--- a/src/HOL/Decision_Procs/Commutative_Ring_Complete.thy Wed Jul 22 14:55:42 2015 +0200
+++ b/src/HOL/Decision_Procs/Commutative_Ring_Complete.thy Wed Jul 22 23:26:00 2015 +0200
@@ -212,7 +212,7 @@
by atomize_elim arith
then show ?case
proof cases
- case x: 1
+ case 1
with 7 show ?thesis
by (auto simp add: norm_Pinj_0_False)
next
--- a/src/HOL/Decision_Procs/Ferrack.thy Wed Jul 22 14:55:42 2015 +0200
+++ b/src/HOL/Decision_Procs/Ferrack.thy Wed Jul 22 23:26:00 2015 +0200
@@ -1726,7 +1726,7 @@
by atomize_elim auto
then show ?case
proof cases
- case y: 1
+ case 1
then have "y * real c < - ?N x e"
by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric])
then have "real c * y + ?N x e < 0"
@@ -1734,7 +1734,7 @@
then show ?thesis
using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp
next
- case y: 2
+ case 2
with yu have eu: "u > (- ?N x e) / real c"
by auto
with noSc ly yu have "(- ?N x e) / real c \<le> l"
@@ -1759,7 +1759,7 @@
by atomize_elim auto
then show ?case
proof cases
- case y: 1
+ case 1
then have "y * real c < - ?N x e"
by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric])
then have "real c * y + ?N x e < 0"
@@ -1767,7 +1767,7 @@
then show ?thesis
using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp
next
- case y: 2
+ case 2
with yu have eu: "u > (- ?N x e) / real c"
by auto
with noSc ly yu have "(- ?N x e) / real c \<le> l"