moved euclidean ring to HOL
authorhaftmann
Wed, 04 Jan 2017 21:28:29 +0100
changeset 64785 ae0bbc8e45ad
parent 64784 5cb5e7ecb284
child 64786 340db65fd2c1
moved euclidean ring to HOL
NEWS
src/HOL/Divides.thy
src/HOL/Euclidean_Division.thy
src/HOL/Number_Theory/Euclidean_Algorithm.thy
src/HOL/Number_Theory/Euclidean_Division.thy
src/HOL/Parity.thy
--- a/NEWS	Wed Jan 04 21:28:28 2017 +0100
+++ b/NEWS	Wed Jan 04 21:28:29 2017 +0100
@@ -23,6 +23,11 @@
 use constants transp, antisymp, single_valuedp instead.
 INCOMPATIBILITY.
 
+* Algebraic type class hierarchy of euclidean (semi)rings in HOL:
+euclidean_(semi)ring, euclidean_(semi)ring_cancel,
+unique_euclidean_(semi)ring; instantiation requires
+provision of a euclidean size.
+
 * Swapped orientation of congruence rules mod_add_left_eq,
 mod_add_right_eq, mod_add_eq, mod_mult_left_eq, mod_mult_right_eq,
 mod_mult_eq, mod_minus_eq, mod_diff_left_eq, mod_diff_right_eq,
--- a/src/HOL/Divides.thy	Wed Jan 04 21:28:28 2017 +0100
+++ b/src/HOL/Divides.thy	Wed Jan 04 21:28:29 2017 +0100
@@ -3,88 +3,12 @@
     Copyright   1999  University of Cambridge
 *)
 
-section \<open>Quotient and remainder\<close>
+section \<open>More on quotient and remainder\<close>
 
 theory Divides
 imports Parity
 begin
 
-subsection \<open>Quotient and remainder in integral domains\<close>
-
-class semidom_modulo = algebraic_semidom + semiring_modulo
-begin
-
-lemma mod_0 [simp]: "0 mod a = 0"
-  using div_mult_mod_eq [of 0 a] by simp
-
-lemma mod_by_0 [simp]: "a mod 0 = a"
-  using div_mult_mod_eq [of a 0] by simp
-
-lemma mod_by_1 [simp]:
-  "a mod 1 = 0"
-proof -
-  from div_mult_mod_eq [of a one] div_by_1 have "a + a mod 1 = a" by simp
-  then have "a + a mod 1 = a + 0" by simp
-  then show ?thesis by (rule add_left_imp_eq)
-qed
-
-lemma mod_self [simp]:
-  "a mod a = 0"
-  using div_mult_mod_eq [of a a] by simp
-
-lemma dvd_imp_mod_0 [simp]:
-  assumes "a dvd b"
-  shows "b mod a = 0"
-  using assms minus_div_mult_eq_mod [of b a] by simp
-
-lemma mod_0_imp_dvd: 
-  assumes "a mod b = 0"
-  shows   "b dvd a"
-proof -
-  have "b dvd ((a div b) * b)" by simp
-  also have "(a div b) * b = a"
-    using div_mult_mod_eq [of a b] by (simp add: assms)
-  finally show ?thesis .
-qed
-
-lemma mod_eq_0_iff_dvd:
-  "a mod b = 0 \<longleftrightarrow> b dvd a"
-  by (auto intro: mod_0_imp_dvd)
-
-lemma dvd_eq_mod_eq_0 [nitpick_unfold, code]:
-  "a dvd b \<longleftrightarrow> b mod a = 0"
-  by (simp add: mod_eq_0_iff_dvd)
-
-lemma dvd_mod_iff: 
-  assumes "c dvd b"
-  shows "c dvd a mod b \<longleftrightarrow> c dvd a"
-proof -
-  from assms have "(c dvd a mod b) \<longleftrightarrow> (c dvd ((a div b) * b + a mod b))" 
-    by (simp add: dvd_add_right_iff)
-  also have "(a div b) * b + a mod b = a"
-    using div_mult_mod_eq [of a b] by simp
-  finally show ?thesis .
-qed
-
-lemma dvd_mod_imp_dvd:
-  assumes "c dvd a mod b" and "c dvd b"
-  shows "c dvd a"
-  using assms dvd_mod_iff [of c b a] by simp
-
-end
-
-class idom_modulo = idom + semidom_modulo
-begin
-
-subclass idom_divide ..
-
-lemma div_diff [simp]:
-  "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> (a - b) div c = a div c - b div c"
-  using div_add [of _  _ "- b"] by (simp add: dvd_neg_div)
-
-end
-
-
 subsection \<open>Quotient and remainder in integral domains with additional properties\<close>
 
