iff #13841 #15202)
+#15187 := (or #12096 #12087 #12078 #12069 #13417 #13784)
+#15199 := (or #13417 #13698 #15187)
+#15203 := (iff #15199 #15202)
+#15204 := [rewrite]: #15203
+#15200 := (iff #13841 #15199)
+#15197 := (iff #13816 #15187)
+#15192 := (and true #15187)
+#15195 := (iff #15192 #15187)
+#15196 := [rewrite]: #15195
+#15193 := (iff #13816 #15192)
+#15190 := (iff #13811 #15187)
+#15184 := (or false #12096 #12087 #12078 #12069 #13417 #13784)
+#15188 := (iff #15184 #15187)
+#15189 := [rewrite]: #15188
+#15185 := (iff #13811 #15184)
+#15182 := (iff #12144 false)
+#15180 := (iff #12144 #3077)
+#14924 := (iff up_216 true)
+#10764 := [asserted]: up_216
+#14925 := [iff-true #10764]: #14924
+#15181 := [monotonicity #14925]: #15180
+#15183 := [trans #15181 #11999]: #15182
+#15186 := [monotonicity #15183]: #15185
+#15191 := [trans #15186 #15189]: #15190
+#15194 := [monotonicity #14925 #15191]: #15193
+#15198 := [trans #15194 #15196]: #15197
+#15201 := [monotonicity #15198]: #15200
+#15206 := [trans #15201 #15204]: #15205
+#15209 := [monotonicity #15206]: #15208
+#15178 := (iff #12179 #15177)
+#15175 := (iff #12006 #12000)
+#15170 := (and true #12000)
+#15173 := (iff #15170 #12000)
+#15174 := [rewrite]: #15173
+#15171 := (iff #12006 #15170)
+#15160 := (iff #11908 true)
+#15161 := [iff-true #14251]: #15160
+#15172 := [monotonicity #15161]: #15171
+#15176 := [trans #15172 #15174]: #15175
+#15179 := [monotonicity #15176]: #15178
+#15212 := [monotonicity #15179 #15209]: #15211
+#15217 := [trans #15212 #15215]: #15216
+#15220 := [monotonicity #15217]: #15219
+#15223 := [monotonicity #15220]: #15222
+#15226 := [monotonicity #15223]: #15225
+#15229 := [monotonicity #15226]: #15228
+#15232 := [monotonicity #15229]: #15231
+#15235 := [monotonicity #15232]: #15234
+#15238 := [monotonicity #15235]: #15237
+#15241 := [monotonicity #15238]: #15240
+#15244 := [monotonicity #15241]: #15243
+#15247 := [monotonicity #15244]: #15246
+#15250 := [monotonicity #15247]: #15249
+#15253 := [monotonicity #15250]: #15252
+#14258 := [not-or-elim #14242]: #14257
+#15254 := [mp #14258 #15253]: #15251
+#15981 := [mp #15254 #15980]: #15978
+#18701 := [mp~ #15981 #18700]: #18698
+#18702 := [mp #18701 #19046]: #19044
+#22569 := [mp #18702 #22568]: #22566
+#23436 := [mp #22569 #23435]: #23433
+#27882 := [unit-resolution #23436 #25596]: #23430
+#22674 := (or #23427 #23421)
+#22672 := [def-axiom]: #22674
+#27883 := [unit-resolution #22672 #27882]: #23421
+#25774 := (uf_13 #3016)
+#25775 := (= #23566 #25774)
+#25748 := (uf_48 #3016 #23566)
+#25749 := (= uf_9 #25748)
+#25777 := (iff #25749 #25775)
+#25526 := (not #25777)
+#25620 := [hypothesis]: #25526
+#1390 := (uf_13 #15)
+#9063 := (= #233 #1390)
+#11183 := (iff #9063 #11162)
+#23125 := (forall (vars (?x712 T5) (?x713 T3)) (:pat #2667) #11183)
+#11188 := (forall (vars (?x712 T5) (?x713 T3)) #11183)
+#23128 := (iff #11188 #23125)
+#23126 := (iff #11183 #11183)
+#23127 := [refl]: #23126
+#23129 := [quant-intro #23127]: #23128
+#18156 := (~ #11188 #11188)
+#18154 := (~ #11183 #11183)
+#18155 := [refl]: #18154
+#18157 := [nnf-pos #18155]: #18156
+#1890 := (= #1390 #233)
+#2673 := (iff #2668 #1890)
+#2674 := (forall (vars (?x712 T5) (?x713 T3)) #2673)
+#11189 := (iff #2674 #11188)
+#11186 := (iff #2673 #11183)
+#11179 := (iff #11162 #9063)
+#11184 := (iff #11179 #11183)
+#11185 := [rewrite]: #11184
+#11181 := (iff #2673 #11179)
+#9064 := (iff #1890 #9063)
+#9065 := [rewrite]: #9064
+#11182 := [monotonicity #11165 #9065]: #11181
+#11187 := [trans #11182 #11185]: #11186
+#11190 := [quant-intro #11187]: #11189
+#11178 := [asserted]: #2674
+#11193 := [mp #11178 #11190]: #11188
+#18158 := [mp~ #11193 #18157]: #11188
+#23130 := [mp #18158 #23129]: #23125
+#24884 := (not #23125)
+#25519 := (or #24884 #25777)
+#25776 := (iff #25775 #25749)
+#25520 := (or #24884 #25776)
+#25521 := (iff #25520 #25519)
+#25517 := (iff #25519 #25519)
+#25523 := [rewrite]: #25517
+#25778 := (iff #25776 #25777)
+#25779 := [rewrite]: #25778
+#25522 := [monotonicity #25779]: #25521
+#25524 := [trans #25522 #25523]: #25521
+#25518 := [quant-inst]: #25520
+#25525 := [mp #25518 #25524]: #25519
+#25621 := [unit-resolution #25525 #23130 #25620]: false
+#25622 := [lemma #25621]: #25777
+#25723 := (or #25526 #11931)
+#25686 := [hypothesis]: #25777
+#25756 := (not #25749)
+#25677 := (iff #18314 #25756)
+#25676 := (iff #11931 #25749)
+#25673 := (iff #25749 #11931)
+#25691 := (= #25748 #3017)
+#25692 := [monotonicity #25690]: #25691
+#25675 := [monotonicity #25692]: #25673
+#25674 := [symm #25675]: #25676
+#25678 := [monotonicity #25674]: #25677
+#25687 := [hypothesis]: #18314
+#25679 := [mp #25687 #25678]: #25756
+#23681 := (uf_13 #2960)
+#25743 := (= #23681 #25774)
+#25739 := (= #25774 #23681)
+#25737 := (= #3016 #2960)
+#25714 := (= #25821 #2960)
+#25703 := (= #25805 uf_274)
+#25701 := (= #2961 uf_274)
+#23685 := (= uf_274 #2961)
+#2698 := (uf_116 #2697)
+#11232 := (= #161 #2698)
+#23132 := (forall (vars (?x718 T3) (?x719 int)) (:pat #23131) #11232)
+#11236 := (forall (vars (?x718 T3) (?x719 int)) #11232)
+#23135 := (iff #11236 #23132)
+#23133 := (iff #11232 #11232)
+#23134 := [refl]: #23133
+#23136 := [quant-intro #23134]: #23135
+#18171 := (~ #11236 #11236)
+#18169 := (~ #11232 #11232)
+#18170 := [refl]: #18169
+#18172 := [nnf-pos #18170]: #18171
+#2699 := (= #2698 #161)
+#2700 := (forall (vars (?x718 T3) (?x719 int)) #2699)
+#11237 := (iff #2700 #11236)
+#11234 := (iff #2699 #11232)
+#11235 := [rewrite]: #11234
+#11238 := [quant-intro #11235]: #11237
+#11231 := [asserted]: #2700
+#11241 := [mp #11231 #11238]: #11236
+#18173 := [mp~ #11241 #18172]: #11236
+#23137 := [mp #18173 #23136]: #23132
+#23639 := (not #23132)
+#23690 := (or #23639 #23685)
+#23691 := [quant-inst]: #23690
+#25681 := [unit-resolution #23691 #23137]: #23685
+#25702 := [symm #25681]: #25701
+#25700 := (= #25805 #2961)
+#25697 := (= #22665 #2960)
+#22666 := (= #2960 #22665)
+#93 := (uf_29 #23)
+#23042 := (pattern #93)
+#94 := (uf_28 #93)
+#3564 := (= #23 #94)
+#23043 := (forall (vars (?x14 T5)) (:pat #23042) #3564)
+#3567 := (forall (vars (?x14 T5)) #3564)
+#23044 := (iff #3567 #23043)
+#23046 := (iff #23043 #23043)
+#23047 := [rewrite]: #23046
+#23045 := [rewrite]: #23044
+#23048 := [trans #23045 #23047]: #23044
+#16213 := (~ #3567 #3567)
+#16203 := (~ #3564 #3564)
+#16204 := [refl]: #16203
+#16269 := [nnf-pos #16204]: #16213
+#95 := (= #94 #23)
+#96 := (forall (vars (?x14 T5)) #95)
+#3568 := (iff #96 #3567)
+#3565 := (iff #95 #3564)
+#3566 := [rewrite]: #3565
+#3569 := [quant-intro #3566]: #3568
+#3563 := [asserted]: #96
+#3572 := [mp #3563 #3569]: #3567
+#16270 := [mp~ #3572 #16269]: #3567
+#23049 := [mp #16270 #23048]: #23043
+#22670 := (not #23043)
+#22645 := (or #22670 #22666)
+#22649 := [quant-inst]: #22645
+#25682 := [unit-resolution #22649 #23049]: #22666
+#25699 := [symm #25682]: #25697
+#25698 := [monotonicity #25699]: #25700
+#25704 := [trans #25698 #25702]: #25703
+#25734 := [monotonicity #25690 #25704]: #25714
+#25735 := (= #3016 #25821)
+#25799 := (uf_66 #22665 0::int #23566)
+#25824 := (= #25799 #25821)
+#25827 := (not #25824)
+decl uf_138 :: (-> T5 T5 T2)
+#25800 := (uf_138 #25799 #22665)
+#25801 := (= uf_9 #25800)
+#25802 := (not #25801)
+#25833 := (or #25802 #25827)
+#25838 := (not #25833)
#247 := (:var 1 int)
-#1568 := (uf_66 #24 #247 #233)
-#1569 := (pattern #1568)
-#1576 := (uf_139 #1568 #24)
-#8688 := (= uf_9 #1576)
-#21652 := (not #8688)
-#1571 := (uf_138 #233)
-#1570 := (uf_116 #24)
-#8678 := (+ #1570 #1571)
-#8679 := (+ #247 #8678)
-#8682 := (uf_43 #233 #8679)
-#8685 := (= #1568 #8682)
-#21651 := (not #8685)
-#21653 := (or #21651 #21652)
-#21654 := (not #21653)
-#21657 := (forall (vars (?x375 T5) (?x376 int) (?x377 T3)) (:pat #1569) #21654)
-#8691 := (and #8685 #8688)
-#8694 := (forall (vars (?x375 T5) (?x376 int) (?x377 T3)) (:pat #1569) #8691)
-#21658 := (iff #8694 #21657)
-#21655 := (iff #8691 #21654)
-#21656 := [rewrite]: #21655
-#21659 := [quant-intro #21656]: #21658
-#17817 := (~ #8694 #8694)
-#17815 := (~ #8691 #8691)
-#17816 := [refl]: #17815
-#17818 := [nnf-pos #17816]: #17817
-#1577 := (= #1576 uf_9)
-#1572 := (+ #247 #1571)
-#1573 := (+ #1570 #1572)
-#1574 := (uf_43 #233 #1573)
-#1575 := (= #1568 #1574)
-#1578 := (and #1575 #1577)
-#1579 := (forall (vars (?x375 T5) (?x376 int) (?x377 T3)) (:pat #1569) #1578)
-#8695 := (iff #1579 #8694)
-#8692 := (iff #1578 #8691)
-#8689 := (iff #1577 #8688)
-#8690 := [rewrite]: #8689
-#8686 := (iff #1575 #8685)
-#8683 := (= #1574 #8682)
-#8680 := (= #1573 #8679)
-#8681 := [rewrite]: #8680
-#8684 := [monotonicity #8681]: #8683
-#8687 := [monotonicity #8684]: #8686
-#8693 := [monotonicity #8687 #8690]: #8692
-#8696 := [quant-intro #8693]: #8695
-#8677 := [asserted]: #1579
-#8699 := [mp #8677 #8696]: #8694
-#17819 := [mp~ #8699 #17818]: #8694
-#21660 := [mp #17819 #21659]: #21657
-#26114 := (not #21657)
-#26115 := (or #26114 #26385)
-#26358 := (+ #26357 #26356)
-#26359 := (+ 0::int #26358)
-#26360 := (uf_43 #24114 #26359)
-#26361 := (= #26346 #26360)
-#26362 := (not #26361)
-#26363 := (or #26362 #26355)
-#26364 := (not #26363)
-#26116 := (or #26114 #26364)
-#26122 := (iff #26116 #26115)
-#26125 := (iff #26115 #26115)
-#26126 := [rewrite]: #26125
-#26386 := (iff #26364 #26385)
-#26383 := (iff #26363 #26380)
-#26377 := (or #26374 #26355)
-#26381 := (iff #26377 #26380)
-#26382 := [rewrite]: #26381
-#26378 := (iff #26363 #26377)
-#26375 := (iff #26362 #26374)
-#26372 := (iff #26361 #26371)
-#26369 := (= #26360 #26368)
-#26366 := (= #26359 #26365)
-#26367 := [rewrite]: #26366
-#26370 := [monotonicity #26367]: #26369
-#26373 := [monotonicity #26370]: #26372
-#26376 := [monotonicity #26373]: #26375
-#26379 := [monotonicity #26376]: #26378
-#26384 := [trans #26379 #26382]: #26383
-#26387 := [monotonicity #26384]: #26386
-#26124 := [monotonicity #26387]: #26122
-#26127 := [trans #26124 #26126]: #26122
-#26117 := [quant-inst]: #26116
-#26128 := [mp #26117 #26127]: #26115
-#26282 := [unit-resolution #26128 #21660]: #26385
-#26130 := (or #26380 #26371)
-#26131 := [def-axiom]: #26130
-#26283 := [unit-resolution #26131 #26282]: #26371
-#26285 := (= #3011 #26346)
-#24115 := (= uf_7 #24114)
-#1349 := (uf_124 #326 #161)
-#1584 := (pattern #1349)
-#1597 := (uf_144 #1349)
-#8734 := (= #326 #1597)
-#8738 := (forall (vars (?x388 T3) (?x389 int)) (:pat #1584) #8734)
-#17847 := (~ #8738 #8738)
-#17845 := (~ #8734 #8734)
-#17846 := [refl]: #17845
-#17848 := [nnf-pos #17846]: #17847
-#1598 := (= #1597 #326)
-#1599 := (forall (vars (?x388 T3) (?x389 int)) (:pat #1584) #1598)
-#8739 := (iff #1599 #8738)
-#8736 := (iff #1598 #8734)
-#8737 := [rewrite]: #8736
-#8740 := [quant-intro #8737]: #8739
-#8733 := [asserted]: #1599
-#8743 := [mp #8733 #8740]: #8738
-#17849 := [mp~ #8743 #17848]: #8738
-#24118 := (not #8738)
-#24119 := (or #24118 #24115)
-#24120 := [quant-inst]: #24119
-#27681 := [unit-resolution #24120 #17849]: #24115
-#23226 := (= #2960 #23223)
-#93 := (uf_29 #26)
-#23593 := (pattern #93)
-#94 := (uf_28 #93)
-#3575 := (= #26 #94)
-#23594 := (forall (vars (?x14 T5)) (:pat #23593) #3575)
-#3578 := (forall (vars (?x14 T5)) #3575)
-#23595 := (iff #3578 #23594)
-#23597 := (iff #23594 #23594)
-#23598 := [rewrite]: #23597
-#23596 := [rewrite]: #23595
-#23599 := [trans #23596 #23598]: #23595
-#16790 := (~ #3578 #3578)
-#16780 := (~ #3575 #3575)
-#16781 := [refl]: #16780
-#16851 := [nnf-pos #16781]: #16790
-#95 := (= #94 #26)
-#96 := (forall (vars (?x14 T5)) #95)
-#3579 := (iff #96 #3578)
-#3576 := (iff #95 #3575)
-#3577 := [rewrite]: #3576
-#3580 := [quant-intro #3577]: #3579
-#3574 := [asserted]: #96
-#3583 := [mp #3574 #3580]: #3578
-#16852 := [mp~ #3583 #16851]: #3578
-#23600 := [mp #16852 #23599]: #23594
-#23217 := (not #23594)
-#23220 := (or #23217 #23226)
-#23215 := [quant-inst]: #23220
-#26284 := [unit-resolution #23215 #23600]: #23226
-#26286 := [monotonicity #26284 #27681]: #26285
-#26303 := [trans #26286 #26283]: #26302
-#26305 := [monotonicity #26303]: #26304
-#26309 := [symm #26305]: #26308
-#26562 := (= #24114 #26561)
-#26231 := (or #24181 #26562)
-#26232 := [quant-inst]: #26231
-#26276 := [unit-resolution #26232 #23694]: #26562
-#26310 := [trans #26276 #26309]: #26288
-#26075 := (not #26288)
-#26256 := [hypothesis]: #26290
-#26268 := (not #26264)
-#26278 := (iff #18900 #26268)
-#26267 := (iff #12361 #26264)
-#26265 := (iff #26264 #12361)
-#26258 := (= #26263 #3014)
-#27682 := (= #24114 uf_7)
-#27683 := [symm #27681]: #27682
-#26259 := [monotonicity #27683]: #26258
-#26266 := [monotonicity #26259]: #26265
-#26277 := [symm #26266]: #26267
-#26279 := [monotonicity #26277]: #26278
-#26257 := [hypothesis]: #18900
-#26280 := [mp #26257 #26279]: #26268
-#26106 := (or #26074 #26264 #26075)
-#26108 := [def-axiom]: #26106
-#26281 := [unit-resolution #26108 #26280 #26256]: #26075
-#26311 := [unit-resolution #26281 #26310]: false
-#26295 := [lemma #26311]: #26294
-#27925 := [unit-resolution #26295 #26214]: #12361
-#27926 := [hypothesis]: #23981
-#23241 := (or #23978 #23972)
-#23222 := [def-axiom]: #23241
-#27936 := [unit-resolution #23222 #27926]: #23972
-decl uf_13 :: (-> T5 T6 T2)
-decl uf_10 :: (-> T4 T5 T6)
-#26039 := (uf_10 uf_273 #25404)
-decl uf_143 :: (-> T3 int)
-#24116 := (uf_143 #2952)
-#26431 := (uf_124 #24114 #24116)
-#26432 := (uf_43 #26431 #2961)
-#26521 := (uf_13 #26432 #26039)
-#26522 := (= uf_9 #26521)
-#26040 := (uf_13 #25404 #26039)
-#27955 := (= #26040 #26521)
-#27949 := (= #26521 #26040)
-#27947 := (= #26432 #25404)
-#27934 := (= #26432 #2962)
-#27932 := (= #26431 #2952)
-#27923 := (= #24116 uf_272)
-#24117 := (= uf_272 #24116)
-#1594 := (uf_143 #1349)
-#8727 := (= #161 #1594)
-#8730 := (forall (vars (?x386 T3) (?x387 int)) (:pat #1584) #8727)
-#17842 := (~ #8730 #8730)
-#17840 := (~ #8727 #8727)
-#17841 := [refl]: #17840
-#17843 := [nnf-pos #17841]: #17842
-#1595 := (= #1594 #161)
-#1596 := (forall (vars (?x386 T3) (?x387 int)) (:pat #1584) #1595)
-#8731 := (iff #1596 #8730)
-#8728 := (iff #1595 #8727)
-#8729 := [rewrite]: #8728
-#8732 := [quant-intro #8729]: #8731
-#8726 := [asserted]: #1596
-#8735 := [mp #8726 #8732]: #8730
-#17844 := [mp~ #8735 #17843]: #8730
-#24123 := (not #8730)
-#24124 := (or #24123 #24117)
-#24125 := [quant-inst]: #24124
-#27703 := [unit-resolution #24125 #17844]: #24117
-#27931 := [symm #27703]: #27923
-#27933 := [monotonicity #27683 #27931]: #27932
-#27935 := [monotonicity #27933]: #27934
-#27948 := [trans #27935 #27939]: #27947
-#27950 := [monotonicity #27948]: #27949
-#27953 := [symm #27950]: #27955
-#26041 := (= uf_9 #26040)
+#1576 := (uf_66 #21 #247 #233)
+#1577 := (pattern #1576)
+#1578 := (uf_138 #1576 #21)
+#8244 := (= uf_9 #1578)
+#21101 := (not #8244)
+decl uf_139 :: (-> T3 int)
+#1581 := (uf_139 #233)
+#1582 := (* #247 #1581)
+#1580 := (uf_116 #21)
+#1583 := (+ #1580 #1582)
+#1584 := (uf_43 #233 #1583)
+#1585 := (= #1576 #1584)
+#21100 := (not #1585)
+#21102 := (or #21100 #21101)
+#21103 := (not #21102)
+#21106 := (forall (vars (?x375 T5) (?x376 int) (?x377 T3)) (:pat #1577) #21103)
+#8250 := (and #1585 #8244)
+#8255 := (forall (vars (?x375 T5) (?x376 int) (?x377 T3)) (:pat #1577) #8250)
+#21107 := (iff #8255 #21106)
+#21104 := (iff #8250 #21103)
+#21105 := [rewrite]: #21104
+#21108 := [quant-intro #21105]: #21107
+#17234 := (~ #8255 #8255)
+#17232 := (~ #8250 #8250)
+#17233 := [refl]: #17232
+#17235 := [nnf-pos #17233]: #17234
+#1579 := (= #1578 uf_9)
+#1586 := (and #1579 #1585)
+#1587 := (forall (vars (?x375 T5) (?x376 int) (?x377 T3)) (:pat #1577) #1586)
+#8256 := (iff #1587 #8255)
+#8253 := (iff #1586 #8250)
+#8247 := (and #8244 #1585)
+#8251 := (iff #8247 #8250)
+#8252 := [rewrite]: #8251
+#8248 := (iff #1586 #8247)
+#8245 := (iff #1579 #8244)
+#8246 := [rewrite]: #8245
+#8249 := [monotonicity #8246]: #8248
+#8254 := [trans #8249 #8252]: #8253
+#8257 := [quant-intro #8254]: #8256
+#8243 := [asserted]: #1587
+#8260 := [mp #8243 #8257]: #8255
+#17236 := [mp~ #8260 #17235]: #8255
+#21109 := [mp #17236 #21108]: #21106
+#25566 := (not #21106)
+#25567 := (or #25566 #25838)
+#25803 := (uf_139 #23566)
+#25804 := (* 0::int #25803)
+#25806 := (+ #25805 #25804)
+#25807 := (uf_43 #23566 #25806)
+#25808 := (= #25799 #25807)
+#25809 := (not #25808)
+#25810 := (or #25809 #25802)
+#25811 := (not #25810)
+#25568 := (or #25566 #25811)
+#25574 := (iff #25568 #25567)
+#25577 := (iff #25567 #25567)
+#25578 := [rewrite]: #25577
+#25839 := (iff #25811 #25838)
+#25836 := (iff #25810 #25833)
+#25830 := (or #25827 #25802)
+#25834 := (iff #25830 #25833)
+#25835 := [rewrite]: #25834
+#25831 := (iff #25810 #25830)
+#25828 := (iff #25809 #25827)
+#25825 := (iff #25808 #25824)
+#25822 := (= #25807 #25821)
+#25819 := (= #25806 #25805)
+#25814 := (+ #25805 0::int)
+#25817 := (= #25814 #25805)
+#25818 := [rewrite]: #25817
+#25815 := (= #25806 #25814)
+#25812 := (= #25804 0::int)
+#25813 := [rewrite]: #25812
+#25816 := [monotonicity #25813]: #25815
+#25820 := [trans #25816 #25818]: #25819
+#25823 := [monotonicity #25820]: #25822
+#25826 := [monotonicity #25823]: #25825
+#25829 := [monotonicity #25826]: #25828
+#25832 := [monotonicity #25829]: #25831
+#25837 := [trans #25832 #25835]: #25836
+#25840 := [monotonicity #25837]: #25839
+#25576 := [monotonicity #25840]: #25574
+#25579 := [trans #25576 #25578]: #25574
+#25569 := [quant-inst]: #25568
+#25580 := [mp #25569 #25579]: #25567
+#25705 := [unit-resolution #25580 #21109]: #25838
+#25582 := (or #25833 #25824)
+#25583 := [def-axiom]: #25582
+#25706 := [unit-resolution #25583 #25705]: #25824
+#25712 := (= #3016 #25799)
+#25713 := [monotonicity #25682 #25688]: #25712
+#25736 := [trans #25713 #25706]: #25735
+#25738 := [trans #25736 #25734]: #25737
+#25740 := [monotonicity #25738]: #25739
+#25724 := [symm #25740]: #25743
+#25725 := (= #23566 #23681)
+#23682 := (= uf_7 #23681)
+#23687 := (or #23633 #23682)
+#23688 := [quant-inst]: #23687
+#25680 := [unit-resolution #23688 #23143]: #23682
+#25726 := [trans #25690 #25680]: #25725
+#25727 := [trans #25726 #25724]: #25775
+#25527 := (not #25775)
+#25558 := (or #25526 #25749 #25527)
+#25560 := [def-axiom]: #25558
+#25728 := [unit-resolution #25560 #25727 #25679 #25686]: false
+#25729 := [lemma #25728]: #25723
+#27884 := [unit-resolution #25729 #25622]: #11931
+decl uf_15 :: (-> T5 T6 T2)
+decl uf_16 :: (-> T4 T5 T6)
+#25491 := (uf_16 uf_273 #24856)
+#25967 := (uf_15 #25880 #25491)
+#25968 := (= uf_9 #25967)
+#25492 := (uf_15 #24856 #25491)
+#25493 := (= uf_9 #25492)
+#26002 := (or #13182 #25493)
+#25873 := [monotonicity #25871 #25871]: #25872
+#25947 := [symm #25873]: #25946
+#25952 := [hypothesis]: #11928
+#25948 := [trans #25952 #25947]: #25435
decl uf_53 :: (-> T4 T5 T6)
-#26030 := (uf_53 uf_273 #25404)
-#26031 := (uf_13 #26 #26030)
-#26036 := (pattern #26031)
+#25482 := (uf_53 uf_273 #24856)
+#25483 := (uf_15 #23 #25482)
+#25488 := (pattern #25483)
decl up_197 :: (-> T3 bool)
-#26034 := (up_197 #25815)
-#26032 := (= uf_9 #26031)
-#26033 := (not #26032)
+#25486 := (up_197 #25267)
+#25484 := (= uf_9 #25483)
+#25485 := (not #25484)
decl uf_147 :: (-> T5 T6 T2)
decl uf_192 :: (-> T7 T6)
-decl uf_12 :: (-> T4 T5 T7)
-#26026 := (uf_12 uf_273 #25404)
-#26027 := (uf_192 #26026)
-#26028 := (uf_147 #26 #26027)
-#26029 := (= uf_9 #26028)
-#26046 := (or #26029 #26033 #26034)
-#26049 := (forall (vars (?x577 T5)) (:pat #26036) #26046)
-#26052 := (not #26049)
-#26042 := (not #26041)
-#26055 := (or #25880 #26042 #26052)
-#26058 := (not #26055)
-#27945 := (= #3009 #25982)
-#27946 := [symm #27943]: #27945
-#23240 := (or #23978 #12355)
-#23229 := [def-axiom]: #23240
-#27938 := [unit-resolution #23229 #27926]: #12355
-#27924 := [trans #27938 #27946]: #25983
-#25988 := (or #26022 #25981 #25999)
-#26021 := [def-axiom]: #25988
-#27927 := [unit-resolution #26021 #27924 #27937]: #25981
-#26061 := (or #26002 #26058)
+decl uf_11 :: (-> T4 T5 T7)
+#25478 := (uf_11 uf_273 #24856)
+#25479 := (uf_192 #25478)
+#25480 := (uf_147 #23 #25479)
+#25481 := (= uf_9 #25480)
+#25498 := (or #25481 #25485 #25486)
+#25501 := (forall (vars (?x577 T5)) (:pat #25488) #25498)
+#25504 := (not #25501)
+#25494 := (not #25493)
+#25507 := (or #25332 #25494 #25504)
+#25949 := [hypothesis]: #25494
+#25658 := (or #25507 #25493)
+#25685 := [def-axiom]: #25658
+#25950 := [unit-resolution #25685 #25949]: #25507
#14 := (:var 2 T4)
-#2162 := (uf_196 #14 #15 #26)
-#2223 := (pattern #2162)
-#2224 := (uf_53 #13 #24)
-#2225 := (uf_13 #26 #2224)
-#2226 := (pattern #2225)
-#2154 := (uf_12 #13 #15)
-#2231 := (uf_192 #2154)
-#2232 := (uf_147 #26 #2231)
-#10478 := (= uf_9 #2232)
-#10467 := (= uf_9 #2225)
-#22343 := (not #10467)
-#1373 := (uf_15 #24)
-#2228 := (up_197 #1373)
-#22358 := (or #2228 #22343 #10478)
-#22363 := (forall (vars (?x577 T5)) (:pat #2226) #22358)
-#22369 := (not #22363)
-#2140 := (uf_10 #14 #26)
-#2141 := (uf_13 #15 #2140)
-#10170 := (= uf_9 #2141)
-#22177 := (not #10170)
-#180 := (uf_24 #14 #15)
-#3758 := (= uf_9 #180)
-#10821 := (not #3758)
-#22370 := (or #10821 #22177 #22369)
-#22371 := (not #22370)
-#10219 := (= uf_9 #2162)
-#10502 := (not #10219)
-#22376 := (or #10502 #22371)
-#22379 := (forall (vars (?x574 T4) (?x575 T5) (?x576 T5)) (:pat #2223) #22376)
-#2229 := (not #2228)
-#10473 := (and #2229 #10467)
-#10484 := (not #10473)
-#10485 := (or #10484 #10478)
-#10490 := (forall (vars (?x577 T5)) (:pat #2226) #10485)
-#10511 := (and #3758 #10170 #10490)
-#10514 := (or #10502 #10511)
-#10517 := (forall (vars (?x574 T4) (?x575 T5) (?x576 T5)) (:pat #2223) #10514)
-#22380 := (iff #10517 #22379)
-#22377 := (iff #10514 #22376)
-#22374 := (iff #10511 #22371)
-#22366 := (and #3758 #10170 #22363)
-#22372 := (iff #22366 #22371)
-#22373 := [rewrite]: #22372
-#22367 := (iff #10511 #22366)
-#22364 := (iff #10490 #22363)
-#22361 := (iff #10485 #22358)
-#22344 := (or #2228 #22343)
-#22355 := (or #22344 #10478)
-#22359 := (iff #22355 #22358)
-#22360 := [rewrite]: #22359
-#22356 := (iff #10485 #22355)
-#22353 := (iff #10484 #22344)
-#22345 := (not #22344)
-#22348 := (not #22345)
-#22351 := (iff #22348 #22344)
-#22352 := [rewrite]: #22351
-#22349 := (iff #10484 #22348)
-#22346 := (iff #10473 #22345)
-#22347 := [rewrite]: #22346
-#22350 := [monotonicity #22347]: #22349
-#22354 := [trans #22350 #22352]: #22353
-#22357 := [monotonicity #22354]: #22356
-#22362 := [trans #22357 #22360]: #22361
-#22365 := [quant-intro #22362]: #22364
-#22368 := [monotonicity #22365]: #22367
-#22375 := [trans #22368 #22373]: #22374
-#22378 := [monotonicity #22375]: #22377
-#22381 := [quant-intro #22378]: #22380
-#18361 := (~ #10517 #10517)
-#18359 := (~ #10514 #10514)
-#18357 := (~ #10511 #10511)
-#18355 := (~ #10490 #10490)
-#18353 := (~ #10485 #10485)
-#18354 := [refl]: #18353
-#18356 := [nnf-pos #18354]: #18355
-#18351 := (~ #10170 #10170)
-#18352 := [refl]: #18351
-#18349 := (~ #3758 #3758)
-#18350 := [refl]: #18349
-#18358 := [monotonicity #18350 #18352 #18356]: #18357
-#18347 := (~ #10502 #10502)
-#18348 := [refl]: #18347
-#18360 := [monotonicity #18348 #18358]: #18359
-#18362 := [nnf-pos #18360]: #18361
-#2145 := (= #2141 uf_9)
+#2166 := (uf_196 #14 #15 #23)
+#2228 := (pattern #2166)
+#2229 := (uf_53 #13 #21)
+#2230 := (uf_15 #23 #2229)
+#2231 := (pattern #2230)
+#2158 := (uf_11 #13 #15)
+#2236 := (uf_192 #2158)
+#2237 := (uf_147 #23 #2236)
+#10048 := (= uf_9 #2237)
+#10042 := (= uf_9 #2230)
+#21792 := (not #10042)
+#1382 := (uf_13 #21)
+#2232 := (up_197 #1382)
+#21807 := (or #2232 #21792 #10048)
+#21812 := (forall (vars (?x577 T5)) (:pat #2231) #21807)
+#21818 := (not #21812)
+#2145 := (uf_16 #14 #23)
+#2146 := (uf_15 #15 #2145)
+#9748 := (= uf_9 #2146)
+#21627 := (not #9748)
+#180 := (uf_27 #14 #15)
+#3742 := (= uf_9 #180)
+#10385 := (not #3742)
+#21819 := (or #10385 #21627 #21818)
+#21820 := (not #21819)
+#9796 := (= uf_9 #2166)
+#10072 := (not #9796)
+#21825 := (or #10072 #21820)
+#21828 := (forall (vars (?x574 T4) (?x575 T5) (?x576 T5)) (:pat #2228) #21825)
+#2233 := (not #2232)
+#10045 := (and #2233 #10042)
+#10054 := (not #10045)
+#10055 := (or #10054 #10048)
+#10060 := (forall (vars (?x577 T5)) (:pat #2231) #10055)
+#10081 := (and #3742 #9748 #10060)
+#10084 := (or #10072 #10081)
+#10087 := (forall (vars (?x574 T4) (?x575 T5) (?x576 T5)) (:pat #2228) #10084)
+#21829 := (iff #10087 #21828)
+#21826 := (iff #10084 #21825)
+#21823 := (iff #10081 #21820)
+#21815 := (and #3742 #9748 #21812)
+#21821 := (iff #21815 #21820)
+#21822 := [rewrite]: #21821
+#21816 := (iff #10081 #21815)
+#21813 := (iff #10060 #21812)
+#21810 := (iff #10055 #21807)
+#21793 := (or #2232 #21792)
+#21804 := (or #21793 #10048)
+#21808 := (iff #21804 #21807)
+#21809 := [rewrite]: #21808
+#21805 := (iff #10055 #21804)
+#21802 := (iff #10054 #21793)
+#21794 := (not #21793)
+#21797 := (not #21794)
+#21800 := (iff #21797 #21793)
+#21801 := [rewrite]: #21800
+#21798 := (iff #10054 #21797)
+#21795 := (iff #10045 #21794)
+#21796 := [rewrite]: #21795
+#21799 := [monotonicity #21796]: #21798
+#21803 := [trans #21799 #21801]: #21802
+#21806 := [monotonicity #21803]: #21805
+#21811 := [trans #21806 #21809]: #21810
+#21814 := [quant-intro #21811]: #21813
+#21817 := [monotonicity #21814]: #21816
+#21824 := [trans #21817 #21822]: #21823
+#21827 := [monotonicity #21824]: #21826
+#21830 := [quant-intro #21827]: #21829
+#17778 := (~ #10087 #10087)
+#17776 := (~ #10084 #10084)
+#17774 := (~ #10081 #10081)
+#17772 := (~ #10060 #10060)
+#17770 := (~ #10055 #10055)
+#17771 := [refl]: #17770
+#17773 := [nnf-pos #17771]: #17772
+#17768 := (~ #9748 #9748)
+#17769 := [refl]: #17768
+#17766 := (~ #3742 #3742)
+#17767 := [refl]: #17766
+#17775 := [monotonicity #17767 #17769 #17773]: #17774
+#17764 := (~ #10072 #10072)
+#17765 := [refl]: #17764
+#17777 := [monotonicity #17765 #17775]: #17776
+#17779 := [nnf-pos #17777]: #17778
+#2238 := (= #2237 uf_9)
+#2234 := (= #2230 uf_9)
+#2235 := (and #2233 #2234)
+#2239 := (implies #2235 #2238)
+#2240 := (forall (vars (?x577 T5)) (:pat #2231) #2239)
#184 := (= #180 uf_9)
-#2236 := (and #184 #2145)
-#2233 := (= #2232 uf_9)
-#2227 := (= #2225 uf_9)
-#2230 := (and #2227 #2229)
-#2234 := (implies #2230 #2233)
-#2235 := (forall (vars (?x577 T5)) (:pat #2226) #2234)
-#2237 := (and #2235 #2236)
-#2163 := (= #2162 uf_9)
-#2238 := (implies #2163 #2237)
-#2239 := (forall (vars (?x574 T4) (?x575 T5) (?x576 T5)) (:pat #2223) #2238)
-#10520 := (iff #2239 #10517)
-#10493 := (and #3758 #10170)
-#10496 := (and #10490 #10493)
-#10503 := (or #10502 #10496)
-#10508 := (forall (vars (?x574 T4) (?x575 T5) (?x576 T5)) (:pat #2223) #10503)
-#10518 := (iff #10508 #10517)
-#10515 := (iff #10503 #10514)
-#10512 := (iff #10496 #10511)
-#10513 := [rewrite]: #10512
-#10516 := [monotonicity #10513]: #10515
-#10519 := [quant-intro #10516]: #10518
-#10509 := (iff #2239 #10508)
-#10506 := (iff #2238 #10503)
-#10499 := (implies #10219 #10496)
-#10504 := (iff #10499 #10503)
-#10505 := [rewrite]: #10504
-#10500 := (iff #2238 #10499)
-#10497 := (iff #2237 #10496)
-#10494 := (iff #2236 #10493)
-#10171 := (iff #2145 #10170)
-#10172 := [rewrite]: #10171
-#3759 := (iff #184 #3758)
-#3760 := [rewrite]: #3759
-#10495 := [monotonicity #3760 #10172]: #10494
-#10491 := (iff #2235 #10490)
-#10488 := (iff #2234 #10485)
-#10481 := (implies #10473 #10478)
-#10486 := (iff #10481 #10485)
-#10487 := [rewrite]: #10486
-#10482 := (iff #2234 #10481)
-#10479 := (iff #2233 #10478)
-#10480 := [rewrite]: #10479
-#10476 := (iff #2230 #10473)
-#10470 := (and #10467 #2229)
-#10474 := (iff #10470 #10473)
-#10475 := [rewrite]: #10474
-#10471 := (iff #2230 #10470)
-#10468 := (iff #2227 #10467)
-#10469 := [rewrite]: #10468
-#10472 := [monotonicity #10469]: #10471
-#10477 := [trans #10472 #10475]: #10476
-#10483 := [monotonicity #10477 #10480]: #10482
-#10489 := [trans #10483 #10487]: #10488
-#10492 := [quant-intro #10489]: #10491
-#10498 := [monotonicity #10492 #10495]: #10497
-#10220 := (iff #2163 #10219)
-#10221 := [rewrite]: #10220
-#10501 := [monotonicity #10221 #10498]: #10500
-#10507 := [trans #10501 #10505]: #10506
-#10510 := [quant-intro #10507]: #10509
-#10521 := [trans #10510 #10519]: #10520
-#10466 := [asserted]: #2239
-#10522 := [mp #10466 #10521]: #10517
-#18363 := [mp~ #10522 #18362]: #10517
-#22382 := [mp #18363 #22381]: #22379
-#26123 := (not #22379)
-#26129 := (or #26123 #26002 #26058)
-#26035 := (or #26034 #26033 #26029)
-#26037 := (forall (vars (?x577 T5)) (:pat #26036) #26035)
-#26038 := (not #26037)
-#26043 := (or #25880 #26042 #26038)
-#26044 := (not #26043)
-#26045 := (or #26002 #26044)
-#26132 := (or #26123 #26045)
-#26147 := (iff #26132 #26129)
-#26144 := (or #26123 #26061)
-#26145 := (iff #26144 #26129)
-#26146 := [rewrite]: #26145
-#26142 := (iff #26132 #26144)
-#26062 := (iff #26045 #26061)
-#26059 := (iff #26044 #26058)
-#26056 := (iff #26043 #26055)
-#26053 := (iff #26038 #26052)
-#26050 := (iff #26037 #26049)
-#26047 := (iff #26035 #26046)
-#26048 := [rewrite]: #26047
-#26051 := [quant-intro #26048]: #26050
-#26054 := [monotonicity #26051]: #26053
-#26057 := [monotonicity #26054]: #26056
-#26060 := [monotonicity #26057]: #26059
-#26063 := [monotonicity #26060]: #26062
-#26143 := [monotonicity #26063]: #26142
-#26148 := [trans #26143 #26146]: #26147
-#26133 := [quant-inst]: #26132
-#26149 := [mp #26133 #26148]: #26129
-#27928 := [unit-resolution #26149 #22382]: #26061
-#27929 := [unit-resolution #27928 #27927]: #26058
-#26216 := (or #26055 #26041)
-#26217 := [def-axiom]: #26216
-#27930 := [unit-resolution #26217 #27929]: #26041
-#27956 := [trans #27930 #27953]: #26522
-#26523 := (not #26522)
-#26711 := (or #12358 #26523)
-#26511 := (uf_43 #24114 #2961)
-#26512 := (uf_66 #26511 0::int #24114)
-#26513 := (uf_27 uf_273 #26512)
-#26514 := (= uf_9 #26513)
-#26515 := (not #26514)
-#26678 := (iff #18897 #26515)
-#26674 := (iff #12358 #26514)
-#26675 := (iff #26514 #12358)
-#26687 := (= #26513 #3012)
-#26683 := (= #26512 #3011)
-#27689 := (= #26511 #2960)
-#27687 := (= #2961 uf_274)
-#24233 := (= uf_274 #2961)
-#2693 := (uf_116 #2692)
-#11669 := (= #161 #2693)
-#23683 := (forall (vars (?x718 T3) (?x719 int)) (:pat #23682) #11669)
-#11673 := (forall (vars (?x718 T3) (?x719 int)) #11669)
-#23686 := (iff #11673 #23683)
-#23684 := (iff #11669 #11669)
-#23685 := [refl]: #23684
-#23687 := [quant-intro #23685]: #23686
-#18754 := (~ #11673 #11673)
-#18752 := (~ #11669 #11669)
-#18753 := [refl]: #18752
-#18755 := [nnf-pos #18753]: #18754
-#2694 := (= #2693 #161)
-#2695 := (forall (vars (?x718 T3) (?x719 int)) #2694)
-#11674 := (iff #2695 #11673)
-#11671 := (iff #2694 #11669)
-#11672 := [rewrite]: #11671
-#11675 := [quant-intro #11672]: #11674
-#11668 := [asserted]: #2695
-#11678 := [mp #11668 #11675]: #11673
-#18756 := [mp~ #11678 #18755]: #11673
-#23688 := [mp #18756 #23687]: #23683
-#24187 := (not #23683)
-#24238 := (or #24187 #24233)
-#24239 := [quant-inst]: #24238
-#27686 := [unit-resolution #24239 #23688]: #24233
-#27688 := [symm #27686]: #27687
-#27690 := [monotonicity #27683 #27688]: #27689
-#26686 := [monotonicity #27690 #27683]: #26683
-#26688 := [monotonicity #26686]: #26687
-#26676 := [monotonicity #26688]: #26675
-#26677 := [symm #26676]: #26674
-#26679 := [monotonicity #26677]: #26678
-#26638 := [hypothesis]: #18897
-#26680 := [mp #26638 #26679]: #26515
-#26516 := (uf_58 #3079 #26512)
-#26517 := (uf_135 #26516)
-#26518 := (= uf_9 #26517)
-#26528 := (or #26515 #26518)
-#26531 := (not #26528)
-decl uf_23 :: (-> T3 T2)
-#26524 := (uf_23 #24114)
-#26525 := (= uf_9 #26524)
-#2778 := (uf_23 uf_7)
-#27721 := (= #2778 #26524)
-#27718 := (= #26524 #2778)
-#27719 := [monotonicity #27683]: #27718
-#27722 := [symm #27719]: #27721
-#11835 := (= uf_9 #2778)
-#2779 := (= #2778 uf_9)
-#11837 := (iff #2779 #11835)
-#11838 := [rewrite]: #11837
-#11834 := [asserted]: #2779
-#11841 := [mp #11834 #11838]: #11835
-#27723 := [trans #11841 #27722]: #26525
-#26526 := (not #26525)
-#26708 := (or #26526 #26531)
-#27724 := [hypothesis]: #26522
-#26469 := (<= #24116 0::int)
-#26682 := (not #26469)
-#14790 := [not-or-elim #14776]: #13943
-#26452 := (* -1::int #24116)
-#26584 := (+ uf_272 #26452)
-#26585 := (<= #26584 0::int)
-#27704 := (not #24117)
-#27705 := (or #27704 #26585)
-#27706 := [th-lemma]: #27705
-#27707 := [unit-resolution #27706 #27703]: #26585
-#27713 := (not #26585)
-#26698 := (or #26682 #13942 #27713)
-#26699 := [th-lemma]: #26698
-#26707 := [unit-resolution #26699 #27707 #14790]: #26682
-#237 := (uf_23 #233)
-#758 := (:var 4 int)
-#2062 := (uf_43 #233 #758)
-#2063 := (uf_66 #2062 #247 #233)
-#1364 := (:var 5 T4)
-#2080 := (uf_25 #1364 #2063)
-#1356 := (:var 3 T5)
-#2060 := (uf_10 #1364 #1356)
+#2241 := (and #184 #2240)
+#2151 := (= #2146 uf_9)
+#2242 := (and #2151 #2241)
+#2167 := (= #2166 uf_9)
+#2243 := (implies #2167 #2242)
+#2244 := (forall (vars (?x574 T4) (?x575 T5) (?x576 T5)) (:pat #2228) #2243)
+#10090 := (iff #2244 #10087)
+#10063 := (and #3742 #10060)
+#10066 := (and #9748 #10063)
+#10073 := (or #10072 #10066)
+#10078 := (forall (vars (?x574 T4) (?x575 T5) (?x576 T5)) (:pat #2228) #10073)
+#10088 := (iff #10078 #10087)
+#10085 := (iff #10073 #10084)
+#10082 := (iff #10066 #10081)
+#10083 := [rewrite]: #10082
+#10086 := [monotonicity #10083]: #10085
+#10089 := [quant-intro #10086]: #10088
+#10079 := (iff #2244 #10078)
+#10076 := (iff #2243 #10073)
+#10069 := (implies #9796 #10066)
+#10074 := (iff #10069 #10073)
+#10075 := [rewrite]: #10074
+#10070 := (iff #2243 #10069)
+#10067 := (iff #2242 #10066)
+#10064 := (iff #2241 #10063)
+#10061 := (iff #2240 #10060)
+#10058 := (iff #2239 #10055)
+#10051 := (implies #10045 #10048)
+#10056 := (iff #10051 #10055)
+#10057 := [rewrite]: #10056
+#10052 := (iff #2239 #10051)
+#10049 := (iff #2238 #10048)
+#10050 := [rewrite]: #10049
+#10046 := (iff #2235 #10045)
+#10043 := (iff #2234 #10042)
+#10044 := [rewrite]: #10043
+#10047 := [monotonicity #10044]: #10046
+#10053 := [monotonicity #10047 #10050]: #10052
+#10059 := [trans #10053 #10057]: #10058
+#10062 := [quant-intro #10059]: #10061
+#3743 := (iff #184 #3742)
+#3744 := [rewrite]: #3743
+#10065 := [monotonicity #3744 #10062]: #10064
+#9749 := (iff #2151 #9748)
+#9750 := [rewrite]: #9749
+#10068 := [monotonicity #9750 #10065]: #10067
+#9797 := (iff #2167 #9796)
+#9798 := [rewrite]: #9797
+#10071 := [monotonicity #9798 #10068]: #10070
+#10077 := [trans #10071 #10075]: #10076
+#10080 := [quant-intro #10077]: #10079
+#10091 := [trans #10080 #10089]: #10090
+#10041 := [asserted]: #2244
+#10092 := [mp #10041 #10091]: #10087
+#17780 := [mp~ #10092 #17779]: #10087
+#21831 := [mp #17780 #21830]: #21828
+#25510 := (not #25507)
+#25649 := (not #21828)
+#25651 := (or #25649 #25454 #25510)
+#25487 := (or #25486 #25485 #25481)
+#25489 := (forall (vars (?x577 T5)) (:pat #25488) #25487)
+#25490 := (not #25489)
+#25495 := (or #25332 #25494 #25490)
+#25496 := (not #25495)
+#25497 := (or #25454 #25496)
+#25665 := (or #25649 #25497)
+#25654 := (iff #25665 #25651)
+#25513 := (or #25454 #25510)
+#25653 := (or #25649 #25513)
+#25656 := (iff #25653 #25651)
+#25657 := [rewrite]: #25656
+#25655 := (iff #25665 #25653)
+#25514 := (iff #25497 #25513)
+#25511 := (iff #25496 #25510)
+#25508 := (iff #25495 #25507)
+#25505 := (iff #25490 #25504)
+#25502 := (iff #25489 #25501)
+#25499 := (iff #25487 #25498)
+#25500 := [rewrite]: #25499
+#25503 := [quant-intro #25500]: #25502
+#25506 := [monotonicity #25503]: #25505
+#25509 := [monotonicity #25506]: #25508
+#25512 := [monotonicity #25509]: #25511
+#25515 := [monotonicity #25512]: #25514
+#25650 := [monotonicity #25515]: #25655
+#25659 := [trans #25650 #25657]: #25654
+#25652 := [quant-inst]: #25665
+#25660 := [mp #25652 #25659]: #25651
+#26000 := [unit-resolution #25660 #21831 #25950]: #25454
+#25451 := (not #25435)
+#25443 := (or #25473 #25433 #25451)
+#25440 := [def-axiom]: #25443
+#26001 := [unit-resolution #25440 #26000 #25948 #25951]: false
+#26003 := [lemma #26001]: #26002
+#27340 := [unit-resolution #26003 #25596]: #25493
+#25856 := (or #25494 #25968)
+#25953 := (= #25492 #25967)
+#25844 := (= #25967 #25492)
+#25868 := (= #25880 #24856)
+#25843 := [trans #25865 #25847]: #25868
+#25842 := [monotonicity #25843]: #25844
+#25954 := [symm #25842]: #25953
+#25846 := [hypothesis]: #25493
+#25955 := [trans #25846 #25954]: #25968
