New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
authorpaulson <lp15@cam.ac.uk>
Fri, 13 Sep 2019 12:46:36 +0100
changeset 70694 ae37b8fbf023
parent 70693 0fec12eabad0
child 70706 374caac3d624
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
src/HOL/Analysis/Analysis.thy
src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy
src/HOL/Analysis/Equivalence_Measurable_On_Borel.thy
src/HOL/Analysis/Lebesgue_Measure.thy
src/HOL/Limits.thy
--- a/src/HOL/Analysis/Analysis.thy	Thu Sep 12 17:17:52 2019 +0200
+++ b/src/HOL/Analysis/Analysis.thy	Fri Sep 13 12:46:36 2019 +0100
@@ -16,9 +16,9 @@
   Ball_Volume
   Integral_Test
   Improper_Integral
+  Equivalence_Measurable_On_Borel
   (* Unsorted *)
   Lebesgue_Integral_Substitution
-  Improper_Integral
   Embed_Measure
   Complete_Measure
   Radon_Nikodym
--- a/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy	Thu Sep 12 17:17:52 2019 +0200
+++ b/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy	Fri Sep 13 12:46:36 2019 +0100
@@ -4479,6 +4479,22 @@
   unfolding has_bochner_integral_iff lebesgue_integrable_real_affine_iff
   by (simp_all add: lebesgue_integral_real_affine[symmetric] divideR_right cong: conj_cong)
 
+lemma has_bochner_integral_reflect_real_lemma[intro]:
+  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
+  assumes "has_bochner_integral (lebesgue_on {a..b}) f i"
+  shows "has_bochner_integral (lebesgue_on {-b..-a}) (\<lambda>x. f(-x)) i"
+proof -
+  have eq: "indicat_real {a..b} (- x) *\<^sub>R f(- x) = indicat_real {- b..- a} x *\<^sub>R f(- x)" for x
+    by (auto simp: indicator_def)
+  have i: "has_bochner_integral lebesgue (\<lambda>x. indicator {a..b} x *\<^sub>R f x) i"
+    using assms by (auto simp: has_bochner_integral_restrict_space)
+  then have "has_bochner_integral lebesgue (\<lambda>x. indicator {-b..-a} x *\<^sub>R f(-x)) i"
+    using has_bochner_integral_lebesgue_real_affine_iff [of "-1" "(\<lambda>x. indicator {a..b} x *\<^sub>R f x)" i 0]
+    by (auto simp: eq)
+  then show ?thesis
+    by (auto simp: has_bochner_integral_restrict_space)
+qed
+
 subsection\<open>More results on integrability\<close>
 
 lemma integrable_on_all_intervals_UNIV:
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Equivalence_Measurable_On_Borel.thy	Fri Sep 13 12:46:36 2019 +0100
@@ -0,0 +1,1603 @@
+(*  Title:      HOL/Analysis/Equivalence_Measurable_On_Borel
+    Author: LC Paulson (some material ported from HOL Light)
+*)
+
+section\<open>Equivalence Between Classical Borel Measurability and HOL Light's\<close>
+
+theory Equivalence_Measurable_On_Borel
+  imports Equivalence_Lebesgue_Henstock_Integration Improper_Integral Continuous_Extension
+begin
+
+(*Borrowed from Ergodic_Theory/SG_Library_Complement*)
+abbreviation sym_diff :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" where
+  "sym_diff A B \<equiv> ((A - B) \<union> (B-A))"
+
+subsection\<open>Austin's Lemma\<close>
+
+lemma Austin_Lemma:
+  fixes \<D> :: "'a::euclidean_space set set"
+  assumes "finite \<D>" and \<D>: "\<And>D. D \<in> \<D> \<Longrightarrow> \<exists>k a b. D = cbox a b \<and> (\<forall>i \<in> Basis. b\<bullet>i - a\<bullet>i = k)"
+  obtains \<C> where "\<C> \<subseteq> \<D>" "pairwise disjnt \<C>"
+                  "measure lebesgue (\<Union>\<C>) \<ge> measure lebesgue (\<Union>\<D>) / 3 ^ (DIM('a))"
+  using assms
+proof (induction "card \<D>" arbitrary: \<D> thesis rule: less_induct)
+  case less
+  show ?case
+  proof (cases "\<D> = {}")
+    case True
+    then show thesis
+      using less by auto
+  next
+    case False
+    then have "Max (Sigma_Algebra.measure lebesgue ` \<D>) \<in> Sigma_Algebra.measure lebesgue ` \<D>"
+      using Max_in finite_imageI \<open>finite \<D>\<close> by blast
+    then obtain D where "D \<in> \<D>" and "measure lebesgue D = Max (measure lebesgue ` \<D>)"
+      by auto
+    then have D: "\<And>C. C \<in> \<D> \<Longrightarrow> measure lebesgue C \<le> measure lebesgue D"
+      by (simp add: \<open>finite \<D>\<close>)
+    let ?\<E> = "{C. C \<in> \<D> - {D} \<and> disjnt C D}"
+    obtain \<D>' where \<D>'sub: "\<D>' \<subseteq> ?\<E>" and \<D>'dis: "pairwise disjnt \<D>'"
+      and \<D>'m: "measure lebesgue (\<Union>\<D>') \<ge> measure lebesgue (\<Union>?\<E>) / 3 ^ (DIM('a))"
+    proof (rule less.hyps)
+      have *: "?\<E> \<subset> \<D>"
+        using \<open>D \<in> \<D>\<close> by auto
+      then show "card ?\<E> < card \<D>" "finite ?\<E>"
+        by (auto simp: \<open>finite \<D>\<close> psubset_card_mono)
+      show "\<exists>k a b. D = cbox a b \<and> (\<forall>i\<in>Basis. b \<bullet> i - a \<bullet> i = k)" if "D \<in> ?\<E>" for D
+        using less.prems(3) that by auto
+    qed
+    then have [simp]: "\<Union>\<D>' - D = \<Union>\<D>'"
+      by (auto simp: disjnt_iff)
+    show ?thesis
+    proof (rule less.prems)
+      show "insert D \<D>' \<subseteq> \<D>"
+        using \<D>'sub \<open>D \<in> \<D>\<close> by blast
+      show "disjoint (insert D \<D>')"
+        using \<D>'dis \<D>'sub by (fastforce simp add: pairwise_def disjnt_sym)
+      obtain a3 b3 where  m3: "content (cbox a3 b3) = 3 ^ DIM('a) * measure lebesgue D"
+        and sub3: "\<And>C. \<lbrakk>C \<in> \<D>; \<not> disjnt C D\<rbrakk> \<Longrightarrow> C \<subseteq> cbox a3 b3"
+      proof -
+        obtain k a b where ab: "D = cbox a b" and k: "\<And>i. i \<in> Basis \<Longrightarrow> b\<bullet>i - a\<bullet>i = k"
+          using less.prems \<open>D \<in> \<D>\<close> by blast
+        then have eqk: "\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i \<le> b \<bullet> i \<longleftrightarrow> k \<ge> 0"
+          by force
+        show thesis
+        proof
+          let ?a = "(a + b) /\<^sub>R 2 - (3/2) *\<^sub>R (b - a)"
+          let ?b = "(a + b) /\<^sub>R 2 + (3/2) *\<^sub>R (b - a)"
+          have eq: "(\<Prod>i\<in>Basis. b \<bullet> i * 3 - a \<bullet> i * 3) = (\<Prod>i\<in>Basis. b \<bullet> i - a \<bullet> i) * 3 ^ DIM('a)"
+            by (simp add: comm_monoid_mult_class.prod.distrib flip: left_diff_distrib inner_diff_left)
+          show "content (cbox ?a ?b) = 3 ^ DIM('a) * measure lebesgue D"
+            by (simp add: content_cbox_if box_eq_empty algebra_simps eq ab k)
+          show "C \<subseteq> cbox ?a ?b" if "C \<in> \<D>" and CD: "\<not> disjnt C D" for C
+          proof -
+            obtain k' a' b' where ab': "C = cbox a' b'" and k': "\<And>i. i \<in> Basis \<Longrightarrow> b'\<bullet>i - a'\<bullet>i = k'"
+              using less.prems \<open>C \<in> \<D>\<close> by blast
+            then have eqk': "\<And>i. i \<in> Basis \<Longrightarrow> a' \<bullet> i \<le> b' \<bullet> i \<longleftrightarrow> k' \<ge> 0"
+              by force
+            show ?thesis
+            proof (clarsimp simp add: disjoint_interval disjnt_def ab ab' not_less subset_box algebra_simps)
+              show "a \<bullet> i * 2 \<le> a' \<bullet> i + b \<bullet> i \<and> a \<bullet> i + b' \<bullet> i \<le> b \<bullet> i * 2"
+                if * [rule_format]: "\<forall>j\<in>Basis. a' \<bullet> j \<le> b' \<bullet> j" and "i \<in> Basis" for i
+              proof -
+                have "a' \<bullet> i \<le> b' \<bullet> i \<and> a \<bullet> i \<le> b \<bullet> i \<and> a \<bullet> i \<le> b' \<bullet> i \<and> a' \<bullet> i \<le> b \<bullet> i"