 class semiring_div = semidom_modulo +
@@ -440,6 +364,65 @@
 
 end
 
+  
+subsection \<open>Euclidean (semi)rings with cancel rules\<close>
+
+class euclidean_semiring_cancel = euclidean_semiring + semiring_div
+
+class euclidean_ring_cancel = euclidean_ring + ring_div
+
+context unique_euclidean_semiring
+begin
+
+subclass euclidean_semiring_cancel
+proof
+  show "(a + c * b) div b = c + a div b" if "b \<noteq> 0" for a b c
+  proof (cases a b rule: divmod_cases)
+    case by0
+    with \<open>b \<noteq> 0\<close> show ?thesis
+      by simp
+  next
+    case (divides q)
+    then show ?thesis
+      by (simp add: ac_simps)
+  next
+    case (remainder q r)
+    then show ?thesis
+      by (auto intro: div_eqI simp add: algebra_simps)
+  qed
+next
+  show"(c * a) div (c * b) = a div b" if "c \<noteq> 0" for a b c
+  proof (cases a b rule: divmod_cases)
+    case by0
+    then show ?thesis
+      by simp
+  next
+    case (divides q)
+    with \<open>c \<noteq> 0\<close> show ?thesis
+      by (simp add: mult.left_commute [of c])
+  next
+    case (remainder q r)
+    from \<open>b \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have "b * c \<noteq> 0"
+      by simp
+    from remainder \<open>c \<noteq> 0\<close>
+    have "uniqueness_constraint (r * c) (b * c)"
+      and "euclidean_size (r * c) < euclidean_size (b * c)"
+      by (simp_all add: uniqueness_constraint_mono_mult uniqueness_constraint_mod size_mono_mult)
+    with remainder show ?thesis
+      by (auto intro!: div_eqI [of _ "c * (a mod b)"] simp add: algebra_simps)
+        (use \<open>b * c \<noteq> 0\<close> in simp)
+  qed
+qed
+
+end
+
+context unique_euclidean_ring
+begin
+
+subclass euclidean_ring_cancel ..
+
+end
+
 
 subsection \<open>Parity\<close>
 
@@ -1097,6 +1080,20 @@
   shows "m mod n > 0 \<longleftrightarrow> \<not> n dvd m"
   by (simp add: dvd_eq_mod_eq_0)
 
+instantiation nat :: unique_euclidean_semiring
+begin
+
+definition [simp]:
+  "euclidean_size_nat = (id :: nat \<Rightarrow> nat)"
+
+definition [simp]:
+  "uniqueness_constraint_nat = (top :: nat \<Rightarrow> nat \<Rightarrow> bool)"
+
+instance
+  by standard (use mult_le_mono2 [of 1] in \<open>simp_all add: unit_factor_nat_def mod_greater_zero_iff_not_dvd\<close>)
+
+end
+
 text \<open>Simproc for cancelling @{const divide} and @{const modulo}\<close>
 
 lemma (in semiring_modulo) cancel_div_mod_rules:
@@ -2415,6 +2412,22 @@
     by simp
 qed
 
+instantiation int :: unique_euclidean_ring
+begin
+
+definition [simp]:
+  "euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)"
+
+definition [simp]:
+  "uniqueness_constraint_int (k :: int) l \<longleftrightarrow> unit_factor k = unit_factor l"
+  
+instance
+  by standard
+    (use mult_le_mono2 [of 1] in \<open>auto simp add: abs_mult nat_mult_distrib sgn_mod zdiv_eq_0_iff sgn_1_pos sgn_mult split: abs_split\<close>)
+
+end
+
+  
 subsubsection \<open>Quotients of Signs\<close>
 
 lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Euclidean_Division.thy	Wed Jan 04 21:28:29 2017 +0100
@@ -0,0 +1,287 @@
+(*  Title:      HOL/Euclidean_Division.thy
+    Author:     Manuel Eberl, TU Muenchen
+    Author:     Florian Haftmann, TU Muenchen
+*)
+
+section \<open>Uniquely determined division in euclidean (semi)rings\<close>
+
+theory Euclidean_Division
+  imports Nat_Transfer
+begin
+
+subsection \<open>Quotient and remainder in integral domains\<close>
+
+class semidom_modulo = algebraic_semidom + semiring_modulo
+begin
+
+lemma mod_0 [simp]: "0 mod a = 0"
+  using div_mult_mod_eq [of 0 a] by simp
+
+lemma mod_by_0 [simp]: "a mod 0 = a"
+  using div_mult_mod_eq [of a 0] by simp
+
+lemma mod_by_1 [simp]:
+  "a mod 1 = 0"
+proof -
+  from div_mult_mod_eq [of a one] div_by_1 have "a + a mod 1 = a" by simp
+  then have "a + a mod 1 = a + 0" by simp
+  then show ?thesis by (rule add_left_imp_eq)
+qed
+
+lemma mod_self [simp]:
+  "a mod a = 0"
+  using div_mult_mod_eq [of a a] by simp
+
+lemma dvd_imp_mod_0 [simp]:
+  assumes "a dvd b"
+  shows "b mod a = 0"
+  using assms minus_div_mult_eq_mod [of b a] by simp
+
+lemma mod_0_imp_dvd: 
+  assumes "a mod b = 0"
+  shows   "b dvd a"
+proof -
+  have "b dvd ((a div b) * b)" by simp
+  also have "(a div b) * b = a"
+    using div_mult_mod_eq [of a b] by (simp add: assms)
+  finally show ?thesis .
+qed
+
+lemma mod_eq_0_iff_dvd:
+  "a mod b = 0 \<longleftrightarrow> b dvd a"
+  by (auto intro: mod_0_imp_dvd)
+
+lemma dvd_eq_mod_eq_0 [nitpick_unfold, code]:
+  "a dvd b \<longleftrightarrow> b mod a = 0"
+  by (simp add: mod_eq_0_iff_dvd)
+
+lemma dvd_mod_iff: 
+  assumes "c dvd b"
+  shows "c dvd a mod b \<longleftrightarrow> c dvd a"
+proof -
+  from assms have "(c dvd a mod b) \<longleftrightarrow> (c dvd ((a div b) * b + a mod b))" 
+    by (simp add: dvd_add_right_iff)
+  also have "(a div b) * b + a mod b = a"
+    using div_mult_mod_eq [of a b] by simp
+  finally show ?thesis .
+qed
+
+lemma dvd_mod_imp_dvd:
+  assumes "c dvd a mod b" and "c dvd b"
+  shows "c dvd a"
+  using assms dvd_mod_iff [of c b a] by simp
+
+end
+
+class idom_modulo = idom + semidom_modulo
+begin
+
+subclass idom_divide ..
+
+lemma div_diff [simp]:
+  "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> (a - b) div c = a div c - b div c"
+  using div_add [of _  _ "- b"] by (simp add: dvd_neg_div)
+
+end
+
+  
+subsection \<open>Euclidean (semi)rings with explicit division and remainder\<close>
+  
+class euclidean_semiring = semidom_modulo + normalization_semidom + 
+  fixes euclidean_size :: "'a \<Rightarrow> nat"
+  assumes size_0 [simp]: "euclidean_size 0 = 0"
+  assumes mod_size_less: 
+    "b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b"
+  assumes size_mult_mono:
+    "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (a * b)"
+begin
+
+lemma size_mult_mono': "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (b * a)"
+  by (subst mult.commute) (rule size_mult_mono)
+
+lemma euclidean_size_normalize [simp]:
+  "euclidean_size (normalize a) = euclidean_size a"
+proof (cases "a = 0")
+  case True
+  then show ?thesis
+    by simp
+next
+  case [simp]: False
+  have "euclidean_size (normalize a) \<le> euclidean_size (normalize a * unit_factor a)"
+    by (rule size_mult_mono) simp
+  moreover have "euclidean_size a \<le> euclidean_size (a * (1 div unit_factor a))"