+#25969 := (not #25968)
+#25845 := [hypothesis]: #25969
+#25956 := [unit-resolution #25845 #25955]: false
+#25869 := [lemma #25956]: #25856
+#27341 := [unit-resolution #25869 #27340]: #25968
+#26259 := (or #25969 #11934)
+#25957 := (uf_43 #23566 #2961)
+#25958 := (uf_66 #25957 0::int #23566)
+#25962 := (uf_24 uf_273 #25958)
+#25963 := (= uf_9 #25962)
+#25964 := (not #25963)
+#26241 := (iff #18317 #25964)
+#26214 := (iff #11934 #25963)
+#26211 := (iff #25963 #11934)
+#26209 := (= #25962 #3019)
+#26203 := (= #25958 #3016)
+#26201 := (= #25957 #2960)
+#26202 := [monotonicity #25690 #25702]: #26201
+#26204 := [monotonicity #26202 #25690]: #26203
+#26210 := [monotonicity #26204]: #26209
+#26213 := [monotonicity #26210]: #26211
+#26215 := [symm #26213]: #26214
+#26242 := [monotonicity #26215]: #26241
+#26200 := [hypothesis]: #18317
+#26243 := [mp #26200 #26242]: #25964
+#25959 := (uf_58 #3149 #25958)
+#25960 := (uf_136 #25959)
+#25961 := (= uf_9 #25960)
+#25974 := (or #25961 #25964)
+#25977 := (not #25974)
+#26244 := [hypothesis]: #25968
+decl uf_22 :: (-> T3 T2)
+#25970 := (uf_22 #23566)
+#25971 := (= uf_9 #25970)
+#2783 := (uf_22 uf_7)
+#26232 := (= #2783 #25970)
+#26245 := (= #25970 #2783)
+#26246 := [monotonicity #25690]: #26245
+#26233 := [symm #26246]: #26232
+#11408 := (= uf_9 #2783)
+#2784 := (= #2783 uf_9)
+#11410 := (iff #2784 #11408)
+#11411 := [rewrite]: #11410
+#11407 := [asserted]: #2784
+#11414 := [mp #11407 #11411]: #11408
+#26234 := [trans #11414 #26233]: #25971
+#25972 := (not #25971)
+#26261 := (or #25969 #25972 #25977)
+#25915 := (<= #23568 0::int)
+#26239 := (not #25915)
+#14256 := [not-or-elim #14242]: #13405
+#25898 := (* -1::int #23568)
+#26007 := (+ uf_272 #25898)
+#26008 := (<= #26007 0::int)
+#26230 := (not #23569)
+#26236 := (or #26230 #26008)
+#26237 := [th-lemma]: #26236
+#26238 := [unit-resolution #26237 #26235]: #26008
+#26240 := (not #26008)
+#26251 := (or #26239 #13404 #26240)
+#26252 := [th-lemma]: #26251
+#26260 := [unit-resolution #26252 #26238 #14256]: #26239
+#237 := (uf_22 #233)
+#762 := (:var 4 int)
+#2069 := (uf_43 #233 #762)
+#2070 := (uf_66 #2069 #247 #233)
+#1373 := (:var 5 T4)
+#2086 := (uf_25 #1373 #2070)
+#1365 := (:var 3 T5)
+#2067 := (uf_16 #1373 #1365)
#268 := (:var 2 int)
-#2058 := (uf_124 #233 #268)
-#2059 := (uf_43 #2058 #758)
-#2061 := (uf_13 #2059 #2060)
-#2081 := (pattern #2061 #2080 #237)
-#1535 := (uf_59 #1364)
-#2078 := (uf_58 #1535 #2063)
-#2079 := (pattern #2061 #2078 #237)
-#2085 := (uf_27 #1364 #2063)
-#9989 := (= uf_9 #2085)
-#22088 := (not #9989)
-#2082 := (uf_135 #2078)
-#9983 := (= uf_9 #2082)
-#22089 := (or #9983 #22088)
-#22090 := (not #22089)
-#2067 := (uf_55 #1364)
-#9932 := (= uf_9 #2067)
-#22064 := (not #9932)
-#9929 := (= uf_9 #2061)
-#22063 := (not #9929)
-#4079 := (* -1::int #268)
-#6249 := (+ #247 #4079)
-#6838 := (>= #6249 0::int)
-#4346 := (>= #247 0::int)
-#20033 := (not #4346)
-#3963 := (= uf_9 #237)
-#10698 := (not #3963)
-#22096 := (or #10698 #20033 #6838 #22063 #22064 #22090)
-#22101 := (forall (vars (?x526 T4) (?x527 int) (?x528 T5) (?x529 int) (?x530 int) (?x531 T3)) (:pat #2079 #2081) #22096)
-#9986 := (not #9983)
-#9992 := (and #9986 #9989)
-#8189 := (not #6838)
-#9965 := (and #3963 #4346 #8189 #9929 #9932)
-#9970 := (not #9965)
-#10006 := (or #9970 #9992)
-#10009 := (forall (vars (?x526 T4) (?x527 int) (?x528 T5) (?x529 int) (?x530 int) (?x531 T3)) (:pat #2079 #2081) #10006)
-#22102 := (iff #10009 #22101)
-#22099 := (iff #10006 #22096)
-#22065 := (or #10698 #20033 #6838 #22063 #22064)
-#22093 := (or #22065 #22090)
-#22097 := (iff #22093 #22096)
-#22098 := [rewrite]: #22097
-#22094 := (iff #10006 #22093)
-#22091 := (iff #9992 #22090)
-#22092 := [rewrite]: #22091
-#22074 := (iff #9970 #22065)
-#22066 := (not #22065)
-#22069 := (not #22066)
-#22072 := (iff #22069 #22065)
-#22073 := [rewrite]: #22072
-#22070 := (iff #9970 #22069)
-#22067 := (iff #9965 #22066)
-#22068 := [rewrite]: #22067
-#22071 := [monotonicity #22068]: #22070
-#22075 := [trans #22071 #22073]: #22074
-#22095 := [monotonicity #22075 #22092]: #22094
-#22100 := [trans #22095 #22098]: #22099
-#22103 := [quant-intro #22100]: #22102
-#18227 := (~ #10009 #10009)
-#18225 := (~ #10006 #10006)
-#18226 := [refl]: #18225
-#18228 := [nnf-pos #18226]: #18227
-#2086 := (= #2085 uf_9)
-#2083 := (= #2082 uf_9)
-#2084 := (not #2083)
-#2087 := (and #2084 #2086)
-#2068 := (= #2067 uf_9)
+#2065 := (uf_124 #233 #268)
+#2066 := (uf_43 #2065 #762)
+#2068 := (uf_15 #2066 #2067)
+#2087 := (pattern #2068 #2086 #237)
+#1545 := (uf_59 #1373)
+#2084 := (uf_58 #1545 #2070)
+#2085 := (pattern #2068 #2084 #237)
+#2090 := (uf_136 #2084)
+#9556 := (= uf_9 #2090)
+#2088 := (uf_24 #1373 #2070)
+#9553 := (= uf_9 #2088)
+#21537 := (not #9553)
+#21538 := (or #21537 #9556)
+#21539 := (not #21538)
+#9497 := (= uf_9 #2068)
+#21513 := (not #9497)
+#2073 := (uf_55 #1373)
+#9494 := (= uf_9 #2073)
+#21512 := (not #9494)
+#4069 := (* -1::int #268)
+#6133 := (+ #247 #4069)
+#6730 := (>= #6133 0::int)
+#4331 := (>= #247 0::int)
+#19450 := (not #4331)
+#3950 := (= uf_9 #237)
+#10268 := (not #3950)
+#21545 := (or #10268 #19450 #6730 #21512 #21513 #21539)
+#21550 := (forall (vars (?x526 T4) (?x527 int) (?x528 T5) (?x529 int) (?x530 int) (?x531 T3)) (:pat #2085 #2087) #21545)
+#9559 := (not #9556)
+#9562 := (and #9553 #9559)
+#7797 := (not #6730)
+#9535 := (and #3950 #4331 #7797 #9494 #9497)
+#9540 := (not #9535)
+#9576 := (or #9540 #9562)
+#9579 := (forall (vars (?x526 T4) (?x527 int) (?x528 T5) (?x529 int) (?x530 int) (?x531 T3)) (:pat #2085 #2087) #9576)
+#21551 := (iff #9579 #21550)
+#21548 := (iff #9576 #21545)
+#21514 := (or #10268 #19450 #6730 #21512 #21513)
+#21542 := (or #21514 #21539)
+#21546 := (iff #21542 #21545)
+#21547 := [rewrite]: #21546
+#21543 := (iff #9576 #21542)
+#21540 := (iff #9562 #21539)
+#21541 := [rewrite]: #21540
+#21523 := (iff #9540 #21514)
+#21515 := (not #21514)
+#21518 := (not #21515)
+#21521 := (iff #21518 #21514)
+#21522 := [rewrite]: #21521
+#21519 := (iff #9540 #21518)
+#21516 := (iff #9535 #21515)
+#21517 := [rewrite]: #21516
+#21520 := [monotonicity #21517]: #21519
+#21524 := [trans #21520 #21522]: #21523
+#21544 := [monotonicity #21524 #21541]: #21543
+#21549 := [trans #21544 #21547]: #21548
+#21552 := [quant-intro #21549]: #21551
+#17644 := (~ #9579 #9579)
+#17642 := (~ #9576 #9576)
+#17643 := [refl]: #17642
+#17645 := [nnf-pos #17643]: #17644
+#2091 := (= #2090 uf_9)
+#2092 := (not #2091)
+#2089 := (= #2088 uf_9)
+#2093 := (and #2089 #2092)
+#1434 := (< #247 #268)
+#397 := (<= 0::int #247)
+#1435 := (and #397 #1434)
+#2075 := (= #2068 uf_9)
+#2076 := (and #2075 #1435)
#238 := (= #237 uf_9)
-#2069 := (and #238 #2068)
-#2066 := (= #2061 uf_9)
-#2070 := (and #2066 #2069)
-#400 := (<= 0::int #247)
-#2071 := (and #400 #2070)
-#1425 := (< #247 #268)
-#2072 := (and #1425 #2071)
-#2088 := (implies #2072 #2087)
-#2089 := (forall (vars (?x526 T4) (?x527 int) (?x528 T5) (?x529 int) (?x530 int) (?x531 T3)) (:pat #2079 #2081) #2088)
-#10012 := (iff #2089 #10009)
-#9935 := (and #3963 #9932)
-#9938 := (and #9929 #9935)
-#9941 := (and #400 #9938)
-#9944 := (and #1425 #9941)
-#9950 := (not #9944)
-#9998 := (or #9950 #9992)
-#10003 := (forall (vars (?x526 T4) (?x527 int) (?x528 T5) (?x529 int) (?x530 int) (?x531 T3)) (:pat #2079 #2081) #9998)
-#10010 := (iff #10003 #10009)
-#10007 := (iff #9998 #10006)
-#9971 := (iff #9950 #9970)
-#9968 := (iff #9944 #9965)
-#9959 := (and #4346 #9938)
-#9962 := (and #8189 #9959)
-#9966 := (iff #9962 #9965)
-#9967 := [rewrite]: #9966
-#9963 := (iff #9944 #9962)
-#9960 := (iff #9941 #9959)
-#4345 := (iff #400 #4346)
-#4347 := [rewrite]: #4345
-#9961 := [monotonicity #4347]: #9960
-#8190 := (iff #1425 #8189)
-#8191 := [rewrite]: #8190
-#9964 := [monotonicity #8191 #9961]: #9963
-#9969 := [trans #9964 #9967]: #9968
-#9972 := [monotonicity #9969]: #9971
-#10008 := [monotonicity #9972]: #10007
-#10011 := [quant-intro #10008]: #10010
-#10004 := (iff #2089 #10003)
-#10001 := (iff #2088 #9998)
-#9995 := (implies #9944 #9992)
-#9999 := (iff #9995 #9998)
-#10000 := [rewrite]: #9999
-#9996 := (iff #2088 #9995)
-#9993 := (iff #2087 #9992)
-#9990 := (iff #2086 #9989)
-#9991 := [rewrite]: #9990
-#9987 := (iff #2084 #9986)
-#9984 := (iff #2083 #9983)
-#9985 := [rewrite]: #9984
-#9988 := [monotonicity #9985]: #9987
-#9994 := [monotonicity #9988 #9991]: #9993
-#9945 := (iff #2072 #9944)
-#9942 := (iff #2071 #9941)
-#9939 := (iff #2070 #9938)
-#9936 := (iff #2069 #9935)
-#9933 := (iff #2068 #9932)
-#9934 := [rewrite]: #9933
-#3964 := (iff #238 #3963)
-#3965 := [rewrite]: #3964
-#9937 := [monotonicity #3965 #9934]: #9936
-#9930 := (iff #2066 #9929)
-#9931 := [rewrite]: #9930
-#9940 := [monotonicity #9931 #9937]: #9939
-#9943 := [monotonicity #9940]: #9942
-#9946 := [monotonicity #9943]: #9945
-#9997 := [monotonicity #9946 #9994]: #9996
-#10002 := [trans #9997 #10000]: #10001
-#10005 := [quant-intro #10002]: #10004
-#10013 := [trans #10005 #10011]: #10012
-#9982 := [asserted]: #2089
-#10014 := [mp #9982 #10013]: #10009
-#18229 := [mp~ #10014 #18228]: #10009
-#22104 := [mp #18229 #22103]: #22101
-#26542 := (not #22101)
-#26613 := (or #26542 #23209 #26469 #26523 #26526 #26531)
-#26519 := (or #26518 #26515)
-#26520 := (not #26519)
-#26453 := (+ 0::int #26452)
-#26454 := (>= #26453 0::int)
-#26455 := (>= 0::int 0::int)
-#26456 := (not #26455)
-#26527 := (or #26526 #26456 #26454 #26523 #23209 #26520)
-#26614 := (or #26542 #26527)
-#26601 := (iff #26614 #26613)
-#26537 := (or #23209 #26469 #26523 #26526 #26531)
-#26616 := (or #26542 #26537)
-#26619 := (iff #26616 #26613)
-#26620 := [rewrite]: #26619
-#26617 := (iff #26614 #26616)
-#26540 := (iff #26527 #26537)
-#26534 := (or #26526 false #26469 #26523 #23209 #26531)
-#26538 := (iff #26534 #26537)
-#26539 := [rewrite]: #26538
-#26535 := (iff #26527 #26534)
-#26532 := (iff #26520 #26531)
-#26529 := (iff #26519 #26528)
-#26530 := [rewrite]: #26529
-#26533 := [monotonicity #26530]: #26532
-#26472 := (iff #26454 #26469)
-#26466 := (>= #26452 0::int)
-#26470 := (iff #26466 #26469)
-#26471 := [rewrite]: #26470
-#26467 := (iff #26454 #26466)
-#26464 := (= #26453 #26452)
-#26465 := [rewrite]: #26464
-#26468 := [monotonicity #26465]: #26467
-#26473 := [trans #26468 #26471]: #26472
-#26462 := (iff #26456 false)
-#26460 := (iff #26456 #3294)
-#26458 := (iff #26455 true)
-#26459 := [rewrite]: #26458
-#26461 := [monotonicity #26459]: #26460
-#26463 := [trans #26461 #13445]: #26462
-#26536 := [monotonicity #26463 #26473 #26533]: #26535
-#26541 := [trans #26536 #26539]: #26540
-#26618 := [monotonicity #26541]: #26617
-#26602 := [trans #26618 #26620]: #26601
-#26615 := [quant-inst]: #26614
-#26603 := [mp #26615 #26602]: #26613
-#26706 := [unit-resolution #26603 #22104 #14784 #26707 #27724]: #26708
-#26709 := [unit-resolution #26706 #27723]: #26531
-#26604 := (or #26528 #26514)
-#26605 := [def-axiom]: #26604
-#26710 := [unit-resolution #26605 #26709 #26680]: false
-#26712 := [lemma #26710]: #26711
-#27952 := [unit-resolution #26712 #27956]: #12358
-#23238 := (or #23975 #18897 #18900 #23969)
-#23239 := [def-axiom]: #23238
-#27957 := [unit-resolution #23239 #27952 #27925 #27936]: #23969
-#23252 := (or #23966 #23960)
-#23263 := [def-axiom]: #23252
-#27958 := [unit-resolution #23263 #27957]: #23960
-#23245 := (or #23963 #18900 #18906 #23957)
-#23258 := [def-axiom]: #23245
-#27959 := [unit-resolution #23258 #27958 #27925 #27858]: #18906
-#27024 := (or #27023 #12367 #26819)
-#27025 := [def-axiom]: #27024
-#27961 := [unit-resolution #27025 #27959]: #27960
-#27962 := [unit-resolution #27961 #27857]: #26819
-#27902 := (or #26823 #26812)
-#26997 := (or #26823 #18897 #26812)
-#26998 := [def-axiom]: #26997
-#27904 := [unit-resolution #26998 #27952]: #27902
-#27905 := [unit-resolution #27904 #27962]: #26812
-#26956 := (or #26809 #26796)
-#26991 := [def-axiom]: #26956
-#27903 := [unit-resolution #26991 #27905]: #26796
-#27585 := (not #26518)
-#27980 := (iff #27585 #26552)
-#27976 := (iff #26518 #26551)
-#27987 := (= #26517 #26546)
-#27910 := (= #26516 #26312)
-#27911 := [monotonicity #26686]: #27910
-#27988 := [monotonicity #27911]: #27987
-#27979 := [monotonicity #27988]: #27976
-#27981 := [monotonicity #27979]: #27980
-#27907 := [unit-resolution #26603 #22104 #14784 #26707 #27956]: #26708
-#27908 := [unit-resolution #27907 #27723]: #26531
-#27597 := (or #26528 #27585)
-#27598 := [def-axiom]: #27597
-#27909 := [unit-resolution #27598 #27908]: #27585
-#27982 := [mp #27909 #27981]: #26552
-#26910 := (or #26788 #26551)
-#26911 := [def-axiom]: #26910
-#27983 := [unit-resolution #26911 #27982]: #26788
-#24653 := (uf_14 uf_7)
-#27977 := (= #24653 #26634)
-#27985 := (= #26634 #24653)
-#27991 := (= #26287 uf_7)
-#27989 := (= #26287 #24114)
-#28002 := [mp #27925 #26277]: #26264
-#26014 := (or #26074 #26268 #26288)
-#26016 := [def-axiom]: #26014
-#27986 := [unit-resolution #26016 #28002 #26214]: #26288
-#27990 := [symm #27986]: #27989
-#27992 := [trans #27990 #27683]: #27991
-#27993 := [monotonicity #27992]: #27985
-#27978 := [symm #27993]: #27977
-#24654 := (= uf_16 #24653)
-#24661 := (iff #11835 #24654)
-#2303 := (pattern #237)
-#2831 := (uf_14 #233)
-#12008 := (= uf_16 #2831)
-#12012 := (iff #3963 #12008)
-#12015 := (forall (vars (?x761 T3)) (:pat #2303) #12012)
-#18854 := (~ #12015 #12015)
-#18852 := (~ #12012 #12012)
-#18853 := [refl]: #18852
-#18855 := [nnf-pos #18853]: #18854
-#2844 := (= #2831 uf_16)
-#2845 := (iff #238 #2844)
-#2846 := (forall (vars (?x761 T3)) (:pat #2303) #2845)
-#12016 := (iff #2846 #12015)
-#12013 := (iff #2845 #12012)
-#12010 := (iff #2844 #12008)
-#12011 := [rewrite]: #12010
-#12014 := [monotonicity #3965 #12011]: #12013
-#12017 := [quant-intro #12014]: #12016
-#12007 := [asserted]: #2846
-#12020 := [mp #12007 #12017]: #12015
-#18856 := [mp~ #12020 #18855]: #12015
-#24285 := (not #12015)
-#24664 := (or #24285 #24661)
-#24665 := [quant-inst]: #24664
-#27984 := [unit-resolution #24665 #18856]: #24661
-#24666 := (not #24661)
-#28001 := (or #24666 #24654)
-#24670 := (not #11835)
-#24671 := (or #24666 #24670 #24654)
-#24672 := [def-axiom]: #24671
-#28003 := [unit-resolution #24672 #11841]: #28001
-#28004 := [unit-resolution #28003 #27984]: #24654
-#28005 := [trans #28004 #27978]: #26726
-#26958 := (not #26629)
-#28390 := (iff #12299 #26958)
-#28388 := (iff #12296 #26629)
-#28355 := (iff #26629 #12296)
-#28362 := (= #26609 #2955)
-#28360 := (= #26608 #2952)
-#28357 := (= #26608 #24234)
-#28329 := (= #26553 #2962)
-#28302 := (= #26553 #26432)
-#26435 := (uf_66 #26432 0::int #24114)
-#26436 := (uf_58 #3079 #26435)
-#26437 := (uf_136 #26436)
-#28300 := (= #26437 #26432)
-#26438 := (= #26432 #26437)
-decl up_68 :: (-> T14 bool)
-#26445 := (up_68 #26436)
-#26446 := (not #26445)
-#26442 := (uf_27 uf_273 #26435)
-#26443 := (= uf_9 #26442)
-#26444 := (not #26443)
-#26440 := (uf_135 #26436)
-#26441 := (= uf_9 #26440)
-#26439 := (not #26438)
-#26474 := (or #26439 #26441 #26444 #26446)
-#26477 := (not #26474)
-#26449 := (uf_27 uf_273 #26432)
-#26450 := (= uf_9 #26449)
-#28032 := (= #2963 #26449)
-#28007 := (= #26449 #2963)
-#28013 := [monotonicity #27935]: #28007
-#28033 := [symm #28013]: #28032
-#28031 := [trans #14797 #28033]: #26450
-#26451 := (not #26450)
-#28034 := (or #26451 #26477)
-#276 := (:var 3 int)
+#2077 := (and #238 #2076)
+#2074 := (= #2073 uf_9)
+#2078 := (and #2074 #2077)
+#2094 := (implies #2078 #2093)
+#2095 := (forall (vars (?x526 T4) (?x527 int) (?x528 T5) (?x529 int) (?x530 int) (?x531 T3)) (:pat #2085 #2087) #2094)
+#9582 := (iff #2095 #9579)
+#9503 := (and #1435 #9497)
+#9508 := (and #3950 #9503)
+#9511 := (and #9494 #9508)
+#9517 := (not #9511)
+#9568 := (or #9517 #9562)
+#9573 := (forall (vars (?x526 T4) (?x527 int) (?x528 T5) (?x529 int) (?x530 int) (?x531 T3)) (:pat #2085 #2087) #9568)
+#9580 := (iff #9573 #9579)
+#9577 := (iff #9568 #9576)
+#9541 := (iff #9517 #9540)
+#9538 := (iff #9511 #9535)
+#7800 := (and #4331 #7797)
+#9526 := (and #7800 #9497)
+#9529 := (and #3950 #9526)
+#9532 := (and #9494 #9529)
+#9536 := (iff #9532 #9535)
+#9537 := [rewrite]: #9536
+#9533 := (iff #9511 #9532)
+#9530 := (iff #9508 #9529)
+#9527 := (iff #9503 #9526)
+#7801 := (iff #1435 #7800)
+#7798 := (iff #1434 #7797)
+#7799 := [rewrite]: #7798
+#4330 := (iff #397 #4331)
+#4332 := [rewrite]: #4330
+#7802 := [monotonicity #4332 #7799]: #7801
+#9528 := [monotonicity #7802]: #9527
+#9531 := [monotonicity #9528]: #9530
+#9534 := [monotonicity #9531]: #9533
+#9539 := [trans #9534 #9537]: #9538
+#9542 := [monotonicity #9539]: #9541
+#9578 := [monotonicity #9542]: #9577
+#9581 := [quant-intro #9578]: #9580
+#9574 := (iff #2095 #9573)
+#9571 := (iff #2094 #9568)
+#9565 := (implies #9511 #9562)
+#9569 := (iff #9565 #9568)
+#9570 := [rewrite]: #9569
+#9566 := (iff #2094 #9565)
+#9563 := (iff #2093 #9562)
+#9560 := (iff #2092 #9559)
+#9557 := (iff #2091 #9556)
+#9558 := [rewrite]: #9557
+#9561 := [monotonicity #9558]: #9560
+#9554 := (iff #2089 #9553)
+#9555 := [rewrite]: #9554
+#9564 := [monotonicity #9555 #9561]: #9563
+#9512 := (iff #2078 #9511)
+#9509 := (iff #2077 #9508)
+#9506 := (iff #2076 #9503)
+#9500 := (and #9497 #1435)
+#9504 := (iff #9500 #9503)
+#9505 := [rewrite]: #9504
+#9501 := (iff #2076 #9500)
+#9498 := (iff #2075 #9497)
+#9499 := [rewrite]: #9498
+#9502 := [monotonicity #9499]: #9501
+#9507 := [trans #9502 #9505]: #9506
+#3951 := (iff #238 #3950)
+#3952 := [rewrite]: #3951
+#9510 := [monotonicity #3952 #9507]: #9509
+#9495 := (iff #2074 #9494)
+#9496 := [rewrite]: #9495
+#9513 := [monotonicity #9496 #9510]: #9512
+#9567 := [monotonicity #9513 #9564]: #9566
+#9572 := [trans #9567 #9570]: #9571
+#9575 := [quant-intro #9572]: #9574
+#9583 := [trans #9575 #9581]: #9582
+#9552 := [asserted]: #2095
+#9584 := [mp #9552 #9583]: #9579
+#17646 := [mp~ #9584 #17645]: #9579
+#21553 := [mp #17646 #21552]: #21550
+#25988 := (not #21550)
+#25990 := (or #25988 #22661 #25915 #25969 #25972 #25977)
+#25965 := (or #25964 #25961)
+#25966 := (not #25965)
+#25899 := (+ 0::int #25898)
+#25900 := (>= #25899 0::int)
+#25901 := (>= 0::int 0::int)
+#25902 := (not #25901)
+#25973 := (or #25972 #25902 #25900 #22661 #25969 #25966)
+#25991 := (or #25988 #25973)
+#25997 := (iff #25991 #25990)
+#25983 := (or #22661 #25915 #25969 #25972 #25977)
+#25993 := (or #25988 #25983)
+#25995 := (iff #25993 #25990)
+#25996 := [rewrite]: #25995
+#25994 := (iff #25991 #25993)
+#25986 := (iff #25973 #25983)
+#25980 := (or #25972 false #25915 #22661 #25969 #25977)
+#25984 := (iff #25980 #25983)
+#25985 := [rewrite]: #25984
+#25981 := (iff #25973 #25980)
+#25978 := (iff #25966 #25977)
+#25975 := (iff #25965 #25974)
+#25976 := [rewrite]: #25975
+#25979 := [monotonicity #25976]: #25978
+#25918 := (iff #25900 #25915)
+#25912 := (>= #25898 0::int)
+#25916 := (iff #25912 #25915)
+#25917 := [rewrite]: #25916
+#25913 := (iff #25900 #25912)
+#25910 := (= #25899 #25898)
+#25911 := [rewrite]: #25910
+#25914 := [monotonicity #25911]: #25913
+#25919 := [trans #25914 #25917]: #25918
+#25908 := (iff #25902 false)
+#25906 := (iff #25902 #3077)
+#25904 := (iff #25901 true)
+#25905 := [rewrite]: #25904
+#25907 := [monotonicity #25905]: #25906
+#25909 := [trans #25907 #11999]: #25908
+#25982 := [monotonicity #25909 #25919 #25979]: #25981
+#25987 := [trans #25982 #25985]: #25986
+#25989 := [monotonicity #25987]: #25994
+#25998 := [trans #25989 #25996]: #25997
+#25992 := [quant-inst]: #25991
+#25999 := [mp #25992 #25998]: #25990
+#26262 := [unit-resolution #25999 #21553 #14251 #26260]: #26261
+#26263 := [unit-resolution #26262 #26234 #26244]: #25977
+#26033 := (or #25974 #25963)
+#26034 := [def-axiom]: #26033
+#26264 := [unit-resolution #26034 #26263 #26243]: false
+#26265 := [lemma #26264]: #26259
+#27342 := [unit-resolution #26265 #27341]: #11934
+#22678 := (or #23424 #18314 #18317 #23418)
+#22690 := [def-axiom]: #22678
+#27885 := [unit-resolution #22690 #27342 #27884 #27883]: #23418
+#22697 := (or #23415 #23409)
+#22698 := [def-axiom]: #22697
+#27886 := [unit-resolution #22698 #27885]: #23409
+#26720 := (uf_58 #3149 #22665)
+#26901 := (uf_136 #26720)
+#26917 := (= uf_9 #26901)
+#26918 := (not #26917)
+#26721 := (uf_135 #26720)
+#26916 := (uf_27 uf_273 #26721)
+#26911 := (= uf_9 #26916)
+#26899 := (not #26911)
+#27016 := (or #26899 #26918)
+#27020 := (not #27016)
+#25857 := (uf_13 #22665)
+#26921 := (uf_12 #25857)
+#26953 := (= uf_14 #26921)
+#27014 := (not #26953)
+#26914 := (uf_13 #26721)
+#26902 := (uf_12 #26914)
+#26915 := (= uf_14 #26902)
+#26838 := (uf_210 uf_273 #26721)
+#26903 := (= uf_9 #26838)
+#26912 := (uf_25 uf_273 #26721)
+#26898 := (= uf_26 #26912)
+#26913 := (or #26898 #26903)
+#26900 := (not #26913)
+#27156 := (or #26900 #26915 #27014 #27020)
+#27161 := (not #27156)
+#26942 := (uf_25 uf_273 #22665)
+#26943 := (= uf_26 #26942)
+#26940 := (uf_210 uf_273 #22665)
+#26941 := (= uf_9 #26940)
+#26959 := (or #26941 #26943)
+#26962 := (not #26959)
+#27022 := (or #26953 #26962)
+#27011 := (not #27022)
+#27164 := (or #27011 #27161)
+#27167 := (not #27164)
+#26931 := (uf_24 uf_273 #22665)
+#26932 := (= uf_9 #26931)
+#27346 := (= #3019 #26931)
+#27380 := (= #26931 #3019)
+#27364 := (= #22665 #3016)
+#27294 := (= #25799 #3016)
+#27306 := [symm #25713]: #27294
+#27381 := (= #22665 #25799)
+#27339 := (= #25821 #25799)
+#27344 := [symm #25706]: #27339
+#27307 := (= #22665 #25821)
+#27343 := (= #2960 #25821)
+#27338 := [symm #25734]: #27343
+#27310 := [trans #25699 #27338]: #27307
+#27362 := [trans #27310 #27344]: #27381
+#27365 := [trans #27362 #27306]: #27364
+#27363 := [monotonicity #27365]: #27380
+#27347 := [symm #27363]: #27346
+#27348 := [trans #27342 #27347]: #26932
+#26933 := (not #26932)
+#27170 := (or #26933 #27167)
+#27173 := (not #27170)
+#26956 := (uf_68 uf_273 #22665)
+#26957 := (= uf_9 #26956)
+#27176 := (iff #26957 #27173)
+#27180 := (or #27179 #27176)
+#26919 := (or #26918 #26899)
+#26920 := (not #26919)
+#26936 := (= #26921 uf_14)
+#26938 := (not #26936)
+#26939 := (or #26938 #26920 #26915 #26900)
+#26937 := (not #26939)
+#26944 := (or #26943 #26941)
+#26945 := (not #26944)
+#26929 := (or #26936 #26945)
+#26930 := (not #26929)
+#26946 := (or #26930 #26937)
+#26928 := (not #26946)
+#26934 := (or #26933 #26928)
+#26935 := (not #26934)
+#26958 := (iff #26957 #26935)
+#27181 := (or #27179 #26958)
+#27183 := (iff #27181 #27180)
+#27185 := (iff #27180 #27180)
+#27186 := [rewrite]: #27185
+#27177 := (iff #26958 #27176)
+#27174 := (iff #26935 #27173)
+#27171 := (iff #26934 #27170)
+#27168 := (iff #26928 #27167)
+#27165 := (iff #26946 #27164)
+#27162 := (iff #26937 #27161)
+#27159 := (iff #26939 #27156)
+#27153 := (or #27014 #27020 #26915 #26900)
+#27157 := (iff #27153 #27156)
+#27158 := [rewrite]: #27157
+#27154 := (iff #26939 #27153)
+#27018 := (iff #26920 #27020)
+#27017 := (iff #26919 #27016)
+#27019 := [rewrite]: #27017
+#27152 := [monotonicity #27019]: #27018
+#27012 := (iff #26938 #27014)
+#26954 := (iff #26936 #26953)
+#26955 := [rewrite]: #26954
+#27015 := [monotonicity #26955]: #27012
+#27155 := [monotonicity #27015 #27152]: #27154
+#27160 := [trans #27155 #27158]: #27159
+#27163 := [monotonicity #27160]: #27162
+#27009 := (iff #26930 #27011)
+#27023 := (iff #26929 #27022)
+#26963 := (iff #26945 #26962)
+#26960 := (iff #26944 #26959)
+#26961 := [rewrite]: #26960
+#27021 := [monotonicity #26961]: #26963
+#27010 := [monotonicity #26955 #27021]: #27023
+#27013 := [monotonicity #27010]: #27009
+#27166 := [monotonicity #27013 #27163]: #27165
+#27169 := [monotonicity #27166]: #27168
+#27172 := [monotonicity #27169]: #27171
+#27175 := [monotonicity #27172]: #27174
+#27178 := [monotonicity #27175]: #27177
+#27184 := [monotonicity #27178]: #27183
+#27187 := [trans #27184 #27186]: #27183
+#27182 := [quant-inst]: #27181
+#27188 := [mp #27182 #27187]: #27180
+#27372 := [unit-resolution #27188 #21963]: #27176
+#27311 := (not #26957)
+#27376 := (iff #18323 #27311)
+#27371 := (iff #11940 #26957)
+#27378 := (iff #26957 #11940)
+#27345 := (= #26956 #3022)
+#27377 := [monotonicity #27365]: #27345
+#27370 := [monotonicity #27377]: #27378
+#27388 := [symm #27370]: #27371
+#27390 := [monotonicity #27388]: #27376
+#27373 := [hypothesis]: #18323
+#27369 := [mp #27373 #27390]: #27311
+#27247 := (not #27176)
+#27248 := (or #27247 #26957 #27170)
+#27238 := [def-axiom]: #27248
+#27391 := [unit-resolution #27238 #27369 #27372]: #27170
+#27245 := (or #27173 #26933 #27167)
+#27246 := [def-axiom]: #27245
+#27368 := [unit-resolution #27246 #27391 #27348]: #27167
+#27681 := (= #2965 #26912)
+#27679 := (= #26912 #2965)
+#27687 := (= #26721 #2962)
+#27496 := (= #26721 #25880)
+#25881 := (uf_66 #25880 0::int #23566)
+#25885 := (uf_58 #3149 #25881)
+#25888 := (uf_135 #25885)
+#27471 := (= #25888 #25880)
+#25889 := (= #25880 #25888)
+#25891 := (up_67 #25885)
+#25892 := (not #25891)
+#25890 := (not #25889)
+#25886 := (uf_136 #25885)
+#25887 := (= uf_9 #25886)
+#25882 := (uf_24 uf_273 #25881)
+#25883 := (= uf_9 #25882)
+#25884 := (not #25883)
+#25920 := (or #25884 #25887 #25890 #25892)
+#25923 := (not #25920)
+#25897 := (not #25896)
+#27447 := (or #25897 #25923)
+#277 := (:var 3 int)
#310 := (:var 2 T3)
-#1463 := (uf_124 #310 #247)
-#1464 := (uf_43 #1463 #276)
-#1460 := (uf_43 #310 #276)
-#1461 := (uf_66 #1460 #161 #310)
-#38 := (:var 4 T4)
-#1466 := (uf_59 #38)
-#1467 := (uf_58 #1466 #1461)
-#1468 := (pattern #1467 #1464)
-#1459 := (uf_41 #38)
-#1462 := (uf_40 #1459 #1461)
-#1465 := (pattern #1462 #1464)
-#1471 := (uf_66 #1464 #161 #310)
-#1474 := (uf_58 #1466 #1471)
-#1479 := (uf_136 #1474)
-#8354 := (= #1464 #1479)
-#21428 := (not #8354)
-#1476 := (uf_135 #1474)
-#8348 := (= uf_9 #1476)
-#1472 := (uf_27 #38 #1471)
-#8345 := (= uf_9 #1472)
-#21427 := (not #8345)
-#1475 := (up_68 #1474)
-#21426 := (not #1475)
-#21429 := (or #21426 #21427 #8348 #21428)
-#21430 := (not #21429)
-#1469 := (uf_27 #38 #1464)
-#8342 := (= uf_9 #1469)
-#8377 := (not #8342)
-#5373 := (* -1::int #247)
-#6256 := (+ #161 #5373)
-#6255 := (>= #6256 0::int)
-#21436 := (or #5113 #6255 #8377 #21430)
-#21441 := (forall (vars (?x346 T4) (?x347 int) (?x348 T3) (?x349 int) (?x350 int)) (:pat #1465 #1468) #21436)
-#8351 := (not #8348)
-#8386 := (and #1475 #8345 #8351 #8354)
-#8026 := (not #6255)
-#8029 := (and #4084 #8026)
-#8032 := (not #8029)
-#8395 := (or #8032 #8377 #8386)
-#8400 := (forall (vars (?x346 T4) (?x347 int) (?x348 T3) (?x349 int) (?x350 int)) (:pat #1465 #1468) #8395)
-#21442 := (iff #8400 #21441)
-#21439 := (iff #8395 #21436)
-#21311 := (or #5113 #6255)
-#21433 := (or #21311 #8377 #21430)
-#21437 := (iff #21433 #21436)
-#21438 := [rewrite]: #21437
-#21434 := (iff #8395 #21433)
-#21431 := (iff #8386 #21430)
-#21432 := [rewrite]: #21431
-#21320 := (iff #8032 #21311)
-#21312 := (not #21311)
-#21315 := (not #21312)
-#21318 := (iff #21315 #21311)
-#21319 := [rewrite]: #21318
-#21316 := (iff #8032 #21315)
-#21313 := (iff #8029 #21312)
-#21314 := [rewrite]: #21313
-#21317 := [monotonicity #21314]: #21316
-#21321 := [trans #21317 #21319]: #21320
-#21435 := [monotonicity #21321 #21432]: #21434
-#21440 := [trans #21435 #21438]: #21439
-#21443 := [quant-intro #21440]: #21442
-#17588 := (~ #8400 #8400)
-#17586 := (~ #8395 #8395)
-#17587 := [refl]: #17586
-#17589 := [nnf-pos #17587]: #17588
-#1480 := (= #1479 #1464)
+#1470 := (uf_124 #310 #247)
+#1471 := (uf_43 #1470 #277)
+#1467 := (uf_43 #310 #277)
+#1468 := (uf_66 #1467 #161 #310)
+#35 := (:var 4 T4)
+#1473 := (uf_59 #35)
+#1474 := (uf_58 #1473 #1468)
+#1475 := (pattern #1474 #1471)
+#1466 := (uf_41 #35)
+#1469 := (uf_40 #1466 #1468)
+#1472 := (pattern #1469 #1471)
+#1478 := (uf_66 #1471 #161 #310)
+#1486 := (uf_24 #35 #1478)
+#7955 := (= uf_9 #1486)
+#20877 := (not #7955)
+#1479 := (uf_58 #1473 #1478)
+#1482 := (uf_136 #1479)
+#7949 := (= uf_9 #1482)
+#1480 := (uf_135 #1479)
+#7946 := (= #1471 #1480)
+#20876 := (not #7946)
+#1485 := (up_67 #1479)
+#20875 := (not #1485)
+#20878 := (or #20875 #20876 #7949 #20877)
+#20879 := (not #20878)
+#1476 := (uf_24 #35 #1471)
+#7943 := (= uf_9 #1476)
+#7978 := (not #7943)
+#5258 := (* -1::int #247)
+#6138 := (+ #161 #5258)
+#6139 := (>= #6138 0::int)
+#20885 := (or #4987 #6139 #7978 #20879)
+#20890 := (forall (vars (?x346 T4) (?x347 int) (?x348 T3) (?x349 int) (?x350 int)) (:pat #1472 #1475) #20885)
+#7952 := (not #7949)
+#7987 := (and #1485 #7946 #7952 #7955)
+#7642 := (not #6139)
+#7645 := (and #4065 #7642)
+#7648 := (not #7645)
+#7996 := (or #7648 #7978 #7987)
+#8001 := (forall (vars (?x346 T4) (?x347 int) (?x348 T3) (?x349 int) (?x350 int)) (:pat #1472 #1475) #7996)
+#20891 := (iff #8001 #20890)
+#20888 := (iff #7996 #20885)
+#20760 := (or #4987 #6139)
+#20882 := (or #20760 #7978 #20879)
+#20886 := (iff #20882 #20885)
+#20887 := [rewrite]: #20886
+#20883 := (iff #7996 #20882)
+#20880 := (iff #7987 #20879)
+#20881 := [rewrite]: #20880
+#20769 := (iff #7648 #20760)
+#20761 := (not #20760)
+#20764 := (not #20761)
+#20767 := (iff #20764 #20760)
+#20768 := [rewrite]: #20767
+#20765 := (iff #7648 #20764)
+#20762 := (iff #7645 #20761)
+#20763 := [rewrite]: #20762
+#20766 := [monotonicity #20763]: #20765
+#20770 := [trans #20766 #20768]: #20769
+#20884 := [monotonicity #20770 #20881]: #20883
+#20889 := [trans #20884 #20887]: #20888
+#20892 := [quant-intro #20889]: #20891
+#17011 := (~ #8001 #8001)
+#17009 := (~ #7996 #7996)
+#17010 := [refl]: #17009
+#17012 := [nnf-pos #17010]: #17011
+#1487 := (= #1486 uf_9)
+#1488 := (and #1485 #1487)
+#1483 := (= #1482 uf_9)
+#1484 := (not #1483)
+#1489 := (and #1484 #1488)
+#1481 := (= #1480 #1471)
+#1490 := (and #1481 #1489)
+#1371 := (< #161 #247)
+#1372 := (and #285 #1371)
+#1491 := (implies #1372 #1490)
#1477 := (= #1476 uf_9)
-#1478 := (not #1477)
-#1481 := (and #1478 #1480)
-#1482 := (and #1475 #1481)
-#1473 := (= #1472 uf_9)
-#1483 := (and #1473 #1482)
-#1362 := (< #161 #247)
-#1363 := (and #1362 #285)
-#1484 := (implies #1363 #1483)
-#1470 := (= #1469 uf_9)
-#1485 := (implies #1470 #1484)
-#1486 := (forall (vars (?x346 T4) (?x347 int) (?x348 T3) (?x349 int) (?x350 int)) (:pat #1465 #1468) #1485)
-#8403 := (iff #1486 #8400)
-#8357 := (and #8351 #8354)
-#8360 := (and #1475 #8357)
-#8363 := (and #8345 #8360)
-#7987 := (and #285 #1362)
-#7996 := (not #7987)
-#8369 := (or #7996 #8363)
-#8378 := (or #8377 #8369)
-#8383 := (forall (vars (?x346 T4) (?x347 int) (?x348 T3) (?x349 int) (?x350 int)) (:pat #1465 #1468) #8378)
-#8401 := (iff #8383 #8400)
-#8398 := (iff #8378 #8395)
-#8389 := (or #8032 #8386)
-#8392 := (or #8377 #8389)
-#8396 := (iff #8392 #8395)
-#8397 := [rewrite]: #8396
-#8393 := (iff #8378 #8392)
-#8390 := (iff #8369 #8389)
-#8387 := (iff #8363 #8386)
-#8388 := [rewrite]: #8387
-#8033 := (iff #7996 #8032)
-#8030 := (iff #7987 #8029)
-#8027 := (iff #1362 #8026)
-#8028 := [rewrite]: #8027
-#8031 := [monotonicity #4085 #8028]: #8030
-#8034 := [monotonicity #8031]: #8033
-#8391 := [monotonicity #8034 #8388]: #8390
-#8394 := [monotonicity #8391]: #8393
-#8399 := [trans #8394 #8397]: #8398
-#8402 := [quant-intro #8399]: #8401
-#8384 := (iff #1486 #8383)
-#8381 := (iff #1485 #8378)
-#8374 := (implies #8342 #8369)
-#8379 := (iff #8374 #8378)
-#8380 := [rewrite]: #8379
-#8375 := (iff #1485 #8374)
-#8372 := (iff #1484 #8369)
-#8366 := (implies #7987 #8363)
-#8370 := (iff #8366 #8369)
-#8371 := [rewrite]: #8370
-#8367 := (iff #1484 #8366)
-#8364 := (iff #1483 #8363)
-#8361 := (iff #1482 #8360)
-#8358 := (iff #1481 #8357)
-#8355 := (iff #1480 #8354)
-#8356 := [rewrite]: #8355
-#8352 := (iff #1478 #8351)
-#8349 := (iff #1477 #8348)
-#8350 := [rewrite]: #8349
-#8353 := [monotonicity #8350]: #8352
-#8359 := [monotonicity #8353 #8356]: #8358
-#8362 := [monotonicity #8359]: #8361
-#8346 := (iff #1473 #8345)
-#8347 := [rewrite]: #8346
-#8365 := [monotonicity #8347 #8362]: #8364
-#7988 := (iff #1363 #7987)
+#1492 := (implies #1477 #1491)
+#1493 := (forall (vars (?x346 T4) (?x347 int) (?x348 T3) (?x349 int) (?x350 int)) (:pat #1472 #1475) #1492)
+#8004 := (iff #1493 #8001)
+#7958 := (and #1485 #7955)
+#7961 := (and #7952 #7958)
+#7964 := (and #7946 #7961)
+#7612 := (not #1372)
+#7970 := (or #7612 #7964)
+#7979 := (or #7978 #7970)
+#7984 := (forall (vars (?x346 T4) (?x347 int) (?x348 T3) (?x349 int) (?x350 int)) (:pat #1472 #1475) #7979)
+#8002 := (iff #7984 #8001)
+#7999 := (iff #7979 #7996)
+#7990 := (or #7648 #7987)
+#7993 := (or #7978 #7990)
+#7997 := (iff #7993 #7996)
+#7998 := [rewrite]: #7997
+#7994 := (iff #7979 #7993)
+#7991 := (iff #7970 #7990)
+#7988 := (iff #7964 #7987)
#7989 := [rewrite]: #7988
-#8368 := [monotonicity #7989 #8365]: #8367
-#8373 := [trans #8368 #8371]: #8372
-#8343 := (iff #1470 #8342)
-#8344 := [rewrite]: #8343
-#8376 := [monotonicity #8344 #8373]: #8375
-#8382 := [trans #8376 #8380]: #8381
-#8385 := [quant-intro #8382]: #8384
-#8404 := [trans #8385 #8402]: #8403
-#8341 := [asserted]: #1486
-#8405 := [mp #8341 #8404]: #8400
-#17590 := [mp~ #8405 #17589]: #8400
-#21444 := [mp #17590 #21443]: #21441
-#27098 := (not #21441)
-#27099 := (or #27098 #26451 #26469 #26477)
-#26447 := (or #26446 #26444 #26441 #26439)
-#26448 := (not #26447)
-#26457 := (or #26456 #26454 #26451 #26448)
-#27111 := (or #27098 #26457)
-#27522 := (iff #27111 #27099)
-#26483 := (or #26451 #26469 #26477)
-#27450 := (or #27098 #26483)
-#27435 := (iff #27450 #27099)
-#27448 := [rewrite]: #27435
-#27451 := (iff #27111 #27450)
-#26486 := (iff #26457 #26483)
-#26480 := (or false #26469 #26451 #26477)
-#26484 := (iff #26480 #26483)
-#26485 := [rewrite]: #26484
-#26481 := (iff #26457 #26480)
-#26478 := (iff #26448 #26477)
-#26475 := (iff #26447 #26474)
-#26476 := [rewrite]: #26475
-#26479 := [monotonicity #26476]: #26478
-#26482 := [monotonicity #26463 #26473 #26479]: #26481
-#26487 := [trans #26482 #26485]: #26486
-#27428 := [monotonicity #26487]: #27451
-#27523 := [trans #27428 #27448]: #27522
-#27449 := [quant-inst]: #27111
-#27524 := [mp #27449 #27523]: #27099
-#28015 := [unit-resolution #27524 #21444 #26707]: #28034
-#28035 := [unit-resolution #28015 #28031]: #26477
-#27525 := (or #26474 #26438)
-#27526 := [def-axiom]: #27525
-#28036 := [unit-resolution #27526 #28035]: #26438
-#28301 := [symm #28036]: #28300
-#28299 := (= #26553 #26437)
-#28298 := (= #26312 #26436)
-#28308 := (= #26436 #26312)
-#28325 := (= #26435 #3011)
-#26269 := (uf_116 #3011)
-#26270 := (uf_43 #24114 #26269)
-#28320 := (= #26270 #3011)
-#26271 := (= #3011 #26270)
-#26500 := (or #25416 #26268 #26271)
-#26272 := (or #26271 #26268)
-#26501 := (or #25416 #26272)
-#26508 := (iff #26501 #26500)
-#26273 := (or #26268 #26271)
-#26503 := (or #25416 #26273)
-#26506 := (iff #26503 #26500)
-#26507 := [rewrite]: #26506
-#26504 := (iff #26501 #26503)
-#26274 := (iff #26272 #26273)
-#26275 := [rewrite]: #26274
-#26505 := [monotonicity #26275]: #26504
-#26509 := [trans #26505 #26507]: #26508
-#26502 := [quant-inst]: #26501
-#26396 := [mp #26502 #26509]: #26500
-#28037 := [unit-resolution #26396 #18736 #28002]: #26271
-#28321 := [symm #28037]: #28320
-#28324 := (= #26435 #26270)
-#26643 := (uf_116 #25404)
-#26651 := (+ #26356 #26643)
-#26654 := (uf_43 #24114 #26651)
-#28304 := (= #26654 #26270)
-#28237 := (= #26651 #26269)
-#26563 := (uf_116 #26368)
-#28283 := (= #26563 #26269)
-#28058 := (= #26368 #3011)
-#28056 := (= #26346 #3011)
-#28038 := (= #23223 #2960)
-#28039 := [symm #26284]: #28038
-#28057 := [monotonicity #28039 #27683]: #28056
-#28040 := (= #26368 #26346)
-#28050 := [symm #26283]: #28040
-#28059 := [trans #28050 #28057]: #28058
-#28284 := [monotonicity #28059]: #28283
-#28282 := (= #26651 #26563)
-#28272 := (= #26563 #26651)
-#27071 := (* -1::int #26357)
-#27072 := (+ #24016 #27071)
-#27073 := (<= #27072 0::int)
-#27070 := (= #24016 #26357)
-#28067 := (= #2961 #26357)
-#28087 := (= #26357 #2961)
-#28088 := [monotonicity #28039]: #28087
-#28068 := [symm #28088]: #28067
-#28085 := (= #24016 #2961)
-#24240 := (= #2961 #24016)
-#24245 := (or #24187 #24240)
-#24246 := [quant-inst]: #24245
-#28060 := [unit-resolution #24246 #23688]: #24240
-#28086 := [symm #28060]: #28085
-#28069 := [trans #28086 #28068]: #27070
-#28070 := (not #27070)
-#28049 := (or #28070 #27073)
-#28066 := [th-lemma]: #28049
-#28051 := [unit-resolution #28066 #28069]: #27073
-#27068 := (>= #27072 0::int)
-#28052 := (or #28070 #27068)