+                  using \<open>i \<in> Basis\<close> CD by (simp_all add: disjoint_interval disjnt_def ab ab' not_less)
+                then show ?thesis
+                  using D [OF \<open>C \<in> \<D>\<close>] \<open>i \<in> Basis\<close>
+                  apply (simp add: ab ab' k k' eqk eqk' content_cbox_cases)
+                  using k k' by fastforce
+              qed
+            qed
+          qed
+        qed
+      qed
+      have \<D>lm: "\<And>D. D \<in> \<D> \<Longrightarrow> D \<in> lmeasurable"
+        using less.prems(3) by blast
+      have "measure lebesgue (\<Union>\<D>)  \<le> measure lebesgue (cbox a3 b3 \<union> (\<Union>\<D> - cbox a3 b3))"
+      proof (rule measure_mono_fmeasurable)
+        show "\<Union>\<D> \<in> sets lebesgue"
+          using \<D>lm \<open>finite \<D>\<close> by blast
+        show "cbox a3 b3 \<union> (\<Union>\<D> - cbox a3 b3) \<in> lmeasurable"
+          by (simp add: \<D>lm fmeasurable.Un fmeasurable.finite_Union less.prems(2) subset_eq)
+      qed auto
+      also have "\<dots> = content (cbox a3 b3) + measure lebesgue (\<Union>\<D> - cbox a3 b3)"
+        by (simp add: \<D>lm fmeasurable.finite_Union less.prems(2) measure_Un2 subsetI)
+      also have "\<dots> \<le> (measure lebesgue D + measure lebesgue (\<Union>\<D>')) * 3 ^ DIM('a)"
+      proof -
+        have "(\<Union>\<D> - cbox a3 b3) \<subseteq> \<Union>?\<E>"
+          using sub3 by fastforce
+        then have "measure lebesgue (\<Union>\<D> - cbox a3 b3) \<le> measure lebesgue (\<Union>?\<E>)"
+        proof (rule measure_mono_fmeasurable)
+          show "\<Union> \<D> - cbox a3 b3 \<in> sets lebesgue"
+            by (simp add: \<D>lm fmeasurableD less.prems(2) sets.Diff sets.finite_Union subsetI)
+          show "\<Union> {C \<in> \<D> - {D}. disjnt C D} \<in> lmeasurable"
+            using \<D>lm less.prems(2) by auto
+        qed
+        then have "measure lebesgue (\<Union>\<D> - cbox a3 b3) / 3 ^ DIM('a) \<le> measure lebesgue (\<Union> \<D>')"
+          using \<D>'m by (simp add: divide_simps)
+        then show ?thesis
+          by (simp add: m3 field_simps)
+      qed
+      also have "\<dots> \<le> measure lebesgue (\<Union>(insert D \<D>')) * 3 ^ DIM('a)"
+      proof (simp add: \<D>lm \<open>D \<in> \<D>\<close>)
+        show "measure lebesgue D + measure lebesgue (\<Union>\<D>') \<le> measure lebesgue (D \<union> \<Union> \<D>')"
+        proof (subst measure_Un2)
+          show "\<Union> \<D>' \<in> lmeasurable"
+            by (meson \<D>lm \<open>insert D \<D>' \<subseteq> \<D>\<close> fmeasurable.finite_Union less.prems(2) finite_subset subset_eq subset_insertI)
+          show "measure lebesgue D + measure lebesgue (\<Union> \<D>') \<le> measure lebesgue D + measure lebesgue (\<Union> \<D>' - D)"
+            using \<open>insert D \<D>' \<subseteq> \<D>\<close> infinite_super less.prems(2) by force
+        qed (simp add: \<D>lm \<open>D \<in> \<D>\<close>)
+      qed
+      finally show "measure lebesgue (\<Union>\<D>) / 3 ^ DIM('a) \<le> measure lebesgue (\<Union>(insert D \<D>'))"
+        by (simp add: divide_simps)
+    qed
+  qed
+qed
+
+
+subsection\<open>A differentiability-like property of the indefinite integral.        \<close>
+
+proposition integrable_ccontinuous_explicit:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "\<And>a b::'a. f integrable_on cbox a b"
+  obtains N where
+       "negligible N"
+       "\<And>x e. \<lbrakk>x \<notin> N; 0 < e\<rbrakk> \<Longrightarrow>
+               \<exists>d>0. \<forall>h. 0 < h \<and> h < d \<longrightarrow>
+                         norm(integral (cbox x (x + h *\<^sub>R One)) f /\<^sub>R h ^ DIM('a) - f x) < e"
+proof -
+  define BOX where "BOX \<equiv> \<lambda>h. \<lambda>x::'a. cbox x (x + h *\<^sub>R One)"
+  define BOX2 where "BOX2 \<equiv> \<lambda>h. \<lambda>x::'a. cbox (x - h *\<^sub>R One) (x + h *\<^sub>R One)"
+  define i where "i \<equiv> \<lambda>h x. integral (BOX h x) f /\<^sub>R h ^ DIM('a)"
+  define \<Psi> where "\<Psi> \<equiv> \<lambda>x r. \<forall>d>0. \<exists>h. 0 < h \<and> h < d \<and> r \<le> norm(i h x - f x)"
+  let ?N = "{x. \<exists>e>0. \<Psi> x e}"
+  have "\<exists>N. negligible N \<and> (\<forall>x e. x \<notin> N \<and> 0 < e \<longrightarrow> \<not> \<Psi> x e)"
+  proof (rule exI ; intro conjI allI impI)
+    let ?M =  "\<Union>n. {x. \<Psi> x (inverse(real n + 1))}"
+    have "negligible ({x. \<Psi> x \<mu>} \<inter> cbox a b)"
+      if "\<mu> > 0" for a b \<mu>
+    proof (cases "negligible(cbox a b)")
+      case True
+      then show ?thesis
+        by (simp add: negligible_Int)
+    next
+      case False
+      then have "box a b \<noteq> {}"
+        by (simp add: negligible_interval)
+      then have ab: "\<And>i. i \<in> Basis \<Longrightarrow> a\<bullet>i < b\<bullet>i"
+        by (simp add: box_ne_empty)
+      show ?thesis
+        unfolding negligible_outer_le
+      proof (intro allI impI)
+        fix e::real
+        let ?ee = "(e * \<mu>) / 2 / 6 ^ (DIM('a))"
+        assume "e > 0"
+        then have gt0: "?ee > 0"
+          using \<open>\<mu> > 0\<close> by auto
+        have f': "f integrable_on cbox (a - One) (b + One)"
+          using assms by blast
+        obtain \<gamma> where "gauge \<gamma>"
+          and \<gamma>: "\<And>p. \<lbrakk>p tagged_partial_division_of (cbox (a - One) (b + One)); \<gamma> fine p\<rbrakk>
+                    \<Longrightarrow> (\<Sum>(x, k)\<in>p. norm (content k *\<^sub>R f x - integral k f)) < ?ee"
+          using Henstock_lemma [OF f' gt0] that by auto
+        let ?E = "{x. x \<in> cbox a b \<and> \<Psi> x \<mu>}"
+        have "\<exists>h>0. BOX h x \<subseteq> \<gamma> x \<and>
+                    BOX h x \<subseteq> cbox (a - One) (b + One) \<and> \<mu> \<le> norm (i h x - f x)"
+          if "x \<in> cbox a b" "\<Psi> x \<mu>" for x
+        proof -
+          obtain d where "d > 0" and d: "ball x d \<subseteq> \<gamma> x"
+            using gaugeD [OF \<open>gauge \<gamma>\<close>, of x] openE by blast
+          then obtain h where "0 < h" "h < 1" and hless: "h < d / real DIM('a)"
+                          and mule: "\<mu> \<le> norm (i h x - f x)"
+            using \<open>\<Psi> x \<mu>\<close> [unfolded \<Psi>_def, rule_format, of "min 1 (d / DIM('a))"]
+            by auto
+          show ?thesis
+          proof (intro exI conjI)
+            show "0 < h" "\<mu> \<le> norm (i h x - f x)" by fact+
+            have "BOX h x \<subseteq> ball x d"
+            proof (clarsimp simp: BOX_def mem_box dist_norm algebra_simps)
+              fix y
+              assume "\<forall>i\<in>Basis. x \<bullet> i \<le> y \<bullet> i \<and> y \<bullet> i \<le> h + x \<bullet> i"
+              then have lt: "\<bar>(x - y) \<bullet> i\<bar> < d / real DIM('a)" if "i \<in> Basis" for i
+                using hless that by (force simp: inner_diff_left)
+              have "norm (x - y) \<le> (\<Sum>i\<in>Basis. \<bar>(x - y) \<bullet> i\<bar>)"
+                using norm_le_l1 by blast
+              also have "\<dots> < d"
+                using sum_bounded_above_strict [of Basis "\<lambda>i. \<bar>(x - y) \<bullet> i\<bar>" "d / DIM('a)", OF lt]
+                by auto
+              finally show "norm (x - y) < d" .