+    by (rule size_mult_mono) simp
+  ultimately show ?thesis
+    by simp
+qed
+
+lemma dvd_euclidean_size_eq_imp_dvd:
+  assumes "a \<noteq> 0" and "euclidean_size a = euclidean_size b"
+    and "b dvd a" 
+  shows "a dvd b"
+proof (rule ccontr)
+  assume "\<not> a dvd b"
+  hence "b mod a \<noteq> 0" using mod_0_imp_dvd [of b a] by blast
+  then have "b mod a \<noteq> 0" by (simp add: mod_eq_0_iff_dvd)
+  from \<open>b dvd a\<close> have "b dvd b mod a" by (simp add: dvd_mod_iff)
+  then obtain c where "b mod a = b * c" unfolding dvd_def by blast
+    with \<open>b mod a \<noteq> 0\<close> have "c \<noteq> 0" by auto
+  with \<open>b mod a = b * c\<close> have "euclidean_size (b mod a) \<ge> euclidean_size b"
+    using size_mult_mono by force
+  moreover from \<open>\<not> a dvd b\<close> and \<open>a \<noteq> 0\<close>
+  have "euclidean_size (b mod a) < euclidean_size a"
+    using mod_size_less by blast
+  ultimately show False using \<open>euclidean_size a = euclidean_size b\<close>
+    by simp
+qed
+
+lemma euclidean_size_times_unit:
+  assumes "is_unit a"
+  shows   "euclidean_size (a * b) = euclidean_size b"
+proof (rule antisym)
+  from assms have [simp]: "a \<noteq> 0" by auto
+  thus "euclidean_size (a * b) \<ge> euclidean_size b" by (rule size_mult_mono')
+  from assms have "is_unit (1 div a)" by simp
+  hence "1 div a \<noteq> 0" by (intro notI) simp_all
+  hence "euclidean_size (a * b) \<le> euclidean_size ((1 div a) * (a * b))"
+    by (rule size_mult_mono')
+  also from assms have "(1 div a) * (a * b) = b"
+    by (simp add: algebra_simps unit_div_mult_swap)
+  finally show "euclidean_size (a * b) \<le> euclidean_size b" .
+qed
+
+lemma euclidean_size_unit:
+  "is_unit a \<Longrightarrow> euclidean_size a = euclidean_size 1"
+  using euclidean_size_times_unit [of a 1] by simp
+
+lemma unit_iff_euclidean_size: 
+  "is_unit a \<longleftrightarrow> euclidean_size a = euclidean_size 1 \<and> a \<noteq> 0"
+proof safe
+  assume A: "a \<noteq> 0" and B: "euclidean_size a = euclidean_size 1"
+  show "is_unit a"
+    by (rule dvd_euclidean_size_eq_imp_dvd [OF A B]) simp_all
+qed (auto intro: euclidean_size_unit)
+
+lemma euclidean_size_times_nonunit:
+  assumes "a \<noteq> 0" "b \<noteq> 0" "\<not> is_unit a"
+  shows   "euclidean_size b < euclidean_size (a * b)"
+proof (rule ccontr)
+  assume "\<not>euclidean_size b < euclidean_size (a * b)"
+  with size_mult_mono'[OF assms(1), of b] 
+    have eq: "euclidean_size (a * b) = euclidean_size b" by simp
+  have "a * b dvd b"
+    by (rule dvd_euclidean_size_eq_imp_dvd [OF _ eq]) (insert assms, simp_all)
+  hence "a * b dvd 1 * b" by simp
+  with \<open>b \<noteq> 0\<close> have "is_unit a" by (subst (asm) dvd_times_right_cancel_iff)
+  with assms(3) show False by contradiction
+qed
+
+lemma dvd_imp_size_le:
+  assumes "a dvd b" "b \<noteq> 0" 
+  shows   "euclidean_size a \<le> euclidean_size b"
+  using assms by (auto elim!: dvdE simp: size_mult_mono)
+
+lemma dvd_proper_imp_size_less:
+  assumes "a dvd b" "\<not> b dvd a" "b \<noteq> 0" 
+  shows   "euclidean_size a < euclidean_size b"
+proof -
+  from assms(1) obtain c where "b = a * c" by (erule dvdE)
+  hence z: "b = c * a" by (simp add: mult.commute)
+  from z assms have "\<not>is_unit c" by (auto simp: mult.commute mult_unit_dvd_iff)
+  with z assms show ?thesis
+    by (auto intro!: euclidean_size_times_nonunit)
+qed