-#28053 := [th-lemma]: #28052
-#28054 := [unit-resolution #28053 #28069]: #27068
-#26567 := (* -1::int #26563)
-#26568 := (+ #26357 #26567)
-#26569 := (+ #26356 #26568)
-#27092 := (<= #26569 0::int)
-#26570 := (= #26569 0::int)
-#27074 := (or #24187 #26570)
-#26564 := (= #26365 #26563)
-#27075 := (or #24187 #26564)
-#27077 := (iff #27075 #27074)
-#27083 := (iff #27074 #27074)
-#27084 := [rewrite]: #27083
-#26571 := (iff #26564 #26570)
-#26572 := [rewrite]: #26571
-#27078 := [monotonicity #26572]: #27077
-#27093 := [trans #27078 #27084]: #27077
-#27076 := [quant-inst]: #27075
-#27094 := [mp #27076 #27093]: #27074
-#28055 := [unit-resolution #27094 #23688]: #26570
-#28076 := (not #26570)
-#28079 := (or #28076 #27092)
-#28080 := [th-lemma]: #28079
-#28081 := [unit-resolution #28080 #28055]: #27092
-#27095 := (>= #26569 0::int)
-#28082 := (or #28076 #27095)
-#28078 := [th-lemma]: #28082
-#28083 := [unit-resolution #28078 #28055]: #27095
-#27032 := (<= #26356 1::int)
-#27031 := (= #26356 1::int)
-#2927 := (uf_138 uf_7)
-#2928 := (= #2927 1::int)
-#12262 := [asserted]: #2928
-#28084 := (= #26356 #2927)
-#28103 := [monotonicity #27683]: #28084
-#28105 := [trans #28103 #12262]: #27031
-#28106 := (not #27031)
-#28261 := (or #28106 #27032)
-#28262 := [th-lemma]: #28261
-#28263 := [unit-resolution #28262 #28105]: #27032
-#27069 := (>= #26356 1::int)
-#28264 := (or #28106 #27069)
-#28265 := [th-lemma]: #28264
-#28266 := [unit-resolution #28265 #28105]: #27069
-#27890 := (* -1::int #26643)
-#27891 := (+ #24016 #27890)
-#27892 := (<= #27891 0::int)
-#27887 := (= #24016 #26643)
-#28253 := (= #26643 #24016)
-#28254 := [monotonicity #27941]: #28253
-#28252 := [symm #28254]: #27887
-#28255 := (not #27887)
-#28256 := (or #28255 #27892)
-#28257 := [th-lemma]: #28256
-#28258 := [unit-resolution #28257 #28252]: #27892
-#27893 := (>= #27891 0::int)
-#28259 := (or #28255 #27893)
-#28260 := [th-lemma]: #28259
-#28271 := [unit-resolution #28260 #28252]: #27893
-#28281 := [th-lemma #28266 #28263 #28271 #28258 #28266 #28263 #28083 #28081 #28054 #28051]: #28272
-#28280 := [symm #28281]: #28282
-#28239 := [trans #28280 #28284]: #28237
-#28305 := [monotonicity #28239]: #28304
-#28322 := (= #26435 #26654)
-#26639 := (uf_66 #25404 0::int #24114)
-#26657 := (= #26639 #26654)
-#26660 := (not #26657)
-#26640 := (uf_139 #26639 #25404)
-#26641 := (= uf_9 #26640)
-#26642 := (not #26641)
-#26666 := (or #26642 #26660)
-#26671 := (not #26666)
-#27881 := (or #26114 #26671)
-#26644 := (+ #26643 #26356)
-#26645 := (+ 0::int #26644)
-#26646 := (uf_43 #24114 #26645)
-#26647 := (= #26639 #26646)
-#26648 := (not #26647)
-#26649 := (or #26648 #26642)
-#26650 := (not #26649)
-#27869 := (or #26114 #26650)
-#27883 := (iff #27869 #27881)
-#27885 := (iff #27881 #27881)
-#27886 := [rewrite]: #27885
-#26672 := (iff #26650 #26671)
-#26669 := (iff #26649 #26666)
-#26663 := (or #26660 #26642)
-#26667 := (iff #26663 #26666)
-#26668 := [rewrite]: #26667
-#26664 := (iff #26649 #26663)
-#26661 := (iff #26648 #26660)
-#26658 := (iff #26647 #26657)
-#26655 := (= #26646 #26654)
-#26652 := (= #26645 #26651)
-#26653 := [rewrite]: #26652
-#26656 := [monotonicity #26653]: #26655
-#26659 := [monotonicity #26656]: #26658
-#26662 := [monotonicity #26659]: #26661
-#26665 := [monotonicity #26662]: #26664
-#26670 := [trans #26665 #26668]: #26669
-#26673 := [monotonicity #26670]: #26672
-#27884 := [monotonicity #26673]: #27883
-#27896 := [trans #27884 #27886]: #27883
-#27882 := [quant-inst]: #27869
-#27897 := [mp #27882 #27896]: #27881
-#28240 := [unit-resolution #27897 #21660]: #26671
-#27900 := (or #26666 #26657)
-#27901 := [def-axiom]: #27900
-#28238 := [unit-resolution #27901 #28240]: #26657
-#28310 := (= #26435 #26639)
-#28311 := [monotonicity #27948]: #28310
-#28323 := [trans #28311 #28238]: #28322
-#28319 := [trans #28323 #28305]: #28324
-#28326 := [trans #28319 #28321]: #28325
-#28296 := [monotonicity #28326]: #28308
-#28309 := [symm #28296]: #28298
-#28297 := [monotonicity #28309]: #28299
-#28303 := [trans #28297 #28301]: #28302
-#28335 := [trans #28303 #27935]: #28329
-#28334 := [monotonicity #28335]: #28357
-#28361 := [trans #28334 #28359]: #28360
-#28363 := [monotonicity #28361]: #28362
-#28356 := [monotonicity #28363]: #28355
-#28389 := [symm #28356]: #28388
-#28391 := [monotonicity #28389]: #28390
-#28392 := [mp #14796 #28391]: #26958
-#28395 := (= #2967 #26630)
-#28387 := (= #26630 #2967)
-#28393 := [monotonicity #28335]: #28387
-#28328 := [symm #28393]: #28395
-#28349 := [trans #14799 #28328]: #26610
-#26877 := (not #26610)
-#26878 := (or #26753 #26877)
-#26905 := [def-axiom]: #26878
-#28327 := [unit-resolution #26905 #28349]: #26753
-#26952 := (or #26807 #26629 #26750 #26766 #26791)
-#26953 := [def-axiom]: #26952
-#28350 := [unit-resolution #26953 #28327 #28392 #28005 #27983 #27903]: false
-#28351 := [lemma #28350]: #28348
-#28242 := [unit-resolution #28351 #28241]: #23957
-#23303 := (or #23954 #3022)
-#23302 := [def-axiom]: #23303
-#28243 := [unit-resolution #23302 #28242]: #3022
-#28633 := (+ #3021 #18936)
-#26421 := (>= #28633 0::int)
-#28632 := (= #3021 #18935)
-#27102 := (= #18935 #3021)
-#26769 := (= #18934 #3011)
-#26767 := (= ?x773!13 0::int)
-#23266 := (not #18939)
-#26720 := [hypothesis]: #22757
-#23257 := (or #22752 #23266)
-#23268 := [def-axiom]: #23257
-#26762 := [unit-resolution #23268 #26720]: #23266
-#23178 := (or #22752 #18931)
-#23264 := [def-axiom]: #23178
-#26763 := [unit-resolution #23264 #26720]: #18931
-#26768 := [th-lemma #26763 #26762]: #26767
-#27101 := [monotonicity #26768]: #26769
-#27157 := [monotonicity #27101]: #27102
-#28041 := [symm #27157]: #28632
-#28023 := (not #28632)
-#28024 := (or #28023 #26421)
-#28022 := [th-lemma]: #28024
-#28025 := [unit-resolution #28022 #28041]: #26421
-#23179 := (not #18938)
-#23265 := (or #22752 #23179)
-#23180 := [def-axiom]: #23265
-#28026 := [unit-resolution #23180 #26720]: #23179
-#26970 := (* -1::int #3021)
-#26971 := (+ uf_285 #26970)
-#26972 := (>= #26971 0::int)
-#28244 := (or #13672 #26972)
-#28245 := [th-lemma]: #28244
-#28246 := [unit-resolution #28245 #28243]: #26972
-#28641 := [th-lemma #28246 #28026 #28025]: false
-#28642 := [lemma #28641]: #22752
-#23280 := (or #23954 #23948)
-#23281 := [def-axiom]: #23280
-#29203 := [unit-resolution #23281 #28242]: #23948
-#28560 := [hypothesis]: #13906
-#28561 := [th-lemma #14790 #28560]: false
-#28562 := [lemma #28561]: #13903
-#23300 := (or #23951 #13906 #23945)
-#23301 := [def-axiom]: #23300
-#29204 := [unit-resolution #23301 #28562 #29203]: #23945
-#23309 := (or #23942 #23936)
-#23310 := [def-axiom]: #23309
-#29207 := [unit-resolution #23310 #29204]: #23936
-#23328 := (or #23939 #22757 #23933)
-#23305 := [def-axiom]: #23328
-#29208 := [unit-resolution #23305 #29207 #28642]: #23933
-#23321 := (or #23930 #23924)
-#23322 := [def-axiom]: #23321
-#29209 := [unit-resolution #23322 #29208]: #23924
-#29210 := (or #23927 #13672 #23921)
-#23317 := (or #23927 #13672 #13942 #23921)
-#23318 := [def-axiom]: #23317
-#29211 := [unit-resolution #23318 #14790]: #29210
-#29212 := [unit-resolution #29211 #29209 #28243]: #23921
-#23351 := (or #23918 #13947)
-#23355 := [def-axiom]: #23351
-#29213 := [unit-resolution #23355 #29212]: #13947
-#27053 := (* -1::int #26964)
-#27103 := (+ uf_293 #27053)
-#27104 := (<= #27103 0::int)
-#26965 := (= uf_293 #26964)
-#1382 := (uf_66 #15 #161 #1381)
-#1383 := (pattern #1382)
-#1384 := (uf_125 #1382 #15)
-#8071 := (= #161 #1384)
-#8075 := (forall (vars (?x319 T5) (?x320 int)) (:pat #1383) #8071)
-#17553 := (~ #8075 #8075)
-#17551 := (~ #8071 #8071)
-#17552 := [refl]: #17551
-#17554 := [nnf-pos #17552]: #17553
-#1385 := (= #1384 #161)
-#1386 := (forall (vars (?x319 T5) (?x320 int)) (:pat #1383) #1385)
-#8076 := (iff #1386 #8075)
-#8073 := (iff #1385 #8071)
-#8074 := [rewrite]: #8073
-#8077 := [quant-intro #8074]: #8076
-#8070 := [asserted]: #1386
-#8080 := [mp #8070 #8077]: #8075
-#17555 := [mp~ #8080 #17554]: #8075
-#26411 := (not #8075)
-#26968 := (or #26411 #26965)
-#26969 := [quant-inst]: #26968
-#27438 := [unit-resolution #26969 #17555]: #26965
-#27439 := (not #26965)
-#29214 := (or #27439 #27104)
-#29215 := [th-lemma]: #29214
-#29216 := [unit-resolution #29215 #27438]: #27104
-#29217 := (not #27104)
-#29218 := (or #27037 #22873 #29217)
-#29219 := [th-lemma]: #29218
-#29220 := [unit-resolution #29219 #29216 #29213]: #27037
-#23345 := (or #23918 #23754)
-#23338 := [def-axiom]: #23345
-#29221 := [unit-resolution #23338 #29212]: #23754
-#23365 := (or #23918 #12426)
-#23366 := [def-axiom]: #23365
-#29222 := [unit-resolution #23366 #29212]: #12426
-#27373 := (+ uf_272 #27053)
-#27374 := (<= #27373 0::int)
-#27445 := (not #27374)
-#23356 := (or #23918 #14405)
-#23359 := [def-axiom]: #23356
-#29223 := [unit-resolution #23359 #29212]: #14405
-#27446 := (or #27445 #14404)
-#27437 := [hypothesis]: #14405
-#27105 := (>= #27103 0::int)
-#27440 := (or #27439 #27105)
-#27441 := [th-lemma]: #27440
-#27442 := [unit-resolution #27441 #27438]: #27105
-#27443 := [hypothesis]: #27374
-#27444 := [th-lemma #27443 #27442 #27437]: false
-#27447 := [lemma #27444]: #27446
-#29224 := [unit-resolution #27447 #29223]: #27445
-#23346 := (or #23918 #23912)
-#23339 := [def-axiom]: #23346
-#29225 := [unit-resolution #23339 #29212]: #23912
-#27311 := (<= #26964 131073::int)
-#23336 := (or #23918 #16332)
-#23337 := [def-axiom]: #23336
-#29226 := [unit-resolution #23337 #29212]: #16332
-#29227 := (not #27105)
-#29228 := (or #27311 #23042 #29227)
-#29229 := [th-lemma]: #29228
-#29230 := [unit-resolution #29229 #27442 #29226]: #27311
-#27312 := (not #27311)
-#27038 := (not #27037)
-#27757 := (or #14049 #27038 #27312 #27374 #23037 #23759 #23915)
-#27327 := (uf_66 #2960 #26964 uf_7)
-#27328 := (uf_110 uf_273 #27327)
-#27331 := (= uf_299 #27328)
-#27162 := (= #3068 #27328)
-#27733 := (= #27328 #3068)
-#27638 := (= #27327 #3067)
-#27584 := (= #26964 uf_293)
-#27589 := [symm #27438]: #27584
-#27639 := [monotonicity #27589]: #27638
-#27734 := [monotonicity #27639]: #27733
-#27665 := [symm #27734]: #27162
-#27735 := (= uf_299 #3068)
-#27640 := [hypothesis]: #12426
-#27641 := [hypothesis]: #23912
-#27352 := [hypothesis]: #14046
-#23335 := (or #23872 #14049)
-#23446 := [def-axiom]: #23335
-#27720 := [unit-resolution #23446 #27352]: #23872
-#23378 := (or #23915 #23875 #23909)
-#23380 := [def-axiom]: #23378
-#27731 := [unit-resolution #23380 #27720 #27641]: #23909
-#23397 := (or #23906 #12576)
-#23398 := [def-axiom]: #23397
-#27666 := [unit-resolution #23398 #27731]: #12576
-#27732 := [symm #27666]: #3139
-#27736 := [trans #27732 #27640]: #27735
-#27737 := [trans #27736 #27665]: #27331
-#27738 := [hypothesis]: #27445
-#27675 := [hypothesis]: #27311
-#27739 := [hypothesis]: #27037
-#23405 := (or #23906 #23900)
-#23406 := [def-axiom]: #23405
-#27740 := [unit-resolution #23406 #27731]: #23900
-#27363 := [hypothesis]: #23754
-#27108 := (+ uf_292 #13970)
-#27109 := (<= #27108 0::int)
-#27741 := (or #12644 #27109)
-#27742 := [th-lemma]: #27741
-#27743 := [unit-resolution #27742 #27666]: #27109
-#27349 := (not #27109)
-#27367 := (or #23008 #23759 #27349 #14049)
-#27179 := (+ uf_294 #19528)
-#27180 := (<= #27179 0::int)
-#27355 := (not #27180)
-#23419 := (not #19530)
-#27353 := [hypothesis]: #23013
-#23443 := (or #23008 #23419)
-#23444 := [def-axiom]: #23443
-#27354 := [unit-resolution #23444 #27353]: #23419
-#27356 := (or #27355 #14049 #19530)
-#27357 := [th-lemma]: #27356
-#27358 := [unit-resolution #27357 #27354 #27352]: #27355
-#27191 := (+ uf_292 #19541)
-#27192 := (>= #27191 0::int)
-#27348 := (not #27192)
-#27342 := [hypothesis]: #27109
-#23439 := (not #19543)
-#23445 := (or #23008 #23439)
-#23413 := [def-axiom]: #23445
-#27359 := [unit-resolution #23413 #27353]: #23439
-#27350 := (or #27348 #19543 #27349)
-#27343 := [hypothesis]: #23439
-#27346 := [hypothesis]: #27192
-#27347 := [th-lemma #27346 #27343 #27342]: false
-#27351 := [lemma #27347]: #27350
-#27360 := [unit-resolution #27351 #27359 #27342]: #27348
-#27364 := (or #27180 #27192)
-#23383 := (or #23008 #19192)
-#23438 := [def-axiom]: #23383
-#27361 := [unit-resolution #23438 #27353]: #19192
-#23457 := (or #23008 #19191)
-#23437 := [def-axiom]: #23457
-#27362 := [unit-resolution #23437 #27353]: #19191
-#27205 := (or #23759 #22992 #22993 #27180 #27192)
-#27168 := (+ #19196 #14431)
-#27169 := (<= #27168 0::int)
-#27170 := (+ ?x781!15 #14044)
-#27171 := (>= #27170 0::int)
-#27172 := (or #22993 #27171 #27169 #22992)
-#27206 := (or #23759 #27172)
-#27213 := (iff #27206 #27205)
-#27200 := (or #22992 #22993 #27180 #27192)
-#27208 := (or #23759 #27200)
-#27211 := (iff #27208 #27205)
-#27212 := [rewrite]: #27211
-#27209 := (iff #27206 #27208)
-#27203 := (iff #27172 #27200)
-#27197 := (or #22993 #27180 #27192 #22992)
-#27201 := (iff #27197 #27200)
-#27202 := [rewrite]: #27201
-#27198 := (iff #27172 #27197)
-#27195 := (iff #27169 #27192)
-#27185 := (+ #14431 #19196)
-#27188 := (<= #27185 0::int)
-#27193 := (iff #27188 #27192)
-#27194 := [rewrite]: #27193
-#27189 := (iff #27169 #27188)
-#27186 := (= #27168 #27185)
-#27187 := [rewrite]: #27186
-#27190 := [monotonicity #27187]: #27189
-#27196 := [trans #27190 #27194]: #27195
-#27183 := (iff #27171 #27180)
-#27173 := (+ #14044 ?x781!15)
-#27176 := (>= #27173 0::int)
-#27181 := (iff #27176 #27180)
-#27182 := [rewrite]: #27181
-#27177 := (iff #27171 #27176)
-#27174 := (= #27170 #27173)
-#27175 := [rewrite]: #27174
-#27178 := [monotonicity #27175]: #27177
-#27184 := [trans #27178 #27182]: #27183
-#27199 := [monotonicity #27184 #27196]: #27198
-#27204 := [trans #27199 #27202]: #27203
-#27210 := [monotonicity #27204]: #27209
-#27214 := [trans #27210 #27212]: #27213
-#27207 := [quant-inst]: #27206
-#27215 := [mp #27207 #27214]: #27205
-#27365 := [unit-resolution #27215 #27363 #27362 #27361]: #27364
-#27366 := [unit-resolution #27365 #27360 #27358]: false
-#27368 := [lemma #27366]: #27367
-#27753 := [unit-resolution #27368 #27743 #27352 #27363]: #23008
-#23423 := (or #23903 #23897 #23013)
-#23424 := [def-axiom]: #23423
-#27754 := [unit-resolution #23424 #27753 #27740]: #23897
-#23454 := (or #23894 #23886)
-#23455 := [def-axiom]: #23454
-#27755 := [unit-resolution #23455 #27754]: #23886
-#27334 := (not #27331)
-#27520 := (or #23891 #27038 #27312 #27334 #27374)
-#27317 := (+ #26964 #13873)
-#27318 := (>= #27317 0::int)
-#27326 := (= #27328 uf_299)
-#27329 := (not #27326)
-#27330 := (or #27329 #27038 #27318 #27312)
-#27518 := (or #23891 #27330)
-#27642 := (iff #27518 #27520)
-#27382 := (or #27038 #27312 #27334 #27374)
-#27590 := (or #23891 #27382)
-#27593 := (iff #27590 #27520)
-#27594 := [rewrite]: #27593
-#27591 := (iff #27518 #27590)
-#27385 := (iff #27330 #27382)
-#27379 := (or #27334 #27038 #27374 #27312)
-#27383 := (iff #27379 #27382)
-#27384 := [rewrite]: #27383
-#27380 := (iff #27330 #27379)
-#27377 := (iff #27318 #27374)
-#27335 := (+ #13873 #26964)
-#27370 := (>= #27335 0::int)
-#27375 := (iff #27370 #27374)
-#27376 := [rewrite]: #27375
-#27371 := (iff #27318 #27370)
-#27336 := (= #27317 #27335)
-#27369 := [rewrite]: #27336
-#27372 := [monotonicity #27369]: #27371
-#27378 := [trans #27372 #27376]: #27377
-#27344 := (iff #27329 #27334)
-#27332 := (iff #27326 #27331)
-#27333 := [rewrite]: #27332
-#27345 := [monotonicity #27333]: #27344
-#27381 := [monotonicity #27345 #27378]: #27380
-#27386 := [trans #27381 #27384]: #27385
-#27592 := [monotonicity #27386]: #27591
-#27647 := [trans #27592 #27594]: #27642
-#27521 := [quant-inst]: #27518
-#27648 := [mp #27521 #27647]: #27520
-#27756 := [unit-resolution #27648 #27755 #27739 #27675 #27738 #27737]: false
-#27758 := [lemma #27756]: #27757
-#29231 := [unit-resolution #27758 #29230 #29225 #29224 #29222 #29221 #29220]: #14049
-#23541 := (+ uf_294 #14142)
-#23536 := (>= #23541 0::int)
-#27163 := (uf_58 #3079 #3175)
-#27762 := (uf_136 #27163)
-#27763 := (uf_24 uf_273 #27762)
-#27764 := (= uf_9 #27763)
-#27765 := (not #27764)
-#27759 := (uf_135 #27163)
-#27760 := (= uf_9 #27759)
-#27761 := (not #27760)
-#27819 := (or #27761 #27765)
-#27822 := (not #27819)
-#27773 := (uf_210 uf_273 #27762)
-#27774 := (= uf_9 #27773)
-#27771 := (uf_25 uf_273 #27762)
-#27772 := (= uf_26 #27771)
-#27813 := (or #27772 #27774)
-#27816 := (not #27813)
-#27527 := (uf_15 #3175)
-#27777 := (uf_14 #27527)
-#27795 := (= uf_16 #27777)
-#27810 := (not #27795)
-#27768 := (uf_15 #27762)
-#27769 := (uf_14 #27768)
-#27770 := (= uf_16 #27769)
-#27828 := (or #27770 #27810 #27816 #27822)
-#27833 := (not #27828)
-#27784 := (uf_25 uf_273 #3175)
-#27785 := (= uf_26 #27784)
-#27782 := (uf_210 uf_273 #3175)
-#27783 := (= uf_9 #27782)
-#27798 := (or #27783 #27785)
-#27801 := (not #27798)
-#27804 := (or #27795 #27801)
-#27807 := (not #27804)
-#27836 := (or #27807 #27833)
-#27839 := (not #27836)
-#27842 := (or #19008 #27839)
-#27845 := (not #27842)
-#27848 := (iff #12812 #27845)
-#29445 := (or #26854 #27848)
-#27766 := (or #27765 #27761)
-#27767 := (not #27766)
-#27775 := (or #27774 #27772)
-#27776 := (not #27775)
-#27778 := (= #27777 uf_16)
-#27779 := (not #27778)
-#27780 := (or #27779 #27776 #27770 #27767)
-#27781 := (not #27780)
-#27786 := (or #27785 #27783)
-#27787 := (not #27786)
-#27788 := (or #27778 #27787)
-#27789 := (not #27788)
-#27790 := (or #27789 #27781)
-#27791 := (not #27790)
-#27792 := (or #19008 #27791)
-#27793 := (not #27792)
-#27794 := (iff #12812 #27793)
-#29439 := (or #26854 #27794)
-#29438 := (iff #29439 #29445)
-#29456 := (iff #29445 #29445)
-#29454 := [rewrite]: #29456
-#27849 := (iff #27794 #27848)
-#27846 := (iff #27793 #27845)
-#27843 := (iff #27792 #27842)
-#27840 := (iff #27791 #27839)
-#27837 := (iff #27790 #27836)
-#27834 := (iff #27781 #27833)
-#27831 := (iff #27780 #27828)
-#27825 := (or #27810 #27816 #27770 #27822)
-#27829 := (iff #27825 #27828)
-#27830 := [rewrite]: #27829
-#27826 := (iff #27780 #27825)
-#27823 := (iff #27767 #27822)
-#27820 := (iff #27766 #27819)
-#27821 := [rewrite]: #27820
-#27824 := [monotonicity #27821]: #27823
-#27817 := (iff #27776 #27816)
-#27814 := (iff #27775 #27813)
-#27815 := [rewrite]: #27814
-#27818 := [monotonicity #27815]: #27817
-#27811 := (iff #27779 #27810)
-#27796 := (iff #27778 #27795)
-#27797 := [rewrite]: #27796
-#27812 := [monotonicity #27797]: #27811
-#27827 := [monotonicity #27812 #27818 #27824]: #27826
-#27832 := [trans #27827 #27830]: #27831
-#27835 := [monotonicity #27832]: #27834
-#27808 := (iff #27789 #27807)
-#27805 := (iff #27788 #27804)
-#27802 := (iff #27787 #27801)
-#27799 := (iff #27786 #27798)
-#27800 := [rewrite]: #27799
-#27803 := [monotonicity #27800]: #27802
-#27806 := [monotonicity #27797 #27803]: #27805
-#27809 := [monotonicity #27806]: #27808
-#27838 := [monotonicity #27809 #27835]: #27837
-#27841 := [monotonicity #27838]: #27840
-#27844 := [monotonicity #27841]: #27843
-#27847 := [monotonicity #27844]: #27846
-#27850 := [monotonicity #27847]: #27849
-#29455 := [monotonicity #27850]: #29438
-#29457 := [trans #29455 #29454]: #29438
-#29446 := [quant-inst]: #29439
-#29459 := [mp #29446 #29457]: #29445
-#29640 := [unit-resolution #29459 #22514]: #27848
-#29381 := (not #27848)
-#29642 := (or #29381 #27842)
-#29641 := [hypothesis]: #19017
-#29377 := (or #29381 #12812 #27842)
-#29382 := [def-axiom]: #29377
-#28866 := [unit-resolution #29382 #29641]: #29642
-#29632 := [unit-resolution #28866 #29640]: #27842
-#29635 := (or #27845 #27839)
-#23357 := (or #23918 #13950)
-#23358 := [def-axiom]: #23357
-#28992 := [unit-resolution #23358 #29212]: #13950
-#28994 := [trans #26494 #27946]: #25983
-#28995 := [unit-resolution #26021 #28994 #27937]: #25981
-#28996 := [unit-resolution #27928 #28995]: #26058
-#28997 := [unit-resolution #26217 #28996]: #26041
-#29000 := [trans #28997 #27953]: #26522
-#27729 := (or #12803 #14243 #26523 #14046)
-#27672 := [hypothesis]: #13950
-#27528 := (uf_66 #23223 uf_294 #26404)
-#27529 := (uf_125 #27528 #23223)
-#27558 := (* -1::int #27529)
-#27667 := (+ uf_294 #27558)
-#27668 := (<= #27667 0::int)
-#27530 := (= uf_294 #27529)
-#27533 := (or #26411 #27530)
-#27534 := [quant-inst]: #27533
-#27673 := [unit-resolution #27534 #17555]: #27530
-#27676 := (not #27530)
-#27677 := (or #27676 #27668)
-#27678 := [th-lemma]: #27677
-#27679 := [unit-resolution #27678 #27673]: #27668
-#27549 := (>= #27529 0::int)
-#27550 := (not #27549)
-#27601 := (uf_66 #26511 #27529 #24114)
-#27605 := (uf_58 #3079 #27601)
-#27606 := (uf_135 #27605)
-#27607 := (= uf_9 #27606)
-#27602 := (uf_27 uf_273 #27601)
-#27603 := (= uf_9 #27602)
-#27604 := (not #27603)
-#27611 := (or #27604 #27607)
-#27699 := (iff #19008 #27604)
-#27697 := (iff #12803 #27603)
-#27695 := (iff #27603 #12803)
-#27693 := (= #27602 #3176)
-#27691 := (= #27601 #3175)
-#27684 := (= #27529 uf_294)
-#27685 := [symm #27673]: #27684
-#27692 := [monotonicity #27690 #27685 #27683]: #27691
-#27694 := [monotonicity #27692]: #27693
-#27696 := [monotonicity #27694]: #27695
-#27698 := [symm #27696]: #27697
-#27700 := [monotonicity #27698]: #27699
-#27680 := [hypothesis]: #19008
-#27701 := [mp #27680 #27700]: #27604
-#27636 := (or #27611 #27603)
-#27637 := [def-axiom]: #27636
-#27702 := [unit-resolution #27637 #27701]: #27611
-#27559 := (+ #24116 #27558)
-#27560 := (<= #27559 0::int)
-#27712 := (not #27560)
-#27708 := [hypothesis]: #14049
-#27669 := (>= #27667 0::int)
-#27709 := (or #27676 #27669)
-#27710 := [th-lemma]: #27709
-#27711 := [unit-resolution #27710 #27673]: #27669
-#27714 := (not #27669)
-#27715 := (or #27712 #27713 #27714 #14046)
-#27716 := [th-lemma]: #27715
-#27717 := [unit-resolution #27716 #27711 #27708 #27707]: #27712
-#27614 := (not #27611)
-#27725 := (or #27550 #27560 #27614)
-#27625 := (or #26542 #23209 #26523 #26526 #27550 #27560 #27614)
-#27608 := (or #27607 #27604)
-#27609 := (not #27608)
-#27547 := (+ #27529 #26452)
-#27548 := (>= #27547 0::int)
-#27610 := (or #26526 #27550 #27548 #26523 #23209 #27609)
-#27626 := (or #26542 #27610)
-#27633 := (iff #27626 #27625)
-#27620 := (or #23209 #26523 #26526 #27550 #27560 #27614)
-#27628 := (or #26542 #27620)
-#27631 := (iff #27628 #27625)
-#27632 := [rewrite]: #27631
-#27629 := (iff #27626 #27628)
-#27623 := (iff #27610 #27620)
-#27617 := (or #26526 #27550 #27560 #26523 #23209 #27614)
-#27621 := (iff #27617 #27620)
-#27622 := [rewrite]: #27621
-#27618 := (iff #27610 #27617)
-#27615 := (iff #27609 #27614)
-#27612 := (iff #27608 #27611)
-#27613 := [rewrite]: #27612
-#27616 := [monotonicity #27613]: #27615
-#27563 := (iff #27548 #27560)
-#27552 := (+ #26452 #27529)
-#27555 := (>= #27552 0::int)
-#27561 := (iff #27555 #27560)
-#27562 := [rewrite]: #27561
-#27556 := (iff #27548 #27555)
-#27553 := (= #27547 #27552)
-#27554 := [rewrite]: #27553
-#27557 := [monotonicity #27554]: #27556
-#27564 := [trans #27557 #27562]: #27563
-#27619 := [monotonicity #27564 #27616]: #27618
-#27624 := [trans #27619 #27622]: #27623
-#27630 := [monotonicity #27624]: #27629
-#27634 := [trans #27630 #27632]: #27633
-#27627 := [quant-inst]: #27626
-#27635 := [mp #27627 #27634]: #27625
-#27726 := [unit-resolution #27635 #22104 #14784 #27724 #27723]: #27725
-#27727 := [unit-resolution #27726 #27717 #27702]: #27550
-#27728 := [th-lemma #27727 #27679 #27672]: false
-#27730 := [lemma #27728]: #27729
-#29001 := [unit-resolution #27730 #29231 #29000 #28992]: #12803
-#29437 := (or #27845 #19008 #27839)
-#29380 := [def-axiom]: #29437
-#29636 := [unit-resolution #29380 #29001]: #29635
-#29634 := [unit-resolution #29636 #29632]: #27839
-#29590 := (or #27836 #27828)
-#29500 := [def-axiom]: #29590
-#29637 := [unit-resolution #29500 #29634]: #27828
-#29123 := (= #24653 #27777)
-#29378 := (= #27777 #24653)
-#29114 := (= #27527 uf_7)
-#28862 := (= #27527 #24114)
-#27514 := (= #24114 #27527)
-#27302 := (uf_48 #3175 #24114)
-#27308 := (= uf_9 #27302)
-#27513 := (iff #27308 #27514)
-#28999 := (or #25432 #27513)
-#27515 := (iff #27514 #27308)
-#28993 := (or #25432 #27515)
-#29008 := (iff #28993 #28999)
-#28998 := (iff #28999 #28999)
-#29010 := [rewrite]: #28998
-#27516 := (iff #27515 #27513)
-#27517 := [rewrite]: #27516
-#29009 := [monotonicity #27517]: #29008
-#29011 := [trans #29009 #29010]: #29008
-#29007 := [quant-inst]: #28993
-#29012 := [mp #29007 #29011]: #28999
-#29076 := [unit-resolution #29012 #23681]: #27513
-#29751 := (= #3178 #27302)
-#29068 := (= #27302 #3178)
-#29078 := [monotonicity #27683]: #29068
-#29752 := [symm #29078]: #29751
-#27490 := (+ uf_294 #26365)
-#27493 := (uf_43 #24114 #27490)
-#27643 := (uf_15 #27493)
-#29135 := (= #27643 #27527)
-#29116 := (= #27527 #27643)
-#29048 := (= #3175 #27493)
-#27480 := (uf_66 #23223 uf_294 #24114)
-#27496 := (= #27480 #27493)
-#27499 := (not #27496)
-#27481 := (uf_139 #27480 #23223)
-#27482 := (= uf_9 #27481)
-#27483 := (not #27482)
-#27505 := (or #27483 #27499)
-#27510 := (not #27505)
-#29033 := (or #26114 #27510)
-#27484 := (+ uf_294 #26358)
-#27485 := (uf_43 #24114 #27484)
-#27486 := (= #27480 #27485)
-#27487 := (not #27486)
-#27488 := (or #27487 #27483)
-#27489 := (not #27488)
-#29034 := (or #26114 #27489)
-#29030 := (iff #29034 #29033)
-#29036 := (iff #29033 #29033)
-#29037 := [rewrite]: #29036
-#27511 := (iff #27489 #27510)
-#27508 := (iff #27488 #27505)
-#27502 := (or #27499 #27483)
-#27506 := (iff #27502 #27505)
-#27507 := [rewrite]: #27506
-#27503 := (iff #27488 #27502)
-#27500 := (iff #27487 #27499)
-#27497 := (iff #27486 #27496)
-#27494 := (= #27485 #27493)
-#27491 := (= #27484 #27490)
-#27492 := [rewrite]: #27491
-#27495 := [monotonicity #27492]: #27494
-#27498 := [monotonicity #27495]: #27497
-#27501 := [monotonicity #27498]: #27500
-#27504 := [monotonicity #27501]: #27503
-#27509 := [trans #27504 #27507]: #27508
-#27512 := [monotonicity #27509]: #27511
-#29035 := [monotonicity #27512]: #29030
-#29038 := [trans #29035 #29037]: #29030
-#29029 := [quant-inst]: #29034
-#29039 := [mp #29029 #29038]: #29033
-#29088 := [unit-resolution #29039 #21660]: #27510
-#28968 := (or #27505 #27496)
-#29050 := [def-axiom]: #28968
-#29049 := [unit-resolution #29050 #29088]: #27496
-#29056 := (= #3175 #27480)
-#29054 := (= #27480 #3175)
-#29055 := [monotonicity #28039 #27683]: #29054
-#29057 := [symm #29055]: #29056
-#29082 := [trans #29057 #29049]: #29048
-#29117 := [monotonicity #29082]: #29116
-#29115 := [symm #29117]: #29135
-#27644 := (= #24114 #27643)
-#29031 := (or #24181 #27644)
-#29032 := [quant-inst]: #29031
-#29087 := [unit-resolution #29032 #23694]: #27644
-#29136 := [trans #29087 #29115]: #27514
-#28947 := (not #27514)
-#27309 := (not #27308)
-#29080 := (iff #19011 #27309)
-#29071 := (iff #12806 #27308)
-#29081 := (iff #27308 #12806)
-#29066 := [monotonicity #29078]: #29081
-#29072 := [symm #29066]: #29071
-#29083 := [monotonicity #29072]: #29080
-#29077 := [hypothesis]: #19011
-#29079 := [mp #29077 #29083]: #27309
-#28946 := (not #27513)
-#29042 := (or #28946 #27308 #28947)
-#29043 := [def-axiom]: #29042
-#29084 := [unit-resolution #29043 #29079 #29076]: #28947
-#29137 := [unit-resolution #29084 #29136]: false
-#29138 := [lemma #29137]: #12806
-#29753 := [trans #29138 #29752]: #27308
-#28964 := (or #28946 #27309 #27514)
-#28951 := [def-axiom]: #28964
-#28867 := [unit-resolution #28951 #29753 #29076]: #27514
-#29113 := [symm #28867]: #28862
-#28864 := [trans #29113 #27683]: #29114
-#29141 := [monotonicity #28864]: #29378
-#29124 := [symm #29141]: #29123
-#29188 := [trans #28004 #29124]: #27795
-#29563 := (not #27770)
-#29681 := (iff #12299 #29563)
-#29679 := (iff #12296 #27770)
-#29461 := (iff #27770 #12296)
-#29267 := (= #27769 #2955)
-#29265 := (= #27768 #2952)
-#29264 := (= #27768 #24234)
-#29783 := (= #27762 #2962)
-#29781 := (= #27762 #26432)
-#27531 := (uf_66 #26432 #27529 #24114)
-#27532 := (uf_58 #3079 #27531)
-#27535 := (uf_136 #27532)
-#29779 := (= #27535 #26432)
-#27536 := (= #26432 #27535)
-#27543 := (up_68 #27532)
-#27544 := (not #27543)
-#27540 := (uf_27 uf_273 #27531)
-#27541 := (= uf_9 #27540)
-#27542 := (not #27541)
-#27538 := (uf_135 #27532)
-#27539 := (= uf_9 #27538)
-#27537 := (not #27536)
-#27565 := (or #27537 #27539 #27542 #27544)
-#27568 := (not #27565)
-#28420 := (or #27549 #14243)
-#28416 := [hypothesis]: #27550
-#28417 := [th-lemma #28416 #27679 #27672]: false
-#28421 := [lemma #28417]: #28420
-#29742 := [unit-resolution #28421 #28992]: #27549
-#29745 := (or #27712 #27714)
-#29743 := (or #27712 #27714 #14046)
-#29744 := [unit-resolution #27716 #27707]: #29743
-#29746 := [unit-resolution #29744 #29231]: #29745
-#29747 := [unit-resolution #29746 #27711]: #27712
-#29144 := (or #27098 #26451 #27550 #27560 #27568)
-#27545 := (or #27544 #27542 #27539 #27537)
-#27546 := (not #27545)
-#27551 := (or #27550 #27548 #26451 #27546)
-#29145 := (or #27098 #27551)
-#29157 := (iff #29145 #29144)
-#27574 := (or #26451 #27550 #27560 #27568)
-#29168 := (or #27098 #27574)
-#29156 := (iff #29168 #29144)
-#29154 := [rewrite]: #29156
-#29155 := (iff #29145 #29168)
-#27577 := (iff #27551 #27574)
-#27571 := (or #27550 #27560 #26451 #27568)
-#27575 := (iff #27571 #27574)
-#27576 := [rewrite]: #27575
-#27572 := (iff #27551 #27571)
-#27569 := (iff #27546 #27568)
-#27566 := (iff #27545 #27565)
-#27567 := [rewrite]: #27566
-#27570 := [monotonicity #27567]: #27569
-#27573 := [monotonicity #27564 #27570]: #27572
-#27578 := [trans #27573 #27576]: #27577
-#29164 := [monotonicity #27578]: #29155
-#29158 := [trans #29164 #29154]: #29157
-#29167 := [quant-inst]: #29145
-#29159 := [mp #29167 #29158]: #29144
-#29748 := [unit-resolution #29159 #21444 #29747 #29742 #28031]: #27568
-#29175 := (or #27565 #27536)
-#29176 := [def-axiom]: #29175
-#29749 := [unit-resolution #29176 #29748]: #27536
-#29780 := [symm #29749]: #29779
-#29777 := (= #27762 #27535)
-#29775 := (= #27163 #27532)
-#29773 := (= #27532 #27163)
-#29771 := (= #27531 #3175)
-#27310 := (uf_116 #3175)
-#27388 := (uf_43 #24114 #27310)
-#29765 := (= #27388 #3175)
-#27429 := (= #3175 #27388)
-#27431 := (or #27309 #27429)
-#29044 := (or #25416 #27309 #27429)
-#27430 := (or #27429 #27309)
-#29045 := (or #25416 #27430)
-#28949 := (iff #29045 #29044)
-#28962 := (or #25416 #27431)
-#28965 := (iff #28962 #29044)
-#28948 := [rewrite]: #28965
-#28960 := (iff #29045 #28962)
-#27432 := (iff #27430 #27431)
-#27433 := [rewrite]: #27432
-#28963 := [monotonicity #27433]: #28960
-#28945 := [trans #28963 #28948]: #28949
-#28961 := [quant-inst]: #29045
-#28950 := [mp #28961 #28945]: #29044
-#29754 := [unit-resolution #28950 #18736]: #27431
-#29755 := [unit-resolution #29754 #29753]: #27429
-#29766 := [symm #29755]: #29765
-#29769 := (= #27531 #27388)
-#28122 := (+ #26643 #27529)
-#28146 := (+ #26356 #28122)
-#28149 := (uf_43 #24114 #28146)
-#29763 := (= #28149 #27388)
-#29757 := (= #28146 #27310)
-#29735 := (= #27310 #28146)
-#29736 := (* -1::int #28146)
-#29737 := (+ #27310 #29736)
-#29738 := (<= #29737 0::int)
-#27645 := (uf_116 #27493)
-#27649 := (* -1::int #27645)
-#29118 := (+ #27310 #27649)
-#29119 := (<= #29118 0::int)
-#29091 := (= #27310 #27645)
-#29592 := (= #27645 #27310)
-#29585 := (= #27493 #3175)
-#29612 := (= #27493 #27480)
-#29613 := [symm #29049]: #29612
-#29591 := [trans #29613 #29055]: #29585
-#29588 := [monotonicity #29591]: #29592
-#29593 := [symm #29588]: #29091
-#29604 := (not #29091)
-#29605 := (or #29604 #29119)
-#29606 := [th-lemma]: #29605
-#29607 := [unit-resolution #29606 #29593]: #29119
-#27650 := (+ #26357 #27649)
-#27651 := (+ #26356 #27650)
-#27652 := (+ uf_294 #27651)
-#29185 := (>= #27652 0::int)
-#27653 := (= #27652 0::int)
-#29089 := (or #24187 #27653)
-#27646 := (= #27490 #27645)
-#29085 := (or #24187 #27646)
-#29108 := (iff #29085 #29089)
-#29110 := (iff #29089 #29089)
-#29111 := [rewrite]: #29110
-#27654 := (iff #27646 #27653)
-#27655 := [rewrite]: #27654
-#29109 := [monotonicity #27655]: #29108
-#29112 := [trans #29109 #29111]: #29108
-#29086 := [quant-inst]: #29085
-#29107 := [mp #29086 #29112]: #29089
-#29608 := [unit-resolution #29107 #23688]: #27653
-#29595 := (not #27653)
-#29596 := (or #29595 #29185)
-#29597 := [th-lemma]: #29596
-#29598 := [unit-resolution #29597 #29608]: #29185
-#29601 := (not #27668)
-#29600 := (not #27892)
-#29599 := (not #27068)
-#29594 := (not #29185)
-#29586 := (not #29119)
-#29602 := (or #29738 #29586 #29594 #29599 #29600 #29601)
-#29603 := [th-lemma]: #29602
-#29625 := [unit-resolution #29603 #28258 #27679 #29598 #29607 #28054]: #29738
-#29739 := (>= #29737 0::int)
-#29120 := (>= #29118 0::int)
-#29626 := (or #29604 #29120)
-#29616 := [th-lemma]: #29626
-#29614 := [unit-resolution #29616 #29593]: #29120
-#29196 := (<= #27652 0::int)
-#29617 := (or #29595 #29196)
-#29618 := [th-lemma]: #29617
-#29619 := [unit-resolution #29618 #29608]: #29196
-#29627 := (not #27893)
-#29624 := (not #27073)
-#29621 := (not #29196)
-#29620 := (not #29120)
-#29623 := (or #29739 #29620 #29621 #29624 #29627 #27714)
-#29628 := [th-lemma]: #29623
-#29629 := [unit-resolution #29628 #28051 #28271 #29619 #29614 #27711]: #29739
-#29503 := (not #29739)
-#29630 := (not #29738)
-#29518 := (or #29735 #29630 #29503)
-#29532 := [th-lemma]: #29518
-#29517 := [unit-resolution #29532 #29629 #29625]: #29735
-#29263 := [symm #29517]: #29757
-#29472 := [monotonicity #29263]: #29763
-#29767 := (= #27531 #28149)
-#28104 := (uf_66 #25404 #27529 #24114)
-#28136 := (= #28104 #28149)
-#28137 := (not #28136)
-#28107 := (uf_139 #28104 #25404)
-#28108 := (= uf_9 #28107)
-#28109 := (not #28108)
-#28145 := (or #28109 #28137)
-#28249 := (not #28145)
-#29261 := (or #26114 #28249)
-#28110 := (+ #27529 #26644)
-#28111 := (uf_43 #24114 #28110)
-#28112 := (= #28104 #28111)
-#28117 := (not #28112)
-#28118 := (or #28117 #28109)
-#28121 := (not #28118)
-#29262 := (or #26114 #28121)
-#29295 := (iff #29262 #29261)
-#29335 := (iff #29261 #29261)
-#29336 := [rewrite]: #29335
-#28250 := (iff #28121 #28249)
-#28247 := (iff #28118 #28145)
-#28142 := (or #28137 #28109)
-#28156 := (iff #28142 #28145)
-#28157 := [rewrite]: #28156
-#28143 := (iff #28118 #28142)
-#28140 := (iff #28117 #28137)
-#28138 := (iff #28112 #28136)
-#28150 := (= #28111 #28149)
-#28147 := (= #28110 #28146)
-#28148 := [rewrite]: #28147
-#28151 := [monotonicity #28148]: #28150
-#28139 := [monotonicity #28151]: #28138
-#28141 := [monotonicity #28139]: #28140
-#28144 := [monotonicity #28141]: #28143
-#28248 := [trans #28144 #28157]: #28247
-#28251 := [monotonicity #28248]: #28250
-#29334 := [monotonicity #28251]: #29295
-#29337 := [trans #29334 #29336]: #29295
-#29294 := [quant-inst]: #29262
-#29338 := [mp #29294 #29337]: #29261
-#29759 := [unit-resolution #29338 #21660]: #28249
-#29340 := (or #28145 #28136)
-#29279 := [def-axiom]: #29340
-#29760 := [unit-resolution #29279 #29759]: #28136
-#29761 := (= #27531 #28104)
-#29762 := [monotonicity #27948]: #29761
-#29768 := [trans #29762 #29760]: #29767
-#29473 := [trans #29768 #29472]: #29769
-#29499 := [trans #29473 #29766]: #29771
-#29656 := [monotonicity #29499]: #29773
-#29657 := [symm #29656]: #29775
-#29180 := [monotonicity #29657]: #29777
-#29677 := [trans #29180 #29780]: #29781
-#29199 := [trans #29677 #27935]: #29783
-#29181 := [monotonicity #29199]: #29264
-#29266 := [trans #29181 #28359]: #29265
-#29460 := [monotonicity #29266]: #29267
-#29462 := [monotonicity #29460]: #29461
-#29680 := [symm #29462]: #29679
-#29682 := [monotonicity #29680]: #29681
-#29683 := [mp #14796 #29682]: #29563
-#29170 := (not #27607)
-#29696 := (iff #29170 #27761)
-#29689 := (iff #27607 #27760)
-#29693 := (iff #27760 #27607)
-#29691 := (= #27759 #27606)
-#29688 := (= #27163 #27605)
-#29686 := (= #27605 #27163)
-#29687 := [monotonicity #27692]: #29686
-#29690 := [symm #29687]: #29688
-#29692 := [monotonicity #29690]: #29691
-#29694 := [monotonicity #29692]: #29693
-#29695 := [symm #29694]: #29689
-#29697 := [monotonicity #29695]: #29696
-#29684 := [unit-resolution #27635 #22104 #14784 #29000 #29747 #29742 #27723]: #27614
-#29173 := (or #27611 #29170)
-#29169 := [def-axiom]: #29173
-#29685 := [unit-resolution #29169 #29684]: #29170
-#29698 := [mp #29685 #29697]: #27761
-#29577 := (or #27819 #27760)
-#29578 := [def-axiom]: #29577
-#29699 := [unit-resolution #29578 #29698]: #27819
-#29709 := (or #27833 #27770 #27810 #27822)
-#29792 := (not #29735)
-#29793 := (or #29792 #27772)
-#29788 := (= #2967 #27771)
-#29785 := (= #27771 #2967)