+            qed
+            with d show "BOX h x \<subseteq> \<gamma> x"
+              by blast
+            show "BOX h x \<subseteq> cbox (a - One) (b + One)"
+              using that \<open>h < 1\<close>
+              by (force simp: BOX_def mem_box algebra_simps intro: subset_box_imp)
+          qed
+        qed
+        then obtain \<eta> where h0: "\<And>x. x \<in> ?E \<Longrightarrow> \<eta> x > 0"
+          and BOX_\<gamma>: "\<And>x. x \<in> ?E \<Longrightarrow> BOX (\<eta> x) x \<subseteq> \<gamma> x"
+          and "\<And>x. x \<in> ?E \<Longrightarrow> BOX (\<eta> x) x \<subseteq> cbox (a - One) (b + One) \<and> \<mu> \<le> norm (i (\<eta> x) x - f x)"
+          by simp metis
+        then have BOX_cbox: "\<And>x. x \<in> ?E \<Longrightarrow> BOX (\<eta> x) x \<subseteq> cbox (a - One) (b + One)"
+             and \<mu>_le: "\<And>x. x \<in> ?E \<Longrightarrow> \<mu> \<le> norm (i (\<eta> x) x - f x)"
+          by blast+
+        define \<gamma>' where "\<gamma>' \<equiv> \<lambda>x. if x \<in> cbox a b \<and> \<Psi> x \<mu> then ball x (\<eta> x) else \<gamma> x"
+        have "gauge \<gamma>'"
+          using \<open>gauge \<gamma>\<close> by (auto simp: h0 gauge_def \<gamma>'_def)
+        obtain \<D> where "countable \<D>"
+          and \<D>: "\<Union>\<D> \<subseteq> cbox a b"
+          "\<And>K. K \<in> \<D> \<Longrightarrow> interior K \<noteq> {} \<and> (\<exists>c d. K = cbox c d)"
+          and Dcovered: "\<And>K. K \<in> \<D> \<Longrightarrow> \<exists>x. x \<in> cbox a b \<and> \<Psi> x \<mu> \<and> x \<in> K \<and> K \<subseteq> \<gamma>' x"
+          and subUD: "?E \<subseteq> \<Union>\<D>"
+          by (rule covering_lemma [of ?E a b \<gamma>']) (simp_all add: Bex_def \<open>box a b \<noteq> {}\<close> \<open>gauge \<gamma>'\<close>)
+        then have "\<D> \<subseteq> sets lebesgue"
+          by fastforce
+        show "\<exists>T. {x. \<Psi> x \<mu>} \<inter> cbox a b \<subseteq> T \<and> T \<in> lmeasurable \<and> measure lebesgue T \<le> e"
+        proof (intro exI conjI)
+          show "{x. \<Psi> x \<mu>} \<inter> cbox a b \<subseteq> \<Union>\<D>"
+            apply auto
+            using subUD by auto
+          have mUE: "measure lebesgue (\<Union> \<E>) \<le> measure lebesgue (cbox a b)"
+            if "\<E> \<subseteq> \<D>" "finite \<E>" for \<E>
+          proof (rule measure_mono_fmeasurable)
+            show "\<Union> \<E> \<subseteq> cbox a b"
+              using \<D>(1) that(1) by blast
+            show "\<Union> \<E> \<in> sets lebesgue"
+              by (metis \<D>(2) fmeasurable.finite_Union fmeasurableD lmeasurable_cbox subset_eq that)
+          qed auto
+          then show "\<Union>\<D> \<in> lmeasurable"
+            by (metis \<D>(2) \<open>countable \<D>\<close> fmeasurable_Union_bound lmeasurable_cbox)
+          then have leab: "measure lebesgue (\<Union>\<D>) \<le> measure lebesgue (cbox a b)"
+            by (meson \<D>(1) fmeasurableD lmeasurable_cbox measure_mono_fmeasurable)
+          obtain \<F> where "\<F> \<subseteq> \<D>" "finite \<F>"
+            and \<F>: "measure lebesgue (\<Union>\<D>) \<le> 2 * measure lebesgue (\<Union>\<F>)"
+          proof (cases "measure lebesgue (\<Union>\<D>) = 0")
+            case True
+            then show ?thesis
+              by (force intro: that [where \<F> = "{}"])
+          next
+            case False
+            obtain \<F> where "\<F> \<subseteq> \<D>" "finite \<F>"
+              and \<F>: "measure lebesgue (\<Union>\<D>)/2 < measure lebesgue (\<Union>\<F>)"
+            proof (rule measure_countable_Union_approachable [of \<D> "measure lebesgue (\<Union>\<D>) / 2" "content (cbox a b)"])
+              show "countable \<D>"
+                by fact
+              show "0 < measure lebesgue (\<Union> \<D>) / 2"
+                using False by (simp add: zero_less_measure_iff)
+              show Dlm: "D \<in> lmeasurable" if "D \<in> \<D>" for D
+                using \<D>(2) that by blast
+              show "measure lebesgue (\<Union> \<F>) \<le> content (cbox a b)"
+                if "\<F> \<subseteq> \<D>" "finite \<F>" for \<F>
+              proof -
+                have "measure lebesgue (\<Union> \<F>) \<le> measure lebesgue (\<Union>\<D>)"
+                proof (rule measure_mono_fmeasurable)
+                  show "\<Union> \<F> \<subseteq> \<Union> \<D>"
+                    by (simp add: Sup_subset_mono \<open>\<F> \<subseteq> \<D>\<close>)
+                  show "\<Union> \<F> \<in> sets lebesgue"
+                    by (meson Dlm fmeasurableD sets.finite_Union subset_eq that)
+                  show "\<Union> \<D> \<in> lmeasurable"
+                    by fact
+                qed
+                also have "\<dots> \<le> measure lebesgue (cbox a b)"
+                proof (rule measure_mono_fmeasurable)
+                  show "\<Union> \<D> \<in> sets lebesgue"
+                    by (simp add: \<open>\<Union> \<D> \<in> lmeasurable\<close> fmeasurableD)
+                qed (auto simp:\<D>(1))
+                finally show ?thesis
+                  by simp
+              qed
+            qed auto
+            then show ?thesis
+              using that by auto
+          qed
+          obtain tag where tag_in_E: "\<And>D. D \<in> \<D> \<Longrightarrow> tag D \<in> ?E"
+            and tag_in_self: "\<And>D. D \<in> \<D> \<Longrightarrow> tag D \<in> D"
+            and tag_sub: "\<And>D. D \<in> \<D> \<Longrightarrow> D \<subseteq> \<gamma>' (tag D)"
+            using Dcovered by simp metis
+          then have sub_ball_tag: "\<And>D. D \<in> \<D> \<Longrightarrow> D \<subseteq> ball (tag D) (\<eta> (tag D))"
+            by (simp add: \<gamma>'_def)
+          define \<Phi> where "\<Phi> \<equiv> \<lambda>D. BOX (\<eta>(tag D)) (tag D)"
+          define \<Phi>2 where "\<Phi>2 \<equiv> \<lambda>D. BOX2 (\<eta>(tag D)) (tag D)"
+          obtain \<C> where "\<C> \<subseteq> \<Phi>2 ` \<F>" "pairwise disjnt \<C>"
+            "measure lebesgue (\<Union>\<C>) \<ge> measure lebesgue (\<Union>(\<Phi>2`\<F>)) / 3 ^ (DIM('a))"
+          proof (rule Austin_Lemma)
+            show "finite (\<Phi>2`\<F>)"
+              using \<open>finite \<F>\<close> by blast
+            have "\<exists>k a b. \<Phi>2 D = cbox a b \<and> (\<forall>i\<in>Basis. b \<bullet> i - a \<bullet> i = k)" if "D \<in> \<F>" for D
+              apply (rule_tac x="2 * \<eta>(tag D)" in exI)
+              apply (rule_tac x="tag D - \<eta>(tag D) *\<^sub>R One" in exI)
+              apply (rule_tac x="tag D + \<eta>(tag D) *\<^sub>R One" in exI)
+              using that
+              apply (auto simp: \<Phi>2_def BOX2_def algebra_simps)
+              done
+            then show "\<And>D. D \<in> \<Phi>2 ` \<F> \<Longrightarrow> \<exists>k a b. D = cbox a b \<and> (\<forall>i\<in>Basis. b \<bullet> i - a \<bullet> i = k)"
+              by blast
+          qed auto
+          then obtain \<G> where "\<G> \<subseteq> \<F>" and disj: "pairwise disjnt (\<Phi>2 ` \<G>)"
+            and "measure lebesgue (\<Union>(\<Phi>2 ` \<G>)) \<ge> measure lebesgue (\<Union>(\<Phi>2`\<F>)) / 3 ^ (DIM('a))"
+            unfolding \<Phi>2_def subset_image_iff
+            by (meson empty_subsetI equals0D pairwise_imageI)
+          moreover
+          have "measure lebesgue (\<Union>(\<Phi>2 ` \<G>)) * 3 ^ DIM('a) \<le> e/2"
+          proof -
+            have "finite \<G>"
+              using \<open>finite \<F>\<close> \<open>\<G> \<subseteq> \<F>\<close> infinite_super by blast
+            have BOX2_m: "\<And>x. x \<in> tag ` \<G> \<Longrightarrow> BOX2 (\<eta> x) x \<in> lmeasurable"