+
+end
+
+class euclidean_ring = idom_modulo + euclidean_semiring
+
+  
+subsection \<open>Uniquely determined division\<close>
+  
+class unique_euclidean_semiring = euclidean_semiring + 
+  fixes uniqueness_constraint :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+  assumes size_mono_mult:
+    "b \<noteq> 0 \<Longrightarrow> euclidean_size a < euclidean_size c
+      \<Longrightarrow> euclidean_size (a * b) < euclidean_size (c * b)"
+    -- \<open>FIXME justify\<close>
+  assumes uniqueness_constraint_mono_mult:
+    "uniqueness_constraint a b \<Longrightarrow> uniqueness_constraint (a * c) (b * c)"
+  assumes uniqueness_constraint_mod:
+    "b \<noteq> 0 \<Longrightarrow> \<not> b dvd a \<Longrightarrow> uniqueness_constraint (a mod b) b"
+  assumes div_bounded:
+    "b \<noteq> 0 \<Longrightarrow> uniqueness_constraint r b
+    \<Longrightarrow> euclidean_size r < euclidean_size b
+    \<Longrightarrow> (q * b + r) div b = q"
+begin
+
+lemma divmod_cases [case_names divides remainder by0]:
+  obtains 
+    (divides) q where "b \<noteq> 0"
+      and "a div b = q"
+      and "a mod b = 0"
+      and "a = q * b"
+  | (remainder) q r where "b \<noteq> 0" and "r \<noteq> 0"
+      and "uniqueness_constraint r b"
+      and "euclidean_size r < euclidean_size b"
+      and "a div b = q"
+      and "a mod b = r"
+      and "a = q * b + r"
+  | (by0) "b = 0"
+proof (cases "b = 0")
+  case True
+  then show thesis
+  by (rule by0)
+next
+  case False
+  show thesis
+  proof (cases "b dvd a")
+    case True
+    then obtain q where "a = b * q" ..
+    with \<open>b \<noteq> 0\<close> divides
+    show thesis
+      by (simp add: ac_simps)
+  next
+    case False
+    then have "a mod b \<noteq> 0"
+      by (simp add: mod_eq_0_iff_dvd)
+    moreover from \<open>b \<noteq> 0\<close> \<open>\<not> b dvd a\<close> have "uniqueness_constraint (a mod b) b"
+      by (rule uniqueness_constraint_mod)
+    moreover have "euclidean_size (a mod b) < euclidean_size b"
+      using \<open>b \<noteq> 0\<close> by (rule mod_size_less)
+    moreover have "a = a div b * b + a mod b"
+      by (simp add: div_mult_mod_eq)
+    ultimately show thesis
+      using \<open>b \<noteq> 0\<close> by (blast intro: remainder)
+  qed
+qed
+
+lemma div_eqI:
+  "a div b = q" if "b \<noteq> 0" "uniqueness_constraint r b"
+    "euclidean_size r < euclidean_size b" "q * b + r = a"
+proof -
+  from that have "(q * b + r) div b = q"
+    by (auto intro: div_bounded)
+  with that show ?thesis
+    by simp
+qed
+
+lemma mod_eqI:
+  "a mod b = r" if "b \<noteq> 0" "uniqueness_constraint r b"
+    "euclidean_size r < euclidean_size b" "q * b + r = a" 
+proof -
+  from that have "a div b = q"
+    by (rule div_eqI)
+  moreover have "a div b * b + a mod b = a"
+    by (fact div_mult_mod_eq)
+  ultimately have "a div b * b + a mod b = a div b * b + r"
+    using \<open>q * b + r = a\<close> by simp
+  then show ?thesis
+    by simp
+qed
+
+end
+
+class unique_euclidean_ring = euclidean_ring + unique_euclidean_semiring
+
+end
--- a/src/HOL/Number_Theory/Euclidean_Algorithm.thy	Wed Jan 04 21:28:28 2017 +0100
+++ b/src/HOL/Number_Theory/Euclidean_Algorithm.thy	Wed Jan 04 21:28:29 2017 +0100
@@ -7,7 +7,6 @@
 theory Euclidean_Algorithm
   imports "~~/src/HOL/GCD"
     "~~/src/HOL/Number_Theory/Factorial_Ring"
-    "~~/src/HOL/Number_Theory/Euclidean_Division"
 begin
 