-#29756 := [hypothesis]: #29735
-#29758 := [symm #29756]: #29757
-#29764 := [monotonicity #29758]: #29763
-#29770 := [trans #29768 #29764]: #29769
-#29772 := [trans #29770 #29766]: #29771
-#29774 := [monotonicity #29772]: #29773
-#29776 := [symm #29774]: #29775
-#29778 := [monotonicity #29776]: #29777
-#29782 := [trans #29778 #29780]: #29781
-#29784 := [trans #29782 #27935]: #29783
-#29786 := [monotonicity #29784]: #29785
-#29789 := [symm #29786]: #29788
-#29790 := [trans #14799 #29789]: #27772
-#29458 := (not #27772)
-#29740 := [hypothesis]: #29458
-#29791 := [unit-resolution #29740 #29790]: false
-#29794 := [lemma #29791]: #29793
-#29702 := [unit-resolution #29794 #29517]: #27772
-#29528 := (or #27813 #29458)
-#29529 := [def-axiom]: #29528
-#29703 := [unit-resolution #29529 #29702]: #27813
-#29571 := (or #27833 #27770 #27810 #27816 #27822)
-#29572 := [def-axiom]: #29571
-#29710 := [unit-resolution #29572 #29703]: #29709
-#29711 := [unit-resolution #29710 #29699 #29683 #29188 #29637]: false
-#29712 := [lemma #29711]: #12812
-#23247 := (not #19374)
-#29440 := [hypothesis]: #23803
-#23427 := (or #23812 #23800)
-#23522 := [def-axiom]: #23427
-#29504 := [unit-resolution #23522 #29440]: #23812
-#23396 := (or #23806 #23800)
-#23538 := [def-axiom]: #23396
-#29505 := [unit-resolution #23538 #29440]: #23806
-#29542 := (or #23818 #23809)
-#23403 := (or #23906 #14046)
-#23404 := [def-axiom]: #23403
-#29536 := [unit-resolution #23404 #29231]: #23906
-#29537 := [unit-resolution #23380 #29536 #29225]: #23875
-#23447 := (or #23872 #23866)
-#23448 := [def-axiom]: #23447
-#29538 := [unit-resolution #23448 #29537]: #23866
-#27307 := (or #23818 #23809 #19008 #23869)
-#27389 := [hypothesis]: #23821
-#23428 := (or #23818 #12812)
-#23429 := [def-axiom]: #23428
-#27390 := [unit-resolution #23429 #27389]: #12812
-#23411 := (or #23818 #12806)
-#23426 := [def-axiom]: #23411
-#27391 := [unit-resolution #23426 #27389]: #12806
-#27392 := [hypothesis]: #12803
-#27387 := [hypothesis]: #23866
-#23466 := (or #23869 #19008 #19011 #23863)
-#23461 := [def-axiom]: #23466
-#27393 := [unit-resolution #23461 #27391 #27387 #27392]: #23863
-#23475 := (or #23860 #23854)
-#23470 := [def-axiom]: #23475
-#27394 := [unit-resolution #23470 #27393]: #23854
-#23468 := (or #23857 #19011 #19017 #23851)
-#23469 := [def-axiom]: #23468
-#27395 := [unit-resolution #23469 #27394 #27391 #27390]: #23851
-#27396 := [hypothesis]: #23806
-#23528 := (or #23824 #23818)
-#23515 := [def-axiom]: #23528
-#27397 := [unit-resolution #23515 #27389]: #23824
-#23521 := (or #23833 #19008 #19011 #23827)
-#23510 := [def-axiom]: #23521
-#27304 := [unit-resolution #23510 #27397 #27392 #27391]: #23833
-#23499 := (or #23836 #23830)
-#23501 := [def-axiom]: #23499
-#27305 := [unit-resolution #23501 #27304]: #23836
-#23492 := (or #23845 #23809 #23839)
-#23494 := [def-axiom]: #23492
-#27306 := [unit-resolution #23494 #27305 #27396]: #23845
-#23482 := (or #23848 #23842)
-#23483 := [def-axiom]: #23482
-#27269 := [unit-resolution #23483 #27306 #27395]: false
-#27303 := [lemma #27269]: #27307
-#29521 := [unit-resolution #27303 #29001 #29538]: #29542
-#29525 := [unit-resolution #29521 #29505]: #23818
-#29520 := (or #23821 #19017 #23815)
-#23431 := (or #23821 #19011 #19017 #23815)
-#23432 := [def-axiom]: #23431
-#29526 := [unit-resolution #23432 #29138]: #29520
-#29527 := [unit-resolution #29526 #29525 #29504 #29712]: false
-#29530 := [lemma #29527]: #23800
-#29896 := (or #23803 #23797)
-#16270 := (<= uf_272 131073::int)
-#16273 := (iff #13872 #16270)
-#16264 := (+ 131073::int #13873)
-#16267 := (>= #16264 0::int)
-#16271 := (iff #16267 #16270)
-#16272 := [rewrite]: #16271
-#16268 := (iff #13872 #16267)
-#16265 := (= #13874 #16264)
-#16266 := [monotonicity #7888]: #16265
-#16269 := [monotonicity #16266]: #16268
-#16274 := [trans #16269 #16272]: #16273
-#14787 := [not-or-elim #14776]: #13880
-#14788 := [and-elim #14787]: #13872
-#16275 := [mp #14788 #16274]: #16270
-#29232 := [hypothesis]: #19037
-#29233 := [th-lemma #29232 #29231 #16275]: false
-#29234 := [lemma #29233]: #16368
-#29894 := (or #23803 #19037 #23797)
-#29891 := (or #14243 #14088)
-#29892 := [th-lemma]: #29891
-#29893 := [unit-resolution #29892 #28992]: #14088
-#23558 := (or #23803 #19034 #19037 #23797)
-#23555 := [def-axiom]: #23558
-#29895 := [unit-resolution #23555 #29893]: #29894
-#29897 := [unit-resolution #29895 #29234]: #29896
-#29898 := [unit-resolution #29897 #29530]: #23797
-#23561 := (or #23794 #23788)
-#23565 := [def-axiom]: #23561
-#29899 := [unit-resolution #23565 #29898]: #23788
-#23271 := (>= #14169 -1::int)
-#23285 := (or #23794 #14168)
-#23286 := [def-axiom]: #23285
-#29900 := [unit-resolution #23286 #29898]: #14168
-#29901 := (or #14172 #23271)
-#29902 := [th-lemma]: #29901
-#29903 := [unit-resolution #29902 #29900]: #23271
-#29238 := (not #23271)
-#29239 := (or #14100 #29238)
-#29201 := [hypothesis]: #23271
-#29202 := [hypothesis]: #14105
-#29237 := [th-lemma #29202 #29231 #29201]: false
-#29240 := [lemma #29237]: #29239
-#29904 := [unit-resolution #29240 #29903]: #14100
-#23580 := (or #23791 #14105 #23785)
-#23566 := [def-axiom]: #23580
-#29905 := [unit-resolution #23566 #29904 #29899]: #23785
-#23575 := (or #23782 #23776)
-#23213 := [def-axiom]: #23575
-#29906 := [unit-resolution #23213 #29905]: #23776
-#29920 := (= #3068 #3209)
-#29918 := (= #3209 #3068)
-#29914 := (= #3208 #3067)
-#29912 := (= #3208 #27327)
-#29910 := (= uf_301 #26964)
-#29907 := [hypothesis]: #23809
-#23549 := (or #23806 #12826)
-#23550 := [def-axiom]: #23549
-#29908 := [unit-resolution #23550 #29907]: #12826
-#29909 := [symm #29908]: #3189
-#29911 := [trans #29909 #27438]: #29910
-#29913 := [monotonicity #29911]: #29912
-#29915 := [trans #29913 #27639]: #29914
-#29919 := [monotonicity #29915]: #29918
-#29921 := [symm #29919]: #29920
-#29922 := (= uf_300 #3068)
-#23559 := (or #23806 #12823)
-#23548 := [def-axiom]: #23559
-#29916 := [unit-resolution #23548 #29907]: #12823
-#29917 := [symm #29916]: #3187
-#29923 := [trans #29917 #29222]: #29922
-#29924 := [trans #29923 #29921]: #12862
-#28863 := (+ uf_293 #14142)
-#28865 := (>= #28863 0::int)
-#29925 := (or #12993 #28865)
-#29926 := [th-lemma]: #29925
-#29927 := [unit-resolution #29926 #29908]: #28865
-#29483 := (not #28865)
-#29930 := (or #14145 #29483)
-#29928 := (or #14145 #14404 #29483)
-#29929 := [th-lemma]: #29928
-#29931 := [unit-resolution #29929 #29223]: #29930
-#29932 := [unit-resolution #29931 #29927]: #14145
-#23374 := (or #22784 #22782 #14144)
-#23581 := [def-axiom]: #23374
-#29933 := [unit-resolution #23581 #29932 #29924]: #22784
-#23255 := (or #23770 #22783)
-#23256 := [def-axiom]: #23255
-#29934 := [unit-resolution #23256 #29933]: #23770
-#23572 := (or #23779 #23773 #22836)
-#23573 := [def-axiom]: #23572
-#29935 := [unit-resolution #23573 #29934 #29906]: #22836
-#23583 := (or #22831 #23247)
-#23243 := [def-axiom]: #23583
-#29936 := [unit-resolution #23243 #29935]: #23247
-#29307 := (+ uf_294 #19372)
-#29860 := (>= #29307 0::int)
-#29955 := (not #29860)
-#29855 := (= uf_294 ?x785!14)
-#29888 := (not #29855)
-#29858 := (= #3184 #19060)
-#29864 := (not #29858)
-#29859 := (+ #3184 #19385)
-#29861 := (>= #29859 0::int)
-#29871 := (not #29861)
-#23394 := (or #23806 #14207)
-#23395 := [def-axiom]: #23394
-#29937 := [unit-resolution #23395 #29907]: #14207
-#29541 := (+ uf_292 #14120)
-#29539 := (<= #29541 0::int)
-#29938 := (or #13002 #29539)
-#29939 := [th-lemma]: #29938
-#29940 := [unit-resolution #29939 #29916]: #29539
-#23227 := (or #22831 #23584)
-#23568 := [def-axiom]: #23227
-#29941 := [unit-resolution #23568 #29935]: #23584
-#29872 := (not #29539)
-#29873 := (or #29871 #19387 #29872 #14211)
-#29866 := [hypothesis]: #14207
-#29867 := [hypothesis]: #29539
-#29868 := [hypothesis]: #23584
-#29869 := [hypothesis]: #29861
-#29870 := [th-lemma #29869 #29868 #29867 #29866]: false
-#29874 := [lemma #29870]: #29873
-#29942 := [unit-resolution #29874 #29941 #29940 #29937]: #29871
-#29865 := (or #29864 #29861)
-#29875 := [th-lemma]: #29865
-#29943 := [unit-resolution #29875 #29942]: #29864
-#29889 := (or #29888 #29858)
-#29884 := (= #19060 #3184)
-#29882 := (= #19059 #3175)
-#29880 := (= ?x785!14 uf_294)
-#29879 := [hypothesis]: #29855
-#29881 := [symm #29879]: #29880
-#29883 := [monotonicity #29881]: #29882
-#29885 := [monotonicity #29883]: #29884
-#29886 := [symm #29885]: #29858
-#29878 := [hypothesis]: #29864
-#29887 := [unit-resolution #29878 #29886]: false
-#29890 := [lemma #29887]: #29889
-#29944 := [unit-resolution #29890 #29943]: #29888
-#29958 := (or #29855 #29955)
-#29308 := (<= #29307 0::int)
-#29319 := (+ uf_292 #19385)
-#29320 := (>= #29319 0::int)
-#29945 := (not #29320)
-#29946 := (or #29945 #19387 #29872)
-#29947 := [th-lemma]: #29946
-#29948 := [unit-resolution #29947 #29940 #29941]: #29945
-#29951 := (or #29308 #29320)
-#23582 := (or #22831 #19056)
-#23242 := [def-axiom]: #23582
-#29949 := [unit-resolution #23242 #29935]: #19056
-#23586 := (or #22831 #19055)
-#23592 := [def-axiom]: #23586
-#29950 := [unit-resolution #23592 #29935]: #19055
-#29802 := (or #23759 #22815 #22816 #29308 #29320)
-#29296 := (+ #19060 #14431)
-#29297 := (<= #29296 0::int)
-#29298 := (+ ?x785!14 #14044)
-#29299 := (>= #29298 0::int)
-#29300 := (or #22816 #29299 #29297 #22815)
-#29803 := (or #23759 #29300)
-#29810 := (iff #29803 #29802)
-#29328 := (or #22815 #22816 #29308 #29320)
-#29805 := (or #23759 #29328)
-#29808 := (iff #29805 #29802)
-#29809 := [rewrite]: #29808
-#29806 := (iff #29803 #29805)
-#29331 := (iff #29300 #29328)
-#29325 := (or #22816 #29308 #29320 #22815)
-#29329 := (iff #29325 #29328)
-#29330 := [rewrite]: #29329
-#29326 := (iff #29300 #29325)
-#29323 := (iff #29297 #29320)
-#29313 := (+ #14431 #19060)
-#29316 := (<= #29313 0::int)
-#29321 := (iff #29316 #29320)
-#29322 := [rewrite]: #29321
-#29317 := (iff #29297 #29316)
-#29314 := (= #29296 #29313)
-#29315 := [rewrite]: #29314
-#29318 := [monotonicity #29315]: #29317
-#29324 := [trans #29318 #29322]: #29323
-#29311 := (iff #29299 #29308)
-#29301 := (+ #14044 ?x785!14)
-#29304 := (>= #29301 0::int)
-#29309 := (iff #29304 #29308)
-#29310 := [rewrite]: #29309
-#29305 := (iff #29299 #29304)
-#29302 := (= #29298 #29301)
-#29303 := [rewrite]: #29302
-#29306 := [monotonicity #29303]: #29305
-#29312 := [trans #29306 #29310]: #29311
-#29327 := [monotonicity #29312 #29324]: #29326
-#29332 := [trans #29327 #29330]: #29331
-#29807 := [monotonicity #29332]: #29806
-#29811 := [trans #29807 #29809]: #29810
-#29804 := [quant-inst]: #29803
-#29812 := [mp #29804 #29811]: #29802
-#29952 := [unit-resolution #29812 #29221 #29950 #29949]: #29951
-#29953 := [unit-resolution #29952 #29948]: #29308
-#29954 := (not #29308)
-#29956 := (or #29855 #29954 #29955)
-#29957 := [th-lemma]: #29956
-#29959 := [unit-resolution #29957 #29953]: #29958
-#29960 := [unit-resolution #29959 #29944]: #29955
-#29961 := [th-lemma #29903 #29960 #29936]: false
-#29962 := [lemma #29961]: #23806
-#29633 := [unit-resolution #29521 #29962]: #23818
-#29615 := [unit-resolution #29526 #29633 #29712]: #23815
-#23534 := (or #23812 #13075)
-#23416 := [def-axiom]: #23534
-#29713 := [unit-resolution #23416 #29615]: #13075
-#29142 := (or #13081 #23536)
-#29708 := [th-lemma]: #29142
-#29714 := [unit-resolution #29708 #29713]: #23536
-#29715 := [hypothesis]: #14144
-#29716 := [th-lemma #29715 #29714 #29231]: false
-#29717 := [lemma #29716]: #14145
-#29990 := (or #22784 #14144)
-#29985 := (= #3184 #3209)
-#29982 := (= #3209 #3184)
-#29979 := (= #3208 #3175)
-#29978 := [symm #29713]: #3247
-#29980 := [monotonicity #29978]: #29979
-#29983 := [monotonicity #29980]: #29982
-#29986 := [symm #29983]: #29985
-#29987 := (= uf_300 #3184)
-#23533 := (or #23812 #13070)
-#23531 := [def-axiom]: #23533
-#29977 := [unit-resolution #23531 #29615]: #13070
-#29984 := [symm #29977]: #3240
-#23373 := (or #23812 #3246)
-#23375 := [def-axiom]: #23373
-#29981 := [unit-resolution #23375 #29615]: #3246
-#29988 := [trans #29981 #29984]: #29987
-#29989 := [trans #29988 #29986]: #12862
-#29991 := [unit-resolution #23581 #29989]: #29990
-#29992 := [unit-resolution #29991 #29717]: #22784
-#29993 := [unit-resolution #23256 #29992]: #23770
-#29994 := [unit-resolution #23573 #29906]: #23776
-#29995 := [unit-resolution #29994 #29993]: #22836
-#30004 := [unit-resolution #23568 #29995]: #23584
-#30026 := (or #29945 #19387)
-#29570 := (+ #3184 #14120)
-#29587 := (<= #29570 0::int)
-#29569 := (= #3184 uf_300)
-#30005 := (= uf_304 uf_300)
-#30006 := [symm #29981]: #30005
-#30007 := [trans #29977 #30006]: #29569
-#30008 := (not #29569)
-#30009 := (or #30008 #29587)
-#30010 := [th-lemma]: #30009
-#30011 := [unit-resolution #30010 #30007]: #29587
-#30016 := (or #19017 #23851)
-#30012 := (or #19011 #23863)
-#30013 := [unit-resolution #23461 #29001 #29538]: #30012
-#30014 := [unit-resolution #30013 #29138]: #23863
-#30015 := [unit-resolution #23470 #30014]: #23854
-#30017 := [unit-resolution #23469 #29138 #30015]: #30016
-#30018 := [unit-resolution #30017 #29712]: #23851
-#30019 := [unit-resolution #23483 #30018]: #23842
-#30020 := [unit-resolution #23494 #29962 #30019]: #23839
-#23514 := (or #23836 #14211)
-#23498 := [def-axiom]: #23514
-#30021 := [unit-resolution #23498 #30020]: #14211
-#30022 := (not #29587)
-#30023 := (or #29539 #14207 #30022)
-#30024 := [th-lemma]: #30023
-#30025 := [unit-resolution #30024 #30021 #30011]: #29539
-#30027 := [unit-resolution #29947 #30025]: #30026
-#30028 := [unit-resolution #30027 #30004]: #29945
-#30029 := [unit-resolution #23242 #29995]: #19056
-#30030 := [unit-resolution #23592 #29995]: #19055
-#30031 := [unit-resolution #29812 #29221 #30030 #30029 #30028]: #29308
-#29996 := [unit-resolution #23243 #29995]: #23247
-#29997 := [hypothesis]: #29955
-#29998 := [th-lemma #29903 #29997 #29996]: false
-#29999 := [lemma #29998]: #29860
-#30032 := [unit-resolution #29957 #29999 #30031]: #29855
-#30033 := [unit-resolution #29890 #30032]: #29858
-#30034 := [unit-resolution #29875 #30033]: #29861
-[th-lemma #30011 #30034 #30004]: false
+#7649 := (iff #7612 #7648)
+#7646 := (iff #1372 #7645)
+#7643 := (iff #1371 #7642)
+#7644 := [rewrite]: #7643
+#7647 := [monotonicity #4064 #7644]: #7646
+#7650 := [monotonicity #7647]: #7649
+#7992 := [monotonicity #7650 #7989]: #7991
+#7995 := [monotonicity #7992]: #7994
+#8000 := [trans #7995 #7998]: #7999
+#8003 := [quant-intro #8000]: #8002
+#7985 := (iff #1493 #7984)
+#7982 := (iff #1492 #7979)
+#7975 := (implies #7943 #7970)
+#7980 := (iff #7975 #7979)
+#7981 := [rewrite]: #7980
+#7976 := (iff #1492 #7975)
+#7973 := (iff #1491 #7970)
+#7967 := (implies #1372 #7964)
+#7971 := (iff #7967 #7970)
+#7972 := [rewrite]: #7971
+#7968 := (iff #1491 #7967)
+#7965 := (iff #1490 #7964)
+#7962 := (iff #1489 #7961)
+#7959 := (iff #1488 #7958)
+#7956 := (iff #1487 #7955)
+#7957 := [rewrite]: #7956
+#7960 := [monotonicity #7957]: #7959
+#7953 := (iff #1484 #7952)
+#7950 := (iff #1483 #7949)
+#7951 := [rewrite]: #7950
+#7954 := [monotonicity #7951]: #7953
+#7963 := [monotonicity #7954 #7960]: #7962
+#7947 := (iff #1481 #7946)
+#7948 := [rewrite]: #7947
+#7966 := [monotonicity #7948 #7963]: #7965
+#7969 := [monotonicity #7966]: #7968
+#7974 := [trans #7969 #7972]: #7973
+#7944 := (iff #1477 #7943)
+#7945 := [rewrite]: #7944
+#7977 := [monotonicity #7945 #7974]: #7976
+#7983 := [trans #7977 #7981]: #7982
+#7986 := [quant-intro #7983]: #7985
+#8005 := [trans #7986 #8003]: #8004
+#7942 := [asserted]: #1493
+#8006 := [mp #7942 #8005]: #8001
+#17013 := [mp~ #8006 #17012]: #8001
+#20893 := [mp #17013 #20892]: #20890
+#26056 := (not #20890)
+#26054 := (or #26056 #25897 #25915 #25923)
+#25893 := (or #25892 #25890 #25887 #25884)
+#25894 := (not #25893)
+#25903 := (or #25902 #25900 #25897 #25894)
+#26057 := (or #26056 #25903)
+#26096 := (iff #26057 #26054)
+#25929 := (or #25897 #25915 #25923)
+#26106 := (or #26056 #25929)
+#26109 := (iff #26106 #26054)
+#26098 := [rewrite]: #26109
+#26107 := (iff #26057 #26106)
+#25932 := (iff #25903 #25929)
+#25926 := (or false #25915 #25897 #25923)
+#25930 := (iff #25926 #25929)
+#25931 := [rewrite]: #25930
+#25927 := (iff #25903 #25926)
+#25924 := (iff #25894 #25923)
+#25921 := (iff #25893 #25920)
+#25922 := [rewrite]: #25921
+#25925 := [monotonicity #25922]: #25924
+#25928 := [monotonicity #25909 #25919 #25925]: #25927
+#25933 := [trans #25928 #25931]: #25932
+#26108 := [monotonicity #25933]: #26107
+#26099 := [trans #26108 #26098]: #26096
+#26105 := [quant-inst]: #26057
+#26149 := [mp #26105 #26099]: #26054
+#27437 := [unit-resolution #26149 #20893 #26260]: #27447
+#27472 := [unit-resolution #27437 #27446]: #25923
+#26138 := (or #25920 #25889)
+#26139 := [def-axiom]: #26138
+#27473 := [unit-resolution #26139 #27472]: #25889
+#27495 := [symm #27473]: #27471
+#27491 := (= #26721 #25888)
+#27538 := (= #26720 #25885)
+#25710 := (uf_58 #3149 #3016)
+#27490 := (= #25710 #25885)
+#27532 := (= #25885 #25710)
+#27497 := (= #25881 #3016)
+#27536 := (= #25881 #25799)
+#27534 := (= #25881 #25821)
+#27475 := (= #25881 #2960)
+#26062 := (uf_116 #24856)
+#26076 := (uf_43 #23566 #26062)
+#27504 := (= #26076 #2960)
+#27428 := (= #26062 uf_274)
+#27413 := (= #26062 #2961)
+#27409 := (= #23468 #2961)
+#23692 := (= #2961 #23468)
+#23697 := (or #23639 #23692)
+#23698 := [quant-inst]: #23697
+#27474 := [unit-resolution #23698 #23137]: #23692
+#27412 := [symm #27474]: #27409
+#27410 := (= #26062 #23468)
+#27411 := [monotonicity #25871]: #27410
+#27401 := [trans #27411 #27412]: #27413
+#27414 := [trans #27401 #25702]: #27428
+#27505 := [monotonicity #25690 #27414]: #27504
+#27508 := (= #25881 #26076)
+#26058 := (uf_66 #24856 0::int #23566)
+#26079 := (= #26058 #26076)
+#26082 := (not #26079)
+#26059 := (uf_138 #26058 #24856)
+#26060 := (= uf_9 #26059)
+#26061 := (not #26060)
+#26088 := (or #26061 #26082)
+#26093 := (not #26088)
+#26525 := (or #25566 #26093)
+#26063 := (+ #26062 #25804)
+#26064 := (uf_43 #23566 #26063)
+#26065 := (= #26058 #26064)
+#26066 := (not #26065)
+#26067 := (or #26066 #26061)
+#26068 := (not #26067)
+#26526 := (or #25566 #26068)
+#26840 := (iff #26526 #26525)
+#26836 := (iff #26525 #26525)
+#26837 := [rewrite]: #26836
+#26094 := (iff #26068 #26093)
+#26091 := (iff #26067 #26088)
+#26085 := (or #26082 #26061)
+#26089 := (iff #26085 #26088)
+#26090 := [rewrite]: #26089
+#26086 := (iff #26067 #26085)
+#26083 := (iff #26066 #26082)
+#26080 := (iff #26065 #26079)
+#26077 := (= #26064 #26076)
+#26074 := (= #26063 #26062)
+#26069 := (+ #26062 0::int)
+#26072 := (= #26069 #26062)
+#26073 := [rewrite]: #26072
+#26070 := (= #26063 #26069)
+#26071 := [monotonicity #25813]: #26070
+#26075 := [trans #26071 #26073]: #26074
+#26078 := [monotonicity #26075]: #26077
+#26081 := [monotonicity #26078]: #26080
+#26084 := [monotonicity #26081]: #26083
+#26087 := [monotonicity #26084]: #26086
+#26092 := [trans #26087 #26090]: #26091
+#26095 := [monotonicity #26092]: #26094
+#26841 := [monotonicity #26095]: #26840
+#26842 := [trans #26841 #26837]: #26840
+#26839 := [quant-inst]: #26526
+#26843 := [mp #26839 #26842]: #26525
+#27415 := [unit-resolution #26843 #21109]: #26093
+#26714 := (or #26088 #26079)
+#26716 := [def-axiom]: #26714
+#27416 := [unit-resolution #26716 #27415]: #26079
+#27417 := (= #25881 #26058)
+#27476 := [monotonicity #25843]: #27417
+#27509 := [trans #27476 #27416]: #27508
+#27533 := [trans #27509 #27505]: #27475
+#27535 := [trans #27533 #27338]: #27534
+#27537 := [trans #27535 #27344]: #27536
+#27498 := [trans #27537 #27306]: #27497
+#27543 := [monotonicity #27498]: #27532
+#27492 := [symm #27543]: #27490
+#27499 := (= #26720 #25710)
+#27531 := [monotonicity #27365]: #27499
+#27493 := [trans #27531 #27492]: #27538
+#27494 := [monotonicity #27493]: #27491
+#27686 := [trans #27494 #27495]: #27496
+#27639 := [trans #27686 #25865]: #27687
+#27638 := [monotonicity #27639]: #27679
+#27694 := [symm #27638]: #27681
+#27630 := [trans #14262 #27694]: #26898
+#27134 := (not #26898)
+#27132 := (or #26913 #27134)
+#27135 := [def-axiom]: #27132
+#27631 := [unit-resolution #27135 #27630]: #26913
+#24105 := (uf_12 uf_7)
+#27737 := (= #24105 #26921)
+#27761 := (= #26921 #24105)
+#27779 := (= #25857 uf_7)
+#27771 := (= #23681 uf_7)
+#27778 := [symm #25680]: #27771
+#27769 := (= #25857 #23681)
+#27770 := [monotonicity #25699]: #27769
+#27780 := [trans #27770 #27778]: #27779
+#27767 := [monotonicity #27780]: #27761
+#27722 := [symm #27767]: #27737
+#24106 := (= uf_14 #24105)
+#24113 := (iff #11408 #24106)
+#2308 := (pattern #237)
+#2836 := (uf_12 #233)
+#11581 := (= uf_14 #2836)
+#11585 := (iff #3950 #11581)
+#11588 := (forall (vars (?x761 T3)) (:pat #2308) #11585)
+#18271 := (~ #11588 #11588)
+#18269 := (~ #11585 #11585)
+#18270 := [refl]: #18269
+#18272 := [nnf-pos #18270]: #18271
+#2849 := (= #2836 uf_14)
+#2850 := (iff #238 #2849)
+#2851 := (forall (vars (?x761 T3)) (:pat #2308) #2850)
+#11589 := (iff #2851 #11588)
+#11586 := (iff #2850 #11585)
+#11583 := (iff #2849 #11581)
+#11584 := [rewrite]: #11583
+#11587 := [monotonicity #3952 #11584]: #11586
+#11590 := [quant-intro #11587]: #11589
+#11580 := [asserted]: #2851
+#11593 := [mp #11580 #11590]: #11588
+#18273 := [mp~ #11593 #18272]: #11588
+#23737 := (not #11588)
+#24116 := (or #23737 #24113)
+#24117 := [quant-inst]: #24116
+#27629 := [unit-resolution #24117 #18273]: #24113
+#24118 := (not #24113)
+#27723 := (or #24118 #24106)
+#24122 := (not #11408)
+#24123 := (or #24118 #24122 #24106)
+#24124 := [def-axiom]: #24123
+#27724 := [unit-resolution #24124 #11414]: #27723
+#27766 := [unit-resolution #27724 #27629]: #24106
+#27709 := [trans #27766 #27722]: #26953
+#27149 := (not #26915)
+#27478 := (iff #11881 #27149)
+#27477 := (iff #11878 #26915)
+#27290 := (iff #26915 #11878)
+#27729 := (= #26902 #2971)
+#27727 := (= #26914 #2958)
+#27725 := (= #26914 #23686)
+#27726 := [monotonicity #27639]: #27725
+#27728 := [trans #27726 #25786]: #27727
+#27765 := [monotonicity #27728]: #27729
+#27418 := [monotonicity #27765]: #27290
+#27402 := [symm #27418]: #27477
+#27479 := [monotonicity #27402]: #27478
+#27480 := [mp #14265 #27479]: #27149
+#26305 := (not #25961)
+#27693 := (iff #26305 #26918)
+#27698 := (iff #25961 #26917)
+#27804 := (iff #26917 #25961)
+#27802 := (= #26901 #25960)
+#27354 := (= #26720 #25959)
+#27352 := (= #25710 #25959)
+#27327 := (= #25959 #25710)
+#27328 := [monotonicity #26204]: #27327
+#27353 := [symm #27328]: #27352
+#27355 := [trans #27531 #27353]: #27354
+#27803 := [monotonicity #27355]: #27802
+#27787 := [monotonicity #27803]: #27804
+#27786 := [symm #27787]: #27698
+#27699 := [monotonicity #27786]: #27693
+#27696 := (or #25972 #25977)
+#27697 := [unit-resolution #25999 #21553 #14251 #26260 #27341]: #27696
+#27781 := [unit-resolution #27697 #26234]: #25977
+#26350 := (or #25974 #26305)
+#26351 := [def-axiom]: #26350
+#27782 := [unit-resolution #26351 #27781]: #26305
+#27730 := [mp #27782 #27699]: #26918
+#27144 := (or #27016 #26917)
+#27142 := [def-axiom]: #27144
+#27762 := [unit-resolution #27142 #27730]: #27016
+#27292 := (or #27161 #26900 #26915 #27014 #27020)
+#27293 := [def-axiom]: #27292
+#27763 := [unit-resolution #27293 #27762 #27480 #27709 #27631]: #27161
+#27325 := (or #27164 #27156)
+#27326 := [def-axiom]: #27325
+#27764 := [unit-resolution #27326 #27763 #27368]: false
+#27818 := [lemma #27764]: #11940
+#22709 := (or #23412 #18314 #18323 #23406)
+#22710 := [def-axiom]: #22709
+#27887 := [unit-resolution #22710 #27818 #27884 #27886]: #23406
+#22742 := (or #23403 #3027)
+#22743 := [def-axiom]: #22742
+#27931 := [unit-resolution #22743 #27887]: #3027
+#22731 := (or #23403 #23397)
+#22732 := [def-axiom]: #22731
+#28328 := [unit-resolution #22732 #27887]: #23397
+#27821 := [hypothesis]: #13368
+#27822 := [th-lemma #14256 #27821]: false
+#27823 := [lemma #27822]: #13365
+#22751 := (or #23400 #13368 #23394)
+#22753 := [def-axiom]: #22751
+#28329 := [unit-resolution #22753 #27823 #28328]: #23394
+#22761 := (or #23391 #23385)
+#22762 := [def-axiom]: #22761
+#28330 := [unit-resolution #22762 #28329]: #23385
+#26364 := (* -1::int #3026)
+#26365 := (+ uf_285 #26364)
+#26366 := (>= #26365 0::int)
+#27932 := (or #13149 #26366)
+#27933 := [th-lemma]: #27932
+#27934 := [unit-resolution #27933 #27931]: #26366
+#22628 := (not #18355)
+#27935 := [hypothesis]: #22206
+#22714 := (or #22201 #22628)
+#22629 := [def-axiom]: #22714
+#27936 := [unit-resolution #22629 #27935]: #22628
+#27904 := (+ #3026 #18353)
+#27906 := (>= #27904 0::int)
+#27903 := (= #3026 #18352)
+#27939 := (= #18352 #3026)
+#27937 := (= #18351 #3016)
+#27930 := (= ?x773!13 0::int)
+#22715 := (not #18356)
+#22706 := (or #22201 #22715)
+#22717 := [def-axiom]: #22706
+#27928 := [unit-resolution #22717 #27935]: #22715
+#22627 := (or #22201 #18348)
+#22713 := [def-axiom]: #22627
+#27929 := [unit-resolution #22713 #27935]: #18348
+#27927 := [th-lemma #27929 #27928]: #27930
+#27938 := [monotonicity #27927]: #27937
+#27940 := [monotonicity #27938]: #27939
+#27926 := [symm #27940]: #27903
+#27941 := (not #27903)
+#27942 := (or #27941 #27906)
+#27943 := [th-lemma]: #27942
+#27944 := [unit-resolution #27943 #27926]: #27906
+#27945 := [th-lemma #27944 #27936 #27934]: false
+#27948 := [lemma #27945]: #22201
+#22757 := (or #23388 #22206 #23382)
+#22758 := [def-axiom]: #22757
+#28331 := [unit-resolution #22758 #27948 #28330]: #23382
+#22773 := (or #23379 #23373)
+#22774 := [def-axiom]: #22773
+#28332 := [unit-resolution #22774 #28331]: #23373
+#28333 := (or #23376 #13149 #23370)
+#22769 := (or #23376 #13149 #13404 #23370)
+#22770 := [def-axiom]: #22769
+#28334 := [unit-resolution #22770 #14256]: #28333
+#28335 := [unit-resolution #28334 #28332 #27931]: #23370
+#22808 := (or #23367 #13412)
+#22796 := [def-axiom]: #22808
+#28968 := [unit-resolution #22796 #28335]: #13412
+#27800 := (or #27208 #13552)
+#27790 := [hypothesis]: #13412
+#27217 := (* -1::int #27025)
+#27349 := (+ uf_294 #27217)
+#27350 := (<= #27349 0::int)
+#27026 := (= uf_294 #27025)
+#1391 := (uf_66 #15 #161 #1390)
+#1392 := (pattern #1391)
+#1393 := (uf_125 #1391 #15)
+#7687 := (= #161 #1393)
+#7691 := (forall (vars (?x319 T5) (?x320 int)) (:pat #1392) #7687)
+#16976 := (~ #7691 #7691)
+#16974 := (~ #7687 #7687)
+#16975 := [refl]: #16974
+#16977 := [nnf-pos #16975]: #16976
+#1394 := (= #1393 #161)
+#1395 := (forall (vars (?x319 T5) (?x320 int)) (:pat #1392) #1394)
+#7692 := (iff #1395 #7691)
+#7689 := (iff #1394 #7687)
+#7690 := [rewrite]: #7689
+#7693 := [quant-intro #7690]: #7692
+#7686 := [asserted]: #1395
+#7696 := [mp #7686 #7693]: #7691
+#16978 := [mp~ #7696 #16977]: #7691
+#25864 := (not #7691)
+#27029 := (or #25864 #27026)
+#27030 := [quant-inst]: #27029
+#27791 := [unit-resolution #27030 #16978]: #27026
+#27794 := (not #27026)
+#27795 := (or #27794 #27350)
+#27796 := [th-lemma]: #27795
+#27797 := [unit-resolution #27796 #27791]: #27350
+#27209 := (not #27208)
+#27798 := [hypothesis]: #27209
+#27799 := [th-lemma #27798 #27797 #27790]: false
+#27801 := [lemma #27799]: #27800
+#29177 := [unit-resolution #27801 #28968]: #27208
+#27218 := (+ #23568 #27217)
+#27219 := (<= #27218 0::int)
+#29199 := (not #27219)
+#27351 := (>= #27349 0::int)
+#28150 := (uf_66 #22665 uf_294 #25857)
+#28151 := (uf_125 #28150 #22665)
+#28181 := (* -1::int #28151)
+#28307 := (+ uf_294 #28181)
+#28309 := (>= #28307 0::int)
+#28152 := (= uf_294 #28151)
+#28155 := (or #25864 #28152)
+#28156 := [quant-inst]: #28155
+#28311 := [unit-resolution #28156 #16978]: #28152
+#28337 := (not #28152)
+#28381 := (or #28337 #28309)
+#28382 := [th-lemma]: #28381
+#28383 := [unit-resolution #28382 #28311]: #28309
+#28385 := (not #28309)
+#29196 := (or #27351 #28385)
+#28099 := (+ #27025 #28181)
+#28100 := (<= #28099 0::int)
+#28098 := (= #27025 #28151)
+#29186 := (= #28151 #27025)
+#29184 := (= #28150 #27024)
+#29182 := (= #3180 #27024)
+#29180 := (= #27024 #3180)
+#28355 := (= #26356 uf_7)
+#28353 := (= #26356 #23681)
+#28354 := [monotonicity #25734]: #28353
+#28356 := [trans #28354 #27778]: #28355
+#29181 := [monotonicity #25734 #28356]: #29180
+#29183 := [symm #29181]: #29182
+#29178 := (= #28150 #3180)
+#29179 := [monotonicity #25699 #27780]: #29178
+#29185 := [trans #29179 #29183]: #29184
+#29187 := [monotonicity #29185 #27310]: #29186
+#29188 := [symm #29187]: #28098
+#29189 := (not #28098)
+#29190 := (or #29189 #28100)
+#29191 := [th-lemma]: #29190
+#29192 := [unit-resolution #29191 #29188]: #28100
+#29193 := (not #28100)
+#29194 := (or #27351 #29193 #28385)
+#29195 := [th-lemma]: #29194
+#29197 := [unit-resolution #29195 #29192]: #29196
+#29198 := [unit-resolution #29197 #28383]: #27351
+#29200 := (not #27351)
+#29205 := (or #29199 #29200)
+#22792 := (or #23367 #23361)
+#22778 := [def-axiom]: #22792
+#28345 := [unit-resolution #22778 #28335]: #23361
+#22788 := (or #23367 #23203)
+#22791 := [def-axiom]: #22788
+#28346 := [unit-resolution #22791 #28335]: #23203
+#22659 := (or #23367 #11992)
+#22817 := [def-axiom]: #22659
+#28347 := [unit-resolution #22817 #28335]: #11992
+#22790 := (or #23367 #15764)
+#22794 := [def-axiom]: #22790
+#28348 := [unit-resolution #22794 #28335]: #15764
+#22799 := (or #23367 #13876)
+#22801 := [def-axiom]: #22799
+#28349 := [unit-resolution #22801 #28335]: #13876
+#26357 := (uf_66 #25821 uf_293 #26356)
+#26358 := (uf_125 #26357 #25821)
+#26439 := (>= #26358 0::int)
+#22807 := (or #23367 #13409)
+#22805 := [def-axiom]: #22807
+#28350 := [unit-resolution #22805 #28335]: #13409
+#26455 := (* -1::int #26358)
+#26528 := (+ uf_293 #26455)
+#26529 := (<= #26528 0::int)
+#26359 := (= uf_293 #26358)
+#27978 := (uf_66 #22665 uf_293 #25857)
+#27979 := (uf_125 #27978 #22665)
+#28368 := (= #27979 #26358)
+#28366 := (= #26358 #27979)
+#28351 := (= #25821 #22665)
+#28352 := [trans #25734 #25682]: #28351
+#28363 := (= #26357 #27978)
+#28361 := (= #3073 #27978)
+#28359 := (= #27978 #3073)
+#28360 := [monotonicity #25699 #27780]: #28359
+#28362 := [symm #28360]: #28361
+#28357 := (= #26357 #3073)
+#28358 := [monotonicity #25734 #28356]: #28357
+#28364 := [trans #28358 #28362]: #28363
+#28367 := [monotonicity #28364 #28352]: #28366
+#28369 := [symm #28367]: #28368
+#27980 := (= uf_293 #27979)
+#27982 := (or #25864 #27980)
+#27983 := [quant-inst]: #27982
+#28365 := [unit-resolution #27983 #16978]: #27980
+#28370 := [trans #28365 #28369]: #26359
+#26867 := (not #26359)
+#28371 := (or #26867 #26529)
+#28372 := [th-lemma]: #28371
+#28373 := [unit-resolution #28372 #28370]: #26529
+#28374 := (not #26529)
+#28375 := (or #26439 #22348 #28374)
+#28376 := [th-lemma]: #28375
+#28377 := [unit-resolution #28376 #28373 #28350]: #26439
+#26440 := (not #26439)
+#26892 := (or #23355 #26440 #13875 #22491 #22486 #23208)
+#26737 := (uf_66 #2960 #26358 uf_7)
+#26738 := (uf_110 uf_273 #26737)
+#26741 := (= uf_299 #26738)
+#26847 := (= #3074 #26738)
+#26860 := (= #26738 #3074)
+#26854 := (= #26737 #3073)
+#26852 := (= #26358 uf_293)
+#26362 := (or #25864 #26359)
+#26363 := [quant-inst]: #26362
+#26851 := [unit-resolution #26363 #16978]: #26359
+#26853 := [symm #26851]: #26852
+#26855 := [monotonicity #26853]: #26854
+#26861 := [monotonicity #26855]: #26860
+#26862 := [symm #26861]: #26847
+#26863 := (= uf_299 #3074)
+#26856 := [hypothesis]: #11992
+#26857 := [hypothesis]: #23358
+#22849 := (or #23355 #12020)
+#22850 := [def-axiom]: #22849
+#26858 := [unit-resolution #22850 #26857]: #12020
+#26859 := [symm #26858]: #3089
+#26864 := [trans #26859 #26856]: #26863
+#26865 := [trans #26864 #26862]: #26741
+#26722 := (<= #26358 4294967295::int)
+#26866 := [hypothesis]: #15764
+#26530 := (>= #26528 0::int)
+#26868 := (or #26867 #26530)
+#26869 := [th-lemma]: #26868
+#26870 := [unit-resolution #26869 #26851]: #26530
+#26871 := (not #26530)
+#26872 := (or #26722 #22491 #26871)
+#26873 := [th-lemma]: #26872
+#26874 := [unit-resolution #26873 #26870 #26866]: #26722
+#26764 := (+ uf_272 #26455)
+#26765 := (<= #26764 0::int)
+#26876 := (not #26765)
+#26875 := [hypothesis]: #13876
+#26877 := (or #26876 #13875 #26871)
+#26878 := [th-lemma]: #26877
+#26879 := [unit-resolution #26878 #26870 #26875]: #26876
+#26744 := (not #26741)
+#26723 := (not #26722)
+#26889 := (or #26723 #26744 #26765)
+#26880 := [hypothesis]: #26439
+#22857 := (or #23355 #23349)
+#22842 := [def-axiom]: #22857
+#26881 := [unit-resolution #22842 #26857]: #23349
+#26534 := (+ uf_292 #13737)
+#26537 := (<= #26534 0::int)
+#26882 := (or #12069 #26537)
+#26883 := [th-lemma]: #26882
+#26884 := [unit-resolution #26883 #26858]: #26537
+#26788 := [hypothesis]: #23203
+#22855 := (or #23355 #13697)
+#22856 := [def-axiom]: #22855
+#26885 := [unit-resolution #22856 #26857]: #13697
+#26779 := (not #26537)
+#26794 := (or #22457 #13698 #23208 #26779)
+#26782 := [hypothesis]: #13697
+#26605 := (+ uf_294 #18945)
+#26606 := (<= #26605 0::int)
+#26617 := (+ uf_292 #18958)
+#26618 := (>= #26617 0::int)
+#26778 := (not #26618)
+#26772 := [hypothesis]: #26537
+#22869 := (not #18960)
+#26783 := [hypothesis]: #22462
+#22828 := (or #22457 #22869)
+#22859 := [def-axiom]: #22828
+#26784 := [unit-resolution #22859 #26783]: #22869
+#26780 := (or #26778 #18960 #26779)
+#26773 := [hypothesis]: #22869
+#26776 := [hypothesis]: #26618
+#26777 := [th-lemma #26776 #26773 #26772]: false
+#26781 := [lemma #26777]: #26780
+#26785 := [unit-resolution #26781 #26784 #26772]: #26778
+#26789 := (or #26606 #26618)
+#22892 := (or #22457 #18609)
+#22893 := [def-axiom]: #22892
+#26786 := [unit-resolution #22893 #26783]: #18609
+#22887 := (or #22457 #18608)
+#22868 := [def-axiom]: #22887
+#26787 := [unit-resolution #22868 #26783]: #18608
+#26631 := (or #23208 #22441 #22442 #26606 #26618)
+#26594 := (+ #18613 #13902)
+#26595 := (<= #26594 0::int)
+#26596 := (+ ?x776!15 #13433)
+#26597 := (>= #26596 0::int)
+#26598 := (or #22442 #26597 #26595 #22441)
+#26632 := (or #23208 #26598)
+#26639 := (iff #26632 #26631)
+#26626 := (or #22441 #22442 #26606 #26618)
+#26634 := (or #23208 #26626)
+#26637 := (iff #26634 #26631)
+#26638 := [rewrite]: #26637
+#26635 := (iff #26632 #26634)
+#26629 := (iff #26598 #26626)
+#26623 := (or #22442 #26606 #26618 #22441)
+#26627 := (iff #26623 #26626)
+#26628 := [rewrite]: #26627
+#26624 := (iff #26598 #26623)
+#26621 := (iff #26595 #26618)
+#26611 := (+ #13902 #18613)
+#26614 := (<= #26611 0::int)
+#26619 := (iff #26614 #26618)
+#26620 := [rewrite]: #26619
+#26615 := (iff #26595 #26614)
+#26612 := (= #26594 #26611)
+#26613 := [rewrite]: #26612
+#26616 := [monotonicity #26613]: #26615
+#26622 := [trans #26616 #26620]: #26621
+#26609 := (iff #26597 #26606)
+#26599 := (+ #13433 ?x776!15)
+#26602 := (>= #26599 0::int)
+#26607 := (iff #26602 #26606)
+#26608 := [rewrite]: #26607
+#26603 := (iff #26597 #26602)
+#26600 := (= #26596 #26599)
+#26601 := [rewrite]: #26600
+#26604 := [monotonicity #26601]: #26603
+#26610 := [trans #26604 #26608]: #26609
+#26625 := [monotonicity #26610 #26622]: #26624
+#26630 := [trans #26625 #26628]: #26629
+#26636 := [monotonicity #26630]: #26635
+#26640 := [trans #26636 #26638]: #26639
+#26633 := [quant-inst]: #26632
+#26641 := [mp #26633 #26640]: #26631
+#26790 := [unit-resolution #26641 #26788 #26787 #26786]: #26789
+#26791 := [unit-resolution #26790 #26785]: #26606
+#22888 := (not #18947)
+#22894 := (or #22457 #22888)
+#22862 := [def-axiom]: #22894
+#26792 := [unit-resolution #22862 #26783]: #22888
+#26793 := [th-lemma #26792 #26791 #26782]: false
+#26795 := [lemma #26793]: #26794
+#26886 := [unit-resolution #26795 #26885 #26788 #26884]: #22457
+#22884 := (or #23352 #23346 #22462)
+#22864 := [def-axiom]: #22884
+#26887 := [unit-resolution #22864 #26886 #26881]: #23346
+#22901 := (or #23343 #23335)
+#22906 := [def-axiom]: #22901
+#26888 := [unit-resolution #22906 #26887]: #23335
+#26801 := (or #23340 #26440 #26723 #26744 #26765)
+#26728 := (+ #26358 #13338)
+#26729 := (>= #26728 0::int)
+#26736 := (= #26738 uf_299)
+#26739 := (not #26736)
+#26740 := (or #26739 #26440 #26729 #26723)
+#26802 := (or #23340 #26740)
+#26809 := (iff #26802 #26801)
+#26796 := (or #26440 #26723 #26744 #26765)
+#26804 := (or #23340 #26796)
+#26807 := (iff #26804 #26801)
+#26808 := [rewrite]: #26807
+#26805 := (iff #26802 #26804)
+#26799 := (iff #26740 #26796)
+#26745 := (or #26744 #26440 #26765 #26723)
+#26797 := (iff #26745 #26796)
