--- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy Wed Apr 05 21:06:06 2000 +0200
+++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy Wed Apr 05 21:06:37 2000 +0200
@@ -274,8 +274,8 @@
have "card (?e ?t' 0 - {(2 * m + 1, 2 * n + 1)})
< card (?e ?t' 0)";
proof (rule card_Diff1_less);
- show "finite (?e ?t' 0)";
- by (rule finite_subset, rule fin) force;
+ from _ fin; show "finite (?e ?t' 0)";
+ by (rule finite_subset) force;
show "(2 * m + 1, 2 * n + 1) : ?e ?t' 0"; by simp;
qed;
thus ?thesis; by simp;
--- a/src/HOL/Real/HahnBanach/HahnBanach.thy Wed Apr 05 21:06:06 2000 +0200
+++ b/src/HOL/Real/HahnBanach/HahnBanach.thy Wed Apr 05 21:06:37 2000 +0200
@@ -72,14 +72,14 @@
qed;
show "is_linearform ?H ?h";
by (simp! add: sup_lf a);
- show "is_subspace ?H E";
- by (rule sup_subE, rule a) (simp!)+;
+ show "is_subspace ?H E";
+ by (rule sup_subE [OF _ _ _ a]) (simp!)+;
show "is_subspace F ?H";
- by (rule sup_supF, rule a) (simp!)+;
+ by (rule sup_supF [OF _ _ _ a]) (simp!)+;
show "graph F f <= graph ?H ?h";
- by (rule sup_ext, rule a) (simp!)+;
+ by (rule sup_ext [OF _ _ _ a]) (simp!)+;
show "ALL x::'a:?H. ?h x <= p x";
- by (rule sup_norm_pres, rule a) (simp!)+;
+ by (rule sup_norm_pres [OF _ _ a]) (simp!)+;
qed;
qed;
}};
@@ -190,7 +190,7 @@
txt {* Define the extension $h_0$ of $h$ to $H_0$ using $\xi$. *};
- def h0 == "\<lambda>x. let (y,a) = SOME (y, a). x = y + a <*> x0
+ def h0 == "\\<lambda>x. let (y,a) = SOME (y, a). x = y + a <*> x0
& y:H
in (h y) + a * xi";
show ?thesis;
@@ -205,9 +205,9 @@
have "graph H h <= graph H0 h0";
proof (rule graph_extI);
fix t; assume "t:H";
- have "(SOME (y, a). t = y + a <*> x0 & y : H)
+ have "(SOME (y, a). t = y + a <*> x0 & y : H)
= (t,0r)";
- by (rule decomp_H0_H, rule x0);
+ by (rule decomp_H0_H [OF _ _ _ _ _ x0]);
thus "h t = h0 t"; by (simp! add: Let_def);
next;
show "H <= H0";
@@ -248,10 +248,9 @@
have "graph H0 h0 : norm_pres_extensions E p F f";
proof (rule norm_pres_extensionI2);
show "is_linearform H0 h0";
- by (rule h0_lf, rule x0) (simp!)+;
+ by (rule h0_lf [OF _ _ _ _ _ _ x0]) (simp!)+;
show "is_subspace H0 E";
- by (unfold H0_def, rule vs_sum_subspace,
- rule lin_subspace);
+ by (unfold H0_def) (rule vs_sum_subspace [OF _ lin_subspace]);
have "is_subspace F H"; .;
also; from h lin_vs;
have [fold H0_def]: "is_subspace H (H + lin x0)"; ..;
@@ -267,7 +266,7 @@
by (simp add: Let_def);
also; have
"(x, 0r) = (SOME (y, a). x = y + a <*> x0 & y : H)";
- by (rule decomp_H0_H [RS sym], rule x0) (simp!)+;
+ by (rule decomp_H0_H [RS sym, OF _ _ _ _ _ x0]) (simp!)+;
also; have
"(let (y,a) = (SOME (y,a). x = y + a <*> x0 & y : H)
in h y + a * xi)
@@ -278,7 +277,7 @@
qed;
show "ALL x:H0. h0 x <= p x";
- by (rule h0_norm_pres, rule x0);
+ by (rule h0_norm_pres [OF _ _ _ _ x0]);
qed;
thus "graph H0 h0 : M"; by (simp!);
qed;
@@ -472,7 +471,7 @@
of $h$ on $H_0$:*};
def h0 ==
- "\<lambda>x. let (y,a) = SOME (y, a). x = y + a <*> x0 & y:H
+ "\\<lambda>x. let (y,a) = SOME (y, a). x = y + a <*> x0 & y:H
in (h y) + a * xi";
txt {* We get that the graph of $h_0$ extends that of
@@ -655,7 +654,7 @@
\end{matharray}
*};
- def p == "\<lambda>x. function_norm F norm f * norm x";
+ def p == "\\<lambda>x. function_norm F norm f * norm x";
txt{* $p$ is a seminorm on $E$: *};
--- a/src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy Wed Apr 05 21:06:06 2000 +0200
+++ b/src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy Wed Apr 05 21:06:37 2000 +0200
@@ -32,7 +32,7 @@
assume m: "M = norm_pres_extensions E p F f" and cM: "c: chain M"
and u: "graph H h = Union c" "x:H";
- let ?P = "\<lambda>H h. is_linearform H h
+ let ?P = "\\<lambda>H h. is_linearform H h
& is_subspace H E
& is_subspace F H
& graph F f <= graph H h
@@ -273,7 +273,7 @@
assume "M = norm_pres_extensions E p F f" "c: chain M"
"graph H h = Union c";
- let ?P = "\<lambda>H h. is_linearform H h
+ let ?P = "\\<lambda>H h. is_linearform H h
& is_subspace H E
& is_subspace F H
& graph F f <= graph H h
@@ -677,8 +677,8 @@
from h; have "- h x = h (- x)";
by (rule linearform_neg [RS sym]);
also; from r; have "... <= p (- x)"; by (simp!);
- also; have "... = p x";
- by (rule seminorm_minus, rule subspace_subsetD);
+ also; have "... = p x";
+ by (rule seminorm_minus [OF _ subspace_subsetD]);
finally; show "- h x <= p x"; .;
qed;
from r; show "h x <= p x"; ..;