+              by (auto simp: BOX2_def)
+            have BOX_m: "\<And>x. x \<in> tag ` \<G> \<Longrightarrow> BOX (\<eta> x) x \<in> lmeasurable"
+              by (auto simp: BOX_def)
+            have BOX_sub: "BOX (\<eta> x) x \<subseteq> BOX2 (\<eta> x) x" for x
+              by (auto simp: BOX_def BOX2_def subset_box algebra_simps)
+            have DISJ2: "BOX2 (\<eta> (tag X)) (tag X) \<inter> BOX2 (\<eta> (tag Y)) (tag Y) = {}"
+              if "X \<in> \<G>" "Y \<in> \<G>" "tag X \<noteq> tag Y" for X Y
+            proof -
+              obtain i where i: "i \<in> Basis" "tag X \<bullet> i \<noteq> tag Y \<bullet> i"
+                using \<open>tag X \<noteq> tag Y\<close> by (auto simp: euclidean_eq_iff [of "tag X"])
+              have XY: "X \<in> \<D>" "Y \<in> \<D>"
+                using \<open>\<F> \<subseteq> \<D>\<close> \<open>\<G> \<subseteq> \<F>\<close> that by auto
+              then have "0 \<le> \<eta> (tag X)" "0 \<le> \<eta> (tag Y)"
+                by (meson h0 le_cases not_le tag_in_E)+
+              with XY i have "BOX2 (\<eta> (tag X)) (tag X) \<noteq> BOX2 (\<eta> (tag Y)) (tag Y)"
+                unfolding eq_iff
+                by (fastforce simp add: BOX2_def subset_box algebra_simps)
+              then show ?thesis
+                using disj that by (auto simp: pairwise_def disjnt_def \<Phi>2_def)
+            qed
+            then have BOX2_disj: "pairwise (\<lambda>x y. negligible (BOX2 (\<eta> x) x \<inter> BOX2 (\<eta> y) y)) (tag ` \<G>)"
+              by (simp add: pairwise_imageI)
+            then have BOX_disj: "pairwise (\<lambda>x y. negligible (BOX (\<eta> x) x \<inter> BOX (\<eta> y) y)) (tag ` \<G>)"
+            proof (rule pairwise_mono)
+              show "negligible (BOX (\<eta> x) x \<inter> BOX (\<eta> y) y)"
+                if "negligible (BOX2 (\<eta> x) x \<inter> BOX2 (\<eta> y) y)" for x y
+                by (metis (no_types, hide_lams) that Int_mono negligible_subset BOX_sub)
+            qed auto
+
+            have eq: "\<And>box. (\<lambda>D. box (\<eta> (tag D)) (tag D)) ` \<G> = (\<lambda>t. box (\<eta> t) t) ` tag ` \<G>"
+              by (simp add: image_comp)
+            have "measure lebesgue (BOX2 (\<eta> t) t) * 3 ^ DIM('a)
+                = measure lebesgue (BOX (\<eta> t) t) * (2*3) ^ DIM('a)"
+              if "t \<in> tag ` \<G>" for t
+            proof -
+              have "content (cbox (t - \<eta> t *\<^sub>R One) (t + \<eta> t *\<^sub>R One))
+                  = content (cbox t (t + \<eta> t *\<^sub>R One)) * 2 ^ DIM('a)"
+                using that by (simp add: algebra_simps content_cbox_if box_eq_empty)
+              then show ?thesis
+                by (simp add: BOX2_def BOX_def flip: power_mult_distrib)
+            qed
+            then have "measure lebesgue (\<Union>(\<Phi>2 ` \<G>)) * 3 ^ DIM('a) = measure lebesgue (\<Union>(\<Phi> ` \<G>)) * 6 ^ DIM('a)"
+              unfolding \<Phi>_def \<Phi>2_def eq
+              by (simp add: measure_negligible_finite_Union_image
+                  \<open>finite \<G>\<close> BOX2_m BOX_m BOX2_disj BOX_disj sum_distrib_right
+                  del: UN_simps)
+            also have "\<dots> \<le> e/2"
+            proof -
+              have "\<mu> * measure lebesgue (\<Union>D\<in>\<G>. \<Phi> D) \<le> \<mu> * (\<Sum>D \<in> \<Phi>`\<G>. measure lebesgue D)"
+                using \<open>\<mu> > 0\<close> \<open>finite \<G>\<close> by (force simp: BOX_m \<Phi>_def fmeasurableD intro: measure_Union_le)
+              also have "\<dots> = (\<Sum>D \<in> \<Phi>`\<G>. measure lebesgue D * \<mu>)"
+                by (metis mult.commute sum_distrib_right)
+              also have "\<dots> \<le> (\<Sum>(x, K) \<in> (\<lambda>D. (tag D, \<Phi> D)) ` \<G>.  norm (content K *\<^sub>R f x - integral K f))"
+              proof (rule sum_le_included; clarify?)
+                fix D
+                assume "D \<in> \<G>"
+                then have "\<eta> (tag D) > 0"
+                  using \<open>\<F> \<subseteq> \<D>\<close> \<open>\<G> \<subseteq> \<F>\<close> h0 tag_in_E by auto
+                then have m_\<Phi>: "measure lebesgue (\<Phi> D) > 0"
+                  by (simp add: \<Phi>_def BOX_def algebra_simps)
+                have "\<mu> \<le> norm (i (\<eta>(tag D)) (tag D) - f(tag D))"
+                  using \<mu>_le \<open>D \<in> \<G>\<close> \<open>\<F> \<subseteq> \<D>\<close> \<open>\<G> \<subseteq> \<F>\<close> tag_in_E by auto
+                also have "\<dots> = norm ((content (\<Phi> D) *\<^sub>R f(tag D) - integral (\<Phi> D) f) /\<^sub>R measure lebesgue (\<Phi> D))"
+                  using m_\<Phi>
+                  unfolding i_def \<Phi>_def BOX_def
+                  by (simp add: algebra_simps content_cbox_plus norm_minus_commute)
+                finally have "measure lebesgue (\<Phi> D) * \<mu> \<le> norm (content (\<Phi> D) *\<^sub>R f(tag D) - integral (\<Phi> D) f)"
+                  using m_\<Phi> by (simp add: field_simps)
+                then show "\<exists>y\<in>(\<lambda>D. (tag D, \<Phi> D)) ` \<G>.
+                        snd y = \<Phi> D \<and> measure lebesgue (\<Phi> D) * \<mu> \<le> (case y of (x, k) \<Rightarrow> norm (content k *\<^sub>R f x - integral k f))"
+                  using \<open>D \<in> \<G>\<close> by auto
+              qed (use \<open>finite \<G>\<close> in auto)
+              also have "\<dots> < ?ee"
+              proof (rule \<gamma>)
+                show "(\<lambda>D. (tag D, \<Phi> D)) ` \<G> tagged_partial_division_of cbox (a - One) (b + One)"
+                  unfolding tagged_partial_division_of_def
+                proof (intro conjI allI impI ; clarify ?)
+                  show "tag D \<in> \<Phi> D"
+                    if "D \<in> \<G>" for D
+                    using that \<open>\<F> \<subseteq> \<D>\<close> \<open>\<G> \<subseteq> \<F>\<close> h0 tag_in_E
+                    by (auto simp: \<Phi>_def BOX_def mem_box algebra_simps eucl_less_le_not_le in_mono)
+                  show "y \<in> cbox (a - One) (b + One)" if "D \<in> \<G>" "y \<in> \<Phi> D" for D y
+                    using that BOX_cbox \<Phi>_def \<open>\<F> \<subseteq> \<D>\<close> \<open>\<G> \<subseteq> \<F>\<close> tag_in_E by blast
+                  show "tag D = tag E \<and> \<Phi> D = \<Phi> E"
+                    if "D \<in> \<G>" "E \<in> \<G>" and ne: "interior (\<Phi> D) \<inter> interior (\<Phi> E) \<noteq> {}" for D E
+                  proof -
+                    have "BOX2 (\<eta> (tag D)) (tag D) \<inter> BOX2 (\<eta> (tag E)) (tag E) = {} \<or> tag E = tag D"
+                      using DISJ2 \<open>D \<in> \<G>\<close> \<open>E \<in> \<G>\<close> by force
+                    then have "BOX (\<eta> (tag D)) (tag D) \<inter> BOX (\<eta> (tag E)) (tag E) = {} \<or> tag E = tag D"
+                      using BOX_sub by blast
+                    then show "tag D = tag E \<and> \<Phi> D = \<Phi> E"
+                      by (metis \<Phi>_def interior_Int interior_empty ne)
+                  qed
+                qed (use \<open>finite \<G>\<close> \<Phi>_def BOX_def in auto)
+                show "\<gamma> fine (\<lambda>D. (tag D, \<Phi> D)) ` \<G>"
+                  unfolding fine_def \<Phi>_def using BOX_\<gamma> \<open>\<F> \<subseteq> \<D>\<close> \<open>\<G> \<subseteq> \<F>\<close> tag_in_E by blast
+              qed
+              finally show ?thesis
+                using \<open>\<mu> > 0\<close> by (auto simp: divide_simps)
+          qed
+            finally show ?thesis .