+#26798 := [rewrite]: #26797
+#26746 := (iff #26740 #26745)
+#26775 := (iff #26729 #26765)
+#26759 := (+ #13338 #26358)
+#26756 := (>= #26759 0::int)
+#26766 := (iff #26756 #26765)
+#26774 := [rewrite]: #26766
+#26762 := (iff #26729 #26756)
+#26760 := (= #26728 #26759)
+#26761 := [rewrite]: #26760
+#26763 := [monotonicity #26761]: #26762
+#26677 := [trans #26763 #26774]: #26775
+#26757 := (iff #26739 #26744)
+#26742 := (iff #26736 #26741)
+#26743 := [rewrite]: #26742
+#26758 := [monotonicity #26743]: #26757
+#26769 := [monotonicity #26758 #26677]: #26746
+#26800 := [trans #26769 #26798]: #26799
+#26806 := [monotonicity #26800]: #26805
+#26810 := [trans #26806 #26808]: #26809
+#26803 := [quant-inst]: #26802
+#26811 := [mp #26803 #26810]: #26801
+#26890 := [unit-resolution #26811 #26888 #26880]: #26889
+#26891 := [unit-resolution #26890 #26879 #26874 #26865]: false
+#26893 := [lemma #26891]: #26892
+#28378 := [unit-resolution #26893 #28377 #28349 #28348 #28347 #28346]: #23355
+#22831 := (or #23364 #23324 #23358)
+#22833 := [def-axiom]: #22831
+#28379 := [unit-resolution #22833 #28378 #28345]: #23324
+#22897 := (or #23321 #13698)
+#22902 := [def-axiom]: #22897
+#28380 := [unit-resolution #22902 #28379]: #13698
+#29203 := (or #29199 #29200 #13697)
+#29201 := (or #29199 #26240 #29200 #13697)
+#29202 := [th-lemma]: #29201
+#29204 := [unit-resolution #29202 #26238]: #29203
+#29206 := [unit-resolution #29204 #28380]: #29205
+#29207 := [unit-resolution #29206 #29198]: #29199
+#28412 := (or #26056 #25897 #27209 #27219 #27227)
+#27204 := (or #27203 #27201 #27198 #27195)
+#27205 := (not #27204)
+#27206 := (+ #27025 #25898)
+#27207 := (>= #27206 0::int)
+#27210 := (or #27209 #27207 #25897 #27205)
+#28413 := (or #26056 #27210)
+#28419 := (iff #28413 #28412)
+#27233 := (or #25897 #27209 #27219 #27227)
+#28409 := (or #26056 #27233)
+#28417 := (iff #28409 #28412)
+#28418 := [rewrite]: #28417
+#28415 := (iff #28413 #28409)
+#27236 := (iff #27210 #27233)
+#27230 := (or #27209 #27219 #25897 #27227)
+#27234 := (iff #27230 #27233)
+#27235 := [rewrite]: #27234
+#27231 := (iff #27210 #27230)
+#27228 := (iff #27205 #27227)
+#27225 := (iff #27204 #27224)
+#27226 := [rewrite]: #27225
+#27229 := [monotonicity #27226]: #27228
+#27222 := (iff #27207 #27219)
+#27211 := (+ #25898 #27025)
+#27214 := (>= #27211 0::int)
+#27220 := (iff #27214 #27219)
+#27221 := [rewrite]: #27220
+#27215 := (iff #27207 #27214)
+#27212 := (= #27206 #27211)
+#27213 := [rewrite]: #27212
+#27216 := [monotonicity #27213]: #27215
+#27223 := [trans #27216 #27221]: #27222
+#27232 := [monotonicity #27223 #27229]: #27231
+#27237 := [trans #27232 #27235]: #27236
+#28416 := [monotonicity #27237]: #28415
+#28429 := [trans #28416 #28418]: #28419
+#28414 := [quant-inst]: #28413
+#28430 := [mp #28414 #28429]: #28412
+#29208 := [unit-resolution #28430 #20893 #29207 #29177 #27446]: #27227
+#28434 := (or #27224 #27200)
+#28435 := [def-axiom]: #28434
+#29209 := [unit-resolution #28435 #29208]: #27200
+#29240 := [symm #29209]: #29239
+#29237 := (= #27027 #27199)
+#29235 := (= #26583 #27196)
+#29233 := (= #27196 #26583)
+#29231 := (= #27192 #3180)
+#26846 := (uf_116 #3180)
+#26905 := (uf_43 #23566 #26846)
+#29225 := (= #26905 #3180)
+#26906 := (= #3180 #26905)
+#26896 := (uf_48 #3180 #23566)
+#26897 := (= uf_9 #26896)
+#29211 := (= #3181 #26896)
+#28282 := (= #26896 #3181)
+#28283 := [monotonicity #25690]: #28282
+#29212 := [symm #28283]: #29211
+#26923 := (= #23566 #26922)
+#26996 := (* uf_294 #25803)
+#28123 := (+ #25805 #26996)
+#28124 := (uf_43 #23566 #28123)
+#28266 := (uf_13 #28124)
+#28306 := (= #28266 #26922)
+#28313 := (= #26922 #28266)
+#28408 := (= #3180 #28124)
+#28119 := (uf_66 #22665 uf_294 #23566)
+#28125 := (= #28119 #28124)
+#28126 := (not #28125)
+#28120 := (uf_138 #28119 #22665)
+#28121 := (= uf_9 #28120)
+#28122 := (not #28121)
+#28129 := (or #28122 #28126)
+#28132 := (not #28129)
+#28139 := (or #25566 #28132)
+#28127 := (or #28126 #28122)
+#28128 := (not #28127)
+#28140 := (or #25566 #28128)
+#28141 := (iff #28140 #28139)
+#28143 := (iff #28139 #28139)
+#28213 := [rewrite]: #28143
+#28133 := (iff #28128 #28132)
+#28130 := (iff #28127 #28129)
+#28131 := [rewrite]: #28130
+#28134 := [monotonicity #28131]: #28133
+#28142 := [monotonicity #28134]: #28141
+#28214 := [trans #28142 #28213]: #28141
+#28144 := [quant-inst]: #28140
+#28203 := [mp #28144 #28214]: #28139
+#28400 := [unit-resolution #28203 #21109]: #28132
+#28206 := (or #28129 #28125)
+#28207 := [def-axiom]: #28206
+#28401 := [unit-resolution #28207 #28400]: #28125
+#28406 := (= #3180 #28119)
+#28404 := (= #28119 #3180)
+#28405 := [monotonicity #25699 #25690]: #28404
+#28407 := [symm #28405]: #28406
+#28312 := [trans #28407 #28401]: #28408
+#28153 := [monotonicity #28312]: #28313
+#28389 := [symm #28153]: #28306
+#28267 := (= #23566 #28266)
+#28215 := (or #23633 #28267)
+#28218 := [quant-inst]: #28215
+#28399 := [unit-resolution #28218 #23143]: #28267
+#28394 := [trans #28399 #28389]: #26923
+#28090 := (not #26923)
+#26925 := (iff #26897 #26923)
+#28110 := (or #24884 #26925)
+#26924 := (iff #26923 #26897)
+#28111 := (or #24884 #26924)
+#28113 := (iff #28111 #28110)
+#28114 := (iff #28110 #28110)
+#28115 := [rewrite]: #28114
+#26926 := (iff #26924 #26925)
+#26927 := [rewrite]: #26926
+#28108 := [monotonicity #26927]: #28113
+#28116 := [trans #28108 #28115]: #28113
+#28112 := [quant-inst]: #28111
+#28117 := [mp #28112 #28116]: #28110
+#28303 := [unit-resolution #28117 #23130]: #26925
+#26904 := (not #26897)
+#28297 := (iff #18425 #26904)
+#28285 := (iff #12345 #26897)
+#28281 := (iff #26897 #12345)
+#28284 := [monotonicity #28283]: #28281
+#28286 := [symm #28284]: #28285
+#28298 := [monotonicity #28286]: #28297
+#28304 := [hypothesis]: #18425
+#28299 := [mp #28304 #28298]: #26904
+#28118 := (not #26925)
+#28091 := (or #28118 #26897 #28090)
+#28092 := [def-axiom]: #28091
+#28398 := [unit-resolution #28092 #28299 #28303]: #28090
+#28395 := [unit-resolution #28398 #28394]: false
+#28396 := [lemma #28395]: #12345
+#29213 := [trans #28396 #29212]: #26897
+#26908 := (or #26904 #26906)
+#28216 := (or #24868 #26904 #26906)
+#26907 := (or #26906 #26904)
+#28217 := (or #24868 #26907)
+#28279 := (iff #28217 #28216)
+#28259 := (or #24868 #26908)
+#28270 := (iff #28259 #28216)
+#28271 := [rewrite]: #28270
+#28260 := (iff #28217 #28259)
+#26909 := (iff #26907 #26908)
+#26910 := [rewrite]: #26909
+#28212 := [monotonicity #26910]: #28260
+#28280 := [trans #28212 #28271]: #28279
+#28223 := [quant-inst]: #28217
+#28265 := [mp #28223 #28280]: #28216
+#29214 := [unit-resolution #28265 #18153]: #26908
+#29215 := [unit-resolution #29214 #29213]: #26906
+#29226 := [symm #29215]: #29225
+#29229 := (= #27192 #26905)
+#27651 := (* #25803 #27025)
+#27654 := (+ #26062 #27651)
+#27657 := (uf_43 #23566 #27654)
+#29223 := (= #27657 #26905)
+#29217 := (= #27654 #26846)
+#29170 := (= #26846 #27654)
+#29171 := (* -1::int #27654)
+#29172 := (+ #26846 #29171)
+#29173 := (<= #29172 0::int)
+#28024 := (* -1::int #25805)
+#28025 := (+ #23468 #28024)
+#28027 := (>= #28025 0::int)
+#28017 := (= #23468 #25805)
+#29165 := (= #2961 #25805)
+#29247 := [symm #25698]: #29165
+#29210 := [trans #27412 #29247]: #28017
+#29176 := (not #28017)
+#29255 := (or #29176 #28027)
+#29256 := [th-lemma]: #29255
+#29257 := [unit-resolution #29256 #29210]: #28027
+#28574 := (* -1::int #26062)
+#28575 := (+ #23468 #28574)
+#28576 := (<= #28575 0::int)
+#28573 := (= #23468 #26062)
+#29258 := [symm #27411]: #28573
+#29259 := (not #28573)
+#29260 := (or #29259 #28576)
+#29261 := [th-lemma]: #29260
+#29262 := [unit-resolution #29261 #29258]: #28576
+#28268 := (uf_116 #28124)
+#28272 := (* -1::int #28268)
+#28498 := (+ #26846 #28272)
+#28499 := (<= #28498 0::int)
+#28488 := (= #26846 #28268)
+#29267 := (= #28268 #26846)
+#29265 := (= #28124 #3180)
+#29263 := (= #28124 #28119)
+#29264 := [symm #28401]: #29263
+#29266 := [trans #29264 #28405]: #29265
+#29268 := [monotonicity #29266]: #29267
+#29269 := [symm #29268]: #28488
+#29270 := (not #28488)
+#29271 := (or #29270 #28499)
+#29272 := [th-lemma]: #29271
+#29273 := [unit-resolution #29272 #29269]: #28499
+#28273 := (+ #26996 #28272)
+#28274 := (+ #25805 #28273)
+#28466 := (>= #28274 0::int)
+#28275 := (= #28274 0::int)
+#28475 := (or #23639 #28275)
+#28269 := (= #28123 #28268)
+#28476 := (or #23639 #28269)
+#28460 := (iff #28476 #28475)
+#28462 := (iff #28475 #28475)
+#28457 := [rewrite]: #28462
+#28276 := (iff #28269 #28275)
+#28277 := [rewrite]: #28276
+#28461 := [monotonicity #28277]: #28460
+#28463 := [trans #28461 #28457]: #28460
+#28459 := [quant-inst]: #28476
+#28464 := [mp #28459 #28463]: #28475
+#29274 := [unit-resolution #28464 #23137]: #28275
+#29275 := (not #28275)
+#29276 := (or #29275 #28466)
+#29277 := [th-lemma]: #29276
+#29278 := [unit-resolution #29277 #29274]: #28466
+#28101 := (>= #28099 0::int)
+#29279 := (or #29189 #28101)
+#29280 := [th-lemma]: #29279
+#29281 := [unit-resolution #29280 #29188]: #28101
+#28308 := (<= #28307 0::int)
+#28338 := (or #28337 #28308)
+#28339 := [th-lemma]: #28338
+#28340 := [unit-resolution #28339 #28311]: #28308
+#28029 := (>= #25803 1::int)
+#28028 := (= #25803 1::int)
+#2932 := (uf_139 uf_7)
+#2933 := (= #2932 1::int)
+#11835 := [asserted]: #2933
+#29282 := (= #25803 #2932)
+#29283 := [monotonicity #25690]: #29282
+#29284 := [trans #29283 #11835]: #28028
+#29285 := (not #28028)
+#29286 := (or #29285 #28029)
+#29287 := [th-lemma]: #29286
+#29288 := [unit-resolution #29287 #29284]: #28029
+#28023 := (<= #25803 1::int)
+#29289 := (or #29285 #28023)
+#29290 := [th-lemma]: #29289
+#29291 := [unit-resolution #29290 #29284]: #28023
+#28341 := (not #28308)
+#29298 := (not #28101)
+#29297 := (not #28576)
+#29296 := (not #28023)
+#29295 := (not #28029)
+#29294 := (not #28027)
+#29293 := (not #28466)
+#29292 := (not #28499)
+#29299 := (or #29173 #29292 #29293 #29294 #29295 #29296 #29295 #29296 #29297 #29298 #28341)
+#29300 := [th-lemma]: #29299
+#29301 := [unit-resolution #29300 #29291 #29288 #28340 #29281 #29278 #29273 #29262 #29257]: #29173
+#29174 := (>= #29172 0::int)
+#28026 := (<= #28025 0::int)
+#29302 := (or #29176 #28026)
+#29303 := [th-lemma]: #29302
+#29304 := [unit-resolution #29303 #29210]: #28026
+#28577 := (>= #28575 0::int)
+#29305 := (or #29259 #28577)
+#29306 := [th-lemma]: #29305
+#29307 := [unit-resolution #29306 #29258]: #28577
+#28500 := (>= #28498 0::int)
+#29308 := (or #29270 #28500)
+#29309 := [th-lemma]: #29308
+#29310 := [unit-resolution #29309 #29269]: #28500
+#28465 := (<= #28274 0::int)
+#29311 := (or #29275 #28465)
+#29312 := [th-lemma]: #29311
+#29313 := [unit-resolution #29312 #29274]: #28465
+#29317 := (not #28577)
+#29316 := (not #28026)
+#29315 := (not #28465)
+#29314 := (not #28500)
+#29318 := (or #29174 #29314 #29315 #29316 #29295 #29296 #29295 #29296 #29317 #29193 #28385)
+#29319 := [th-lemma]: #29318
+#29320 := [unit-resolution #29319 #29291 #29288 #28383 #29192 #29313 #29310 #29307 #29304]: #29174
+#29322 := (not #29174)
+#29321 := (not #29173)
+#29323 := (or #29170 #29321 #29322)
+#29324 := [th-lemma]: #29323
+#29325 := [unit-resolution #29324 #29320 #29301]: #29170
+#28689 := [symm #29325]: #29217
+#28690 := [monotonicity #28689]: #29223
+#29227 := (= #27192 #27657)
+#27640 := (uf_66 #24856 #27025 #23566)
+#27660 := (= #27640 #27657)
+#27663 := (not #27660)
+#27641 := (uf_138 #27640 #24856)
+#27642 := (= uf_9 #27641)
+#27643 := (not #27642)
+#27669 := (or #27643 #27663)
+#27627 := (not #27669)
+#28558 := (or #25566 #27627)
+#27644 := (* #27025 #25803)
+#27645 := (+ #26062 #27644)
+#27646 := (uf_43 #23566 #27645)
+#27647 := (= #27640 #27646)
+#27648 := (not #27647)
+#27649 := (or #27648 #27643)
+#27650 := (not #27649)
+#28559 := (or #25566 #27650)
+#28561 := (iff #28559 #28558)
+#28563 := (iff #28558 #28558)
+#28564 := [rewrite]: #28563
+#27625 := (iff #27650 #27627)
+#27624 := (iff #27649 #27669)
+#27666 := (or #27663 #27643)
+#27670 := (iff #27666 #27669)
+#27671 := [rewrite]: #27670
+#27667 := (iff #27649 #27666)
+#27664 := (iff #27648 #27663)
+#27661 := (iff #27647 #27660)
+#27658 := (= #27646 #27657)
+#27655 := (= #27645 #27654)
+#27652 := (= #27644 #27651)
+#27653 := [rewrite]: #27652
+#27656 := [monotonicity #27653]: #27655
+#27659 := [monotonicity #27656]: #27658
+#27662 := [monotonicity #27659]: #27661
+#27665 := [monotonicity #27662]: #27664
+#27668 := [monotonicity #27665]: #27667
+#27626 := [trans #27668 #27671]: #27624
+#27628 := [monotonicity #27626]: #27625
+#28562 := [monotonicity #27628]: #28561
+#28565 := [trans #28562 #28564]: #28561
+#28560 := [quant-inst]: #28559
+#28566 := [mp #28560 #28565]: #28558
+#29219 := [unit-resolution #28566 #21109]: #27627
+#28569 := (or #27669 #27660)
+#28570 := [def-axiom]: #28569
+#29220 := [unit-resolution #28570 #29219]: #27660
+#29221 := (= #27192 #27640)
+#29222 := [monotonicity #25843]: #29221
+#29228 := [trans #29222 #29220]: #29227
+#28664 := [trans #29228 #28690]: #29229
+#28668 := [trans #28664 #29226]: #29231
+#28660 := [monotonicity #28668]: #29233
+#28667 := [symm #28660]: #29235
+#28669 := [monotonicity #28667]: #29237
+#28670 := [trans #28669 #29240]: #29241
+#28671 := [trans #28670 #25865]: #29243
+#28672 := [monotonicity #28671]: #28541
+#28692 := [symm #28672]: #28691
+#28693 := [trans #14262 #28692]: #27033
+#28617 := (not #27033)
+#28618 := (or #27089 #28617)
+#28619 := [def-axiom]: #28618
+#28661 := [unit-resolution #28619 #28693]: #27089
+#28731 := (= #24105 #27047)
+#28702 := (= #27047 #24105)
+#28698 := (= #26922 uf_7)
+#28678 := (= #26922 #23566)
+#28278 := (or #28118 #26904 #26923)
+#28300 := [def-axiom]: #28278
+#28694 := [unit-resolution #28300 #29213 #28303]: #26923
+#28681 := [symm #28694]: #28678
+#28699 := [trans #28681 #25690]: #28698
+#28701 := [monotonicity #28699]: #28702
+#28732 := [symm #28701]: #28731
+#28733 := [trans #27766 #28732]: #27065
+#28597 := (not #27038)
+#28679 := (iff #11881 #28597)
+#28704 := (iff #11878 #27038)
+#28703 := (iff #27038 #11878)
+#28714 := (= #27037 #2971)
+#28713 := (= #27036 #2958)
+#28734 := (= #27036 #23686)
+#28712 := [monotonicity #28671]: #28734
+#28709 := [trans #28712 #25786]: #28713
+#28688 := [monotonicity #28709]: #28714
+#28550 := [monotonicity #28688]: #28703
+#28705 := [symm #28550]: #28704
+#28677 := [monotonicity #28705]: #28679
+#28700 := [mp #14265 #28677]: #28597
+#27260 := (uf_66 #25957 #27025 #23566)
+#27261 := (uf_58 #3149 #27260)
+#27262 := (uf_136 #27261)
+#27263 := (= uf_9 #27262)
+#28468 := (not #27263)
+#28716 := (iff #28468 #27044)
+#28728 := (iff #27263 #27043)
+#28720 := (iff #27043 #27263)
+#28706 := (= #27042 #27262)
+#28818 := (= #26583 #27261)
+#28749 := (= #27261 #26583)
+#28745 := (= #27260 #3180)
+#28743 := (= #27025 uf_294)
+#28314 := (= #28151 uf_294)
+#28315 := [symm #28311]: #28314
+#28744 := [trans #29188 #28315]: #28743
+#28746 := [monotonicity #26202 #28744 #25690]: #28745
+#28826 := [monotonicity #28746]: #28749
+#28819 := [symm #28826]: #28818
+#28719 := [monotonicity #28819]: #28706
+#28727 := [monotonicity #28719]: #28720
+#28507 := [symm #28727]: #28728
+#28521 := [monotonicity #28507]: #28716
+#27264 := (uf_24 uf_273 #27260)
+#27265 := (= uf_9 #27264)
+#27266 := (not #27265)
+#27270 := (or #27263 #27266)
+#27273 := (not #27270)
+#28443 := (or #25988 #22661 #25969 #25972 #27209 #27219 #27273)
+#27267 := (or #27266 #27263)
+#27268 := (not #27267)
+#27269 := (or #25972 #27209 #27207 #22661 #25969 #27268)
+#28444 := (or #25988 #27269)
+#28450 := (iff #28444 #28443)
+#27279 := (or #22661 #25969 #25972 #27209 #27219 #27273)
+#28446 := (or #25988 #27279)
+#28448 := (iff #28446 #28443)
+#28449 := [rewrite]: #28448
+#28447 := (iff #28444 #28446)
+#27282 := (iff #27269 #27279)
+#27276 := (or #25972 #27209 #27219 #22661 #25969 #27273)
+#27280 := (iff #27276 #27279)
+#27281 := [rewrite]: #27280
+#27277 := (iff #27269 #27276)
+#27274 := (iff #27268 #27273)
+#27271 := (iff #27267 #27270)
+#27272 := [rewrite]: #27271
+#27275 := [monotonicity #27272]: #27274
+#27278 := [monotonicity #27223 #27275]: #27277
+#27283 := [trans #27278 #27281]: #27282
+#28442 := [monotonicity #27283]: #28447
+#28451 := [trans #28442 #28449]: #28450
+#28445 := [quant-inst]: #28444
+#28452 := [mp #28445 #28451]: #28443
+#28742 := [unit-resolution #28452 #21553 #14251 #29207 #29177 #27341 #26234]: #27273
+#28469 := (or #27270 #28468)
+#28470 := [def-axiom]: #28469
+#28737 := [unit-resolution #28470 #28742]: #28468
+#28739 := [mp #28737 #28521]: #27044
+#28612 := (or #27083 #27043)
+#28613 := [def-axiom]: #28612
+#28740 := [unit-resolution #28613 #28739]: #27083
+#28608 := (or #27103 #27038 #27080 #27086 #27092)
+#28544 := [def-axiom]: #28608
+#28738 := [unit-resolution #28544 #28740 #28700 #28733 #28661 #28658]: false
+#28741 := [lemma #28738]: #27103
+#28624 := (or #27106 #27098)
+#28625 := [def-axiom]: #28624
+#29039 := [unit-resolution #28625 #28741]: #27106
+#28224 := (uf_66 #25957 #28151 #23566)
+#28228 := (uf_24 uf_273 #28224)
+#28229 := (= uf_9 #28228)
+#28230 := (not #28229)
+#28225 := (uf_58 #3149 #28224)
+#28226 := (uf_136 #28225)
+#28227 := (= uf_9 #28226)
+#28234 := (or #28227 #28230)
+#28324 := (iff #18428 #28230)
+#28322 := (iff #12348 #28229)
+#28320 := (iff #28229 #12348)
+#28318 := (= #28228 #3183)
+#28316 := (= #28224 #3180)
+#28317 := [monotonicity #26202 #28315 #25690]: #28316
+#28319 := [monotonicity #28317]: #28318
+#28321 := [monotonicity #28319]: #28320
+#28323 := [symm #28321]: #28322
+#28325 := [monotonicity #28323]: #28324
+#28310 := [hypothesis]: #18428
+#28326 := [mp #28310 #28325]: #28230
+#28262 := (or #28234 #28229)
+#28263 := [def-axiom]: #28262
+#28327 := [unit-resolution #28263 #28326]: #28234
+#28172 := (>= #28151 0::int)
+#22803 := (or #23367 #13930)
+#22793 := [def-axiom]: #22803
+#28336 := [unit-resolution #22793 #28335]: #13930
+#28342 := (or #28172 #22487 #28341)
+#28343 := [th-lemma]: #28342
+#28344 := [unit-resolution #28343 #28340 #28336]: #28172
+#28182 := (+ #23568 #28181)
+#28183 := (<= #28182 0::int)
+#28384 := (not #28183)
+#28386 := (or #28384 #26240 #13697 #28385)
+#28387 := [th-lemma]: #28386
+#28388 := [unit-resolution #28387 #28383 #28380 #26238]: #28384
+#28237 := (not #28234)
+#28173 := (not #28172)
+#28390 := (or #28173 #28183 #28237)
+#28248 := (or #25988 #22661 #25969 #25972 #28173 #28183 #28237)
+#28231 := (or #28230 #28227)
+#28232 := (not #28231)
+#28170 := (+ #28151 #25898)
+#28171 := (>= #28170 0::int)
+#28233 := (or #25972 #28173 #28171 #22661 #25969 #28232)
+#28249 := (or #25988 #28233)
+#28256 := (iff #28249 #28248)
+#28243 := (or #22661 #25969 #25972 #28173 #28183 #28237)
+#28251 := (or #25988 #28243)
+#28254 := (iff #28251 #28248)
+#28255 := [rewrite]: #28254
+#28252 := (iff #28249 #28251)
+#28246 := (iff #28233 #28243)
+#28240 := (or #25972 #28173 #28183 #22661 #25969 #28237)
+#28244 := (iff #28240 #28243)
+#28245 := [rewrite]: #28244
+#28241 := (iff #28233 #28240)
+#28238 := (iff #28232 #28237)
+#28235 := (iff #28231 #28234)
+#28236 := [rewrite]: #28235
+#28239 := [monotonicity #28236]: #28238
+#28186 := (iff #28171 #28183)
+#28175 := (+ #25898 #28151)
+#28178 := (>= #28175 0::int)
+#28184 := (iff #28178 #28183)
+#28185 := [rewrite]: #28184
+#28179 := (iff #28171 #28178)
+#28176 := (= #28170 #28175)
+#28177 := [rewrite]: #28176
+#28180 := [monotonicity #28177]: #28179
+#28187 := [trans #28180 #28185]: #28186
+#28242 := [monotonicity #28187 #28239]: #28241
+#28247 := [trans #28242 #28245]: #28246
+#28253 := [monotonicity #28247]: #28252
+#28257 := [trans #28253 #28255]: #28256
+#28250 := [quant-inst]: #28249
+#28258 := [mp #28250 #28257]: #28248
+#28391 := [unit-resolution #28258 #21553 #14251 #27341 #26234]: #28390
+#28392 := [unit-resolution #28391 #28388 #28344 #28327]: false
+#28393 := [lemma #28392]: #12348
+#28676 := (or #27115 #18428 #27109)
+#28663 := [def-axiom]: #28676
+#29045 := [unit-resolution #28663 #28393 #29039]: #27115
+#28636 := (or #28635 #12354 #27112)
+#28634 := [def-axiom]: #28636
+#29048 := [unit-resolution #28634 #29045]: #29058
+#29033 := [unit-resolution #29048 #28730]: #12354
+#29036 := (or #18434 #23258)
+#22696 := (not #18799)
+#22967 := (+ uf_293 #13488)
+#22969 := (>= #22967 0::int)
+#28951 := [hypothesis]: #23288
+#22959 := (or #23285 #12647)
+#22960 := [def-axiom]: #22959
+#28952 := [unit-resolution #22960 #28951]: #12647
+#28947 := (or #12653 #22969)
+#28953 := [th-lemma]: #28947
+#28949 := [unit-resolution #28953 #28952]: #22969
+#28954 := (not #22969)
+#28935 := (or #13491 #28954)
+#28955 := (or #13491 #13875 #28954)
+#28956 := [th-lemma]: #28955
+#28936 := [unit-resolution #28956 #28349]: #28935
+#28943 := [unit-resolution #28936 #28949]: #13491
+#28962 := (= #3074 #3222)
+#28959 := (= #3222 #3074)
+#28940 := (= #3221 #3073)
+#28944 := [symm #28952]: #3259
+#28945 := [monotonicity #28944]: #28940
+#28961 := [monotonicity #28945]: #28959
+#28960 := [symm #28961]: #28962
+#28963 := (= uf_303 #3074)
+#22965 := (or #23285 #12644)
+#22970 := [def-axiom]: #22965
+#28946 := [unit-resolution #22970 #28951]: #12644
+#28942 := [symm #28946]: #3258
+#28964 := [trans #28942 #28347]: #28963
+#28965 := [trans #28964 #28960]: #12404
+#22823 := (or #22233 #22231 #13490)
+#23030 := [def-axiom]: #22823
+#28966 := [unit-resolution #23030 #28965 #28943]: #22233
+#22704 := (or #23219 #22232)
+#22705 := [def-axiom]: #22704
+#28939 := [unit-resolution #22705 #28966]: #23219
+#22952 := (or #23285 #23249)
+#22953 := [def-axiom]: #22952
+#28967 := [unit-resolution #22953 #28951]: #23249
+#28980 := (or #23252 #23246)
+#27793 := (or #15796 #13697)
+#15707 := (<= uf_272 4294967295::int)
+#15710 := (iff #13337 #15707)
+#15701 := (+ 4294967295::int #13338)
+#15704 := (>= #15701 0::int)
+#15708 := (iff #15704 #15707)
+#15709 := [rewrite]: #15708
+#15705 := (iff #13337 #15704)
+#15702 := (= #13339 #15701)
+#15703 := [monotonicity #7505]: #15702
+#15706 := [monotonicity #15703]: #15705
+#15711 := [trans #15706 #15709]: #15710
+#14253 := [not-or-elim #14242]: #13342
+#14255 := [and-elim #14253]: #13337
+#15712 := [mp #14255 #15711]: #15707
+#27784 := [hypothesis]: #13698
+#27785 := [hypothesis]: #18466
+#27792 := [th-lemma #27785 #27784 #15712]: false
+#27191 := [lemma #27792]: #27793
+#28941 := [unit-resolution #27191 #28380]: #15796
+#28976 := (or #13552 #13430)
+#28977 := [th-lemma]: #28976
+#28978 := [unit-resolution #28977 #28968]: #13430
+#23007 := (or #23252 #18463 #18466 #23246)
+#23004 := [def-axiom]: #23007
+#28982 := [unit-resolution #23004 #28978 #28941]: #28980
+#28983 := [unit-resolution #28982 #28967]: #23246
+#23010 := (or #23243 #23237)
+#23014 := [def-axiom]: #23010
+#28984 := [unit-resolution #23014 #28983]: #23237
+#22720 := (>= #13515 -1::int)
+#22734 := (or #23243 #13514)
+#22735 := [def-axiom]: #22734
+#28979 := [unit-resolution #22735 #28983]: #13514
+#28985 := (or #13518 #22720)
+#28981 := [th-lemma]: #28985
+#28986 := [unit-resolution #28981 #28979]: #22720
+#28682 := (not #22720)
+#28683 := (or #13446 #28682)
+#28696 := [hypothesis]: #22720
+#28697 := [hypothesis]: #13451
+#28596 := [th-lemma #28697 #28380 #28696]: false
+#28684 := [lemma #28596]: #28683
+#28958 := [unit-resolution #28684 #28986]: #13446
+#23029 := (or #23240 #13451 #23234)
+#23015 := [def-axiom]: #23029
+#28969 := [unit-resolution #23015 #28958 #28984]: #23234
+#23024 := (or #23231 #23225)
+#22662 := [def-axiom]: #23024
+#28957 := [unit-resolution #22662 #28969]: #23225
+#23021 := (or #23228 #23222 #22285)
+#23022 := [def-axiom]: #23021
+#29004 := [unit-resolution #23022 #28957 #28939]: #22285
+#23032 := (or #22280 #22696)
+#22692 := [def-axiom]: #23032
+#28972 := [unit-resolution #22692 #29004]: #22696
+#28754 := (+ uf_294 #18797)
+#28950 := (>= #28754 0::int)
+#28970 := (not #28950)
+#29109 := (= uf_294 ?x786!14)
+#29144 := (not #29109)
+#22950 := (or #23285 #13604)
+#22951 := [def-axiom]: #22950
+#28973 := [unit-resolution #22951 #28951]: #13604
+#22958 := (+ uf_292 #13466)
+#22955 := (<= #22958 0::int)
+#28971 := (or #12662 #22955)
+#28974 := [th-lemma]: #28971
+#28975 := [unit-resolution #28974 #28946]: #22955
+#23033 := (not #18812)
+#22676 := (or #22280 #23033)
+#23017 := [def-axiom]: #22676
+#29000 := [unit-resolution #23017 #29004]: #23033
+#29131 := (not #22955)
+#29132 := (or #29130 #18812 #29131 #13603)
+#29125 := [hypothesis]: #13604
+#29126 := [hypothesis]: #22955
+#29127 := [hypothesis]: #23033
+#29128 := [hypothesis]: #29120
+#29129 := [th-lemma #29128 #29127 #29126 #29125]: false
+#29133 := [lemma #29129]: #29132
+#29001 := [unit-resolution #29133 #29000 #28975 #28973]: #29130
+#29121 := (or #29119 #29120)
+#29122 := [th-lemma]: #29121
+#29002 := [unit-resolution #29122 #29001]: #29119
+#29145 := (or #29144 #29114)
+#29140 := (= #18489 #3189)
+#29138 := (= #18488 #3180)
+#29136 := (= ?x786!14 uf_294)
+#29135 := [hypothesis]: #29109
+#29137 := [symm #29135]: #29136
+#29139 := [monotonicity #29137]: #29138
+#29141 := [monotonicity #29139]: #29140
+#29142 := [symm #29141]: #29114
+#29134 := [hypothesis]: #29119
+#29143 := [unit-resolution #29134 #29142]: false
+#29146 := [lemma #29143]: #29145
+#29003 := [unit-resolution #29146 #29002]: #29144
+#29019 := (or #29109 #28970)
+#28748 := (<= #28754 0::int)
+#28780 := (+ uf_292 #18810)
+#28781 := (>= #28780 0::int)
+#28989 := (not #28781)
+#29005 := (or #28989 #18812 #29131)
+#29007 := [th-lemma]: #29005
+#29008 := [unit-resolution #29007 #28975 #29000]: #28989
+#28988 := (or #28748 #28781)
+#23031 := (or #22280 #18485)
+#22691 := [def-axiom]: #23031
+#29006 := [unit-resolution #22691 #29004]: #18485
+#23035 := (or #22280 #18484)
+#23041 := [def-axiom]: #23035
+#29009 := [unit-resolution #23041 #29004]: #18484
+#28794 := (or #23208 #22264 #22265 #28748 #28781)
+#28750 := (+ #18489 #13902)
+#28751 := (<= #28750 0::int)
+#28752 := (+ ?x786!14 #13433)
+#28761 := (>= #28752 0::int)
+#28762 := (or #22265 #28761 #28751 #22264)
+#28795 := (or #23208 #28762)
+#28802 := (iff #28795 #28794)
+#28789 := (or #22264 #22265 #28748 #28781)
+#28797 := (or #23208 #28789)
+#28800 := (iff #28797 #28794)
+#28801 := [rewrite]: #28800
+#28798 := (iff #28795 #28797)
+#28792 := (iff #28762 #28789)
+#28786 := (or #22265 #28748 #28781 #22264)
+#28790 := (iff #28786 #28789)
+#28791 := [rewrite]: #28790
+#28787 := (iff #28762 #28786)
+#28784 := (iff #28751 #28781)
+#28759 := (+ #13902 #18489)
+#28770 := (<= #28759 0::int)
+#28782 := (iff #28770 #28781)
+#28783 := [rewrite]: #28782
+#28778 := (iff #28751 #28770)
+#28760 := (= #28750 #28759)
+#28769 := [rewrite]: #28760
+#28779 := [monotonicity #28769]: #28778
+#28785 := [trans #28779 #28783]: #28784
+#28757 := (iff #28761 #28748)
+#28763 := (+ #13433 ?x786!14)
+#28766 := (>= #28763 0::int)
+#28755 := (iff #28766 #28748)
+#28756 := [rewrite]: #28755
+#28747 := (iff #28761 #28766)
+#28764 := (= #28752 #28763)
+#28765 := [rewrite]: #28764
+#28753 := [monotonicity #28765]: #28747
+#28758 := [trans #28753 #28756]: #28757
+#28788 := [monotonicity #28758 #28785]: #28787
+#28793 := [trans #28788 #28791]: #28792
+#28799 := [monotonicity #28793]: #28798
+#28803 := [trans #28799 #28801]: #28802
+#28796 := [quant-inst]: #28795
+#28804 := [mp #28796 #28803]: #28794
+#28990 := [unit-resolution #28804 #28346 #29009 #29006]: #28988
+#28991 := [unit-resolution #28990 #29008]: #28748
+#28992 := (not #28748)
+#28995 := (or #29109 #28992 #28970)
+#28999 := [th-lemma]: #28995
+#28998 := [unit-resolution #28999 #28991]: #29019
+#29020 := [unit-resolution #28998 #29003]: #28970
+#29021 := [th-lemma #29020 #28986 #28972]: false
+#29022 := [lemma #29021]: #23285
+#28539 := (or #23261 #23288 #18425)
+#28527 := [hypothesis]: #23285
+#28528 := [hypothesis]: #12345
+#28102 := [hypothesis]: #23306
+#22938 := (or #23303 #12345)
+#22928 := [def-axiom]: #22938
+#28103 := [unit-resolution #22928 #28102]: #12345
+#22911 := (or #23309 #23303)
+#22907 := [def-axiom]: #22911
+#28104 := [unit-resolution #22907 #28102]: #23309
+#22898 := (or #23321 #23315)
+#22899 := [def-axiom]: #22898
+#28105 := [unit-resolution #22899 #28379]: #23315
+#22889 := (or #23318 #18425 #18428 #23312)
+#22890 := [def-axiom]: #22889
+#28106 := [unit-resolution #22890 #28105]: #23315
+#28107 := [unit-resolution #28106 #28104 #28103 #28393]: false
+#28088 := [lemma #28107]: #23303
+#28531 := [hypothesis]: #23264
+#22824 := (or #23261 #12354)
+#22825 := [def-axiom]: #22824
+#28532 := [unit-resolution #22825 #28531]: #12354
+#22921 := (or #23306 #18425 #18434 #23300)
+#22922 := [def-axiom]: #22921
+#28533 := [unit-resolution #22922 #28532 #28088 #28528]: #23300
+#22934 := (or #23297 #23291)
+#22935 := [def-axiom]: #22934
+#28534 := [unit-resolution #22935 #28533]: #23291
+#22867 := (or #23267 #23261)
+#22826 := [def-axiom]: #22867
+#28535 := [unit-resolution #22826 #28531]: #23267
+#22878 := (or #23276 #18425 #18428 #23270)
+#22871 := [def-axiom]: #22878
+#28536 := [unit-resolution #22871 #28535 #28393 #28528]: #23276
+#22973 := (or #23279 #23273)
+#22977 := [def-axiom]: #22973
+#28537 := [unit-resolution #22977 #28536]: #23279
+#22945 := (or #23294 #23282 #23288)
+#22942 := [def-axiom]: #22945
+#28538 := [unit-resolution #22942 #28537 #28534 #28527]: false
+#28540 := [lemma #28538]: #28539
+#29035 := [unit-resolution #28540 #29022 #28396]: #23261
+#22981 := (or #23264 #18425 #18434 #23258)
+#22982 := [def-axiom]: #22981
+#28715 := [unit-resolution #22982 #28396 #29035]: #29036
+#28908 := [unit-resolution #28715 #29033]: #23258
+#22843 := (or #23255 #12365)
+#22844 := [def-axiom]: #22843
+#28948 := [unit-resolution #22844 #28908]: #12365
+#22996 := (or #23255 #12360)
+#23002 := [def-axiom]: #22996
+#28816 := [unit-resolution #23002 #28908]: #12360
+#29012 := [trans #28816 #28948]: #28823
+#29010 := (not #28823)
+#29013 := (or #29010 #28825)
+#29032 := [th-lemma]: #29013
+#28994 := [unit-resolution #29032 #29012]: #28825
+#22985 := (or #23255 #23249)
+#22991 := [def-axiom]: #22985
+#29023 := [unit-resolution #22991 #28908]: #23249
+#29062 := [unit-resolution #28982 #29023]: #23246
+#29059 := [unit-resolution #23014 #29062]: #23237
+#29060 := [unit-resolution #22735 #29062]: #13514
+#29063 := [unit-resolution #28981 #29060]: #22720
+#29075 := [unit-resolution #28684 #29063]: #13446
+#29077 := [unit-resolution #23015 #29075 #29059]: #23234
+#29049 := [unit-resolution #22662 #29077]: #23225
+#29069 := (= #3189 #3222)
+#29067 := (= #3222 #3189)
+#29051 := (= #3221 #3180)
+#22845 := (or #23255 #12368)
+#22987 := [def-axiom]: #22845
+#29052 := [unit-resolution #22987 #28908]: #12368
+#29061 := [symm #29052]: #3201
+#29066 := [monotonicity #29061]: #29051
+#28987 := [monotonicity #29066]: #29067
+#29070 := [symm #28987]: #29069
+#29073 := (= uf_303 #3189)
+#29037 := [symm #28816]: #3192
+#29068 := [symm #28948]: #3199
+#29074 := [trans #29068 #29037]: #29073
+#29050 := [trans #29074 #29070]: #12404
+#28659 := (+ uf_294 #13488)
+#28680 := (>= #28659 0::int)
+#29079 := (or #12515 #28680)
+#29076 := [th-lemma]: #29079
+#29099 := [unit-resolution #29076 #29052]: #28680
+#29105 := (not #28680)
+#29106 := (or #13491 #29105 #13697)
+#29100 := [th-lemma]: #29106
+#29101 := [unit-resolution #29100 #28380 #29099]: #13491
+#29102 := [unit-resolution #23030 #29101 #29050]: #22233
+#29103 := [unit-resolution #22705 #29102]: #23219
+#29078 := [unit-resolution #23022 #29103 #29049]: #22285
+#29080 := [unit-resolution #23017 #29078]: #23033
+#29072 := (not #28825)
+#29081 := (or #29130 #18812 #29072)
+#29082 := [th-lemma]: #29081
+#29083 := [unit-resolution #29082 #29080 #28994]: #29130
+#29086 := [unit-resolution #29122 #29083]: #29119
+#29087 := [unit-resolution #22692 #29078]: #22696
+#29104 := (or #28950 #18799 #28682)
+#29112 := [th-lemma]: #29104
+#29071 := [unit-resolution #29112 #29087 #29063]: #28950
+#29108 := (or #18434 #23300)
+#29107 := [unit-resolution #22922 #28088]: #23303
+#29088 := [unit-resolution #29107 #28396]: #29108
+#29111 := [unit-resolution #29088 #29033]: #23300
+#29084 := [unit-resolution #22935 #29111]: #23291
+#29089 := (or #23294 #23282)
+#29090 := [unit-resolution #22942 #29022]: #29089
+#29085 := [unit-resolution #29090 #29084]: #23282
+#22883 := (or #23279 #13603)
+#22976 := [def-axiom]: #22883
+#29091 := [unit-resolution #22976 #29085]: #13603
+#29110 := (or #22955 #29072 #13604)
+#29113 := [th-lemma]: #29110
+#29056 := [unit-resolution #29113 #29091 #28994]: #22955
+#29030 := [unit-resolution #29007 #29080 #29056]: #28989
+#29115 := [unit-resolution #22691 #29078]: #18485
+#29092 := [unit-resolution #23041 #29078]: #18484
+#29147 := [unit-resolution #28804 #28346 #29092 #29115 #29030]: #28748
+#29148 := [unit-resolution #28999 #29147 #29071]: #29109
+[unit-resolution #29146 #29148 #29086]: false
unsat
--- a/src/HOL/Boogie/Tools/boogie_commands.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Boogie/Tools/boogie_commands.ML Sat Nov 14 09:40:27 2009 +0100
@@ -38,7 +38,7 @@
| SOME vc =>
let
fun store thm = Boogie_VCs.discharge (name, thm)
- fun after_qed [[thm]] = LocalTheory.theory (store thm)
+ fun after_qed [[thm]] = Local_Theory.theory (store thm)
| after_qed _ = I
in
lthy
--- a/src/HOL/Boogie/Tools/boogie_loader.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Boogie/Tools/boogie_loader.ML Sat Nov 14 09:40:27 2009 +0100
@@ -58,7 +58,6 @@
SOME type_name => ((type_name, false), thy)
| NONE =>
let
- val bname = Binding.name isa_name
val args = Name.variant_list [] (replicate arity "'")
val (T, thy') =
ObjectLogic.typedecl (Binding.name isa_name, args, NoSyn) thy
@@ -324,7 +323,7 @@
local
fun mk_nary _ t [] = t
- | mk_nary f _ (t :: ts) = fold f ts t
+ | mk_nary f _ ts = uncurry (fold_rev f) (split_last ts)
fun mk_distinct T ts =
Const (@{const_name distinct}, HOLogic.listT T --> @{typ bool}) $
@@ -376,7 +375,6 @@
val dT = Term.fastype_of t and rT = mk_wordT (msb - lsb)
val nT = @{typ nat}
val mk_nat_num = HOLogic.mk_number @{typ nat}
- val m = HOLogic.mk_number @{typ nat}
in
Const (@{const_name boogie_bv_extract}, [nT, nT, dT] ---> rT) $
mk_nat_num msb $ mk_nat_num lsb $ t
@@ -451,8 +449,8 @@
binexp ">" (binop @{term "op < :: int => _"} o swap) ||
binexp ">=" (binop @{term "op <= :: int => _"} o swap) ||
binexp "+" (binop @{term "op + :: int => _"}) ||
- binexp "-" (binop @{term "op + :: int => _"}) ||
- binexp "*" (binop @{term "op + :: int => _"}) ||
+ binexp "-" (binop @{term "op - :: int => _"}) ||
+ binexp "*" (binop @{term "op * :: int => _"}) ||
binexp "/" (binop @{term boogie_div}) ||
binexp "%" (binop @{term boogie_mod}) ||
scan_line "select" num :|-- (fn arity =>
--- a/src/HOL/Boogie/Tools/boogie_split.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Boogie/Tools/boogie_split.ML Sat Nov 14 09:40:27 2009 +0100
@@ -114,12 +114,15 @@
local
val split_rules = [@{thm impI}, @{thm conjI}, @{thm TrueI}]
- fun prep_tac ctxt args facts =
+ fun ALL_GOALS false tac = ALLGOALS tac
+ | ALL_GOALS true tac = PARALLEL_GOALS (HEADGOAL tac)
+
+ fun prep_tac ctxt ((parallel, verbose), subs) facts =
HEADGOAL (Method.insert_tac facts)
THEN HEADGOAL (REPEAT_ALL_NEW (Tactic.resolve_tac split_rules))
THEN unique_case_names (ProofContext.theory_of ctxt)
- THEN ALLGOALS (SUBGOAL (fn (t, i) =>
- TRY (sub_tactics_tac ctxt args (case_name_of t) i)))
+ THEN ALL_GOALS parallel (SUBGOAL (fn (t, i) =>
+ TRY (sub_tactics_tac ctxt (verbose, subs) (case_name_of t) i)))
val drop_assert_at = Conv.concl_conv ~1 (Conv.try_conv (Conv.arg_conv
(Conv.rewr_conv (as_meta_eq @{thm assert_at_def}))))
@@ -136,12 +139,14 @@
(ProofContext.theory_of ctxt, Thm.prop_of st) names)
Tactical.all_tac st))
- val verbose_opt = Args.parens (Args.$$$ "verbose") >> K true
+ val options =
+ Args.parens (Args.$$$ "verbose") >> K (false, true) ||
+ Args.parens (Args.$$$ "fast_verbose") >> K (true, true)
val sub_tactics = Args.$$$ "try" -- Args.colon |-- Scan.repeat1 Args.name
in
val setup_split_vc = Method.setup @{binding split_vc}
- (Scan.lift (Scan.optional verbose_opt false -- Scan.optional sub_tactics [])
- >> split_vc)
+ (Scan.lift (Scan.optional options (true, false) --
+ Scan.optional sub_tactics []) >> split_vc)
("Splits a Boogie-generated verification conditions into smaller problems" ^
" and tries to solve the splinters with the supplied sub-tactics.")