 context euclidean_semiring
--- a/src/HOL/Number_Theory/Euclidean_Division.thy	Wed Jan 04 21:28:28 2017 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,295 +0,0 @@
-(*  Title:      HOL/Number_Theory/Euclidean_Division.thy
-    Author:     Manuel Eberl, TU Muenchen
-    Author:     Florian Haftmann, TU Muenchen
-*)
-
-section \<open>Division with remainder in euclidean (semi)rings\<close>
-
-theory Euclidean_Division
-  imports Main
-begin
-
-subsection \<open>Euclidean (semi)rings with explicit division and remainder\<close>
-  
-class euclidean_semiring = semidom_modulo + normalization_semidom + 
-  fixes euclidean_size :: "'a \<Rightarrow> nat"
-  assumes size_0 [simp]: "euclidean_size 0 = 0"
-  assumes mod_size_less: 
-    "b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b"
-  assumes size_mult_mono:
-    "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (a * b)"
-begin
-
-lemma size_mult_mono': "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (b * a)"
-  by (subst mult.commute) (rule size_mult_mono)
-
-lemma euclidean_size_normalize [simp]:
-  "euclidean_size (normalize a) = euclidean_size a"
-proof (cases "a = 0")
-  case True
-  then show ?thesis
-    by simp
-next
-  case [simp]: False
-  have "euclidean_size (normalize a) \<le> euclidean_size (normalize a * unit_factor a)"
-    by (rule size_mult_mono) simp
-  moreover have "euclidean_size a \<le> euclidean_size (a * (1 div unit_factor a))"
-    by (rule size_mult_mono) simp
-  ultimately show ?thesis
-    by simp
-qed
-
-lemma dvd_euclidean_size_eq_imp_dvd:
-  assumes "a \<noteq> 0" and "euclidean_size a = euclidean_size b"
-    and "b dvd a" 
-  shows "a dvd b"
-proof (rule ccontr)
-  assume "\<not> a dvd b"
-  hence "b mod a \<noteq> 0" using mod_0_imp_dvd [of b a] by blast
-  then have "b mod a \<noteq> 0" by (simp add: mod_eq_0_iff_dvd)
-  from \<open>b dvd a\<close> have "b dvd b mod a" by (simp add: dvd_mod_iff)
-  then obtain c where "b mod a = b * c" unfolding dvd_def by blast
-    with \<open>b mod a \<noteq> 0\<close> have "c \<noteq> 0" by auto
-  with \<open>b mod a = b * c\<close> have "euclidean_size (b mod a) \<ge> euclidean_size b"
-    using size_mult_mono by force
-  moreover from \<open>\<not> a dvd b\<close> and \<open>a \<noteq> 0\<close>
-  have "euclidean_size (b mod a) < euclidean_size a"
-    using mod_size_less by blast
-  ultimately show False using \<open>euclidean_size a = euclidean_size b\<close>
-    by simp
-qed
-
-lemma euclidean_size_times_unit:
-  assumes "is_unit a"
-  shows   "euclidean_size (a * b) = euclidean_size b"
-proof (rule antisym)
-  from assms have [simp]: "a \<noteq> 0" by auto
-  thus "euclidean_size (a * b) \<ge> euclidean_size b" by (rule size_mult_mono')
-  from assms have "is_unit (1 div a)" by simp
-  hence "1 div a \<noteq> 0" by (intro notI) simp_all
-  hence "euclidean_size (a * b) \<le> euclidean_size ((1 div a) * (a * b))"
-    by (rule size_mult_mono')
-  also from assms have "(1 div a) * (a * b) = b"
-    by (simp add: algebra_simps unit_div_mult_swap)
-  finally show "euclidean_size (a * b) \<le> euclidean_size b" .
-qed
-
-lemma euclidean_size_unit:
-  "is_unit a \<Longrightarrow> euclidean_size a = euclidean_size 1"
-  using euclidean_size_times_unit [of a 1] by simp
-
-lemma unit_iff_euclidean_size: 
-  "is_unit a \<longleftrightarrow> euclidean_size a = euclidean_size 1 \<and> a \<noteq> 0"
-proof safe
-  assume A: "a \<noteq> 0" and B: "euclidean_size a = euclidean_size 1"
-  show "is_unit a"
-    by (rule dvd_euclidean_size_eq_imp_dvd [OF A B]) simp_all