+          qed
+          moreover
+          have "measure lebesgue (\<Union>\<F>) \<le> measure lebesgue (\<Union>(\<Phi>2`\<F>))"
+          proof (rule measure_mono_fmeasurable)
+            have "D \<subseteq> ball (tag D) (\<eta>(tag D))" if "D \<in> \<F>" for D
+              using \<open>\<F> \<subseteq> \<D>\<close> sub_ball_tag that by blast
+            moreover have "ball (tag D) (\<eta>(tag D)) \<subseteq> BOX2 (\<eta> (tag D)) (tag D)" if "D \<in> \<F>" for D
+            proof (clarsimp simp: \<Phi>2_def BOX2_def mem_box algebra_simps dist_norm)
+              fix x and i::'a
+              assume "norm (tag D - x) < \<eta> (tag D)" and "i \<in> Basis"
+              then have "\<bar>tag D \<bullet> i - x \<bullet> i\<bar> \<le> \<eta> (tag D)"
+                by (metis eucl_less_le_not_le inner_commute inner_diff_right norm_bound_Basis_le)
+              then show "tag D \<bullet> i \<le> x \<bullet> i + \<eta> (tag D) \<and> x \<bullet> i \<le> \<eta> (tag D) + tag D \<bullet> i"
+                by (simp add: abs_diff_le_iff)
+            qed
+            ultimately show "\<Union>\<F> \<subseteq> \<Union>(\<Phi>2`\<F>)"
+              by (force simp: \<Phi>2_def)
+            show "\<Union>\<F> \<in> sets lebesgue"
+              using \<open>finite \<F>\<close> \<open>\<D> \<subseteq> sets lebesgue\<close> \<open>\<F> \<subseteq> \<D>\<close> by blast
+            show "\<Union>(\<Phi>2`\<F>) \<in> lmeasurable"
+              unfolding \<Phi>2_def BOX2_def using \<open>finite \<F>\<close> by blast
+          qed
+          ultimately
+          have "measure lebesgue (\<Union>\<F>) \<le> e/2"
+            by (auto simp: divide_simps)
+          then show "measure lebesgue (\<Union>\<D>) \<le> e"
+            using \<F> by linarith
+        qed
+      qed
+    qed
+    then have "\<And>j. negligible {x. \<Psi> x (inverse(real j + 1))}"
+      using negligible_on_intervals
+      by (metis (full_types) inverse_positive_iff_positive le_add_same_cancel1 linorder_not_le nat_le_real_less not_add_less1 of_nat_0)
+    then have "negligible ?M"
+      by auto
+    moreover have "?N \<subseteq> ?M"
+    proof (clarsimp simp: dist_norm)
+      fix y e
+      assume "0 < e"
+        and ye [rule_format]: "\<Psi> y e"
+      then obtain k where k: "0 < k" "inverse (real k + 1) < e"
+        by (metis One_nat_def add.commute less_add_same_cancel2 less_imp_inverse_less less_trans neq0_conv of_nat_1 of_nat_Suc reals_Archimedean zero_less_one)
+      with ye show "\<exists>n. \<Psi> y (inverse (real n + 1))"
+        apply (rule_tac x=k in exI)
+        unfolding \<Psi>_def
+        by (force intro: less_le_trans)
+    qed
+    ultimately show "negligible ?N"
+      by (blast intro: negligible_subset)
+    show "\<not> \<Psi> x e" if "x \<notin> ?N \<and> 0 < e" for x e
+      using that by blast
+  qed
+  with that show ?thesis
+    unfolding i_def BOX_def \<Psi>_def by (fastforce simp add: not_le)
+qed
+
+
+subsection\<open>HOL Light measurability\<close>
+
+definition measurable_on :: "('a::euclidean_space \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a set \<Rightarrow> bool"
+  (infixr "measurable'_on" 46)
+  where "f measurable_on S \<equiv>
+        \<exists>N g. negligible N \<and>
+              (\<forall>n. continuous_on UNIV (g n)) \<and>
+              (\<forall>x. x \<notin> N \<longrightarrow> (\<lambda>n. g n x) \<longlonglongrightarrow> (if x \<in> S then f x else 0))"
+
+lemma measurable_on_UNIV:
+  "(\<lambda>x.  if x \<in> S then f x else 0) measurable_on UNIV \<longleftrightarrow> f measurable_on S"
+  by (auto simp: measurable_on_def)
+
+lemma measurable_on_spike_set:
+  assumes f: "f measurable_on S" and neg: "negligible ((S - T) \<union> (T - S))"
+  shows "f measurable_on T"
+proof -
+  obtain N and F
+    where N: "negligible N"
+      and conF: "\<And>n. continuous_on UNIV (F n)"
+      and tendsF: "\<And>x. x \<notin> N \<Longrightarrow> (\<lambda>n. F n x) \<longlonglongrightarrow> (if x \<in> S then f x else 0)"
+    using f by (auto simp: measurable_on_def)
+  show ?thesis
+    unfolding measurable_on_def
+  proof (intro exI conjI allI impI)
+    show "continuous_on UNIV (\<lambda>x. F n x)" for n
+      by (intro conF continuous_intros)
+    show "negligible (N \<union> (S - T) \<union> (T - S))"
+      by (metis (full_types) N neg negligible_Un_eq)
+    show "(\<lambda>n. F n x) \<longlonglongrightarrow> (if x \<in> T then f x else 0)"
+      if "x \<notin> (N \<union> (S - T) \<union> (T - S))" for x
+      using that tendsF [of x] by auto
+  qed
+qed
+
+text\<open> Various common equivalent forms of function measurability.                \<close>
+
+lemma measurable_on_0 [simp]: "(\<lambda>x. 0) measurable_on S"
+  unfolding measurable_on_def
+proof (intro exI conjI allI impI)
+  show "(\<lambda>n. 0) \<longlonglongrightarrow> (if x \<in> S then 0::'b else 0)" for x
+    by force
+qed auto
+
+lemma measurable_on_scaleR_const:
+  assumes f: "f measurable_on S"
+  shows "(\<lambda>x. c *\<^sub>R f x) measurable_on S"
+proof -
+  obtain NF and F
+    where NF: "negligible NF"
+      and conF: "\<And>n. continuous_on UNIV (F n)"
+      and tendsF: "\<And>x. x \<notin> NF \<Longrightarrow> (\<lambda>n. F n x) \<longlonglongrightarrow> (if x \<in> S then f x else 0)"
+    using f by (auto simp: measurable_on_def)
+  show ?thesis
+    unfolding measurable_on_def
+  proof (intro exI conjI allI impI)
+    show "continuous_on UNIV (\<lambda>x. c *\<^sub>R F n x)" for n
+      by (intro conF continuous_intros)
+    show "(\<lambda>n. c *\<^sub>R F n x) \<longlonglongrightarrow> (if x \<in> S then c *\<^sub>R f x else 0)"
+      if "x \<notin> NF" for x
+      using tendsto_scaleR [OF tendsto_const tendsF, of x] that by auto
+  qed (auto simp: NF)
+qed
+
+
+lemma measurable_on_cmul:
+  fixes c :: real
+  assumes "f measurable_on S"
+  shows "(\<lambda>x. c * f x) measurable_on S"
+  using measurable_on_scaleR_const [OF assms] by simp
+
+lemma measurable_on_cdivide:
+  fixes c :: real
+  assumes "f measurable_on S"
+  shows "(\<lambda>x. f x / c) measurable_on S"
+proof (cases "c=0")
+  case False
+  then show ?thesis
+    using measurable_on_cmul [of f S "1/c"]
+    by (simp add: assms)
+qed auto
+
+
+lemma measurable_on_minus:
+   "f measurable_on S \<Longrightarrow> (\<lambda>x. -(f x)) measurable_on S"
+  using measurable_on_scaleR_const [of f S "-1"] by auto
+
+
+lemma continuous_imp_measurable_on:
+   "continuous_on UNIV f \<Longrightarrow> f measurable_on UNIV"
+  unfolding measurable_on_def
+  apply (rule_tac x="{}" in exI)
+  apply (rule_tac x="\<lambda>n. f" in exI, auto)
+  done
+
+proposition integrable_subintervals_imp_measurable:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "\<And>a b. f integrable_on cbox a b"
+  shows "f measurable_on UNIV"
+proof -
+  define BOX where "BOX \<equiv> \<lambda>h. \<lambda>x::'a. cbox x (x + h *\<^sub>R One)"
+  define i where "i \<equiv> \<lambda>h x. integral (BOX h x) f /\<^sub>R h ^ DIM('a)"
+  obtain N where "negligible N"
+    and k: "\<And>x e. \<lbrakk>x \<notin> N; 0 < e\<rbrakk>
+            \<Longrightarrow> \<exists>d>0. \<forall>h. 0 < h \<and> h < d \<longrightarrow>
+                  norm (integral (cbox x (x + h *\<^sub>R One)) f /\<^sub>R h ^ DIM('a) - f x) < e"
+    using integrable_ccontinuous_explicit assms by blast
+  show ?thesis
+    unfolding measurable_on_def
+  proof (intro exI conjI allI impI)
+    show "continuous_on UNIV ((\<lambda>n x. i (inverse(Suc n)) x) n)" for n
+    proof (clarsimp simp: continuous_on_iff)
+      show "\<exists>d>0. \<forall>x'. dist x' x < d \<longrightarrow> dist (i (inverse (1 + real n)) x') (i (inverse (1 + real n)) x) < e"
+        if "0 < e"
+        for x e
+      proof -
+        let ?e = "e / (1 + real n) ^ DIM('a)"
+        have "?e > 0"
+          using \<open>e > 0\<close> by auto
+        moreover have "x \<in> cbox (x - 2 *\<^sub>R One) (x + 2 *\<^sub>R One)"
+          by (simp add: mem_box inner_diff_left inner_left_distrib)
+        moreover have "x + One /\<^sub>R real (Suc n) \<in> cbox (x - 2 *\<^sub>R One) (x + 2 *\<^sub>R One)"
+          by (auto simp: mem_box inner_diff_left inner_left_distrib field_simps)
+        ultimately obtain \<delta> where "\<delta> > 0"
+          and \<delta>: "\<And>c' d'. \<lbrakk>c' \<in> cbox (x - 2 *\<^sub>R One) (x + 2 *\<^sub>R One);
+                           d' \<in> cbox (x - 2 *\<^sub>R One) (x + 2 *\<^sub>R One);
+                           norm(c' - x) \<le> \<delta>; norm(d' - (x + One /\<^sub>R Suc n)) \<le> \<delta>\<rbrakk>
+                          \<Longrightarrow> norm(integral(cbox c' d') f - integral(cbox x (x + One /\<^sub>R Suc n)) f) < ?e"
+          by (blast intro: indefinite_integral_continuous [of f _ _ x] assms)
+        show ?thesis