end
--- a/src/HOL/Deriv.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Deriv.thy Sat Nov 14 09:40:27 2009 +0100
@@ -273,6 +273,11 @@
"DERIV f x :> D ==> DERIV (%x. c * f x) x :> c*D"
by (drule DERIV_mult' [OF DERIV_const], simp)
+lemma DERIV_cdivide: "DERIV f x :> D ==> DERIV (%x. f x / c) x :> D / c"
+ apply (subgoal_tac "DERIV (%x. (1 / c) * f x) x :> (1 / c) * D", force)
+ apply (erule DERIV_cmult)
+ done
+
text {* Standard version *}
lemma DERIV_chain: "[| DERIV f (g x) :> Da; DERIV g x :> Db |] ==> DERIV (f o g) x :> Da * Db"
by (drule (1) DERIV_chain', simp add: o_def real_scaleR_def mult_commute)
@@ -702,14 +707,10 @@
apply safe
apply simp_all
apply (rename_tac x xa ya M Ma)
-apply (cut_tac x = M and y = Ma in linorder_linear, safe)
-apply (rule_tac x = Ma in exI, clarify)
-apply (cut_tac x = xb and y = xa in linorder_linear, force)
-apply (rule_tac x = M in exI, clarify)
-apply (cut_tac x = xb and y = xa in linorder_linear, force)
+apply (metis linorder_not_less order_le_less real_le_trans)
apply (case_tac "a \<le> x & x \<le> b")
-apply (rule_tac [2] x = 1 in exI)
-prefer 2 apply force
+ prefer 2
+ apply (rule_tac x = 1 in exI, force)
apply (simp add: LIM_eq isCont_iff)
apply (drule_tac x = x in spec, auto)
apply (erule_tac V = "\<forall>M. \<exists>x. a \<le> x & x \<le> b & ~ f x \<le> M" in thin_rl)
@@ -815,7 +816,7 @@
text{*If @{term "0 < f'(x)"} then @{term x} is Locally Strictly Increasing At The Right*}
-lemma DERIV_left_inc:
+lemma DERIV_pos_inc_right:
fixes f :: "real => real"
assumes der: "DERIV f x :> l"
and l: "0 < l"
@@ -845,7 +846,7 @@
qed
qed
-lemma DERIV_left_dec:
+lemma DERIV_neg_dec_left:
fixes f :: "real => real"
assumes der: "DERIV f x :> l"
and l: "l < 0"
@@ -875,6 +876,21 @@
qed
qed
+
+lemma DERIV_pos_inc_left:
+ fixes f :: "real => real"
+ shows "DERIV f x :> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d --> f(x - h) < f(x)"
+ apply (rule DERIV_neg_dec_left [of "%x. - f x" x "-l", simplified])
+ apply (auto simp add: DERIV_minus)
+ done
+
+lemma DERIV_neg_dec_right:
+ fixes f :: "real => real"
+ shows "DERIV f x :> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d --> f(x) > f(x + h)"
+ apply (rule DERIV_pos_inc_right [of "%x. - f x" x "-l", simplified])
+ apply (auto simp add: DERIV_minus)
+ done
+
lemma DERIV_local_max:
fixes f :: "real => real"
assumes der: "DERIV f x :> l"
@@ -885,7 +901,7 @@
case equal thus ?thesis .
next
case less
- from DERIV_left_dec [OF der less]
+ from DERIV_neg_dec_left [OF der less]
obtain d' where d': "0 < d'"
and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x-h)" by blast
from real_lbound_gt_zero [OF d d']
@@ -894,7 +910,7 @@
show ?thesis by (auto simp add: abs_if)
next
case greater
- from DERIV_left_inc [OF der greater]
+ from DERIV_pos_inc_right [OF der greater]
obtain d' where d': "0 < d'"
and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)" by blast
from real_lbound_gt_zero [OF d d']
@@ -1205,6 +1221,87 @@
ultimately show ?thesis using neq by (force simp add: add_commute)
qed
+(* A function with positive derivative is increasing.
+ A simple proof using the MVT, by Jeremy Avigad. And variants.
+*)
+
+lemma DERIV_pos_imp_increasing:
+ fixes a::real and b::real and f::"real => real"
+ assumes "a < b" and "\<forall>x. a \<le> x & x \<le> b --> (EX y. DERIV f x :> y & y > 0)"
+ shows "f a < f b"
+proof (rule ccontr)
+ assume "~ f a < f b"
+ from assms have "EX l z. a < z & z < b & DERIV f z :> l
+ & f b - f a = (b - a) * l"
+ by (metis MVT DERIV_isCont differentiableI real_less_def)
+ then obtain l z where "a < z" and "z < b" and "DERIV f z :> l"
+ and "f b - f a = (b - a) * l"
+ by auto
+
+ from prems have "~(l > 0)"
+ by (metis assms(1) linorder_not_le mult_le_0_iff real_le_eq_diff)
+ with prems show False
+ by (metis DERIV_unique real_less_def)
+qed
+
+
+lemma DERIV_nonneg_imp_nonincreasing:
+ fixes a::real and b::real and f::"real => real"
+ assumes "a \<le> b" and
+ "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y \<ge> 0)"
+ shows "f a \<le> f b"
+proof (rule ccontr, cases "a = b")
+ assume "~ f a \<le> f b"
+ assume "a = b"
+ with prems show False by auto
+ next assume "~ f a \<le> f b"
+ assume "a ~= b"
+ with assms have "EX l z. a < z & z < b & DERIV f z :> l
+ & f b - f a = (b - a) * l"
+ apply (intro MVT)
+ apply auto
+ apply (metis DERIV_isCont)
+ apply (metis differentiableI real_less_def)
+ done
+ then obtain l z where "a < z" and "z < b" and "DERIV f z :> l"
+ and "f b - f a = (b - a) * l"
+ by auto
+ from prems have "~(l >= 0)"
+ by (metis diff_self le_eqI le_iff_diff_le_0 real_le_antisym real_le_linear
+ split_mult_pos_le)
+ with prems show False
+ by (metis DERIV_unique order_less_imp_le)
+qed
+
+lemma DERIV_neg_imp_decreasing:
+ fixes a::real and b::real and f::"real => real"
+ assumes "a < b" and
+ "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y < 0)"
+ shows "f a > f b"
+proof -
+ have "(%x. -f x) a < (%x. -f x) b"
+ apply (rule DERIV_pos_imp_increasing [of a b "%x. -f x"])
+ apply (insert prems, auto)
+ apply (metis DERIV_minus neg_0_less_iff_less)
+ done
+ thus ?thesis
+ by simp
+qed
+
+lemma DERIV_nonpos_imp_nonincreasing:
+ fixes a::real and b::real and f::"real => real"
+ assumes "a \<le> b" and
+ "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y \<le> 0)"
+ shows "f a \<ge> f b"
+proof -
+ have "(%x. -f x) a \<le> (%x. -f x) b"
+ apply (rule DERIV_nonneg_imp_nonincreasing [of a b "%x. -f x"])
+ apply (insert prems, auto)
+ apply (metis DERIV_minus neg_0_le_iff_le)
+ done
+ thus ?thesis
+ by simp
+qed
subsection {* Continuous injective functions *}
--- a/src/HOL/Finite_Set.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Finite_Set.thy Sat Nov 14 09:40:27 2009 +0100
@@ -2344,7 +2344,7 @@
lemma card_bij_eq:
"[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A;
finite A; finite B |] ==> card A = card B"
-by (auto intro: le_anti_sym card_inj_on_le)
+by (auto intro: le_antisym card_inj_on_le)
subsubsection {* Cardinality of products *}
--- a/src/HOL/GCD.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/GCD.thy Sat Nov 14 09:40:27 2009 +0100
@@ -312,13 +312,13 @@
by (insert gcd_zero_int [of m n], insert gcd_ge_0_int [of m n], arith)
lemma gcd_commute_nat: "gcd (m::nat) n = gcd n m"
- by (rule dvd_anti_sym, auto)
+ by (rule dvd_antisym, auto)
lemma gcd_commute_int: "gcd (m::int) n = gcd n m"
by (auto simp add: gcd_int_def gcd_commute_nat)
lemma gcd_assoc_nat: "gcd (gcd (k::nat) m) n = gcd k (gcd m n)"
- apply (rule dvd_anti_sym)
+ apply (rule dvd_antisym)
apply (blast intro: dvd_trans)+
done
@@ -339,23 +339,18 @@
lemma gcd_unique_nat: "(d::nat) dvd a \<and> d dvd b \<and>
(\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
apply auto
- apply (rule dvd_anti_sym)
+ apply (rule dvd_antisym)
apply (erule (1) gcd_greatest_nat)
apply auto
done
lemma gcd_unique_int: "d >= 0 & (d::int) dvd a \<and> d dvd b \<and>
(\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
- apply (case_tac "d = 0")
- apply force
- apply (rule iffI)
- apply (rule zdvd_anti_sym)
- apply arith
- apply (subst gcd_pos_int)
- apply clarsimp
- apply (drule_tac x = "d + 1" in spec)
- apply (frule zdvd_imp_le)
- apply (auto intro: gcd_greatest_int)
+apply (case_tac "d = 0")
+ apply simp
+apply (rule iffI)
+ apply (rule zdvd_antisym_nonneg)
+ apply (auto intro: gcd_greatest_int)
done
lemma gcd_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> gcd x y = x"
@@ -417,7 +412,7 @@
by (auto intro: coprime_dvd_mult_int)
lemma gcd_mult_cancel_nat: "coprime k n \<Longrightarrow> gcd ((k::nat) * m) n = gcd m n"
- apply (rule dvd_anti_sym)
+ apply (rule dvd_antisym)
apply (rule gcd_greatest_nat)
apply (rule_tac n = k in coprime_dvd_mult_nat)
apply (simp add: gcd_assoc_nat)
@@ -1381,11 +1376,11 @@
lemma lcm_unique_nat: "(a::nat) dvd d \<and> b dvd d \<and>
(\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
- by (auto intro: dvd_anti_sym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat)
+ by (auto intro: dvd_antisym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat)
lemma lcm_unique_int: "d >= 0 \<and> (a::int) dvd d \<and> b dvd d \<and>
(\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
- by (auto intro: dvd_anti_sym [transferred] lcm_least_int)
+ by (auto intro: dvd_antisym [transferred] lcm_least_int)
lemma lcm_proj2_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm x y = y"
apply (rule sym)
--- a/src/HOL/Hoare/Arith2.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Hoare/Arith2.thy Sat Nov 14 09:40:27 2009 +0100
@@ -58,7 +58,7 @@
apply (frule cd_nnn)
apply (rule some_equality [symmetric])
apply (blast dest: cd_le)
- apply (blast intro: le_anti_sym dest: cd_le)
+ apply (blast intro: le_antisym dest: cd_le)
done
lemma gcd_swap: "gcd m n = gcd n m"
--- a/src/HOL/Import/HOL/arithmetic.imp Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Import/HOL/arithmetic.imp Sat Nov 14 09:40:27 2009 +0100
@@ -191,7 +191,7 @@
"LESS_EQ_ADD_SUB" > "Nat.add_diff_assoc"
"LESS_EQ_ADD" > "Nat.le_add1"
"LESS_EQ_0" > "Nat.le_0_eq"
- "LESS_EQUAL_ANTISYM" > "Nat.le_anti_sym"
+ "LESS_EQUAL_ANTISYM" > "Nat.le_antisym"
"LESS_EQUAL_ADD" > "HOL4Base.arithmetic.LESS_EQUAL_ADD"
"LESS_EQ" > "Nat.le_simps_3"
"LESS_DIV_EQ_ZERO" > "Divides.div_less"
--- a/src/HOL/Import/HOL/divides.imp Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Import/HOL/divides.imp Sat Nov 14 09:40:27 2009 +0100
@@ -16,7 +16,7 @@
"DIVIDES_MULT" > "Divides.dvd_mult2"
"DIVIDES_LE" > "Divides.dvd_imp_le"
"DIVIDES_FACT" > "HOL4Base.divides.DIVIDES_FACT"
- "DIVIDES_ANTISYM" > "Divides.dvd_anti_sym"
+ "DIVIDES_ANTISYM" > "Divides.dvd_antisym"
"DIVIDES_ADD_2" > "HOL4Base.divides.DIVIDES_ADD_2"
"DIVIDES_ADD_1" > "Ring_and_Field.dvd_add"
"ALL_DIVIDES_0" > "Divides.dvd_0_right"
--- a/src/HOL/Int.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Int.thy Sat Nov 14 09:40:27 2009 +0100
@@ -1986,15 +1986,18 @@
subsection {* The divides relation *}
-lemma zdvd_anti_sym:
- "0 < m ==> 0 < n ==> m dvd n ==> n dvd m ==> m = (n::int)"
+lemma zdvd_antisym_nonneg:
+ "0 <= m ==> 0 <= n ==> m dvd n ==> n dvd m ==> m = (n::int)"
apply (simp add: dvd_def, auto)
- apply (simp add: mult_assoc zero_less_mult_iff zmult_eq_1_iff)
+ apply (auto simp add: mult_assoc zero_le_mult_iff zmult_eq_1_iff)
done
-lemma zdvd_dvd_eq: assumes "a \<noteq> 0" and "(a::int) dvd b" and "b dvd a"
+lemma zdvd_antisym_abs: assumes "(a::int) dvd b" and "b dvd a"
shows "\<bar>a\<bar> = \<bar>b\<bar>"
-proof-
+proof cases
+ assume "a = 0" with assms show ?thesis by simp
+next
+ assume "a \<noteq> 0"
from `a dvd b` obtain k where k:"b = a*k" unfolding dvd_def by blast
from `b dvd a` obtain k' where k':"a = b*k'" unfolding dvd_def by blast
from k k' have "a = a*k*k'" by simp
@@ -2326,7 +2329,7 @@
lemmas zle_refl = order_refl [of "w::int", standard]
lemmas zle_trans = order_trans [where 'a=int and x="i" and y="j" and z="k", standard]
-lemmas zle_anti_sym = order_antisym [of "z::int" "w", standard]
+lemmas zle_antisym = order_antisym [of "z::int" "w", standard]
lemmas zle_linear = linorder_linear [of "z::int" "w", standard]
lemmas zless_linear = linorder_less_linear [where 'a = int]
--- a/src/HOL/Library/Abstract_Rat.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Library/Abstract_Rat.thy Sat Nov 14 09:40:27 2009 +0100
@@ -206,7 +206,7 @@
apply simp
apply algebra
done
- from zdvd_dvd_eq[OF bz coprime_dvd_mult_int[OF gcd1(2) raw_dvd(2)]
+ from zdvd_antisym_abs[OF coprime_dvd_mult_int[OF gcd1(2) raw_dvd(2)]
coprime_dvd_mult_int[OF gcd1(4) raw_dvd(4)]]
have eq1: "b = b'" using pos by arith
with eq have "a = a'" using pos by simp
--- a/src/HOL/Ln.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Ln.thy Sat Nov 14 09:40:27 2009 +0100
@@ -342,9 +342,6 @@
apply auto
done
-lemma DERIV_ln: "0 < x ==> DERIV ln x :> 1 / x"
- by (rule DERIV_ln[THEN DERIV_cong], simp, simp add: divide_inverse)
-
lemma ln_x_over_x_mono: "exp 1 <= x ==> x <= y ==> (ln y / y) <= (ln x / x)"
proof -
assume "exp 1 <= x" and "x <= y"
--- a/src/HOL/Matrix/Matrix.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Matrix/Matrix.thy Sat Nov 14 09:40:27 2009 +0100
@@ -873,7 +873,7 @@
have th: "\<not> (\<forall>m. m \<le> j)" "\<exists>n. \<not> n \<le> i" by arith+
from th show ?thesis
apply (auto)
-apply (rule le_anti_sym)
+apply (rule le_antisym)
apply (subst nrows_le)
apply (simp add: singleton_matrix_def, auto)
apply (subst RepAbs_matrix)
@@ -889,7 +889,7 @@
have th: "\<not> (\<forall>m. m \<le> j)" "\<exists>n. \<not> n \<le> i" by arith+
from th show ?thesis
apply (auto)
-apply (rule le_anti_sym)
+apply (rule le_antisym)
apply (subst ncols_le)
apply (simp add: singleton_matrix_def, auto)
apply (subst RepAbs_matrix)
@@ -1004,7 +1004,7 @@
apply (subst foldseq_almostzero[of _ j])
apply (simp add: prems)+
apply (auto)
- apply (metis comm_monoid_add.mult_1 le_anti_sym le_diff_eq not_neg_nat zero_le_imp_of_nat zle_int)
+ apply (metis comm_monoid_add.mult_1 le_antisym le_diff_eq not_neg_nat zero_le_imp_of_nat zle_int)
done
lemma mult_matrix_ext:
--- a/src/HOL/Nat.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Nat.thy Sat Nov 14 09:40:27 2009 +0100
@@ -596,7 +596,7 @@
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"
by (rule order_trans)
-lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
+lemma le_antisym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
by (rule antisym)
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"
@@ -1611,14 +1611,14 @@
lemma nat_dvd_1_iff_1 [simp]: "m dvd (1::nat) \<longleftrightarrow> m = 1"
by (simp add: dvd_def)
-lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
+lemma dvd_antisym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
unfolding dvd_def
by (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff)
text {* @{term "op dvd"} is a partial order *}
interpretation dvd: order "op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> \<not> m dvd n"
- proof qed (auto intro: dvd_refl dvd_trans dvd_anti_sym)
+ proof qed (auto intro: dvd_refl dvd_trans dvd_antisym)
lemma dvd_diff_nat[simp]: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
unfolding dvd_def
--- a/src/HOL/Nominal/nominal_datatype.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Nominal/nominal_datatype.ML Sat Nov 14 09:40:27 2009 +0100
@@ -569,9 +569,8 @@
thy3
|> Sign.map_naming Name_Space.conceal
|> Inductive.add_inductive_global (serial ())
- {quiet_mode = false, verbose = false, kind = "",
- alt_name = Binding.name big_rep_name, coind = false, no_elim = true, no_ind = false,
- skip_mono = true, fork_mono = false}
+ {quiet_mode = false, verbose = false, alt_name = Binding.name big_rep_name,
+ coind = false, no_elim = true, no_ind = false, skip_mono = true, fork_mono = false}
(map (fn (s, T) => ((Binding.name s, T --> HOLogic.boolT), NoSyn))
(rep_set_names' ~~ recTs'))
[] (map (fn x => (Attrib.empty_binding, x)) intr_ts) []
@@ -1513,9 +1512,8 @@
thy10
|> Sign.map_naming Name_Space.conceal
|> Inductive.add_inductive_global (serial ())
- {quiet_mode = #quiet config, verbose = false, kind = "",
- alt_name = Binding.name big_rec_name, coind = false, no_elim = false, no_ind = false,
- skip_mono = true, fork_mono = false}
+ {quiet_mode = #quiet config, verbose = false, alt_name = Binding.name big_rec_name,
+ coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false}
(map (fn (s, T) => ((Binding.name s, T), NoSyn)) (rec_set_names' ~~ rec_set_Ts))
(map dest_Free rec_fns)
(map (fn x => (Attrib.empty_binding, x)) rec_intr_ts) []
--- a/src/HOL/Nominal/nominal_inductive.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Nominal/nominal_inductive.ML Sat Nov 14 09:40:27 2009 +0100
@@ -561,20 +561,19 @@
(strong_raw_induct, [ind_case_names, Rule_Cases.consumes 0])
else (strong_raw_induct RSN (2, rev_mp),
[ind_case_names, Rule_Cases.consumes 1]);
- val ((_, [strong_induct']), ctxt') = LocalTheory.note Thm.generatedK
+ val ((_, [strong_induct']), ctxt') = ctxt |> Local_Theory.note
((rec_qualified (Binding.name "strong_induct"),
- map (Attrib.internal o K) (#2 strong_induct)), [#1 strong_induct])
- ctxt;
+ map (Attrib.internal o K) (#2 strong_induct)), [#1 strong_induct]);
val strong_inducts =
- Project_Rule.projects ctxt (1 upto length names) strong_induct'
+ Project_Rule.projects ctxt (1 upto length names) strong_induct';
in
ctxt' |>
- LocalTheory.note Thm.generatedK
+ Local_Theory.note
((rec_qualified (Binding.name "strong_inducts"),
[Attrib.internal (K ind_case_names),
Attrib.internal (K (Rule_Cases.consumes 1))]),
strong_inducts) |> snd |>
- LocalTheory.notes Thm.generatedK (map (fn ((name, elim), (_, cases)) =>
+ Local_Theory.notes (map (fn ((name, elim), (_, cases)) =>
((Binding.qualified_name (Long_Name.qualify (Long_Name.base_name name) "strong_cases"),
[Attrib.internal (K (Rule_Cases.case_names (map snd cases))),
Attrib.internal (K (Rule_Cases.consumes 1))]), [([elim], [])]))
@@ -664,7 +663,7 @@
end) atoms
in
ctxt |>
- LocalTheory.notes Thm.generatedK (map (fn (name, ths) =>
+ Local_Theory.notes (map (fn (name, ths) =>
((Binding.qualified_name (Long_Name.qualify (Long_Name.base_name name) "eqvt"),
[Attrib.internal (K NominalThmDecls.eqvt_add)]), [(ths, [])]))
(names ~~ transp thss)) |> snd
--- a/src/HOL/Nominal/nominal_inductive2.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Nominal/nominal_inductive2.ML Sat Nov 14 09:40:27 2009 +0100
@@ -466,15 +466,14 @@
NONE => (rec_qualified (Binding.name "strong_induct"),
rec_qualified (Binding.name "strong_inducts"))
| SOME s => (Binding.name s, Binding.name (s ^ "s"));
- val ((_, [strong_induct']), ctxt') = LocalTheory.note Thm.generatedK
+ val ((_, [strong_induct']), ctxt') = ctxt |> Local_Theory.note
((induct_name,
- map (Attrib.internal o K) (#2 strong_induct)), [#1 strong_induct])
- ctxt;
+ map (Attrib.internal o K) (#2 strong_induct)), [#1 strong_induct]);
val strong_inducts =
Project_Rule.projects ctxt' (1 upto length names) strong_induct'
in
ctxt' |>
- LocalTheory.note Thm.generatedK
+ Local_Theory.note
((inducts_name,
[Attrib.internal (K ind_case_names),
Attrib.internal (K (Rule_Cases.consumes 1))]),
--- a/src/HOL/Nominal/nominal_primrec.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Nominal/nominal_primrec.ML Sat Nov 14 09:40:27 2009 +0100
@@ -280,9 +280,8 @@
else primrec_err ("functions " ^ commas_quote names2 ^
"\nare not mutually recursive");
val (defs_thms, lthy') = lthy |>
- set_group ? LocalTheory.set_group (serial ()) |>
- fold_map (apfst (snd o snd) oo
- LocalTheory.define Thm.definitionK o fst) defs';
+ set_group ? Local_Theory.set_group (serial ()) |>
+ fold_map (apfst (snd o snd) oo Local_Theory.define Thm.definitionK o fst) defs';
val qualify = Binding.qualify false
(space_implode "_" (map (Long_Name.base_name o #1) defs));
val names_atts' = map (apfst qualify) names_atts;
@@ -367,11 +366,11 @@
(fn thss => fn goal_ctxt =>
let
val simps = ProofContext.export goal_ctxt lthy' (flat thss);
- val (simps', lthy'') = fold_map (LocalTheory.note Thm.generatedK)
- (names_atts' ~~ map single simps) lthy'
+ val (simps', lthy'') =
+ fold_map Local_Theory.note (names_atts' ~~ map single simps) lthy';
in
lthy''
- |> LocalTheory.note Thm.generatedK ((qualify (Binding.name "simps"),
+ |> Local_Theory.note ((qualify (Binding.name "simps"),
map (Attrib.internal o K) [Simplifier.simp_add, Nitpick_Simps.add]),
maps snd simps')
|> snd
--- a/src/HOL/Number_Theory/UniqueFactorization.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Number_Theory/UniqueFactorization.thy Sat Nov 14 09:40:27 2009 +0100
@@ -844,7 +844,7 @@
mult_eq [simp]: "!!p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
shows "x = y"
- apply (rule dvd_anti_sym)
+ apply (rule dvd_antisym)
apply (auto intro: multiplicity_dvd'_nat)
done
@@ -854,7 +854,7 @@
mult_eq [simp]: "!!p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
shows "x = y"
- apply (rule dvd_anti_sym [transferred])
+ apply (rule dvd_antisym [transferred])
apply (auto intro: multiplicity_dvd'_int)
done
--- a/src/HOL/Old_Number_Theory/IntPrimes.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Old_Number_Theory/IntPrimes.thy Sat Nov 14 09:40:27 2009 +0100
@@ -204,7 +204,7 @@
apply (case_tac [2] "0 \<le> ka")
apply (metis zdvd_mult_div_cancel dvd_refl dvd_mult_left zmult_commute zrelprime_zdvd_zmult)
apply (metis abs_dvd_iff abs_of_nonneg zadd_0 zgcd_0_left zgcd_commute zgcd_zadd_zmult zgcd_zdvd_zgcd_zmult zgcd_zmult_distrib2_abs zmult_1_right zmult_commute)
- apply (metis mult_le_0_iff zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff zle_anti_sym zle_linear zle_refl zmult_commute zrelprime_zdvd_zmult)
+ apply (metis mult_le_0_iff zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff zle_antisym zle_linear zle_refl zmult_commute zrelprime_zdvd_zmult)
apply (metis dvd_triv_left)
done
--- a/src/HOL/Old_Number_Theory/Legacy_GCD.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Old_Number_Theory/Legacy_GCD.thy Sat Nov 14 09:40:27 2009 +0100
@@ -23,7 +23,7 @@
text {* Uniqueness *}
lemma is_gcd_unique: "is_gcd a b m \<Longrightarrow> is_gcd a b n \<Longrightarrow> m = n"
- by (simp add: is_gcd_def) (blast intro: dvd_anti_sym)
+ by (simp add: is_gcd_def) (blast intro: dvd_antisym)
text {* Connection to divides relation *}
@@ -156,7 +156,7 @@
by (auto intro: relprime_dvd_mult dvd_mult2)
lemma gcd_mult_cancel: "gcd k n = 1 ==> gcd (k * m) n = gcd m n"
- apply (rule dvd_anti_sym)
+ apply (rule dvd_antisym)
apply (rule gcd_greatest)
apply (rule_tac n = k in relprime_dvd_mult)
apply (simp add: gcd_assoc)
@@ -223,7 +223,7 @@
assume H: "d dvd a" "d dvd b" "\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d"
from H(3)[rule_format] gcd_dvd1[of a b] gcd_dvd2[of a b]
have th: "gcd a b dvd d" by blast
- from dvd_anti_sym[OF th gcd_greatest[OF H(1,2)]] show "d = gcd a b" by blast
+ from dvd_antisym[OF th gcd_greatest[OF H(1,2)]] show "d = gcd a b" by blast
qed
lemma gcd_eq: assumes H: "\<forall>d. d dvd x \<and> d dvd y \<longleftrightarrow> d dvd u \<and> d dvd v"
--- a/src/HOL/Old_Number_Theory/Pocklington.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Old_Number_Theory/Pocklington.thy Sat Nov 14 09:40:27 2009 +0100
@@ -935,7 +935,7 @@
p: "prime p" "p dvd m" by blast
from dvd_trans[OF p(2) m(1)] p(1) H have "p = n" by blast
with p(2) have "n dvd m" by simp
- hence "m=n" using dvd_anti_sym[OF m(1)] by simp }
+ hence "m=n" using dvd_antisym[OF m(1)] by simp }
with n1 have "prime n" unfolding prime_def by auto }
ultimately have ?thesis using n by blast}
ultimately show ?thesis by auto
--- a/src/HOL/Old_Number_Theory/Primes.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Old_Number_Theory/Primes.thy Sat Nov 14 09:40:27 2009 +0100
@@ -97,7 +97,7 @@
text {* Elementary theory of divisibility *}
lemma divides_ge: "(a::nat) dvd b \<Longrightarrow> b = 0 \<or> a \<le> b" unfolding dvd_def by auto
lemma divides_antisym: "(x::nat) dvd y \<and> y dvd x \<longleftrightarrow> x = y"
- using dvd_anti_sym[of x y] by auto
+ using dvd_antisym[of x y] by auto
lemma divides_add_revr: assumes da: "(d::nat) dvd a" and dab:"d dvd (a + b)"
shows "d dvd b"
--- a/src/HOL/Probability/Borel.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Probability/Borel.thy Sat Nov 14 09:40:27 2009 +0100
@@ -73,7 +73,7 @@
with w have "real(Suc(natceiling(inverse(g w - f w)))) > inverse(g w - f w)"
by (metis lessI order_le_less_trans real_natceiling_ge real_of_nat_less_iff) hence "inverse(real(Suc(natceiling(inverse(g w - f w)))))
< inverse(inverse(g w - f w))"
- by (metis less_iff_diff_less_0 less_imp_inverse_less linorder_neqE_ordered_idom nz positive_imp_inverse_positive real_le_anti_sym real_less_def w)
+ by (metis less_iff_diff_less_0 less_imp_inverse_less linorder_neqE_ordered_idom nz positive_imp_inverse_positive real_le_antisym real_less_def w)
hence "inverse(real(Suc(natceiling(inverse(g w - f w))))) < g w - f w"
by (metis inverse_inverse_eq order_less_le_trans real_le_refl)
thus "\<exists>n. f w \<le> g w - inverse(real(Suc n))" using w
--- a/src/HOL/Probability/Measure.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Probability/Measure.thy Sat Nov 14 09:40:27 2009 +0100
@@ -356,7 +356,7 @@
by (metis add_commute le_add_diff_inverse nat_less_le)
thus ?thesis
by (auto simp add: disjoint_family_def)
- (metis insert_absorb insert_subset le_SucE le_anti_sym not_leE)
+ (metis insert_absorb insert_subset le_SucE le_antisym not_leE)
qed
--- a/src/HOL/RealDef.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/RealDef.thy Sat Nov 14 09:40:27 2009 +0100
@@ -321,7 +321,7 @@
apply (auto intro: real_le_lemma)
done
-lemma real_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::real)"
+lemma real_le_antisym: "[| z \<le> w; w \<le> z |] ==> z = (w::real)"
by (cases z, cases w, simp add: real_le)
lemma real_trans_lemma:
@@ -347,8 +347,8 @@
proof
fix u v :: real
show "u < v \<longleftrightarrow> u \<le> v \<and> \<not> v \<le> u"
- by (auto simp add: real_less_def intro: real_le_anti_sym)
-qed (assumption | rule real_le_refl real_le_trans real_le_anti_sym)+
+ by (auto simp add: real_less_def intro: real_le_antisym)
+qed (assumption | rule real_le_refl real_le_trans real_le_antisym)+
(* Axiom 'linorder_linear' of class 'linorder': *)
lemma real_le_linear: "(z::real) \<le> w | w \<le> z"
--- a/src/HOL/Ring_and_Field.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Ring_and_Field.thy Sat Nov 14 09:40:27 2009 +0100
@@ -1301,6 +1301,10 @@
lemma dvd_abs_iff [simp]: "m dvd (abs k) \<longleftrightarrow> m dvd k"
by (simp add: abs_if)
+lemma dvd_if_abs_eq:
+ "abs l = abs (k) \<Longrightarrow> l dvd k"
+by(subst abs_dvd_iff[symmetric]) simp
+
end
class ordered_field = field + ordered_idom
--- a/src/HOL/SMT/Tools/cvc3_solver.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/SMT/Tools/cvc3_solver.ML Sat Nov 14 09:40:27 2009 +0100
@@ -23,11 +23,11 @@
fun raise_cex real = raise SMT_Solver.SMT_COUNTEREXAMPLE (real, [])
-fun core_oracle ({context, output, recon, ...} : SMT_Solver.proof_data) =
+fun core_oracle ({output, ...} : SMT_Solver.proof_data) =
let
val empty_line = (fn "" => true | _ => false)
val split_first = (fn [] => ("", []) | l :: ls => (l, ls))
- val (l, ls) = split_first (dropwhile empty_line output)
+ val (l, _) = split_first (dropwhile empty_line output)
in
if is_unsat l then @{cprop False}
else if is_sat l then raise_cex true
--- a/src/HOL/SMT/Tools/smt_normalize.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/SMT/Tools/smt_normalize.ML Sat Nov 14 09:40:27 2009 +0100
@@ -285,14 +285,14 @@
fun add_sym t = if AList.defined (op =) defs t then insert (op =) t else I
fun add_syms thms = fold (Term.fold_aterms add_sym o Thm.prop_of) thms []
- fun unfold_conv ctxt ct =
+ fun unfold_conv ct =
(case AList.lookup (op =) defs (Term.head_of (Thm.term_of ct)) of
SOME (_, eq) => Conv.rewr_conv eq
| NONE => Conv.all_conv) ct
in
fun add_abs_min_max_rules ctxt thms =
if Config.get ctxt unfold_defs
- then map (Conv.fconv_rule (More_Conv.bottom_conv unfold_conv ctxt)) thms
+ then map (Conv.fconv_rule (More_Conv.bottom_conv (K unfold_conv) ctxt)) thms
else map fst (map_filter (AList.lookup (op =) defs) (add_syms thms)) @ thms
end
@@ -319,13 +319,12 @@
let
val cvs' = used_vars cvs ct
val ct' = fold_rev Thm.cabs cvs' ct
- val mk_repl = fold (fn ct => fn cu => Thm.capply cu ct) cvs'
in
(case Termtab.lookup defs (Thm.term_of ct') of
SOME (_, eq) => (make_def cvs' eq, cx)
| NONE =>
let
- val {t, T, ...} = Thm.rep_cterm ct'
+ val {T, ...} = Thm.rep_cterm ct'
val (n, nctxt') = fresh_name "" nctxt
val eq = Thm.assume (mk_meta_eq (cert ctxt (Free (n, T))) ct')
in (make_def cvs' eq, (nctxt', add_def ct' eq defs)) end)
@@ -410,8 +409,8 @@
(case Term.strip_comb (Thm.term_of ct) of
(Const (n, _), ts) => app_conv tb (const n) (length ts) ctxt
| (Free (n, _), ts) => app_conv tb (free n) (length ts) ctxt
- | (Abs _, ts) => nary_conv (abs_conv sub_conv tb ctxt) (sub_conv tb ctxt)
- | (_, ts) => nary_conv Conv.all_conv (sub_conv tb ctxt)) ct
+ | (Abs _, _) => nary_conv (abs_conv sub_conv tb ctxt) (sub_conv tb ctxt)
+ | (_, _) => nary_conv Conv.all_conv (sub_conv tb ctxt)) ct
and app_conv tb n i ctxt =
(case Symtab.lookup tb n of
NONE => nary_conv Conv.all_conv (sub_conv tb ctxt)
--- a/src/HOL/SMT/Tools/smt_solver.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/SMT/Tools/smt_solver.ML Sat Nov 14 09:40:27 2009 +0100
@@ -144,7 +144,7 @@
true)
end
-fun run_locally f ctxt env_var args ps =
+fun run_locally f env_var args ps =
if getenv env_var = ""
then f ("Undefined Isabelle environment variable: " ^ quote env_var)
else
@@ -173,7 +173,7 @@
let val ps = [File.shell_path problem_path, ">", File.shell_path proof_path]
in
if use_certificate ctxt ps then ()
- else run_locally (run_remote remote_name args ps) ctxt env_var args ps
+ else run_locally (run_remote remote_name args ps) env_var args ps
end
in
--- a/src/HOL/SMT/Tools/smt_translate.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/SMT/Tools/smt_translate.ML Sat Nov 14 09:40:27 2009 +0100
@@ -142,7 +142,7 @@
SApp (SConst (@{const_name nat}, _), [SApp (SNum (i, _), _)]) => SOME i
| _ => NONE)
in
-fun bv_rotate mk_name T ts =
+fun bv_rotate mk_name _ ts =
dest_nat (hd ts) |> Option.map (fn i => (mk_name i, tl ts))
fun bv_extend mk_name T ts =
@@ -196,7 +196,7 @@
fun group_quant qname vs (t as Const (q, _) $ Abs (n, T, u)) =
if q = qname then group_quant qname ((n, T) :: vs) u else (vs, t)
- | group_quant qname vs t = (vs, t)
+ | group_quant _ vs t = (vs, t)
fun dest_trigger (@{term trigger} $ tl $ t) = (HOLogic.dest_list tl, t)
| dest_trigger t = ([], t)
@@ -208,11 +208,11 @@
fun trans Ts t =
(case Term.strip_comb t of
- (t1 as Const (qn, qT), [t2 as Abs (n, T, t3)]) =>
+ (Const (qn, _), [Abs (n, T, t1)]) =>
(case quantifier qn of
SOME q =>
let
- val (vs, u) = group_quant qn [(n, T)] t3
+ val (vs, u) = group_quant qn [(n, T)] t1
val Us = map snd vs @ Ts
val (ps, b) = dest_trigger u
in SQuant (q, rev vs, map (pat (trans Us) []) ps, trans Us b) end
@@ -277,7 +277,7 @@
fun sep loc t =
(case t of
- SVar i => pair t
+ SVar _ => pair t
| SApp (c as SConst (@{const_name If}, _), u :: us) =>
mark sep false u ##>> fold_map (sep loc) us #>> app c o (op ::)
| SApp (c, us) =>
@@ -429,7 +429,7 @@
let val (n, ns') = fresh_typ ns
in (n, (vars, ns', add_typ (T, n) sgn)) end)
- fun rep_var bs (n, T) (vars, ns, sgn) =
+ fun rep_var bs (_, T) (vars, ns, sgn) =
let val (n', vars') = fresh_name vars
in (vars', ns, sgn) |> rep_typ bs T |>> pair n' end
@@ -458,9 +458,9 @@
fun sign loc t =
(case t of
SVar i => pair (SVar i)
- | SApp (c as SConst (@{const_name term}, _), [u]) =>
+ | SApp (SConst (@{const_name term}, _), [u]) =>
sign true u #>> app term_marker o single
- | SApp (c as SConst (@{const_name formula}, _), [u]) =>
+ | SApp (SConst (@{const_name formula}, _), [u]) =>
sign false u #>> app formula_marker o single
| SApp (SConst (c as (_, T)), ts) =>
(case builtin_lookup (builtin_fun loc) thy c ts of
--- a/src/HOL/SMT/Tools/yices_solver.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/SMT/Tools/yices_solver.ML Sat Nov 14 09:40:27 2009 +0100
@@ -19,11 +19,11 @@
fun raise_cex real = raise SMT_Solver.SMT_COUNTEREXAMPLE (real, [])
-fun core_oracle ({context, output, recon, ...} : SMT_Solver.proof_data) =
+fun core_oracle ({output, ...} : SMT_Solver.proof_data) =
let
val empty_line = (fn "" => true | _ => false)
val split_first = (fn [] => ("", []) | l :: ls => (l, ls))
- val (l, ls) = split_first (dropwhile empty_line output)
+ val (l, _) = split_first (dropwhile empty_line output)
in
if String.isPrefix "unsat" l then @{cprop False}
else if String.isPrefix "sat" l then raise_cex true
--- a/src/HOL/SMT/Tools/z3_model.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/SMT/Tools/z3_model.ML Sat Nov 14 09:40:27 2009 +0100
@@ -130,7 +130,8 @@
in
(case (can HOLogic.dest_number t, cs) of
(true, [c]) => trans 0 T c #>> (fn (_, u) => [mk_eq u ([], t)])
- | (_, (es, _) :: _) => fold_map (trans (length es) T) cs #>> map (mk_eq t))
+ | (_, (es, _) :: _) => fold_map (trans (length es) T) cs #>> map (mk_eq t)
+ | _ => raise TERM ("translate: no cases", [t]))
end
--- a/src/HOL/SMT/Tools/z3_proof_rules.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/SMT/Tools/z3_proof_rules.ML Sat Nov 14 09:40:27 2009 +0100
@@ -97,7 +97,7 @@
| thm_of (Literals (thm, _)) = thm
fun meta_eq_of (MetaEq thm) = thm
- | meta_eq_of p = thm_of p COMP @{thm eq_reflection}
+ | meta_eq_of p = mk_meta_eq (thm_of p)
datatype proof =
Unproved of {
@@ -222,7 +222,6 @@
and dest_disj3 = precompose (destd I) @{lemma "~(P | Q) ==> ~Q" by fast}
and dest_disj4 = precompose (destd dn2) @{lemma "~(P | ~Q) ==> Q" by fast}
- val is_neg = (fn @{term Not} $ _ => true | _ => false)
fun dest_disj_rules t =
(case dest_disj_term' is_neg t of
SOME (true, true) => SOME (dest_disj2, dest_disj4)
@@ -458,7 +457,7 @@
let val cv = mk_var ctxt idx (#T (Thm.rep_cterm ct))
in (cv, (ctxt, mk_var, idx + 1, gen, Ctermtab.update (ct, cv) tab)) end)
-fun prove_abstraction tac ct (ctxt, _, _, gen, tab) =
+fun prove_abstraction tac ct (_, _, _, gen, tab) =
let
val insts = map swap (Ctermtab.dest tab)
val thm = Goal.prove_internal [] ct (fn _ => tac 1)
@@ -1088,6 +1087,64 @@
in with_conv (all_distrib_conv ctxt) (prove_arith ctxt thms') ct end
end
+(** theory simpset **)
+local
+ val antisym_le1 = mk_meta_eq @{thm order_class.antisym_conv}
+ val antisym_le2 = mk_meta_eq @{thm linorder_class.antisym_conv2}
+ val antisym_less1 = mk_meta_eq @{thm linorder_class.antisym_conv1}
+ val antisym_less2 = mk_meta_eq @{thm linorder_class.antisym_conv3}
+
+ fun eq_prop t thm = HOLogic.mk_Trueprop t aconv Thm.prop_of thm
+ fun dest_binop ((c as Const _) $ t $ u) = (c, t, u)
+ | dest_binop t = raise TERM ("dest_binop", [t])
+
+ fun prove_antisym_le ss t =
+ let
+ val (le, r, s) = dest_binop t
+ val less = Const (@{const_name less}, Term.fastype_of le)
+ val prems = Simplifier.prems_of_ss ss
+ in
+ (case find_first (eq_prop (le $ s $ r)) prems of
+ NONE =>
+ find_first (eq_prop (HOLogic.mk_not (less $ r $ s))) prems
+ |> Option.map (fn thm => thm RS antisym_less1)
+ | SOME thm => SOME (thm RS antisym_le1))
+ end
+ handle THM _ => NONE
+
+ fun prove_antisym_less ss t =
+ let
+ val (less, r, s) = dest_binop (HOLogic.dest_not t)
+ val le = Const (@{const_name less_eq}, Term.fastype_of less)
+ val prems = prems_of_ss ss
+ in
+ (case find_first (eq_prop (le $ r $ s)) prems of
+ NONE =>
+ find_first (eq_prop (HOLogic.mk_not (less $ s $ r))) prems
+ |> Option.map (fn thm => thm RS antisym_less2)
+ | SOME thm => SOME (thm RS antisym_le2))
+ end
+ handle THM _ => NONE
+in
+val z3_simpset = HOL_ss addsimps @{thms array_rules}
+ addsimps @{thms ring_distribs} addsimps @{thms field_eq_simps}
+ addsimps @{thms arith_special} addsimps @{thms less_bin_simps}
+ addsimps @{thms le_bin_simps} addsimps @{thms eq_bin_simps}
+ addsimps @{thms add_bin_simps} addsimps @{thms succ_bin_simps}
+ addsimps @{thms minus_bin_simps} addsimps @{thms pred_bin_simps}
+ addsimps @{thms mult_bin_simps} addsimps @{thms iszero_simps}
+ addsimprocs [
+ Simplifier.simproc @{theory} "fast_int_arith" [
+ "(m::int) < n", "(m::int) <= n", "(m::int) = n"] (K Lin_Arith.simproc),
+ Simplifier.simproc @{theory} "fast_real_arith" [
+ "(m::real) < n", "(m::real) <= n", "(m::real) = n"]
+ (K Lin_Arith.simproc),
+ Simplifier.simproc @{theory} "antisym le" ["(x::'a::order) <= y"]
+ (K prove_antisym_le),
+ Simplifier.simproc @{theory} "antisym less" ["~ (x::'a::linorder) < y"]
