--- a/src/HOL/Induct/PropLog.ML Wed Nov 05 13:45:01 1997 +0100
+++ b/src/HOL/Induct/PropLog.ML Wed Nov 05 13:50:16 1997 +0100
@@ -43,7 +43,7 @@
by (etac thms.induct 1);
by (ALLGOALS
(fast_tac (claset() addIs [thms_I, thms.H, thms.K, thms.S, thms.DN,
- thms.S RS thms.MP RS thms.MP, weaken_right])));
+ thms.S RS thms.MP RS thms.MP, weaken_right])));
qed "deduction";
@@ -105,15 +105,15 @@
by (PropLog.pl.induct_tac "p" 1);
by (ALLGOALS (simp_tac (simpset() addsimps [thms_I, thms.H])));
by (fast_tac (claset() addIs [weaken_left_Un1, weaken_left_Un2,
- weaken_right, imp_false]
- addSEs [false_imp]) 1);
+ weaken_right, imp_false]
+ addSEs [false_imp]) 1);
qed "hyps_thms_if";
(*Key lemma for completeness; yields a set of assumptions satisfying p*)
val [sat] = goalw PropLog.thy [sat_def] "{} |= p ==> hyps p tt |- p";
by (rtac (sat RS spec RS mp RS if_P RS subst) 1 THEN
rtac hyps_thms_if 2);
-by (Fast_tac 1);
+by (Simp_tac 1);
qed "sat_thms_p";
(*For proving certain theorems in our new propositional logic*)