+        proof (intro exI impI conjI allI)
+          show "min \<delta> 1 > 0"
+            using \<open>\<delta> > 0\<close> by auto
+          show "dist (i (inverse (1 + real n)) y) (i (inverse (1 + real n)) x) < e"
+            if "dist y x < min \<delta> 1" for y
+          proof -
+            have no: "norm (y - x) < 1"
+              using that by (auto simp: dist_norm)
+            have le1: "inverse (1 + real n) \<le> 1"
+              by (auto simp: divide_simps)
+            have "norm (integral (cbox y (y + One /\<^sub>R real (Suc n))) f
+                - integral (cbox x (x + One /\<^sub>R real (Suc n))) f)
+                < e / (1 + real n) ^ DIM('a)"
+            proof (rule \<delta>)
+              show "y \<in> cbox (x - 2 *\<^sub>R One) (x + 2 *\<^sub>R One)"
+                using no by (auto simp: mem_box algebra_simps dest: Basis_le_norm [of _ "y-x"])
+              show "y + One /\<^sub>R real (Suc n) \<in> cbox (x - 2 *\<^sub>R One) (x + 2 *\<^sub>R One)"
+              proof (simp add: dist_norm mem_box algebra_simps, intro ballI conjI)
+                fix i::'a
+                assume "i \<in> Basis"
+                then have 1: "\<bar>y \<bullet> i - x \<bullet> i\<bar> < 1"
+                  by (metis inner_commute inner_diff_right no norm_bound_Basis_lt)
+                moreover have "\<dots> < (2 + inverse (1 + real n))" "1 \<le> 2 - inverse (1 + real n)"
+                  by (auto simp: field_simps)
+                ultimately show "x \<bullet> i \<le> y \<bullet> i + (2 + inverse (1 + real n))"
+                                "y \<bullet> i + inverse (1 + real n) \<le> x \<bullet> i + 2"
+                  by linarith+
+              qed
+              show "norm (y - x) \<le> \<delta>" "norm (y + One /\<^sub>R real (Suc n) - (x + One /\<^sub>R real (Suc n))) \<le> \<delta>"
+                using that by (auto simp: dist_norm)
+            qed
+            then show ?thesis
+              using that by (simp add: dist_norm i_def BOX_def field_simps flip: scaleR_diff_right)
+          qed
+        qed
+      qed
+    qed
+    show "negligible N"
+      by (simp add: \<open>negligible N\<close>)
+    show "(\<lambda>n. i (inverse (Suc n)) x) \<longlonglongrightarrow> (if x \<in> UNIV then f x else 0)"
+      if "x \<notin> N" for x
+      unfolding lim_sequentially
+    proof clarsimp
+      show "\<exists>no. \<forall>n\<ge>no. dist (i (inverse (1 + real n)) x) (f x) < e"
+        if "0 < e" for e
+      proof -
+        obtain d where "d > 0"
+          and d: "\<And>h. \<lbrakk>0 < h; h < d\<rbrakk> \<Longrightarrow>
+              norm (integral (cbox x (x + h *\<^sub>R One)) f /\<^sub>R h ^ DIM('a) - f x) < e"
+          using k [of x e] \<open>x \<notin> N\<close> \<open>0 < e\<close> by blast
+        then obtain M where M: "M \<noteq> 0" "0 < inverse (real M)" "inverse (real M) < d"
+          using real_arch_invD by auto
+        show ?thesis
+        proof (intro exI allI impI)
+          show "dist (i (inverse (1 + real n)) x) (f x) < e"
+            if "M \<le> n" for n
+          proof -
+            have *: "0 < inverse (1 + real n)" "inverse (1 + real n) \<le> inverse M"
+              using that \<open>M \<noteq> 0\<close> by auto
+            show ?thesis
+              using that M
+              apply (simp add: i_def BOX_def dist_norm)
+              apply (blast intro: le_less_trans * d)
+              done
+          qed
+        qed
+      qed
+    qed
+  qed
+qed
+
+
+subsection\<open>Composing continuous and measurable functions; a few variants\<close>
+
+lemma measurable_on_compose_continuous:
+   assumes f: "f measurable_on UNIV" and g: "continuous_on UNIV g"
+   shows "(g \<circ> f) measurable_on UNIV"
+proof -
+  obtain N and F
+    where "negligible N"
+      and conF: "\<And>n. continuous_on UNIV (F n)"
+      and tendsF: "\<And>x. x \<notin> N \<Longrightarrow> (\<lambda>n. F n x) \<longlonglongrightarrow> f x"
+    using f by (auto simp: measurable_on_def)
+  show ?thesis
+    unfolding measurable_on_def
+  proof (intro exI conjI allI impI)
+    show "negligible N"
+      by fact
+    show "continuous_on UNIV (g \<circ> (F n))" for n
+      using conF continuous_on_compose continuous_on_subset g by blast
+    show "(\<lambda>n. (g \<circ> F n) x) \<longlonglongrightarrow> (if x \<in> UNIV then (g \<circ> f) x else 0)"
+      if "x \<notin> N" for x :: 'a
+      using that g tendsF by (auto simp: continuous_on_def intro: tendsto_compose)
+  qed
+qed
+
+lemma measurable_on_compose_continuous_0:
+   assumes f: "f measurable_on S" and g: "continuous_on UNIV g" and "g 0 = 0"
+   shows "(g \<circ> f) measurable_on S"
+proof -
+  have f': "(\<lambda>x. if x \<in> S then f x else 0) measurable_on UNIV"
+    using f measurable_on_UNIV by blast
+  show ?thesis
+    using measurable_on_compose_continuous [OF f' g]
+    by (simp add: measurable_on_UNIV o_def if_distrib \<open>g 0 = 0\<close> cong: if_cong)
+qed
+
+
+lemma measurable_on_compose_continuous_box:
+  assumes fm: "f measurable_on UNIV" and fab: "\<And>x. f x \<in> box a b"
+    and contg: "continuous_on (box a b) g"
+  shows "(g \<circ> f) measurable_on UNIV"
+proof -
+  have "\<exists>\<gamma>. (\<forall>n. continuous_on UNIV (\<gamma> n)) \<and> (\<forall>x. x \<notin> N \<longrightarrow> (\<lambda>n. \<gamma> n x) \<longlonglongrightarrow> g (f x))"
+    if "negligible N"
+      and conth [rule_format]: "\<forall>n. continuous_on UNIV (\<lambda>x. h n x)"
+      and tends [rule_format]: "\<forall>x. x \<notin> N \<longrightarrow> (\<lambda>n. h n x) \<longlonglongrightarrow> f x"
+    for N and h :: "nat \<Rightarrow> 'a \<Rightarrow> 'b"
+  proof -
+    define \<theta> where "\<theta> \<equiv> \<lambda>n x. (\<Sum>i\<in>Basis. (max (a\<bullet>i + (b\<bullet>i - a\<bullet>i) / real (n+2))
+                                            (min ((h n x)\<bullet>i)
+                                                 (b\<bullet>i - (b\<bullet>i - a\<bullet>i) / real (n+2)))) *\<^sub>R i)"
+    have aibi: "\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i < b \<bullet> i"
+      using box_ne_empty(2) fab by auto
+    then have *: "\<And>i n. i \<in> Basis \<Longrightarrow> a \<bullet> i + real n * (a \<bullet> i) < b \<bullet> i + real n * (b \<bullet> i)"
+      by (meson add_mono_thms_linordered_field(3) less_eq_real_def mult_left_mono of_nat_0_le_iff)
+    show ?thesis
+    proof (intro exI conjI allI impI)
+      show "continuous_on UNIV (g \<circ> (\<theta> n))" for n :: nat
+        unfolding \<theta>_def
+        apply (intro continuous_on_compose2 [OF contg] continuous_intros conth)
+        apply (auto simp: aibi * mem_box less_max_iff_disj min_less_iff_disj algebra_simps divide_simps)
+        done
+      show "(\<lambda>n. (g \<circ> \<theta> n) x) \<longlonglongrightarrow> g (f x)"
+        if "x \<notin> N" for x
+        unfolding o_def
+      proof (rule isCont_tendsto_compose [where g=g])
+        show "isCont g (f x)"
+          using contg fab continuous_on_eq_continuous_at by blast
+        have "(\<lambda>n. \<theta> n x) \<longlonglongrightarrow> (\<Sum>i\<in>Basis. max (a \<bullet> i) (min (f x \<bullet> i) (b \<bullet> i)) *\<^sub>R i)"
+          unfolding \<theta>_def
+        proof (intro tendsto_intros \<open>x \<notin> N\<close> tends)
+          fix i::'b
+          assume "i \<in> Basis"
+          have a: "(\<lambda>n. a \<bullet> i + (b \<bullet> i - a \<bullet> i) / real n) \<longlonglongrightarrow> a\<bullet>i + 0"
+            by (intro tendsto_add lim_const_over_n tendsto_const)
+          show "(\<lambda>n. a \<bullet> i + (b \<bullet> i - a \<bullet> i) / real (n + 2)) \<longlonglongrightarrow> a \<bullet> i"
+            using LIMSEQ_ignore_initial_segment [where k=2, OF a] by simp
+          have b: "(\<lambda>n. b\<bullet>i - (b \<bullet> i - a \<bullet> i) / (real n)) \<longlonglongrightarrow> b\<bullet>i - 0"
+            by (intro tendsto_diff lim_const_over_n tendsto_const)
+          show "(\<lambda>n. b \<bullet> i - (b \<bullet> i - a \<bullet> i) / real (n + 2)) \<longlonglongrightarrow> b \<bullet> i"
+            using LIMSEQ_ignore_initial_segment [where k=2, OF b] by simp
+        qed
+        also have "(\<Sum>i\<in>Basis. max (a \<bullet> i) (min (f x \<bullet> i) (b \<bullet> i)) *\<^sub>R i) = (\<Sum>i\<in>Basis. (f x \<bullet> i) *\<^sub>R i)"
+          apply (rule sum.cong)
+          using fab
+           apply auto
+          apply (intro order_antisym)
+           apply (auto simp: mem_box)
+          using less_imp_le apply blast
+          by (metis (full_types) linear max_less_iff_conj min.bounded_iff not_le)
+        also have "\<dots> = f x"
+          using euclidean_representation by blast
+        finally show "(\<lambda>n. \<theta> n x) \<longlonglongrightarrow> f x" .
