--- a/src/ZF/ZF.thy Wed Apr 02 15:26:52 1997 +0200
+++ b/src/ZF/ZF.thy Wed Apr 02 15:28:42 1997 +0200
@@ -196,7 +196,6 @@
and Powerset Axioms using the following definitions. *)
Collect_def "Collect(A,P) == {y . x:A, x=y & P(x)}"
- Inter_def "Inter(A) == { x:Union(A) . ALL y:A. x:y}"
(*Unordered pairs (Upair) express binary union/intersection and cons;
set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)
@@ -204,6 +203,17 @@
Upair_def "Upair(a,b) == {y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
cons_def "cons(a,A) == Upair(a,a) Un A"
+ (* Difference, general intersection, binary union and small intersection *)
+
+ Diff_def "A - B == { x:A . ~(x:B) }"
+ Inter_def "Inter(A) == { x:Union(A) . ALL y:A. x:y}"
+ Un_def "A Un B == Union(Upair(A,B))"
+ Int_def "A Int B == Inter(Upair(A,B))"
+
+ (* Definite descriptions -- via Replace over the set "1" *)
+
+ the_def "The(P) == Union({y . x:{0}, P(y)})"
+ if_def "if(P,a,b) == THE z. P & z=a | ~P & z=b"
(* this "symmetric" definition works better than {{a}, {a,b}} *)
Pair_def "<a,b> == {{a,a}, {a,b}}"
--- a/src/ZF/upair.thy Wed Apr 02 15:26:52 1997 +0200
+++ b/src/ZF/upair.thy Wed Apr 02 15:28:42 1997 +0200
@@ -3,19 +3,10 @@
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
Copyright 1993 University of Cambridge
-Definitions involving unordered pairing
+Dummy theory, but holds the standard ZF simpset.
+ (This is why the +end is present.)
*)
upair = ZF +
-defs
- (* Definite descriptions -- via Replace over the set "1" *)
- the_def "The(P) == Union({y . x:{0}, P(y)})"
- if_def "if(P,a,b) == THE z. P & z=a | ~P & z=b"
-
- (*Set difference; binary union and intersection*)
- Diff_def "A - B == { x:A . ~(x:B) }"
- Un_def "A Un B == Union(Upair(A,B))"
- Int_def "A Int B == Inter(Upair(A,B))"
-
end