+ (K prove_antisym_less)]
+end
+
(** theory lemmas: linear arithmetic, arrays **)
local
val array_ss = HOL_ss addsimps @{thms array_rules}
@@ -1098,15 +1155,20 @@
fun full_arith_tac ctxt thms =
Tactic.cut_facts_tac thms
THEN' Arith_Data.arith_tac ctxt
+
+ fun simp_arith_tac ctxt thms =
+ Tactic.cut_facts_tac thms
+ THEN' Simplifier.asm_full_simp_tac z3_simpset
+ THEN' Arith_Data.arith_tac ctxt
in
fun th_lemma ctxt thms ct =
Thm (try_apply ctxt "th-lemma" [
("abstract arith", arith_lemma ctxt thms),
("array", by_tac' (array_tac thms)),
- ("full arith", by_tac' (full_arith_tac ctxt thms))] (T.mk_prop ct))
+ ("full arith", by_tac' (full_arith_tac ctxt thms)),
+ ("simp arith", by_tac' (simp_arith_tac ctxt thms))] (T.mk_prop ct))
end
-
(** rewriting: prove equalities:
* ACI of conjunction/disjunction
* contradiction, excluded middle
@@ -1190,20 +1252,7 @@
Tactic.rtac iffI_rule THEN_ALL_NEW arith_tac ctxt
ORELSE' arith_tac ctxt
- val simpset = HOL_ss addsimps @{thms array_rules}
- addsimps @{thms ring_distribs} addsimps @{thms field_eq_simps}
- addsimps @{thms arith_special} addsimps @{thms less_bin_simps}
- addsimps @{thms le_bin_simps} addsimps @{thms eq_bin_simps}
- addsimps @{thms add_bin_simps} addsimps @{thms succ_bin_simps}
- addsimps @{thms minus_bin_simps} addsimps @{thms pred_bin_simps}
- addsimps @{thms mult_bin_simps} addsimps @{thms iszero_simps}
- addsimprocs [
- Simplifier.simproc @{theory} "fast_int_arith" [
- "(m::int) < n", "(m::int) <= n", "(m::int) = n"] (K Lin_Arith.simproc),
- Simplifier.simproc @{theory} "fast_real_arith" [
- "(m::real) < n", "(m::real) <= n", "(m::real) = n"]
- (K Lin_Arith.simproc)]
- val simp_tac = CHANGED o Simplifier.simp_tac simpset
+ fun simp_tac thms = CHANGED o Simplifier.simp_tac (z3_simpset addsimps thms)
ORELSE' Classical.best_tac HOL_cs
in
fun rewrite ctxt thms ct =
@@ -1215,7 +1264,7 @@
("distinct", distinct),
("arith", by_tac' (arith_eq_tac ctxt)),
("classical", by_tac' (Classical.best_tac HOL_cs)),
- ("simp", by_tac' simp_tac),
+ ("simp", by_tac' (simp_tac thms)),
("full arith", by_tac' (Arith_Data.arith_tac ctxt))] (T.mk_prop ct))
end
end
--- a/src/HOL/SMT/Tools/z3_proof_terms.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/SMT/Tools/z3_proof_terms.ML Sat Nov 14 09:40:27 2009 +0100
@@ -132,7 +132,7 @@
in mk_preterm (ct, [(i, ct)]) end
local
-fun mk_quant q thy (n, T) e =
+fun mk_quant q thy (_, T) e =
let
val (ct, vs) = dest_preterm e
val cv =
--- a/src/HOL/Statespace/state_space.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Statespace/state_space.ML Sat Nov 14 09:40:27 2009 +0100
@@ -155,13 +155,13 @@
thy
|> Expression.add_locale (Binding.name name) (Binding.name name) expr elems
|> snd
- |> LocalTheory.exit;
+ |> Local_Theory.exit;
fun add_locale_cmd name expr elems thy =
thy
|> Expression.add_locale_cmd (Binding.name name) Binding.empty expr elems
|> snd
- |> LocalTheory.exit;
+ |> Local_Theory.exit;
type statespace_info =
{args: (string * sort) list, (* type arguments *)
@@ -350,8 +350,8 @@
fun add_declaration name decl thy =
thy
|> Theory_Target.init name
- |> (fn lthy => LocalTheory.declaration false (decl lthy) lthy)
- |> LocalTheory.exit_global;
+ |> (fn lthy => Local_Theory.declaration false (decl lthy) lthy)
+ |> Local_Theory.exit_global;
fun parent_components thy (Ts, pname, renaming) =
let
@@ -430,7 +430,7 @@
let
fun upd (n,v) =
let
- val nT = ProofContext.infer_type (LocalTheory.target_of lthy) n
+ val nT = ProofContext.infer_type (Local_Theory.target_of lthy) n
in Context.proof_map
(update_declinfo (Morphism.term phi (Free (n,nT)),v))
end;
--- a/src/HOL/SupInf.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/SupInf.thy Sat Nov 14 09:40:27 2009 +0100
@@ -118,7 +118,7 @@
shows "(!!x. x \<in> X \<Longrightarrow> x \<le> a)
\<Longrightarrow> (!!y. (!!x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y) \<Longrightarrow> Sup X = a"
by (metis Sup_least Sup_upper add_le_cancel_left diff_add_cancel insert_absorb
- insert_not_empty real_le_anti_sym)
+ insert_not_empty real_le_antisym)
lemma Sup_le:
fixes S :: "real set"
@@ -317,7 +317,7 @@
fixes a :: real
shows "(!!x. x \<in> X \<Longrightarrow> a \<le> x) \<Longrightarrow> (!!y. (!!x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a) \<Longrightarrow> Inf X = a"
by (metis Inf_greatest Inf_lower add_le_cancel_left diff_add_cancel
- insert_absorb insert_not_empty real_le_anti_sym)
+ insert_absorb insert_not_empty real_le_antisym)
lemma Inf_ge:
fixes S :: "real set"
@@ -397,7 +397,7 @@
fixes S :: "real set"
shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> a \<ge> Inf S \<longleftrightarrow> (\<exists> x \<in> S. a \<ge> x)"
by (metis Inf_finite_Min Inf_finite_ge_iff Inf_finite_in Min_le
- real_le_anti_sym real_le_linear)
+ real_le_antisym real_le_linear)
lemma Inf_finite_gt_iff:
fixes S :: "real set"
--- a/src/HOL/Tools/Datatype/datatype_abs_proofs.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/Datatype/datatype_abs_proofs.ML Sat Nov 14 09:40:27 2009 +0100
@@ -156,9 +156,8 @@
thy0
|> Sign.map_naming Name_Space.conceal
|> Inductive.add_inductive_global (serial ())
- {quiet_mode = #quiet config, verbose = false, kind = "",
- alt_name = Binding.name big_rec_name', coind = false, no_elim = false, no_ind = true,
- skip_mono = true, fork_mono = false}
+ {quiet_mode = #quiet config, verbose = false, alt_name = Binding.name big_rec_name',
+ coind = false, no_elim = false, no_ind = true, skip_mono = true, fork_mono = false}
(map (fn (s, T) => ((Binding.name s, T), NoSyn)) (rec_set_names' ~~ rec_set_Ts))
(map dest_Free rec_fns)
(map (fn x => (Attrib.empty_binding, x)) rec_intr_ts) []
--- a/src/HOL/Tools/Datatype/datatype_rep_proofs.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/Datatype/datatype_rep_proofs.ML Sat Nov 14 09:40:27 2009 +0100
@@ -175,9 +175,8 @@
thy1
|> Sign.map_naming Name_Space.conceal
|> Inductive.add_inductive_global (serial ())
- {quiet_mode = #quiet config, verbose = false, kind = "",
- alt_name = Binding.name big_rec_name, coind = false, no_elim = true, no_ind = false,
- skip_mono = true, fork_mono = false}
+ {quiet_mode = #quiet config, verbose = false, alt_name = Binding.name big_rec_name,
+ coind = false, no_elim = true, no_ind = false, skip_mono = true, fork_mono = false}
(map (fn s => ((Binding.name s, UnivT'), NoSyn)) rep_set_names') []
(map (fn x => (Attrib.empty_binding, x)) intr_ts) []
||> Sign.restore_naming thy1
--- a/src/HOL/Tools/Function/fun.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/Function/fun.ML Sat Nov 14 09:40:27 2009 +0100
@@ -153,11 +153,11 @@
fun gen_fun add config fixes statements int lthy =
let val group = serial () in
lthy
- |> LocalTheory.set_group group
+ |> Local_Theory.set_group group
|> add fixes statements config
|> by_pat_completeness_auto int
- |> LocalTheory.restore
- |> LocalTheory.set_group group
+ |> Local_Theory.restore
+ |> Local_Theory.set_group group
|> termination_by (Function_Common.get_termination_prover lthy) int
end;
--- a/src/HOL/Tools/Function/function.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/Function/function.ML Sat Nov 14 09:40:27 2009 +0100
@@ -43,9 +43,6 @@
[Simplifier.simp_add,
Nitpick_Psimps.add]
-fun note_theorem ((binding, atts), ths) =
- LocalTheory.note Thm.generatedK ((binding, atts), ths)
-
fun mk_defname fixes = fixes |> map (fst o fst) |> space_implode "_"
fun add_simps fnames post sort extra_qualify label mod_binding moreatts simps lthy =
@@ -55,13 +52,14 @@
|> map (apfst (apfst extra_qualify))
val (saved_spec_simps, lthy) =
- fold_map (LocalTheory.note Thm.generatedK) spec lthy
+ fold_map Local_Theory.note spec lthy
val saved_simps = maps snd saved_spec_simps
val simps_by_f = sort saved_simps
fun add_for_f fname simps =
- note_theorem ((mod_binding (Binding.qualify true fname (Binding.name label)), []), simps)
+ Local_Theory.note
+ ((mod_binding (Binding.qualify true fname (Binding.name label)), []), simps)
#> snd
in
(saved_simps,
@@ -100,14 +98,14 @@
|> addsmps (conceal_partial o Binding.qualify false "partial")
"psimps" conceal_partial psimp_attribs psimps
||> fold_option (snd oo addsmps I "simps" I simp_attribs) trsimps
- ||>> note_theorem ((conceal_partial (qualify "pinduct"),
+ ||>> Local_Theory.note ((conceal_partial (qualify "pinduct"),
[Attrib.internal (K (Rule_Cases.case_names cnames)),
Attrib.internal (K (Rule_Cases.consumes 1)),
Attrib.internal (K (Induct.induct_pred ""))]), simple_pinducts)
- ||>> note_theorem ((Binding.conceal (qualify "termination"), []), [termination])
- ||> (snd o note_theorem ((qualify "cases",
+ ||>> Local_Theory.note ((Binding.conceal (qualify "termination"), []), [termination])
+ ||> (snd o Local_Theory.note ((qualify "cases",
[Attrib.internal (K (Rule_Cases.case_names cnames))]), [cases]))
- ||> fold_option (snd oo curry note_theorem (qualify "domintros", [])) domintros
+ ||> fold_option (snd oo curry Local_Theory.note (qualify "domintros", [])) domintros
val cdata = FunctionCtxData { add_simps=addsmps, case_names=cnames, psimps=psimps',
pinducts=snd pinducts', termination=termination',
@@ -117,11 +115,11 @@
else Specification.print_consts lthy (K false) (map fst fixes)
in
lthy
- |> LocalTheory.declaration false (add_function_data o morph_function_data cdata)
+ |> Local_Theory.declaration false (add_function_data o morph_function_data cdata)
end
in
lthy
- |> is_external ? LocalTheory.set_group (serial ())
+ |> is_external ? Local_Theory.set_group (serial ())
|> Proof.theorem_i NONE afterqed [[(Logic.unprotect (concl_of goalstate), [])]]
|> Proof.refine (Method.primitive_text (fn _ => goalstate)) |> Seq.hd
end
@@ -155,7 +153,7 @@
in
lthy
|> add_simps I "simps" I simp_attribs tsimps |> snd
- |> note_theorem
+ |> Local_Theory.note
((qualify "induct",
[Attrib.internal (K (Rule_Cases.case_names case_names))]),
tinduct) |> snd
@@ -177,12 +175,12 @@
fun termination term_opt lthy =
lthy
- |> LocalTheory.set_group (serial ())
+ |> Local_Theory.set_group (serial ())
|> termination_proof term_opt;
fun termination_cmd term_opt lthy =
lthy
- |> LocalTheory.set_group (serial ())
+ |> Local_Theory.set_group (serial ())
|> termination_proof_cmd term_opt;
--- a/src/HOL/Tools/Function/function_core.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/Function/function_core.ML Sat Nov 14 09:40:27 2009 +0100
@@ -456,11 +456,10 @@
let
val ({intrs = intrs_gen, elims = [elim_gen], preds = [ Rdef ], induct, ...}, lthy) =
lthy
- |> LocalTheory.conceal
+ |> Local_Theory.conceal
|> Inductive.add_inductive_i
{quiet_mode = true,
verbose = ! trace,
- kind = "",
alt_name = Binding.empty,
coind = false,
no_elim = false,
@@ -471,7 +470,7 @@
[] (* no parameters *)
(map (fn t => (Attrib.empty_binding, t)) intrs) (* intro rules *)
[] (* no special monos *)
- ||> LocalTheory.restore_naming lthy
+ ||> Local_Theory.restore_naming lthy
val cert = cterm_of (ProofContext.theory_of lthy)
fun requantify orig_intro thm =
@@ -519,7 +518,7 @@
$ (default $ Bound 0) $ Abs ("y", ranT, G $ Bound 1 $ Bound 0))
|> Syntax.check_term lthy
in
- LocalTheory.define ""
+ Local_Theory.define ""
((Binding.name (function_name fname), mixfix),
((Binding.conceal (Binding.name fdefname), []), f_def)) lthy
end
@@ -929,7 +928,7 @@
PROFILE "def_rel" (define_recursion_relation (rel_name defname) domT ranT fvar f abstract_qglrs clauses RCss) lthy
val (_, lthy) =
- LocalTheory.abbrev Syntax.mode_default ((Binding.name (dom_name defname), NoSyn), mk_acc domT R) lthy
+ Local_Theory.abbrev Syntax.mode_default ((Binding.name (dom_name defname), NoSyn), mk_acc domT R) lthy
val newthy = ProofContext.theory_of lthy
val clauses = map (transfer_clause_ctx newthy) clauses
--- a/src/HOL/Tools/Function/mutual.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/Function/mutual.ML Sat Nov 14 09:40:27 2009 +0100
@@ -146,7 +146,7 @@
fun def ((MutualPart {i=i, i'=i', fvar=(fname, fT), cargTs, f_def, ...}), (_, mixfix)) lthy =
let
val ((f, (_, f_defthm)), lthy') =
- LocalTheory.define ""
+ Local_Theory.define ""
((Binding.name fname, mixfix),
((Binding.conceal (Binding.name (fname ^ "_def")), []),
Term.subst_bound (fsum, f_def))) lthy
--- a/src/HOL/Tools/Function/size.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/Function/size.ML Sat Nov 14 09:40:27 2009 +0100
@@ -130,7 +130,7 @@
fun define_overloaded (def_name, eq) lthy =
let
val (Free (c, _), rhs) = (Logic.dest_equals o Syntax.check_term lthy) eq;
- val ((_, (_, thm)), lthy') = lthy |> LocalTheory.define Thm.definitionK
+ val ((_, (_, thm)), lthy') = lthy |> Local_Theory.define Thm.definitionK
((Binding.name c, NoSyn), ((Binding.name def_name, []), rhs));
val ctxt_thy = ProofContext.init (ProofContext.theory_of lthy');
val thm' = singleton (ProofContext.export lthy' ctxt_thy) thm;
@@ -149,7 +149,7 @@
||>> fold_map define_overloaded
(def_names' ~~ map Logic.mk_equals (overloaded_size_fns ~~ map (app fs') rec_combs1))
||> Class.prove_instantiation_instance (K (Class.intro_classes_tac []))
- ||> LocalTheory.exit_global;
+ ||> Local_Theory.exit_global;
val ctxt = ProofContext.init thy';
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/Predicate_Compile/predicate_compile.ML Sat Nov 14 09:40:27 2009 +0100
@@ -137,8 +137,8 @@
in
if (is_inductify options) then
let
- val lthy' = LocalTheory.theory (preprocess options const) lthy
- |> LocalTheory.checkpoint
+ val lthy' = Local_Theory.theory (preprocess options const) lthy
+ |> Local_Theory.checkpoint
val const =
case Predicate_Compile_Fun.pred_of_function (ProofContext.theory_of lthy') const of
SOME c => c
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_core.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_core.ML Sat Nov 14 09:40:27 2009 +0100
@@ -2411,9 +2411,9 @@
let
val thy = ProofContext.theory_of lthy
val const = prep_const thy raw_const
- val lthy' = LocalTheory.theory (PredData.map
+ val lthy' = Local_Theory.theory (PredData.map
(extend (fetch_pred_data thy) (depending_preds_of thy) const)) lthy
- |> LocalTheory.checkpoint
+ |> Local_Theory.checkpoint
val thy' = ProofContext.theory_of lthy'
val preds = Graph.all_succs (PredData.get thy') [const] |> filter_out (has_elim thy')
fun mk_cases const =
@@ -2437,7 +2437,7 @@
val global_thms = ProofContext.export goal_ctxt
(ProofContext.init (ProofContext.theory_of goal_ctxt)) (map the_single thms)
in
- goal_ctxt |> LocalTheory.theory (fold set_elim global_thms #>
+ goal_ctxt |> Local_Theory.theory (fold set_elim global_thms #>
(if is_random options then
(add_equations options [const] #>
add_quickcheck_equations options [const])
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_fun.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_fun.ML Sat Nov 14 09:40:27 2009 +0100
@@ -355,9 +355,8 @@
thy
|> Sign.map_naming Name_Space.conceal
|> Inductive.add_inductive_global (serial ())
- {quiet_mode = false, verbose = false, kind = "",
- alt_name = Binding.empty, coind = false, no_elim = false,
- no_ind = false, skip_mono = false, fork_mono = false}
+ {quiet_mode = false, verbose = false, alt_name = Binding.empty, coind = false,
+ no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
(map (fn (s, T) =>
((Binding.name s, T), NoSyn)) (distinct (op =) (map dest_Free preds)))
pnames
--- a/src/HOL/Tools/inductive.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/inductive.ML Sat Nov 14 09:40:27 2009 +0100
@@ -39,8 +39,8 @@
val inductive_cases_i: (Attrib.binding * term list) list -> local_theory ->
thm list list * local_theory
type inductive_flags =
- {quiet_mode: bool, verbose: bool, kind: string, alt_name: binding,
- coind: bool, no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool}
+ {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool,
+ no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool}
val add_inductive_i:
inductive_flags -> ((binding * typ) * mixfix) list ->
(string * typ) list -> (Attrib.binding * term) list -> thm list -> local_theory ->
@@ -71,7 +71,7 @@
term list -> (Attrib.binding * term) list -> thm list ->
term list -> (binding * mixfix) list ->
local_theory -> inductive_result * local_theory
- val declare_rules: string -> binding -> bool -> bool -> string list ->
+ val declare_rules: binding -> bool -> bool -> string list ->
thm list -> binding list -> Attrib.src list list -> (thm * string list) list ->
thm -> local_theory -> thm list * thm list * thm * local_theory
val add_ind_def: add_ind_def
@@ -469,7 +469,7 @@
val facts = args |> map (fn ((a, atts), props) =>
((a, map (prep_att thy) atts),
map (Thm.no_attributes o single o mk_cases lthy o prep_prop lthy) props));
- in lthy |> LocalTheory.notes Thm.generatedK facts |>> map snd end;
+ in lthy |> Local_Theory.notes facts |>> map snd end;
val inductive_cases = gen_inductive_cases Attrib.intern_src Syntax.read_prop;
val inductive_cases_i = gen_inductive_cases (K I) Syntax.check_prop;
@@ -509,7 +509,8 @@
fun mk_ind_prem r =
let
- fun subst s = (case dest_predicate cs params s of
+ fun subst s =
+ (case dest_predicate cs params s of
SOME (_, i, ys, (_, Ts)) =>
let
val k = length Ts;
@@ -520,10 +521,11 @@
HOLogic.mk_binop inductive_conj_name
(list_comb (incr_boundvars k s, bs), P))
in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
- | NONE => (case s of
- (t $ u) => (fst (subst t) $ fst (subst u), NONE)
- | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
- | _ => (s, NONE)));
+ | NONE =>
+ (case s of
+ (t $ u) => (fst (subst t) $ fst (subst u), NONE)
+ | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
+ | _ => (s, NONE)));
fun mk_prem s prems =
(case subst s of
@@ -618,16 +620,17 @@
SOME (_, i, ts, (Ts, Us)) =>
let
val l = length Us;
- val zs = map Bound (l - 1 downto 0)
+ val zs = map Bound (l - 1 downto 0);
in
list_abs (map (pair "z") Us, list_comb (p,
make_bool_args' bs i @ make_args argTs
((map (incr_boundvars l) ts ~~ Ts) @ (zs ~~ Us))))
end
- | NONE => (case t of
- t1 $ t2 => subst t1 $ subst t2
- | Abs (x, T, u) => Abs (x, T, subst u)
- | _ => t));
+ | NONE =>
+ (case t of
+ t1 $ t2 => subst t1 $ subst t2
+ | Abs (x, T, u) => Abs (x, T, subst u)
+ | _ => t));
(* transform an introduction rule into a conjunction *)
(* [| p_i t; ... |] ==> p_j u *)
@@ -662,13 +665,13 @@
else alt_name;
val ((rec_const, (_, fp_def)), lthy') = lthy
- |> LocalTheory.conceal
- |> LocalTheory.define ""
+ |> Local_Theory.conceal
+ |> Local_Theory.define ""
((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
((Binding.empty, [Attrib.internal (K Nitpick_Defs.add)]),
fold_rev lambda params
(Const (fp_name, (predT --> predT) --> predT) $ fp_fun)))
- ||> LocalTheory.restore_naming lthy;
+ ||> Local_Theory.restore_naming lthy;
val fp_def' = Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
(cterm_of (ProofContext.theory_of lthy') (list_comb (rec_const, params)));
val specs =
@@ -685,21 +688,21 @@
make_args argTs (xs ~~ Ts)))))
end) (cnames_syn ~~ cs);
val (consts_defs, lthy'') = lthy'
- |> LocalTheory.conceal
- |> fold_map (LocalTheory.define "") specs
- ||> LocalTheory.restore_naming lthy';
+ |> Local_Theory.conceal
+ |> fold_map (Local_Theory.define "") specs
+ ||> Local_Theory.restore_naming lthy';
val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
val mono = prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos lthy'';
val ((_, [mono']), lthy''') =
- LocalTheory.note "" (apfst Binding.conceal Attrib.empty_binding, [mono]) lthy'';
+ Local_Theory.note (apfst Binding.conceal Attrib.empty_binding, [mono]) lthy'';
in (lthy''', rec_name, mono', fp_def', map (#2 o #2) consts_defs,
list_comb (rec_const, params), preds, argTs, bs, xs)
end;
-fun declare_rules kind rec_binding coind no_ind cnames
- intrs intr_bindings intr_atts elims raw_induct lthy =
+fun declare_rules rec_binding coind no_ind cnames
+ intrs intr_bindings intr_atts elims raw_induct lthy =
let
val rec_name = Binding.name_of rec_binding;
fun rec_qualified qualified = Binding.qualify qualified rec_name;
@@ -716,7 +719,7 @@
val (intrs', lthy1) =
lthy |>
- LocalTheory.notes kind
+ Local_Theory.notes
(map (rec_qualified false) intr_bindings ~~ intr_atts ~~
map (fn th => [([th],
[Attrib.internal (K (Context_Rules.intro_query NONE)),
@@ -724,16 +727,16 @@
map (hd o snd);
val (((_, elims'), (_, [induct'])), lthy2) =
lthy1 |>
- LocalTheory.note kind ((rec_qualified true (Binding.name "intros"), []), intrs') ||>>
+ Local_Theory.note ((rec_qualified true (Binding.name "intros"), []), intrs') ||>>
fold_map (fn (name, (elim, cases)) =>
- LocalTheory.note kind
+ Local_Theory.note
((Binding.qualify true (Long_Name.base_name name) (Binding.name "cases"),
[Attrib.internal (K (Rule_Cases.case_names cases)),
Attrib.internal (K (Rule_Cases.consumes 1)),
Attrib.internal (K (Induct.cases_pred name)),
Attrib.internal (K (Context_Rules.elim_query NONE))]), [elim]) #>
apfst (hd o snd)) (if null elims then [] else cnames ~~ elims) ||>>
- LocalTheory.note kind
+ Local_Theory.note
((rec_qualified true (Binding.name (coind_prefix coind ^ "induct")),
map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]);
@@ -742,7 +745,7 @@
else
let val inducts = cnames ~~ Project_Rule.projects lthy2 (1 upto length cnames) induct' in
lthy2 |>
- LocalTheory.notes kind [((rec_qualified true (Binding.name "inducts"), []),
+ Local_Theory.notes [((rec_qualified true (Binding.name "inducts"), []),
inducts |> map (fn (name, th) => ([th],
[Attrib.internal (K ind_case_names),
Attrib.internal (K (Rule_Cases.consumes 1)),
@@ -751,8 +754,8 @@
in (intrs', elims', induct', lthy3) end;
type inductive_flags =
- {quiet_mode: bool, verbose: bool, kind: string, alt_name: binding,
- coind: bool, no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool};
+ {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool,
+ no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool};
type add_ind_def =
inductive_flags ->
@@ -760,8 +763,7 @@
term list -> (binding * mixfix) list ->
local_theory -> inductive_result * local_theory;
-fun add_ind_def
- {quiet_mode, verbose, kind, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono}
+fun add_ind_def {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono}
cs intros monos params cnames_syn lthy =
let
val _ = null cnames_syn andalso error "No inductive predicates given";
@@ -769,7 +771,7 @@
val _ = message (quiet_mode andalso not verbose)
("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^ commas_quote names);
- val cnames = map (LocalTheory.full_name lthy o #1) cnames_syn; (* FIXME *)
+ val cnames = map (Local_Theory.full_name lthy o #1) cnames_syn; (* FIXME *)
val ((intr_names, intr_atts), intr_ts) =
apfst split_list (split_list (map (check_rule lthy cs params) intros));
@@ -797,7 +799,7 @@
prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono fp_def
rec_preds_defs lthy1);
- val (intrs', elims', induct, lthy2) = declare_rules kind rec_name coind no_ind
+ val (intrs', elims', induct, lthy2) = declare_rules rec_name coind no_ind
cnames intrs intr_names intr_atts elims raw_induct lthy1;
val result =
@@ -808,7 +810,7 @@
induct = induct};
val lthy3 = lthy2
- |> LocalTheory.declaration false (fn phi =>
+ |> Local_Theory.declaration false (fn phi =>
let val result' = morph_result phi result;
in put_inductives cnames (*global names!?*) ({names = cnames, coind = coind}, result') end);
in (result, lthy3) end;
@@ -817,7 +819,7 @@
(* external interfaces *)
fun gen_add_inductive_i mk_def
- (flags as {quiet_mode, verbose, kind, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono})
+ (flags as {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono})
cnames_syn pnames spec monos lthy =
let
val thy = ProofContext.theory_of lthy;
@@ -870,7 +872,7 @@
in
lthy
|> mk_def flags cs intros monos ps preds
- ||> fold (snd oo LocalTheory.abbrev Syntax.mode_default) abbrevs
+ ||> fold (snd oo Local_Theory.abbrev Syntax.mode_default) abbrevs
end;
fun gen_add_inductive mk_def verbose coind cnames_syn pnames_syn intro_srcs raw_monos int lthy =
@@ -880,12 +882,11 @@
|> Specification.read_spec (cnames_syn @ pnames_syn) intro_srcs;
val (cs, ps) = chop (length cnames_syn) vars;
val monos = Attrib.eval_thms lthy raw_monos;
- val flags = {quiet_mode = false, verbose = verbose, kind = Thm.generatedK,
- alt_name = Binding.empty, coind = coind, no_elim = false, no_ind = false,
- skip_mono = false, fork_mono = not int};
+ val flags = {quiet_mode = false, verbose = verbose, alt_name = Binding.empty,
+ coind = coind, no_elim = false, no_ind = false, skip_mono = false, fork_mono = not int};
in
lthy
- |> LocalTheory.set_group (serial ())
+ |> Local_Theory.set_group (serial ())
|> gen_add_inductive_i mk_def flags cs (map (apfst Binding.name_of o fst) ps) intrs monos
end;
@@ -897,9 +898,9 @@
val name = Sign.full_name thy (fst (fst (hd cnames_syn)));
val ctxt' = thy
|> Theory_Target.init NONE
- |> LocalTheory.set_group group
+ |> Local_Theory.set_group group
|> add_inductive_i flags cnames_syn pnames pre_intros monos |> snd
- |> LocalTheory.exit;
+ |> Local_Theory.exit;
val info = #2 (the_inductive ctxt' name);
in (info, ProofContext.theory_of ctxt') end;
--- a/src/HOL/Tools/inductive_realizer.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/inductive_realizer.ML Sat Nov 14 09:40:27 2009 +0100
@@ -14,7 +14,7 @@
structure InductiveRealizer : INDUCTIVE_REALIZER =
struct
-(* FIXME: LocalTheory.note should return theorems with proper names! *) (* FIXME ?? *)
+(* FIXME: Local_Theory.note should return theorems with proper names! *) (* FIXME ?? *)
fun name_of_thm thm =
(case Proofterm.fold_proof_atoms false (fn PThm (_, ((name, _, _), _)) => cons name | _ => I)
[Thm.proof_of thm] [] of
@@ -351,8 +351,8 @@
val (ind_info, thy3') = thy2 |>
Inductive.add_inductive_global (serial ())
- {quiet_mode = false, verbose = false, kind = Thm.generatedK, alt_name = Binding.empty,
- coind = false, no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
+ {quiet_mode = false, verbose = false, alt_name = Binding.empty, coind = false,
+ no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
rlzpreds rlzparams (map (fn (rintr, intr) =>
((Binding.name (Long_Name.base_name (name_of_thm intr)), []),
subst_atomic rlzpreds' (Logic.unvarify rintr)))
--- a/src/HOL/Tools/inductive_set.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/inductive_set.ML Sat Nov 14 09:40:27 2009 +0100
@@ -224,7 +224,7 @@
map (fn (x, ps) =>
let
val U = HOLogic.dest_setT (fastype_of x);
- val x' = map_type (K (HOLogic.strip_ptupleT ps U ---> HOLogic.boolT)) x
+ val x' = map_type (K (HOLogic.strip_ptupleT ps U ---> HOLogic.boolT)) x;
in
(cterm_of thy x,
cterm_of thy (HOLogic.Collect_const U $
@@ -405,7 +405,7 @@
(**** definition of inductive sets ****)
fun add_ind_set_def
- {quiet_mode, verbose, kind, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono}
+ {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono}
cs intros monos params cnames_syn lthy =
let
val thy = ProofContext.theory_of lthy;
@@ -477,20 +477,20 @@
val monos' = map (to_pred [] (Context.Proof lthy)) monos;
val ({preds, intrs, elims, raw_induct, ...}, lthy1) =
Inductive.add_ind_def
- {quiet_mode = quiet_mode, verbose = verbose, kind = kind, alt_name = Binding.empty,
+ {quiet_mode = quiet_mode, verbose = verbose, alt_name = Binding.empty,
coind = coind, no_elim = no_elim, no_ind = no_ind,
skip_mono = skip_mono, fork_mono = fork_mono}
cs' intros' monos' params1 cnames_syn' lthy;
(* define inductive sets using previously defined predicates *)
val (defs, lthy2) = lthy1
- |> LocalTheory.conceal (* FIXME ?? *)
- |> fold_map (LocalTheory.define "")
+ |> Local_Theory.conceal (* FIXME ?? *)
+ |> fold_map (Local_Theory.define "")
(map (fn ((c_syn, (fs, U, _)), p) => (c_syn, (Attrib.empty_binding,
fold_rev lambda params (HOLogic.Collect_const U $
HOLogic.mk_psplits fs U HOLogic.boolT (list_comb (p, params3))))))
(cnames_syn ~~ cs_info ~~ preds))
- ||> LocalTheory.restore_naming lthy1;
+ ||> Local_Theory.restore_naming lthy1;
(* prove theorems for converting predicate to set notation *)
val lthy3 = fold
@@ -505,7 +505,7 @@
(K (REPEAT (rtac ext 1) THEN simp_tac (HOL_basic_ss addsimps
[def, mem_Collect_eq, split_conv]) 1))
in
- lthy |> LocalTheory.note kind ((Binding.name (s ^ "p_" ^ s ^ "_eq"),
+ lthy |> Local_Theory.note ((Binding.name (s ^ "p_" ^ s ^ "_eq"),
[Attrib.internal (K pred_set_conv_att)]),
[conv_thm]) |> snd
end) (preds ~~ cs ~~ cs_info ~~ defs) lthy2;
@@ -515,11 +515,11 @@
if Binding.is_empty alt_name then
Binding.name (space_implode "_" (map (Binding.name_of o fst) cnames_syn))
else alt_name;
- val cnames = map (LocalTheory.full_name lthy3 o #1) cnames_syn; (* FIXME *)
+ val cnames = map (Local_Theory.full_name lthy3 o #1) cnames_syn; (* FIXME *)
val (intr_names, intr_atts) = split_list (map fst intros);
val raw_induct' = to_set [] (Context.Proof lthy3) raw_induct;
val (intrs', elims', induct, lthy4) =
- Inductive.declare_rules kind rec_name coind no_ind cnames
+ Inductive.declare_rules rec_name coind no_ind cnames
(map (to_set [] (Context.Proof lthy3)) intrs) intr_names intr_atts
(map (fn th => (to_set [] (Context.Proof lthy3) th,
map fst (fst (Rule_Cases.get th)))) elims)
--- a/src/HOL/Tools/primrec.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/primrec.ML Sat Nov 14 09:40:27 2009 +0100
@@ -259,7 +259,7 @@
val ((prefix, (fs, defs)), prove) = distill lthy fixes ts;
in
lthy
- |> fold_map (LocalTheory.define Thm.definitionK) defs
+ |> fold_map (Local_Theory.define Thm.definitionK) defs
|-> (fn defs => `(fn lthy => (prefix, prove lthy defs)))
end;
@@ -275,12 +275,10 @@
map (Attrib.internal o K) [Simplifier.simp_add, Nitpick_Simps.add]);
in
lthy
- |> set_group ? LocalTheory.set_group (serial ())
+ |> set_group ? Local_Theory.set_group (serial ())
|> add_primrec_simple fixes (map snd spec)
- |-> (fn (prefix, simps) => fold_map (LocalTheory.note Thm.generatedK)
- (attr_bindings prefix ~~ simps)
- #-> (fn simps' => LocalTheory.note Thm.generatedK
- (simp_attr_binding prefix, maps snd simps')))
+ |-> (fn (prefix, simps) => fold_map Local_Theory.note (attr_bindings prefix ~~ simps)
+ #-> (fn simps' => Local_Theory.note (simp_attr_binding prefix, maps snd simps')))
|>> snd
end;
@@ -296,14 +294,14 @@
val lthy = Theory_Target.init NONE thy;
val (simps, lthy') = add_primrec fixes specs lthy;
val simps' = ProofContext.export lthy' lthy simps;
- in (simps', LocalTheory.exit_global lthy') end;
+ in (simps', Local_Theory.exit_global lthy') end;
fun add_primrec_overloaded ops fixes specs thy =
let
val lthy = Theory_Target.overloading ops thy;
val (simps, lthy') = add_primrec fixes specs lthy;
val simps' = ProofContext.export lthy' lthy simps;
- in (simps', LocalTheory.exit_global lthy') end;
+ in (simps', Local_Theory.exit_global lthy') end;
(* outer syntax *)
--- a/src/HOL/Tools/quickcheck_generators.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Tools/quickcheck_generators.ML Sat Nov 14 09:40:27 2009 +0100
@@ -190,7 +190,7 @@
in
lthy
|> random_aux_primrec aux_eq'
- ||>> fold_map (LocalTheory.define Thm.definitionK) proj_defs
+ ||>> fold_map (Local_Theory.define Thm.definitionK) proj_defs
|-> (fn (aux_simp, proj_defs) => prove_eqs aux_simp proj_defs)
end;
@@ -214,8 +214,8 @@
lthy
|> random_aux_primrec_multi (name ^ prfx) proto_eqs
|-> (fn proto_simps => prove_simps proto_simps)
- |-> (fn simps => LocalTheory.note Thm.generatedK ((b,
- Code.add_default_eqn_attrib :: map (Attrib.internal o K)
+ |-> (fn simps => Local_Theory.note
+ ((b, Code.add_default_eqn_attrib :: map (Attrib.internal o K)
[Simplifier.simp_add, Nitpick_Simps.add]), simps))
|> snd
end
--- a/src/HOL/Transcendental.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Transcendental.thy Sat Nov 14 09:40:27 2009 +0100
@@ -1213,6 +1213,9 @@
apply (simp_all add: abs_if isCont_ln)
done
+lemma DERIV_ln_divide: "0 < x ==> DERIV ln x :> 1 / x"
+ by (rule DERIV_ln[THEN DERIV_cong], simp, simp add: divide_inverse)
+
lemma ln_series: assumes "0 < x" and "x < 2"
shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))" (is "ln x = suminf (?f (x - 1))")
proof -
@@ -1702,9 +1705,8 @@
apply (drule_tac f = cos in Rolle)
apply (drule_tac [5] f = cos in Rolle)
apply (auto dest!: DERIV_cos [THEN DERIV_unique] simp add: differentiable_def)
-apply (drule_tac y1 = xa in order_le_less_trans [THEN sin_gt_zero])
-apply (assumption, rule_tac y=y in order_less_le_trans, simp_all)
-apply (drule_tac y1 = y in order_le_less_trans [THEN sin_gt_zero], assumption, simp_all)
+apply (metis order_less_le_trans real_less_def sin_gt_zero)
+apply (metis order_less_le_trans real_less_def sin_gt_zero)
done
lemma pi_half: "pi/2 = (THE x. 0 \<le> x & x \<le> 2 & cos x = 0)"
@@ -2436,14 +2438,8 @@
apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify)
apply (subgoal_tac "isCont arctan (tan (arctan x))", simp)
apply (erule (1) isCont_inverse_function2 [where f=tan])
-apply (clarify, rule arctan_tan)
-apply (erule (1) order_less_le_trans)
-apply (erule (1) order_le_less_trans)
-apply (clarify, rule isCont_tan)
-apply (rule less_imp_neq [symmetric])
-apply (rule cos_gt_zero_pi)
-apply (erule (1) order_less_le_trans)
-apply (erule (1) order_le_less_trans)
+apply (metis arctan_tan order_le_less_trans order_less_le_trans)
+apply (metis cos_gt_zero_pi isCont_tan order_less_le_trans real_less_def)
done
lemma DERIV_arcsin:
@@ -3119,8 +3115,7 @@
lemma polar_ex2:
"y < 0 ==> \<exists>r a. x = r * cos a & y = r * sin a"
apply (insert polar_ex1 [where x=x and y="-y"], simp, clarify)
-apply (rule_tac x = r in exI)
-apply (rule_tac x = "-a" in exI, simp)
+apply (metis cos_minus minus_minus minus_mult_right sin_minus)
done
lemma polar_Ex: "\<exists>r a. x = r * cos a & y = r * sin a"
--- a/src/HOL/Transitive_Closure.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/Transitive_Closure.thy Sat Nov 14 09:40:27 2009 +0100
@@ -575,6 +575,25 @@
"(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)"
by (fast elim: trancl_into_rtrancl dest: rtranclD)
+lemma trancl_unfold_right: "r^+ = r^* O r"
+by (auto dest: tranclD2 intro: rtrancl_into_trancl1)
+
+lemma trancl_unfold_left: "r^+ = r O r^*"
+by (auto dest: tranclD intro: rtrancl_into_trancl2)
+
+
+text {* Simplifying nested closures *}
+
+lemma rtrancl_trancl_absorb[simp]: "(R^*)^+ = R^*"
+by (simp add: trans_rtrancl)
+
+lemma trancl_rtrancl_absorb[simp]: "(R^+)^* = R^*"
+by (subst reflcl_trancl[symmetric]) simp
+
+lemma rtrancl_reflcl_absorb[simp]: "(R^*)^= = R^*"
+by auto
+
+
text {* @{text Domain} and @{text Range} *}
lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV"
--- a/src/HOL/ex/LocaleTest2.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOL/ex/LocaleTest2.thy Sat Nov 14 09:40:27 2009 +0100
@@ -29,7 +29,7 @@
locale dpo =
fixes le :: "['a, 'a] => bool" (infixl "\<sqsubseteq>" 50)
assumes refl [intro, simp]: "x \<sqsubseteq> x"
- and anti_sym [intro]: "[| x \<sqsubseteq> y; y \<sqsubseteq> x |] ==> x = y"
+ and antisym [intro]: "[| x \<sqsubseteq> y; y \<sqsubseteq> x |] ==> x = y"
and trans [trans]: "[| x \<sqsubseteq> y; y \<sqsubseteq> z |] ==> x \<sqsubseteq> z"
begin
@@ -87,7 +87,7 @@
assume inf: "is_inf x y i"
assume inf': "is_inf x y i'"
show ?thesis
- proof (rule anti_sym)
+ proof (rule antisym)
from inf' show "i \<sqsubseteq> i'"
proof (rule is_inf_greatest)
from inf show "i \<sqsubseteq> x" ..
@@ -159,7 +159,7 @@
assume sup: "is_sup x y s"
assume sup': "is_sup x y s'"
show ?thesis
- proof (rule anti_sym)
+ proof (rule antisym)
from sup show "s \<sqsubseteq> s'"
proof (rule is_sup_least)
from sup' show "x \<sqsubseteq> s'" ..