+      qed
+    qed
+  qed
+  then show ?thesis
+    using fm by (auto simp: measurable_on_def)
+qed
+
+lemma measurable_on_Pair:
+  assumes f: "f measurable_on S" and g: "g measurable_on S"
+  shows "(\<lambda>x. (f x, g x)) measurable_on S"
+proof -
+  obtain NF and F
+    where NF: "negligible NF"
+      and conF: "\<And>n. continuous_on UNIV (F n)"
+      and tendsF: "\<And>x. x \<notin> NF \<Longrightarrow> (\<lambda>n. F n x) \<longlonglongrightarrow> (if x \<in> S then f x else 0)"
+    using f by (auto simp: measurable_on_def)
+  obtain NG and G
+    where NG: "negligible NG"
+      and conG: "\<And>n. continuous_on UNIV (G n)"
+      and tendsG: "\<And>x. x \<notin> NG \<Longrightarrow> (\<lambda>n. G n x) \<longlonglongrightarrow> (if x \<in> S then g x else 0)"
+    using g by (auto simp: measurable_on_def)
+  show ?thesis
+    unfolding measurable_on_def
+  proof (intro exI conjI allI impI)
+    show "negligible (NF \<union> NG)"
+      by (simp add: NF NG)
+    show "continuous_on UNIV (\<lambda>x. (F n x, G n x))" for n
+      using conF conG continuous_on_Pair by blast
+    show "(\<lambda>n. (F n x, G n x)) \<longlonglongrightarrow> (if x \<in> S then (f x, g x) else 0)"
+      if "x \<notin> NF \<union> NG" for x
+      using tendsto_Pair [OF tendsF tendsG, of x x] that unfolding zero_prod_def
+      by (simp add: split: if_split_asm)
+  qed
+qed
+
+lemma measurable_on_combine:
+  assumes f: "f measurable_on S" and g: "g measurable_on S"
+    and h: "continuous_on UNIV (\<lambda>x. h (fst x) (snd x))" and "h 0 0 = 0"
+  shows "(\<lambda>x. h (f x) (g x)) measurable_on S"
+proof -
+  have *: "(\<lambda>x. h (f x) (g x)) = (\<lambda>x. h (fst x) (snd x)) \<circ> (\<lambda>x. (f x, g x))"
+    by auto
+  show ?thesis
+    unfolding * by (auto simp: measurable_on_compose_continuous_0 measurable_on_Pair assms)
+qed
+
+lemma measurable_on_add:
+  assumes f: "f measurable_on S" and g: "g measurable_on S"
+  shows "(\<lambda>x. f x + g x) measurable_on S"
+  by (intro continuous_intros measurable_on_combine [OF assms]) auto
+
+lemma measurable_on_diff:
+  assumes f: "f measurable_on S" and g: "g measurable_on S"
+  shows "(\<lambda>x. f x - g x) measurable_on S"
+  by (intro continuous_intros measurable_on_combine [OF assms]) auto
+
+lemma measurable_on_scaleR:
+  assumes f: "f measurable_on S" and g: "g measurable_on S"
+  shows "(\<lambda>x. f x *\<^sub>R g x) measurable_on S"
+  by (intro continuous_intros measurable_on_combine [OF assms]) auto
+
+lemma measurable_on_sum:
+  assumes "finite I" "\<And>i. i \<in> I \<Longrightarrow> f i measurable_on S"
+  shows "(\<lambda>x. sum  (\<lambda>i. f i x) I) measurable_on S"
+  using assms by (induction I) (auto simp: measurable_on_add)
+
+lemma measurable_on_spike:
+  assumes f: "f measurable_on T" and "negligible S" and gf: "\<And>x. x \<in> T - S \<Longrightarrow> g x = f x"
+  shows "g measurable_on T"
+proof -
+  obtain NF and F
+    where NF: "negligible NF"
+      and conF: "\<And>n. continuous_on UNIV (F n)"
+      and tendsF: "\<And>x. x \<notin> NF \<Longrightarrow> (\<lambda>n. F n x) \<longlonglongrightarrow> (if x \<in> T then f x else 0)"
+    using f by (auto simp: measurable_on_def)
+  show ?thesis
+    unfolding measurable_on_def
+  proof (intro exI conjI allI impI)
+    show "negligible (NF \<union> S)"
+      by (simp add: NF \<open>negligible S\<close>)
+    show "\<And>x. x \<notin> NF \<union> S \<Longrightarrow> (\<lambda>n. F n x) \<longlonglongrightarrow> (if x \<in> T then g x else 0)"
+      by (metis (full_types) Diff_iff Un_iff gf tendsF)
+  qed (auto simp: conF)
+qed
+
+
+lemma measurable_on_preimage_lemma0:
+  fixes f :: "'a::euclidean_space \<Rightarrow> real"
+  assumes "m \<in> \<int>" and f: "m / 2^n \<le> (f x)" "(f x) < (m+1) / 2^n" and m: "\<bar>m\<bar> \<le> 2^(2 * n)"
+  shows "(\<Sum>k\<in>{k \<in> \<int>. \<bar>k\<bar> \<le> 2^(2 * n)}.
+             (k / 2^n) * indicator {y. k / 2^n \<le> f y \<and> f y < (k+1) / 2^n} x)
+       = (m / 2^n)"  (is "?lhs = ?rhs")
+proof -
+  have "?lhs = (\<Sum>k\<in>{m}. (k / 2^n) * indicator {y. k / 2^n \<le> f y \<and> f y < (k+1) / 2^n} x)"
+  proof (intro sum.mono_neutral_right ballI)
+    show "finite {k::real. k \<in> \<int> \<and> \<bar>k\<bar> \<le> 2^(2 * n)}"
+      using finite_abs_int_segment by blast
+    show "(i / 2^n) * indicat_real {y. i / 2^n \<le> f y \<and> f y < (i+1) / 2^n} x = 0"
+      if "i \<in> {N \<in> \<int>. \<bar>N\<bar> \<le> 2^(2 * n)} - {m}" for i
+      using f m \<open>m \<in> \<int>\<close> that Ints_eq_abs_less1 [of i m]
+      by (auto simp: indicator_def divide_simps)
+  qed (auto simp: assms)
+  also have "\<dots> = ?rhs"
+    using assms by (auto simp: indicator_def)
+  finally show ?thesis .
+qed
+
+(*see HOL Light's lebesgue_measurable BUT OUR lmeasurable IS NOT THE SAME. It's more like "sets lebesgue"
+ `lebesgue_measurable s <=> (indicator s) measurable_on (:real^N)`;;
+*)
+
+proposition indicator_measurable_on:
+  assumes "S \<in> sets lebesgue"
+  shows "indicat_real S measurable_on UNIV"
+proof -
+  { fix n::nat
+    let ?\<epsilon> = "(1::real) / (2 * 2^n)"
+    have \<epsilon>: "?\<epsilon> > 0"
+      by auto
+    obtain T where "closed T" "T \<subseteq> S" "S-T \<in> lmeasurable" and ST: "emeasure lebesgue (S - T) < ?\<epsilon>"
+      by (meson \<epsilon> assms sets_lebesgue_inner_closed)
+    obtain U where "open U" "S \<subseteq> U" "(U - S) \<in> lmeasurable" and US: "emeasure lebesgue (U - S) < ?\<epsilon>"
+      by (meson \<epsilon> assms sets_lebesgue_outer_open)
+    have eq: "-T \<inter> U = (S-T) \<union> (U - S)"
+      using \<open>T \<subseteq> S\<close> \<open>S \<subseteq> U\<close> by auto
+    have "emeasure lebesgue ((S-T) \<union> (U - S)) \<le> emeasure lebesgue (S - T) + emeasure lebesgue (U - S)"
+      using \<open>S - T \<in> lmeasurable\<close> \<open>U - S \<in> lmeasurable\<close> emeasure_subadditive by blast
+    also have "\<dots> < ?\<epsilon> + ?\<epsilon>"
+      using ST US add_mono_ennreal by metis
+    finally have le: "emeasure lebesgue (-T \<inter> U) < ennreal (1 / 2^n)"
+      by (simp add: eq)
+    have 1: "continuous_on (T \<union> -U) (indicat_real S)"
+      unfolding indicator_def
+    proof (rule continuous_on_cases [OF \<open>closed T\<close>])
+      show "closed (- U)"
+        using \<open>open U\<close> by blast
+      show "continuous_on T (\<lambda>x. 1::real)" "continuous_on (- U) (\<lambda>x. 0::real)"
+        by (auto simp: continuous_on)
+      show "\<forall>x. x \<in> T \<and> x \<notin> S \<or> x \<in> - U \<and> x \<in> S \<longrightarrow> (1::real) = 0"
+        using \<open>T \<subseteq> S\<close> \<open>S \<subseteq> U\<close> by auto
+    qed
+    have 2: "closedin (top_of_set UNIV) (T \<union> -U)"
+      using \<open>closed T\<close> \<open>open U\<close> by auto
+    obtain g where "continuous_on UNIV g" "\<And>x. x \<in> T \<union> -U \<Longrightarrow> g x = indicat_real S x" "\<And>x. norm(g x) \<le> 1"
+      by (rule Tietze [OF 1 2, of 1]) auto
+    with le have "\<exists>g E. continuous_on UNIV g \<and> (\<forall>x \<in> -E. g x = indicat_real S x) \<and>
+                        (\<forall>x. norm(g x) \<le> 1) \<and> E \<in> sets lebesgue \<and> emeasure lebesgue E < ennreal (1 / 2^n)"
+      apply (rule_tac x=g in exI)
+      apply (rule_tac x="-T \<inter> U" in exI)
+      using \<open>S - T \<in> lmeasurable\<close> \<open>U - S \<in> lmeasurable\<close> eq by auto
+  }
+  then obtain g E where cont: "\<And>n. continuous_on UNIV (g n)"
+    and geq: "\<And>n x. x \<in> - E n \<Longrightarrow> g n x = indicat_real S x"
+    and ng1: "\<And>n x. norm(g n x) \<le> 1"
+    and Eset: "\<And>n. E n \<in> sets lebesgue"
+    and Em: "\<And>n. emeasure lebesgue (E n) < ennreal (1 / 2^n)"
+    by metis