-qed (auto intro: euclidean_size_unit)
-
-lemma euclidean_size_times_nonunit:
-  assumes "a \<noteq> 0" "b \<noteq> 0" "\<not> is_unit a"
-  shows   "euclidean_size b < euclidean_size (a * b)"
-proof (rule ccontr)
-  assume "\<not>euclidean_size b < euclidean_size (a * b)"
-  with size_mult_mono'[OF assms(1), of b] 
-    have eq: "euclidean_size (a * b) = euclidean_size b" by simp
-  have "a * b dvd b"
-    by (rule dvd_euclidean_size_eq_imp_dvd [OF _ eq]) (insert assms, simp_all)
-  hence "a * b dvd 1 * b" by simp
-  with \<open>b \<noteq> 0\<close> have "is_unit a" by (subst (asm) dvd_times_right_cancel_iff)
-  with assms(3) show False by contradiction
-qed
-
-lemma dvd_imp_size_le:
-  assumes "a dvd b" "b \<noteq> 0" 
-  shows   "euclidean_size a \<le> euclidean_size b"
-  using assms by (auto elim!: dvdE simp: size_mult_mono)
-
-lemma dvd_proper_imp_size_less:
-  assumes "a dvd b" "\<not> b dvd a" "b \<noteq> 0" 
-  shows   "euclidean_size a < euclidean_size b"
-proof -
-  from assms(1) obtain c where "b = a * c" by (erule dvdE)
-  hence z: "b = c * a" by (simp add: mult.commute)
-  from z assms have "\<not>is_unit c" by (auto simp: mult.commute mult_unit_dvd_iff)
-  with z assms show ?thesis
-    by (auto intro!: euclidean_size_times_nonunit)
-qed
-
-end
-
-class euclidean_ring = idom_modulo + euclidean_semiring
-
-  
-subsection \<open>Euclidean (semi)rings with cancel rules\<close>
-
-class euclidean_semiring_cancel = euclidean_semiring + semiring_div
-
-class euclidean_ring_cancel = euclidean_ring + ring_div
-  
-  
-subsection \<open>Uniquely determined division\<close>
-  
-class unique_euclidean_semiring = euclidean_semiring + 
-  fixes uniqueness_constraint :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
-  assumes size_mono_mult:
-    "b \<noteq> 0 \<Longrightarrow> euclidean_size a < euclidean_size c
-      \<Longrightarrow> euclidean_size (a * b) < euclidean_size (c * b)"
-    -- \<open>FIXME justify\<close>
-  assumes uniqueness_constraint_mono_mult:
-    "uniqueness_constraint a b \<Longrightarrow> uniqueness_constraint (a * c) (b * c)"
-  assumes uniqueness_constraint_mod:
-    "b \<noteq> 0 \<Longrightarrow> \<not> b dvd a \<Longrightarrow> uniqueness_constraint (a mod b) b"
-  assumes div_bounded:
-    "b \<noteq> 0 \<Longrightarrow> uniqueness_constraint r b
-    \<Longrightarrow> euclidean_size r < euclidean_size b
-    \<Longrightarrow> (q * b + r) div b = q"
-begin
-
-lemma divmod_cases [case_names divides remainder by0]:
-  obtains 
-    (divides) q where "b \<noteq> 0"
-      and "a div b = q"
-      and "a mod b = 0"
-      and "a = q * b"
-  | (remainder) q r where "b \<noteq> 0" and "r \<noteq> 0"
-      and "uniqueness_constraint r b"
-      and "euclidean_size r < euclidean_size b"
-      and "a div b = q"
-      and "a mod b = r"
-      and "a = q * b + r"
-  | (by0) "b = 0"
-proof (cases "b = 0")
-  case True
-  then show thesis
-  by (rule by0)
-next
-  case False
-  show thesis
-  proof (cases "b dvd a")
-    case True
-    then obtain q where "a = b * q" ..
-    with \<open>b \<noteq> 0\<close> divides
-    show thesis
-      by (simp add: ac_simps)
-  next
-    case False
-    then have "a mod b \<noteq> 0"
-      by (simp add: mod_eq_0_iff_dvd)
-    moreover from \<open>b \<noteq> 0\<close> \<open>\<not> b dvd a\<close> have "uniqueness_constraint (a mod b) b"
-      by (rule uniqueness_constraint_mod)
-    moreover have "euclidean_size (a mod b) < euclidean_size b"
-      using \<open>b \<noteq> 0\<close> by (rule mod_size_less)