@@ -457,7 +457,7 @@
moreover
{ assume c: "x \<sqsubseteq> y | x \<sqsubseteq> z"
from c have "?l = x"
- by (metis (*anti_sym*) (*c*) (*circular*) (*join_assoc*)(* join_commute *) join_connection2 (*join_left*) join_related2 meet_connection(* meet_related2*) total trans)
+ by (metis (*antisym*) (*c*) (*circular*) (*join_assoc*)(* join_commute *) join_connection2 (*join_left*) join_related2 meet_connection(* meet_related2*) total trans)
also from c have "... = ?r"
by (metis join_commute join_related2 meet_connection meet_related2 total)
finally have "?l = ?r" . }
--- a/src/HOLCF/Representable.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOLCF/Representable.thy Sat Nov 14 09:40:27 2009 +0100
@@ -6,6 +6,7 @@
theory Representable
imports Algebraic Universal Ssum Sprod One ConvexPD
+uses ("Tools/repdef.ML")
begin
subsection {* Class of representable types *}
@@ -174,16 +175,21 @@
setup {* Sign.add_const_constraint
(@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::pcpo"}) *}
+definition
+ repdef_approx ::
+ "('a::pcpo \<Rightarrow> udom) \<Rightarrow> (udom \<Rightarrow> 'a) \<Rightarrow> udom alg_defl \<Rightarrow> nat \<Rightarrow> 'a \<rightarrow> 'a"
+where
+ "repdef_approx Rep Abs t = (\<lambda>i. \<Lambda> x. Abs (cast\<cdot>(approx i\<cdot>t)\<cdot>(Rep x)))"
+
lemma typedef_rep_class:
fixes Rep :: "'a::pcpo \<Rightarrow> udom"
fixes Abs :: "udom \<Rightarrow> 'a::pcpo"
fixes t :: TypeRep
assumes type: "type_definition Rep Abs {x. x ::: t}"
assumes below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
- assumes emb: "emb = (\<Lambda> x. Rep x)"
- assumes prj: "prj = (\<Lambda> x. Abs (cast\<cdot>t\<cdot>x))"
- assumes approx:
- "(approx :: nat \<Rightarrow> 'a \<rightarrow> 'a) = (\<lambda>i. prj oo cast\<cdot>(approx i\<cdot>t) oo emb)"
+ assumes emb: "emb \<equiv> (\<Lambda> x. Rep x)"
+ assumes prj: "prj \<equiv> (\<Lambda> x. Abs (cast\<cdot>t\<cdot>x))"
+ assumes approx: "(approx :: nat \<Rightarrow> 'a \<rightarrow> 'a) \<equiv> repdef_approx Rep Abs t"
shows "OFCLASS('a, rep_class)"
proof
have adm: "adm (\<lambda>x. x \<in> {x. x ::: t})"
@@ -199,6 +205,19 @@
apply (rule typedef_cont_Abs [OF type below adm])
apply simp_all
done
+ have cast_cast_approx:
+ "\<And>i x. cast\<cdot>t\<cdot>(cast\<cdot>(approx i\<cdot>t)\<cdot>x) = cast\<cdot>(approx i\<cdot>t)\<cdot>x"
+ apply (rule cast_fixed)
+ apply (rule subdeflationD)
+ apply (rule approx.below)
+ apply (rule cast_in_deflation)
+ done
+ have approx':
+ "approx = (\<lambda>i. \<Lambda>(x::'a). prj\<cdot>(cast\<cdot>(approx i\<cdot>t)\<cdot>(emb\<cdot>x)))"
+ unfolding approx repdef_approx_def
+ apply (subst cast_cast_approx [symmetric])
+ apply (simp add: prj_beta [symmetric] emb_beta [symmetric])
+ done
have emb_in_deflation: "\<And>x::'a. emb\<cdot>x ::: t"
using type_definition.Rep [OF type]
by (simp add: emb_beta)
@@ -216,22 +235,15 @@
apply (simp add: emb_prj cast.below)
done
show "chain (approx :: nat \<Rightarrow> 'a \<rightarrow> 'a)"
- unfolding approx by simp
+ unfolding approx' by simp
show "\<And>x::'a. (\<Squnion>i. approx i\<cdot>x) = x"
- unfolding approx
+ unfolding approx'
apply (simp add: lub_distribs)
apply (subst cast_fixed [OF emb_in_deflation])
apply (rule prj_emb)
done
- have cast_cast_approx:
- "\<And>i x. cast\<cdot>t\<cdot>(cast\<cdot>(approx i\<cdot>t)\<cdot>x) = cast\<cdot>(approx i\<cdot>t)\<cdot>x"
- apply (rule cast_fixed)
- apply (rule subdeflationD)
- apply (rule approx.below)
- apply (rule cast_in_deflation)
- done
show "\<And>(i::nat) (x::'a). approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
- unfolding approx
+ unfolding approx'
apply simp
apply (simp add: emb_prj)
apply (simp add: cast_cast_approx)
@@ -239,7 +251,7 @@
show "\<And>i::nat. finite {x::'a. approx i\<cdot>x = x}"
apply (rule_tac B="(\<lambda>x. prj\<cdot>x) ` {x. cast\<cdot>(approx i\<cdot>t)\<cdot>x = x}"
in finite_subset)
- apply (clarsimp simp add: approx)
+ apply (clarsimp simp add: approx')
apply (drule_tac f="\<lambda>x. emb\<cdot>x" in arg_cong)
apply (rule image_eqI)
apply (rule prj_emb [symmetric])
@@ -269,8 +281,8 @@
fixes t :: TypeRep
assumes type: "type_definition Rep Abs {x. x ::: t}"
assumes below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
- assumes emb: "emb = (\<Lambda> x. Rep x)"
- assumes prj: "prj = (\<Lambda> x. Abs (cast\<cdot>t\<cdot>x))"
+ assumes emb: "emb \<equiv> (\<Lambda> x. Rep x)"
+ assumes prj: "prj \<equiv> (\<Lambda> x. Abs (cast\<cdot>t\<cdot>x))"
shows "REP('a) = t"
proof -
have adm: "adm (\<lambda>x. x \<in> {x. x ::: t})"
@@ -303,6 +315,11 @@
done
qed
+lemma adm_mem_Collect_in_deflation: "adm (\<lambda>x. x \<in> {x. x ::: A})"
+unfolding mem_Collect_eq by (rule adm_in_deflation)
+
+use "Tools/repdef.ML"
+
subsection {* Instances of class @{text rep} *}
--- a/src/HOLCF/Tools/fixrec.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOLCF/Tools/fixrec.ML Sat Nov 14 09:40:27 2009 +0100
@@ -209,7 +209,7 @@
| defs (l::[]) r = [one_def l r]
| defs (l::ls) r = one_def l (mk_fst r) :: defs ls (mk_snd r);
val fixdefs = defs lhss fixpoint;
- val define_all = fold_map (LocalTheory.define Thm.definitionK);
+ val define_all = fold_map (Local_Theory.define Thm.definitionK);
val (fixdef_thms : (term * (string * thm)) list, lthy') = lthy
|> define_all (map (apfst fst) fixes ~~ fixdefs);
fun pair_equalI (thm1, thm2) = @{thm Pair_equalI} OF [thm1, thm2];
@@ -242,8 +242,7 @@
((thm_name, [src]), [thm])
end;
val (thmss, lthy'') = lthy'
- |> fold_map (LocalTheory.note Thm.generatedK)
- (induct_note :: map unfold_note unfold_thms);
+ |> fold_map Local_Theory.note (induct_note :: map unfold_note unfold_thms);
in
(lthy'', names, fixdef_thms, map snd unfold_thms)
end;
@@ -465,7 +464,7 @@
val simps2 : (Attrib.binding * thm list) list =
map (apsnd (fn thm => [thm])) (flat simps);
val (_, lthy'') = lthy'
- |> fold_map (LocalTheory.note Thm.generatedK) (simps1 @ simps2);
+ |> fold_map Local_Theory.note (simps1 @ simps2);
in
lthy''
end
--- a/src/HOLCF/Tools/pcpodef.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOLCF/Tools/pcpodef.ML Sat Nov 14 09:40:27 2009 +0100
@@ -87,6 +87,7 @@
thy
|> AxClass.prove_arity (full_tname, lhs_sorts, @{sort cpo})
(Tactic.rtac (@{thm typedef_cpo} OF cpo_thms) 1);
+ (* transfer thms so that they will know about the new cpo instance *)
val cpo_thms' = map (Thm.transfer thy2) cpo_thms;
fun make thm = Drule.standard (thm OF cpo_thms');
val ([adm, cont_Rep, cont_Abs, lub, thelub, compact], thy3) =
@@ -152,7 +153,7 @@
fun declare_type_name a =
Variable.declare_constraints (Logic.mk_type (TFree (a, dummyS)));
-fun prepare prep_term _ name (t, vs, mx) raw_set opt_morphs thy =
+fun prepare prep_term name (t, vs, mx) raw_set opt_morphs thy =
let
val _ = Theory.requires thy "Pcpodef" "pcpodefs";
val ctxt = ProofContext.init thy;
@@ -167,7 +168,6 @@
(*lhs*)
val defS = Sign.defaultS thy;
val lhs_tfrees = map (fn v => (v, the_default defS (AList.lookup (op =) rhs_tfrees v))) vs;
- val lhs_sorts = map snd lhs_tfrees;
val tname = Binding.map_name (Syntax.type_name mx) t;
val full_tname = Sign.full_name thy tname;
val newT = Type (full_tname, map TFree lhs_tfrees);
@@ -175,7 +175,7 @@
val morphs = opt_morphs
|> the_default (Binding.prefix_name "Rep_" name, Binding.prefix_name "Abs_" name);
in
- (newT, oldT, set, morphs, lhs_sorts)
+ (newT, oldT, set, morphs)
end
fun add_podef def opt_name typ set opt_morphs tac thy =
@@ -188,21 +188,20 @@
val lhs_tfrees = map dest_TFree (snd (dest_Type newT));
val RepC = Const (Rep_name, newT --> oldT);
- val below_def = Logic.mk_equals (below_const newT,
+ val below_eqn = Logic.mk_equals (below_const newT,
Abs ("x", newT, Abs ("y", newT, below_const oldT $ (RepC $ Bound 1) $ (RepC $ Bound 0))));
val lthy3 = thy2
|> Theory_Target.instantiation ([full_tname], lhs_tfrees, @{sort po});
- val below_def' = Syntax.check_term lthy3 below_def;
- val ((_, (_, below_definition')), lthy4) = lthy3
+ val ((_, (_, below_ldef)), lthy4) = lthy3
|> Specification.definition (NONE,
- ((Binding.prefix_name "below_" (Binding.suffix_name "_def" name), []), below_def'));
+ ((Binding.prefix_name "below_" (Binding.suffix_name "_def" name), []), below_eqn));
val ctxt_thy = ProofContext.init (ProofContext.theory_of lthy4);
- val below_definition = singleton (ProofContext.export lthy4 ctxt_thy) below_definition';
+ val below_def = singleton (ProofContext.export lthy4 ctxt_thy) below_ldef;
val thy5 = lthy4
|> Class.prove_instantiation_instance
- (K (Tactic.rtac (@{thm typedef_po} OF [type_definition, below_definition]) 1))
- |> LocalTheory.exit_global;
- in ((info, below_definition), thy5) end;
+ (K (Tactic.rtac (@{thm typedef_po} OF [type_definition, below_def]) 1))
+ |> Local_Theory.exit_global;
+ in ((info, below_def), thy5) end;
fun prepare_cpodef
(prep_term: Proof.context -> 'a -> term)
@@ -214,8 +213,8 @@
(thy: theory)
: term * term * (thm -> thm -> theory -> (Typedef.info * cpo_info) * theory) =
let
- val (newT, oldT, set, morphs as (Rep_name, Abs_name), lhs_sorts) =
- prepare prep_term def name typ raw_set opt_morphs thy;
+ val (newT, oldT, set, morphs as (Rep_name, Abs_name)) =
+ prepare prep_term name typ raw_set opt_morphs thy;
val goal_nonempty =
HOLogic.mk_Trueprop (HOLogic.mk_exists ("x", oldT, HOLogic.mk_mem (Free ("x", oldT), set)));
@@ -247,8 +246,8 @@
(thy: theory)
: term * term * (thm -> thm -> theory -> (Typedef.info * cpo_info * pcpo_info) * theory) =
let
- val (newT, oldT, set, morphs as (Rep_name, Abs_name), lhs_sorts) =
- prepare prep_term def name typ raw_set opt_morphs thy;
+ val (newT, oldT, set, morphs as (Rep_name, Abs_name)) =
+ prepare prep_term name typ raw_set opt_morphs thy;
val goal_UU_mem =
HOLogic.mk_Trueprop (HOLogic.mk_mem (Const (@{const_name UU}, oldT), set));
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/repdef.ML Sat Nov 14 09:40:27 2009 +0100
@@ -0,0 +1,181 @@
+(* Title: HOLCF/Tools/repdef.ML
+ Author: Brian Huffman
+
+Defining representable domains using algebraic deflations.
+*)
+
+signature REPDEF =
+sig
+ type rep_info =
+ { emb_def: thm, prj_def: thm, approx_def: thm, REP: thm }
+
+ val add_repdef: bool -> binding option -> binding * string list * mixfix ->
+ term -> (binding * binding) option -> theory ->
+ (Typedef.info * Pcpodef.cpo_info * Pcpodef.pcpo_info * rep_info) * theory
+
+ val repdef_cmd: (bool * binding) * (binding * string list * mixfix) * string
+ * (binding * binding) option -> theory -> theory
+end;
+
+structure Repdef :> REPDEF =
+struct
+
+(** type definitions **)
+
+type rep_info =
+ { emb_def: thm, prj_def: thm, approx_def: thm, REP: thm };
+
+(* building terms *)
+
+fun adm_const T = Const (@{const_name adm}, (T --> HOLogic.boolT) --> HOLogic.boolT);
+fun mk_adm (x, T, P) = adm_const T $ absfree (x, T, P);
+
+fun below_const T = Const (@{const_name below}, T --> T --> HOLogic.boolT);
+
+val natT = @{typ nat};
+val udomT = @{typ udom};
+fun alg_deflT T = Type (@{type_name alg_defl}, [T]);
+fun cfunT (T, U) = Type (@{type_name "->"}, [T, U]);
+fun emb_const T = Const (@{const_name emb}, cfunT (T, udomT));
+fun prj_const T = Const (@{const_name prj}, cfunT (udomT, T));
+fun approx_const T = Const (@{const_name approx}, natT --> cfunT (T, T));
+
+fun LAM_const (T, U) = Const (@{const_name Abs_CFun}, (T --> U) --> cfunT (T, U));
+fun APP_const (T, U) = Const (@{const_name Rep_CFun}, cfunT (T, U) --> (T --> U));
+fun cast_const T = Const (@{const_name cast}, cfunT (alg_deflT T, cfunT (T, T)));
+fun mk_cast (t, x) =
+ APP_const (udomT, udomT)
+ $ (APP_const (alg_deflT udomT, cfunT (udomT, udomT)) $ cast_const udomT $ t)
+ $ x;
+
+(* manipulating theorems *)
+
+(* proving class instances *)
+
+fun declare_type_name a =
+ Variable.declare_constraints (Logic.mk_type (TFree (a, dummyS)));
+
+fun gen_add_repdef
+ (prep_term: Proof.context -> 'a -> term)
+ (def: bool)
+ (name: binding)
+ (typ as (t, vs, mx) : binding * string list * mixfix)
+ (raw_defl: 'a)
+ (opt_morphs: (binding * binding) option)
+ (thy: theory)
+ : (Typedef.info * Pcpodef.cpo_info * Pcpodef.pcpo_info * rep_info) * theory =
+ let
+ val _ = Theory.requires thy "Representable" "repdefs";
+ val ctxt = ProofContext.init thy;
+
+ (*rhs*)
+ val defl = prep_term (ctxt |> fold declare_type_name vs) raw_defl;
+ val deflT = Term.fastype_of defl;
+ val _ = if deflT = @{typ "udom alg_defl"} then ()
+ else error ("Not type udom alg_defl: " ^ quote (Syntax.string_of_typ ctxt deflT));
+ val rhs_tfrees = Term.add_tfrees defl [];
+
+ (*lhs*)
+ val defS = Sign.defaultS thy;
+ val lhs_tfrees = map (fn v => (v, the_default defS (AList.lookup (op =) rhs_tfrees v))) vs;
+ val lhs_sorts = map snd lhs_tfrees;
+ val tname = Binding.map_name (Syntax.type_name mx) t;
+ val full_tname = Sign.full_name thy tname;
+ val newT = Type (full_tname, map TFree lhs_tfrees);
+
+ (*morphisms*)
+ val morphs = opt_morphs
+ |> the_default (Binding.prefix_name "Rep_" name, Binding.prefix_name "Abs_" name);
+
+ (*set*)
+ val in_defl = @{term "in_deflation :: udom => udom alg_defl => bool"};
+ val set = HOLogic.Collect_const udomT $ Abs ("x", udomT, in_defl $ Bound 0 $ defl);
+
+ (*pcpodef*)
+ val tac1 = rtac @{thm CollectI} 1 THEN rtac @{thm bottom_in_deflation} 1;
+ val tac2 = rtac @{thm adm_mem_Collect_in_deflation} 1;
+ val ((info, cpo_info, pcpo_info), thy2) = thy
+ |> Pcpodef.add_pcpodef def (SOME name) typ set (SOME morphs) (tac1, tac2);
+
+ (*definitions*)
+ val Rep_const = Const (#Rep_name info, newT --> udomT);
+ val Abs_const = Const (#Abs_name info, udomT --> newT);
+ val emb_eqn = Logic.mk_equals (emb_const newT, LAM_const (newT, udomT) $ Rep_const);
+ val prj_eqn = Logic.mk_equals (prj_const newT, LAM_const (udomT, newT) $
+ Abs ("x", udomT, Abs_const $ mk_cast (defl, Bound 0)));
+ val repdef_approx_const =
+ Const (@{const_name repdef_approx}, (newT --> udomT) --> (udomT --> newT)
+ --> alg_deflT udomT --> natT --> cfunT (newT, newT));
+ val approx_eqn = Logic.mk_equals (approx_const newT,
+ repdef_approx_const $ Rep_const $ Abs_const $ defl);
+
+ (*instantiate class rep*)
+ val name_def = Binding.suffix_name "_def" name;
+ val ([emb_ldef, prj_ldef, approx_ldef], lthy3) = thy2
+ |> Theory_Target.instantiation ([full_tname], lhs_tfrees, @{sort rep})
+ |> fold_map Specification.definition
+ [ (NONE, ((Binding.prefix_name "emb_" name_def, []), emb_eqn))
+ , (NONE, ((Binding.prefix_name "prj_" name_def, []), prj_eqn))
+ , (NONE, ((Binding.prefix_name "approx_" name_def, []), approx_eqn)) ]
+ |>> map (snd o snd);
+ val ctxt_thy = ProofContext.init (ProofContext.theory_of lthy3);
+ val [emb_def, prj_def, approx_def] =
+ ProofContext.export lthy3 ctxt_thy [emb_ldef, prj_ldef, approx_ldef];
+ val typedef_thms =
+ [#type_definition info, #below_def cpo_info, emb_def, prj_def, approx_def];
+ val thy4 = lthy3
+ |> Class.prove_instantiation_instance
+ (K (Tactic.rtac (@{thm typedef_rep_class} OF typedef_thms) 1))
+ |> Local_Theory.exit_global;
+
+ (*other theorems*)
+ val typedef_thms' = map (Thm.transfer thy4)
+ [#type_definition info, #below_def cpo_info, emb_def, prj_def];
+ val ([REP_thm], thy5) = thy4
+ |> Sign.add_path (Binding.name_of name)
+ |> PureThy.add_thms
+ [((Binding.prefix_name "REP_" name,
+ Drule.standard (@{thm typedef_REP} OF typedef_thms')), [])]
+ ||> Sign.parent_path;
+
+ val rep_info =
+ { emb_def = emb_def, prj_def = prj_def, approx_def = approx_def, REP = REP_thm };
+ in
+ ((info, cpo_info, pcpo_info, rep_info), thy5)
+ end
+ handle ERROR msg =>
+ cat_error msg ("The error(s) above occurred in repdef " ^ quote (Binding.str_of name));
+
+fun add_repdef def opt_name typ defl opt_morphs thy =
+ let
+ val name = the_default (#1 typ) opt_name;
+ in
+ gen_add_repdef Syntax.check_term def name typ defl opt_morphs thy
+ end;
+
+fun repdef_cmd ((def, name), typ, A, morphs) =
+ snd o gen_add_repdef Syntax.read_term def name typ A morphs;
+
+(** outer syntax **)
+
+local structure P = OuterParse and K = OuterKeyword in
+
+val repdef_decl =
+ Scan.optional (P.$$$ "(" |--
+ ((P.$$$ "open" >> K false) -- Scan.option P.binding || P.binding >> (fn s => (true, SOME s)))
+ --| P.$$$ ")") (true, NONE) --
+ (P.type_args -- P.binding) -- P.opt_infix -- (P.$$$ "=" |-- P.term) --
+ Scan.option (P.$$$ "morphisms" |-- P.!!! (P.binding -- P.binding));
+
+fun mk_repdef ((((((def, opt_name), (vs, t)), mx), A), morphs)) =
+ repdef_cmd
+ ((def, the_default (Binding.map_name (Syntax.type_name mx) t) opt_name), (t, vs, mx), A, morphs);
+
+val _ =
+ OuterSyntax.command "repdef" "HOLCF definition of representable domains" K.thy_goal
+ (repdef_decl >>
+ (Toplevel.print oo (Toplevel.theory o mk_repdef)));
+
+end;
+
+end;
--- a/src/HOLCF/ex/Domain_Proofs.thy Sat Nov 14 09:31:54 2009 +0100
+++ b/src/HOLCF/ex/Domain_Proofs.thy Sat Nov 14 09:40:27 2009 +0100
@@ -94,13 +94,13 @@
begin
definition emb_foo :: "'a foo \<rightarrow> udom"
-where "emb_foo = (\<Lambda> x. Rep_foo x)"
+where "emb_foo \<equiv> (\<Lambda> x. Rep_foo x)"
definition prj_foo :: "udom \<rightarrow> 'a foo"
-where "prj_foo = (\<Lambda> y. Abs_foo (cast\<cdot>(foo_typ\<cdot>REP('a))\<cdot>y))"
+where "prj_foo \<equiv> (\<Lambda> y. Abs_foo (cast\<cdot>(foo_typ\<cdot>REP('a))\<cdot>y))"
definition approx_foo :: "nat \<Rightarrow> 'a foo \<rightarrow> 'a foo"
-where "approx_foo = (\<lambda>i. prj oo cast\<cdot>(approx i\<cdot>(foo_typ\<cdot>REP('a))) oo emb)"
+where "approx_foo \<equiv> repdef_approx Rep_foo Abs_foo (foo_typ\<cdot>REP('a))"
instance
apply (rule typedef_rep_class)
@@ -117,13 +117,13 @@
begin
definition emb_bar :: "'a bar \<rightarrow> udom"
-where "emb_bar = (\<Lambda> x. Rep_bar x)"
+where "emb_bar \<equiv> (\<Lambda> x. Rep_bar x)"
definition prj_bar :: "udom \<rightarrow> 'a bar"
-where "prj_bar = (\<Lambda> y. Abs_bar (cast\<cdot>(bar_typ\<cdot>REP('a))\<cdot>y))"
+where "prj_bar \<equiv> (\<Lambda> y. Abs_bar (cast\<cdot>(bar_typ\<cdot>REP('a))\<cdot>y))"
definition approx_bar :: "nat \<Rightarrow> 'a bar \<rightarrow> 'a bar"
-where "approx_bar = (\<lambda>i. prj oo cast\<cdot>(approx i\<cdot>(bar_typ\<cdot>REP('a))) oo emb)"
+where "approx_bar \<equiv> repdef_approx Rep_bar Abs_bar (bar_typ\<cdot>REP('a))"
instance
apply (rule typedef_rep_class)
@@ -140,13 +140,13 @@
begin
definition emb_baz :: "'a baz \<rightarrow> udom"
-where "emb_baz = (\<Lambda> x. Rep_baz x)"
+where "emb_baz \<equiv> (\<Lambda> x. Rep_baz x)"
definition prj_baz :: "udom \<rightarrow> 'a baz"
-where "prj_baz = (\<Lambda> y. Abs_baz (cast\<cdot>(baz_typ\<cdot>REP('a))\<cdot>y))"
+where "prj_baz \<equiv> (\<Lambda> y. Abs_baz (cast\<cdot>(baz_typ\<cdot>REP('a))\<cdot>y))"
definition approx_baz :: "nat \<Rightarrow> 'a baz \<rightarrow> 'a baz"
-where "approx_baz = (\<lambda>i. prj oo cast\<cdot>(approx i\<cdot>(baz_typ\<cdot>REP('a))) oo emb)"
+where "approx_baz \<equiv> repdef_approx Rep_baz Abs_baz (baz_typ\<cdot>REP('a))"
instance
apply (rule typedef_rep_class)
--- a/src/Pure/Isar/attrib.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/attrib.ML Sat Nov 14 09:40:27 2009 +0100
@@ -120,7 +120,7 @@
fun attribute thy = attribute_i thy o intern_src thy;
-fun eval_thms ctxt args = ProofContext.note_thmss Thm.generatedK
+fun eval_thms ctxt args = ProofContext.note_thmss ""
[(Thm.empty_binding, args |> map (fn (a, atts) =>
(ProofContext.get_fact ctxt a, map (attribute (ProofContext.theory_of ctxt)) atts)))] ctxt
|> fst |> maps snd;
--- a/src/Pure/Isar/class.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/class.ML Sat Nov 14 09:40:27 2009 +0100
@@ -281,7 +281,7 @@
in
thy
|> Expression.add_locale bname Binding.empty supexpr elems
- |> snd |> LocalTheory.exit_global
+ |> snd |> Local_Theory.exit_global
|> adjungate_axclass bname class base_sort sups supsort supparam_names global_syntax
||> Theory.checkpoint
|-> (fn (param_map, params, assm_axiom) =>
--- a/src/Pure/Isar/class_target.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/class_target.ML Sat Nov 14 09:40:27 2009 +0100
@@ -405,9 +405,9 @@
fun mk_instantiation (arities, params) =
Instantiation { arities = arities, params = params };
-fun get_instantiation lthy = case Instantiation.get (LocalTheory.target_of lthy)
+fun get_instantiation lthy = case Instantiation.get (Local_Theory.target_of lthy)
of Instantiation data => data;
-fun map_instantiation f = (LocalTheory.target o Instantiation.map)
+fun map_instantiation f = (Local_Theory.target o Instantiation.map)
(fn Instantiation { arities, params } => mk_instantiation (f (arities, params)));
fun the_instantiation lthy = case get_instantiation lthy
@@ -526,14 +526,14 @@
fun confirm_declaration b = (map_instantiation o apsnd)
(filter_out (fn (_, (c', _)) => c' = Binding.name_of b))
- #> LocalTheory.target synchronize_inst_syntax
+ #> Local_Theory.target synchronize_inst_syntax
fun gen_instantiation_instance do_proof after_qed lthy =
let
val (tycos, vs, sort) = (#arities o the_instantiation) lthy;
val arities_proof = maps (fn tyco => Logic.mk_arities (tyco, map snd vs, sort)) tycos;
fun after_qed' results =
- LocalTheory.theory (fold (AxClass.add_arity o Thm.varifyT) results)
+ Local_Theory.theory (fold (AxClass.add_arity o Thm.varifyT) results)
#> after_qed;
in
lthy
@@ -548,7 +548,7 @@
(fn {context, ...} => tac context)) ts) lthy) I;
fun prove_instantiation_exit tac = prove_instantiation_instance tac
- #> LocalTheory.exit_global;
+ #> Local_Theory.exit_global;
fun prove_instantiation_exit_result f tac x lthy =
let
--- a/src/Pure/Isar/expression.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/expression.ML Sat Nov 14 09:40:27 2009 +0100
@@ -775,7 +775,7 @@
|> Locale.register_locale binding (extraTs, params)
(asm, rev defs) (a_intro, b_intro) axioms ([], []) (rev notes) (rev deps')
|> Theory_Target.init (SOME name)
- |> fold (fn (kind, facts) => LocalTheory.notes kind facts #> snd) notes';
+ |> fold (fn (kind, facts) => Local_Theory.notes_kind kind facts #> snd) notes';
in (name, loc_ctxt) end;
--- a/src/Pure/Isar/isar_cmd.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/isar_cmd.ML Sat Nov 14 09:40:27 2009 +0100
@@ -181,7 +181,7 @@
fun declaration pervasive (txt, pos) =
txt |> ML_Context.expression pos
"val declaration: Morphism.declaration"
- ("Context.map_proof (LocalTheory.declaration " ^ Bool.toString pervasive ^ " declaration)")
+ ("Context.map_proof (Local_Theory.declaration " ^ Bool.toString pervasive ^ " declaration)")
|> Context.proof_map;
--- a/src/Pure/Isar/isar_syn.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/isar_syn.ML Sat Nov 14 09:40:27 2009 +0100
@@ -288,7 +288,7 @@
(* use ML text *)
fun propagate_env (context as Context.Proof lthy) =
- Context.Proof (LocalTheory.map_contexts (ML_Env.inherit context) lthy)
+ Context.Proof (Local_Theory.map_contexts (ML_Env.inherit context) lthy)
| propagate_env context = context;
fun propagate_env_prf prf = Proof.map_contexts
--- a/src/Pure/Isar/local_theory.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/local_theory.ML Sat Nov 14 09:40:27 2009 +0100
@@ -33,8 +33,10 @@
(term * term) * local_theory
val define: string -> (binding * mixfix) * (Attrib.binding * term) -> local_theory ->
(term * (string * thm)) * local_theory
- val note: string -> Attrib.binding * thm list -> local_theory -> (string * thm list) * local_theory
- val notes: string -> (Attrib.binding * (thm list * Attrib.src list) list) list ->
+ val note: Attrib.binding * thm list -> local_theory -> (string * thm list) * local_theory
+ val notes: (Attrib.binding * (thm list * Attrib.src list) list) list ->
+ local_theory -> (string * thm list) list * local_theory
+ val notes_kind: string -> (Attrib.binding * (thm list * Attrib.src list) list) list ->
local_theory -> (string * thm list) list * local_theory
val type_syntax: bool -> declaration -> local_theory -> local_theory
val term_syntax: bool -> declaration -> local_theory -> local_theory
@@ -49,7 +51,7 @@
val exit_result_global: (morphism -> 'a -> 'b) -> 'a * local_theory -> 'b * theory
end;
-structure LocalTheory: LOCAL_THEORY =
+structure Local_Theory: LOCAL_THEORY =
struct
(** local theory data **)
@@ -186,12 +188,13 @@
val pretty = operation #pretty;
val abbrev = apsnd checkpoint ooo operation2 #abbrev;
val define = apsnd checkpoint ooo operation2 #define;
-val notes = apsnd checkpoint ooo operation2 #notes;
+val notes_kind = apsnd checkpoint ooo operation2 #notes;
val type_syntax = checkpoint ooo operation2 #type_syntax;
val term_syntax = checkpoint ooo operation2 #term_syntax;
val declaration = checkpoint ooo operation2 #declaration;
-fun note kind (a, ths) = notes kind [(a, [(ths, [])])] #>> the_single;
+val notes = notes_kind "";
+fun note (a, ths) = notes [(a, [(ths, [])])] #>> the_single;
fun notation add mode raw_args lthy =
let val args = map (apfst (Morphism.term (target_morphism lthy))) raw_args
--- a/src/Pure/Isar/overloading.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/overloading.ML Sat Nov 14 09:40:27 2009 +0100
@@ -126,8 +126,8 @@
fun init _ = [];
);
-val get_overloading = OverloadingData.get o LocalTheory.target_of;
-val map_overloading = LocalTheory.target o OverloadingData.map;
+val get_overloading = OverloadingData.get o Local_Theory.target_of;
+val map_overloading = Local_Theory.target o OverloadingData.map;
fun operation lthy b = get_overloading lthy
|> get_first (fn ((c, _), (v, checked)) =>
@@ -169,7 +169,7 @@
(b, Logic.mk_equals (Const (c, Term.fastype_of t), t));
fun confirm b = map_overloading (filter_out (fn (_, (c', _)) => c' = Binding.name_of b))
- #> LocalTheory.target synchronize_syntax
+ #> Local_Theory.target synchronize_syntax
fun conclude lthy =
let
--- a/src/Pure/Isar/spec_rules.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/spec_rules.ML Sat Nov 14 09:40:27 2009 +0100
@@ -41,7 +41,7 @@
val get = Item_Net.content o Rules.get o Context.Proof;
val get_global = Item_Net.content o Rules.get o Context.Theory;
-fun add class (ts, ths) = LocalTheory.declaration true
+fun add class (ts, ths) = Local_Theory.declaration true
(fn phi =>
let
val ts' = map (Morphism.term phi) ts;
--- a/src/Pure/Isar/specification.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/specification.ML Sat Nov 14 09:40:27 2009 +0100
@@ -202,18 +202,18 @@
in (b, mx) end);
val name = Thm.def_binding_optional b raw_name;
val ((lhs, (_, raw_th)), lthy2) = lthy
- |> LocalTheory.define Thm.definitionK
+ |> Local_Theory.define Thm.definitionK
(var, ((Binding.suffix_name "_raw" name, []), rhs));
val th = prove lthy2 raw_th;
val lthy3 = lthy2 |> Spec_Rules.add Spec_Rules.Equational ([lhs], [th]);
- val ((def_name, [th']), lthy4) = lthy3
- |> LocalTheory.note Thm.definitionK
- ((name, Predicate_Compile_Preproc_Const_Defs.add_attrib ::
- Code.add_default_eqn_attrib :: atts), [th]);
+ val ([(def_name, [th'])], lthy4) = lthy3
+ |> Local_Theory.notes_kind Thm.definitionK
+ [((name, Predicate_Compile_Preproc_Const_Defs.add_attrib ::
+ Code.add_default_eqn_attrib :: atts), [([th], [])])];
- val lhs' = Morphism.term (LocalTheory.target_morphism lthy4) lhs;
+ val lhs' = Morphism.term (Local_Theory.target_morphism lthy4) lhs;
val _ =
if not do_print then ()
else print_consts lthy4 (member (op =) (Term.add_frees lhs' [])) [(x, T)];
@@ -243,7 +243,7 @@
in (b, mx) end);
val lthy' = lthy
|> ProofContext.set_syntax_mode mode (* FIXME ?!? *)
- |> LocalTheory.abbrev mode (var, rhs) |> snd
+ |> Local_Theory.abbrev mode (var, rhs) |> snd
|> ProofContext.restore_syntax_mode lthy;
val _ = if not do_print then () else print_consts lthy' (K false) [(x, T)];
@@ -256,7 +256,7 @@
(* notation *)
fun gen_notation prep_const add mode args lthy =
- lthy |> LocalTheory.notation add mode (map (apfst (prep_const lthy)) args);
+ lthy |> Local_Theory.notation add mode (map (apfst (prep_const lthy)) args);
val notation = gen_notation (K I);
val notation_cmd = gen_notation ProofContext.read_const;
@@ -270,7 +270,7 @@
val facts = raw_facts |> map (fn ((name, atts), bs) =>
((name, map attrib atts),
bs |> map (fn (b, more_atts) => (prep_fact lthy b, map attrib more_atts))));
- val (res, lthy') = lthy |> LocalTheory.notes kind facts;
+ val (res, lthy') = lthy |> Local_Theory.notes_kind kind facts;
val _ = Proof_Display.print_results true lthy' ((kind, ""), res);
in (res, lthy') end;
@@ -345,7 +345,7 @@
fun gen_theorem prep_att prep_stmt
kind before_qed after_qed (name, raw_atts) raw_elems raw_concl int lthy =
let
- val _ = LocalTheory.affirm lthy;
+ val _ = Local_Theory.affirm lthy;
val thy = ProofContext.theory_of lthy;
val attrib = prep_att thy;
@@ -359,14 +359,15 @@
burrow (map Goal.norm_result o ProofContext.export goal_ctxt' lthy) results
in
lthy
- |> LocalTheory.notes kind (map2 (fn (a, _) => fn ths => (a, [(ths, [])])) stmt results')
+ |> Local_Theory.notes_kind kind
+ (map2 (fn (a, _) => fn ths => (a, [(ths, [])])) stmt results')
|> (fn (res, lthy') =>
if Binding.is_empty name andalso null atts then
(Proof_Display.print_results true lthy' ((kind, ""), res); lthy')
else
let
val ([(res_name, _)], lthy'') = lthy'
- |> LocalTheory.notes kind [((name, atts), [(maps #2 res, [])])];
+ |> Local_Theory.notes_kind kind [((name, atts), [(maps #2 res, [])])];
val _ = Proof_Display.print_results true lthy' ((kind, res_name), res);
in lthy'' end)
|> after_qed results'
--- a/src/Pure/Isar/theory_target.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/theory_target.ML Sat Nov 14 09:40:27 2009 +0100
@@ -77,14 +77,14 @@
fun direct_decl decl =
let val decl0 = Morphism.form decl in
- LocalTheory.theory (Context.theory_map decl0) #>
- LocalTheory.target (Context.proof_map decl0)
+ Local_Theory.theory (Context.theory_map decl0) #>
+ Local_Theory.target (Context.proof_map decl0)
end;
fun target_decl add (Target {target, ...}) pervasive decl lthy =
let
- val global_decl = Morphism.transform (LocalTheory.global_morphism lthy) decl;
- val target_decl = Morphism.transform (LocalTheory.target_morphism lthy) decl;
+ val global_decl = Morphism.transform (Local_Theory.global_morphism lthy) decl;
+ val target_decl = Morphism.transform (Local_Theory.target_morphism lthy) decl;
in
if target = "" then
lthy
@@ -92,7 +92,7 @@
else
lthy
|> pervasive ? direct_decl global_decl
- |> LocalTheory.target (add target target_decl)
+ |> Local_Theory.target (add target target_decl)
end;
in
@@ -104,8 +104,8 @@
end;
fun class_target (Target {target, ...}) f =
- LocalTheory.raw_theory f #>
- LocalTheory.target (Class_Target.refresh_syntax target);
+ Local_Theory.raw_theory f #>
+ Local_Theory.target (Class_Target.refresh_syntax target);
(* notes *)
@@ -161,19 +161,19 @@
val thy = ProofContext.theory_of lthy;
val facts' = facts
|> map (fn (a, bs) => (a, PureThy.burrow_fact (PureThy.name_multi
- (LocalTheory.full_name lthy (fst a))) bs))
+ (Local_Theory.full_name lthy (fst a))) bs))
|> PureThy.map_facts (import_export_proof lthy);
val local_facts = PureThy.map_facts #1 facts'
|> Attrib.map_facts (Attrib.attribute_i thy);
val target_facts = PureThy.map_facts #1 facts'
- |> is_locale ? Element.facts_map (Element.morph_ctxt (LocalTheory.target_morphism lthy));
+ |> is_locale ? Element.facts_map (Element.morph_ctxt (Local_Theory.target_morphism lthy));
val global_facts = PureThy.map_facts #2 facts'
|> Attrib.map_facts (if is_locale then K I else Attrib.attribute_i thy);
in
lthy
- |> LocalTheory.theory (PureThy.note_thmss kind global_facts #> snd)
- |> not is_locale ? LocalTheory.target (ProofContext.note_thmss kind global_facts #> snd)
- |> is_locale ? LocalTheory.target (Locale.add_thmss target kind target_facts)
+ |> Local_Theory.theory (PureThy.note_thmss kind global_facts #> snd)
+ |> not is_locale ? Local_Theory.target (ProofContext.note_thmss kind global_facts #> snd)
+ |> is_locale ? Local_Theory.target (Locale.add_thmss target kind target_facts)
|> ProofContext.note_thmss kind local_facts
end;
@@ -212,22 +212,22 @@
fun declare_const (ta as Target {target, is_locale, is_class, ...}) depends ((b, T), mx) lthy =
let
- val xs = filter depends (#1 (ProofContext.inferred_fixes (LocalTheory.target_of lthy)));
+ val xs = filter depends (#1 (ProofContext.inferred_fixes (Local_Theory.target_of lthy)));
val U = map #2 xs ---> T;
val (mx1, mx2, mx3) = fork_mixfix ta mx;
val (const, lthy') = lthy |>
(case Class_Target.instantiation_param lthy b of
SOME c' =>
if mx3 <> NoSyn then syntax_error c'
- else LocalTheory.theory_result (AxClass.declare_overloaded (c', U))
+ else Local_Theory.theory_result (AxClass.declare_overloaded (c', U))
##> Class_Target.confirm_declaration b
| NONE =>
(case Overloading.operation lthy b of
SOME (c', _) =>
if mx3 <> NoSyn then syntax_error c'
- else LocalTheory.theory_result (Overloading.declare (c', U))
+ else Local_Theory.theory_result (Overloading.declare (c', U))
##> Overloading.confirm b
- | NONE => LocalTheory.theory_result (Sign.declare_const ((b, U), mx3))));
+ | NONE => Local_Theory.theory_result (Sign.declare_const ((b, U), mx3))));
val t = Term.list_comb (const, map Free xs);
in
lthy'
@@ -242,7 +242,7 @@
fun abbrev (ta as Target {target, is_locale, is_class, ...}) prmode ((b, mx), t) lthy =
let
val thy_ctxt = ProofContext.init (ProofContext.theory_of lthy);
- val target_ctxt = LocalTheory.target_of lthy;
+ val target_ctxt = Local_Theory.target_of lthy;
val (mx1, mx2, mx3) = fork_mixfix ta mx;
val t' = Assumption.export_term lthy target_ctxt t;
@@ -253,14 +253,14 @@
in
lthy |>
(if is_locale then
- LocalTheory.theory_result (Sign.add_abbrev PrintMode.internal (b, global_rhs))
+ Local_Theory.theory_result (Sign.add_abbrev PrintMode.internal (b, global_rhs))
#-> (fn (lhs, _) =>
let val lhs' = Term.list_comb (Logic.unvarify lhs, xs) in
term_syntax ta false (locale_const ta prmode ((b, mx2), lhs')) #>
is_class ? class_target ta (Class_Target.abbrev target prmode ((b, mx1), t'))
end)
else
- LocalTheory.theory
+ Local_Theory.theory
(Sign.add_abbrev (#1 prmode) (b, global_rhs) #-> (fn (lhs, _) =>
Sign.notation true prmode [(lhs, mx3)])))
|> ProofContext.add_abbrev PrintMode.internal (b, t) |> snd
@@ -278,7 +278,7 @@
val name' = Thm.def_binding_optional b name;
val (rhs', rhs_conv) =
LocalDefs.export_cterm lthy thy_ctxt (Thm.cterm_of thy rhs) |>> Thm.term_of;
- val xs = Variable.add_fixed (LocalTheory.target_of lthy) rhs' [];
+ val xs = Variable.add_fixed (Local_Theory.target_of lthy) rhs' [];
val T = Term.fastype_of rhs;
(*const*)
@@ -287,7 +287,7 @@
(*def*)
val (global_def, lthy3) = lthy2
- |> LocalTheory.theory_result
+ |> Local_Theory.theory_result
(case Overloading.operation lthy b of
SOME (_, checked) => Overloading.define checked name' (fst (dest_Const lhs'), rhs')
| NONE =>
@@ -310,7 +310,8 @@
local
fun init_target _ NONE = global_target
- | init_target thy (SOME target) = if Locale.defined thy (Locale.intern thy target)
+ | init_target thy (SOME target) =
+ if Locale.defined thy (Locale.intern thy target)
then make_target target true (Class_Target.is_class thy target) ([], [], []) []
else error ("No such locale: " ^ quote target);
@@ -323,7 +324,7 @@
fun init_lthy (ta as Target {target, instantiation, overloading, ...}) =
Data.put ta #>
- LocalTheory.init (Long_Name.base_name target)
+ Local_Theory.init (Long_Name.base_name target)
{pretty = pretty ta,
abbrev = abbrev ta,
define = define ta,
@@ -332,7 +333,7 @@
term_syntax = term_syntax ta,
declaration = declaration ta,
reinit = fn lthy => init_lthy_ctxt ta (ProofContext.theory_of lthy),
- exit = LocalTheory.target_of o
+ exit = Local_Theory.target_of o
(if not (null (#1 instantiation)) then Class_Target.conclude_instantiation
else if not (null overloading) then Overloading.conclude
else I)}
--- a/src/Pure/Isar/toplevel.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/Isar/toplevel.ML Sat Nov 14 09:40:27 2009 +0100
@@ -105,16 +105,16 @@
type generic_theory = Context.generic; (*theory or local_theory*)
val loc_init = Theory_Target.context;
-val loc_exit = LocalTheory.exit_global;
+val loc_exit = Local_Theory.exit_global;
fun loc_begin loc (Context.Theory thy) = loc_init (the_default "-" loc) thy
| loc_begin NONE (Context.Proof lthy) = lthy
| loc_begin (SOME loc) (Context.Proof lthy) = loc_init loc (loc_exit lthy);
fun loc_finish _ (Context.Theory _) = Context.Theory o loc_exit
- | loc_finish NONE (Context.Proof _) = Context.Proof o LocalTheory.restore
+ | loc_finish NONE (Context.Proof _) = Context.Proof o Local_Theory.restore
| loc_finish (SOME _) (Context.Proof lthy) = fn lthy' =>
- Context.Proof (LocalTheory.reinit (LocalTheory.raw_theory (K (loc_exit lthy')) lthy));
+ Context.Proof (Local_Theory.reinit (Local_Theory.raw_theory (K (loc_exit lthy')) lthy));
(* datatype node *)
@@ -193,7 +193,7 @@
(* print state *)
-val pretty_context = LocalTheory.pretty o Context.cases (Theory_Target.init NONE) I;
+val pretty_context = Local_Theory.pretty o Context.cases (Theory_Target.init NONE) I;
fun print_state_context state =
(case try node_of state of
@@ -259,7 +259,7 @@
| stale_error some = some;
fun map_theory f (Theory (gthy, ctxt)) =
- Theory (Context.mapping f (LocalTheory.raw_theory f) gthy, ctxt)
+ Theory (Context.mapping f (Local_Theory.raw_theory f) gthy, ctxt)
| map_theory _ node = node;
in
--- a/src/Pure/more_thm.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/more_thm.ML Sat Nov 14 09:40:27 2009 +0100
@@ -86,7 +86,6 @@
val put_name_hint: string -> thm -> thm
val definitionK: string
val theoremK: string
- val generatedK : string
val lemmaK: string
val corollaryK: string
val get_kind: thm -> string
@@ -413,7 +412,6 @@
val definitionK = "definition";
val theoremK = "theorem";
-val generatedK = "generatedK"
val lemmaK = "lemma";
val corollaryK = "corollary";
--- a/src/Pure/simplifier.ML Sat Nov 14 09:31:54 2009 +0100
+++ b/src/Pure/simplifier.ML Sat Nov 14 09:40:27 2009 +0100
@@ -177,7 +177,7 @@
fun gen_simproc prep {name, lhss, proc, identifier} lthy =
let
val b = Binding.name name;
- val naming = LocalTheory.naming_of lthy;
+ val naming = Local_Theory.naming_of lthy;
val simproc = make_simproc
{name = Name_Space.full_name naming b,
lhss =
@@ -191,7 +191,7 @@
proc = proc,
identifier = identifier};
in
- lthy |> LocalTheory.declaration false (fn phi =>
+ lthy |> Local_Theory.declaration false (fn phi =>
let
val b' = Morphism.binding phi b;
val simproc' = morph_simproc phi simproc;
@@ -335,7 +335,8 @@
"declaration of Simplifier rewrite rule" #>
Attrib.setup (Binding.name congN) (Attrib.add_del cong_add cong_del)
"declaration of Simplifier congruence rule" #>
- Attrib.setup (Binding.name "simproc") simproc_att "declaration of simplification procedures" #>
+ Attrib.setup (Binding.name "simproc") simproc_att
+ "declaration of simplification procedures" #>
Attrib.setup (Binding.name "simplified") simplified "simplified rule"));