-    moreover have "a = a div b * b + a mod b"
-      by (simp add: div_mult_mod_eq)
-    ultimately show thesis
-      using \<open>b \<noteq> 0\<close> by (blast intro: remainder)
-  qed
-qed
-
-lemma div_eqI:
-  "a div b = q" if "b \<noteq> 0" "uniqueness_constraint r b"
-    "euclidean_size r < euclidean_size b" "q * b + r = a"
-proof -
-  from that have "(q * b + r) div b = q"
-    by (auto intro: div_bounded)
-  with that show ?thesis
-    by simp
-qed
-
-lemma mod_eqI:
-  "a mod b = r" if "b \<noteq> 0" "uniqueness_constraint r b"
-    "euclidean_size r < euclidean_size b" "q * b + r = a" 
-proof -
-  from that have "a div b = q"
-    by (rule div_eqI)
-  moreover have "a div b * b + a mod b = a"
-    by (fact div_mult_mod_eq)
-  ultimately have "a div b * b + a mod b = a div b * b + r"
-    using \<open>q * b + r = a\<close> by simp
-  then show ?thesis
-    by simp
-qed
-
-subclass euclidean_semiring_cancel
-proof
-  show "(a + c * b) div b = c + a div b" if "b \<noteq> 0" for a b c
-  proof (cases a b rule: divmod_cases)
-    case by0
-    with \<open>b \<noteq> 0\<close> show ?thesis
-      by simp
-  next
-    case (divides q)
-    then show ?thesis
-      by (simp add: ac_simps)
-  next
-    case (remainder q r)
-    then show ?thesis
-      by (auto intro: div_eqI simp add: algebra_simps)
-  qed
-next
-  show"(c * a) div (c * b) = a div b" if "c \<noteq> 0" for a b c
-  proof (cases a b rule: divmod_cases)
-    case by0
-    then show ?thesis
-      by simp
-  next
-    case (divides q)
-    with \<open>c \<noteq> 0\<close> show ?thesis
-      by (simp add: mult.left_commute [of c])
-  next
-    case (remainder q r)
-    from \<open>b \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have "b * c \<noteq> 0"
-      by simp
-    from remainder \<open>c \<noteq> 0\<close>
-    have "uniqueness_constraint (r * c) (b * c)"
-      and "euclidean_size (r * c) < euclidean_size (b * c)"
-      by (simp_all add: uniqueness_constraint_mono_mult uniqueness_constraint_mod size_mono_mult)
-    with remainder show ?thesis
-      by (auto intro!: div_eqI [of _ "c * (a mod b)"] simp add: algebra_simps)
-        (use \<open>b * c \<noteq> 0\<close> in simp)
-  qed
-qed
-  
-end
-
-class unique_euclidean_ring = euclidean_ring + unique_euclidean_semiring
-begin
-
-subclass euclidean_ring_cancel ..
-
-end
-
-subsection \<open>Typical instances\<close>
-
-instantiation nat :: unique_euclidean_semiring
-begin
-
-definition [simp]:
-  "euclidean_size_nat = (id :: nat \<Rightarrow> nat)"
-
-definition [simp]:
-  "uniqueness_constraint_nat = (top :: nat \<Rightarrow> nat \<Rightarrow> bool)"
-
-instance
-  by standard
-    (simp_all add: unit_factor_nat_def mod_greater_zero_iff_not_dvd)
-
-end
-
-instantiation int :: unique_euclidean_ring
-begin
-
-definition [simp]:
-  "euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)"
-
-definition [simp]:
-  "uniqueness_constraint_int (k :: int) l \<longleftrightarrow> unit_factor k = unit_factor l"
-  
-instance
-  by standard
-    (auto simp add: abs_mult nat_mult_distrib sgn_mod zdiv_eq_0_iff sgn_1_pos sgn_mult split: abs_split)
-
-end
-
-end
--- a/src/HOL/Parity.thy	Wed Jan 04 21:28:28 2017 +0100
+++ b/src/HOL/Parity.thy	Wed Jan 04 21:28:29 2017 +0100
@@ -6,7 +6,7 @@
 section \<open>Parity in rings and semirings\<close>
 
 theory Parity
-  imports Nat_Transfer
+  imports Nat_Transfer Euclidean_Division
 begin
 
 subsection \<open>Ring structures with parity and \<open>even\<close>/\<open>odd\<close> predicates\<close>