+  have null: "limsup E \<in> null_sets lebesgue"
+  proof (rule borel_cantelli_limsup1 [OF Eset])
+    show "emeasure lebesgue (E n) < \<infinity>" for n
+      by (metis Em infinity_ennreal_def order.asym top.not_eq_extremum)
+    show "summable (\<lambda>n. measure lebesgue (E n))"
+    proof (rule summable_comparison_test' [OF summable_geometric, of "1/2" 0])
+      show "norm (measure lebesgue (E n)) \<le> (1/2) ^ n"  for n
+        using Em [of n] by (simp add: measure_def enn2real_leI power_one_over)
+    qed auto
+  qed
+  have tends: "(\<lambda>n. g n x) \<longlonglongrightarrow> indicat_real S x" if "x \<notin> limsup E" for x
+  proof -
+    have "\<forall>\<^sub>F n in sequentially. x \<in> - E n"
+      using that by (simp add: mem_limsup_iff not_frequently)
+    then show ?thesis
+      unfolding tendsto_iff dist_real_def
+      by (simp add: eventually_mono geq)
+  qed
+  show ?thesis
+    unfolding measurable_on_def
+  proof (intro exI conjI allI impI)
+    show "negligible (limsup E)"
+      using negligible_iff_null_sets null by blast
+    show "continuous_on UNIV (g n)" for n
+      using cont by blast
+  qed (use tends in auto)
+qed
+
+lemma measurable_on_restrict:
+  assumes f: "f measurable_on UNIV" and S: "S \<in> sets lebesgue"
+  shows "(\<lambda>x. if x \<in> S then f x else 0) measurable_on UNIV"
+proof -
+  have "indicat_real S measurable_on UNIV"
+    by (simp add: S indicator_measurable_on)
+  then show ?thesis
+    using measurable_on_scaleR [OF _ f, of "indicat_real S"]
+    by (simp add: indicator_scaleR_eq_if)
+qed
+
+lemma measurable_on_const_UNIV: "(\<lambda>x. k) measurable_on UNIV"
+  by (simp add: continuous_imp_measurable_on)
+
+lemma measurable_on_const [simp]: "S \<in> sets lebesgue \<Longrightarrow> (\<lambda>x. k) measurable_on S"
+  using measurable_on_UNIV measurable_on_const_UNIV measurable_on_restrict by blast
+
+lemma simple_function_indicator_representation_real:
+  fixes f ::"'a \<Rightarrow> real"
+  assumes f: "simple_function M f" and x: "x \<in> space M" and nn: "\<And>x. f x \<ge> 0"
+  shows "f x = (\<Sum>y \<in> f ` space M. y * indicator (f -` {y} \<inter> space M) x)"
+proof -
+  have f': "simple_function M (ennreal \<circ> f)"
+    by (simp add: f)
+  have *: "f x =
+     enn2real
+      (\<Sum>y\<in> ennreal ` f ` space M.
+         y * indicator ((ennreal \<circ> f) -` {y} \<inter> space M) x)"
+    using arg_cong [OF simple_function_indicator_representation [OF f' x], of enn2real, simplified nn o_def] nn
+    unfolding o_def image_comp
+    by (metis enn2real_ennreal)
+  have "enn2real (\<Sum>y\<in>ennreal ` f ` space M. if ennreal (f x) = y \<and> x \<in> space M then y else 0)
+      = sum (enn2real \<circ> (\<lambda>y. if ennreal (f x) = y \<and> x \<in> space M then y else 0))
+            (ennreal ` f ` space M)"
+    by (rule enn2real_sum) auto
+  also have "\<dots> = sum (enn2real \<circ> (\<lambda>y. if ennreal (f x) = y \<and> x \<in> space M then y else 0) \<circ> ennreal)
+                   (f ` space M)"
+    by (rule sum.reindex) (use nn in \<open>auto simp: inj_on_def intro: sum.cong\<close>)
+  also have "\<dots> = (\<Sum>y\<in>f ` space M. if f x = y \<and> x \<in> space M then y else 0)"
+    using nn
+    by (auto simp: inj_on_def intro: sum.cong)
+  finally show ?thesis
+    by (subst *) (simp add: enn2real_sum indicator_def if_distrib cong: if_cong)
+qed
+
+lemma\<^marker>\<open>tag important\<close> simple_function_induct_real
+    [consumes 1, case_names cong set mult add, induct set: simple_function]:
+  fixes u :: "'a \<Rightarrow> real"
+  assumes u: "simple_function M u"
+  assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> simple_function M g \<Longrightarrow> (AE x in M. f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g"
+  assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)"
+  assumes mult: "\<And>u c. P u \<Longrightarrow> P (\<lambda>x. c * u x)"
+  assumes add: "\<And>u v. P u \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. u x + v x)"
+  and nn: "\<And>x. u x \<ge> 0"
+  shows "P u"
+proof (rule cong)
+  from AE_space show "AE x in M. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x"
+  proof eventually_elim
+    fix x assume x: "x \<in> space M"
+    from simple_function_indicator_representation_real[OF u x] nn
+    show "(\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x"
+      by metis
+  qed
+next
+  from u have "finite (u ` space M)"
+    unfolding simple_function_def by auto
+  then show "P (\<lambda>x. \<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x)"
+  proof induct
+    case empty
+    then show ?case
+      using set[of "{}"] by (simp add: indicator_def[abs_def])
+  next
+    case (insert a F)
+    have eq: "\<Sum> {y. u x = y \<and> (y = a \<or> y \<in> F) \<and> x \<in> space M}
+            = (if u x = a \<and> x \<in> space M then a else 0) + \<Sum> {y. u x = y \<and> y \<in> F \<and> x \<in> space M}" for x
+    proof (cases "x \<in> space M")
+      case True
+      have *: "{y. u x = y \<and> (y = a \<or> y \<in> F)} = {y. u x = a \<and> y = a} \<union> {y. u x = y \<and> y \<in> F}"
+        by auto
+      show ?thesis
+        using insert by (simp add: * True)
+    qed auto
+    have a: "P (\<lambda>x. a * indicator (u -` {a} \<inter> space M) x)"
+    proof (intro mult set)
+      show "u -` {a} \<inter> space M \<in> sets M"
+        using u by auto
+    qed
+    show ?case
+      using nn insert a
+      by (simp add: eq indicator_times_eq_if [where f = "\<lambda>x. a"] add)
+  qed
+next
+  show "simple_function M (\<lambda>x. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x))"
+    apply (subst simple_function_cong)
+    apply (rule simple_function_indicator_representation_real[symmetric])
+    apply (auto intro: u nn)
+    done
+qed fact
+
+proposition simple_function_measurable_on_UNIV:
+  fixes f :: "'a::euclidean_space \<Rightarrow> real"
+  assumes f: "simple_function lebesgue f" and nn: "\<And>x. f x \<ge> 0"
+  shows "f measurable_on UNIV"
+  using f
+proof (induction f)
+  case (cong f g)
+  then obtain N where "negligible N" "{x. g x \<noteq> f x} \<subseteq> N"
+    by (auto simp: eventually_ae_filter_negligible eq_commute)
+  then show ?case
+    by (blast intro: measurable_on_spike cong)
+next
+  case (set S)
+  then show ?case
+    by (simp add: indicator_measurable_on)
+next
+  case (mult u c)
+  then show ?case
+    by (simp add: measurable_on_cmul)
+  case (add u v)
+  then show ?case
+    by (simp add: measurable_on_add)
+qed (auto simp: nn)
+
+lemma simple_function_lebesgue_if:
+  fixes f :: "'a::euclidean_space \<Rightarrow> real"
+  assumes f: "simple_function lebesgue f" and S: "S \<in> sets lebesgue"
+  shows "simple_function lebesgue (\<lambda>x. if x \<in> S then f x else 0)"
+proof -
+  have ffin: "finite (range f)" and fsets: "\<forall>x. f -` {f x} \<in> sets lebesgue"
+    using f by (auto simp: simple_function_def)
+  have "finite (f ` S)"
+    by (meson finite_subset subset_image_iff ffin top_greatest)
+  moreover have "finite ((\<lambda>x. 0::real) ` T)" for T :: "'a set"
+    by (auto simp: image_def)
+  moreover have if_sets: "(\<lambda>x. if x \<in> S then f x else 0) -` {f a} \<in> sets lebesgue" for a
+  proof -
+    have *: "(\<lambda>x. if x \<in> S then f x else 0) -` {f a}
+           = (if f a = 0 then -S \<union> f -` {f a} else (f -` {f a}) \<inter> S)"
+      by (auto simp: split: if_split_asm)
+    show ?thesis
+      unfolding * by (metis Compl_in_sets_lebesgue S sets.Int sets.Un fsets)
+  qed
+  moreover have "(\<lambda>x. if x \<in> S then f x else 0) -` {0} \<in> sets lebesgue"
+  proof (cases "0 \<in> range f")
+    case True
+    then show ?thesis
+      by (metis (no_types, lifting) if_sets rangeE)
+  next
+    case False
+    then have "(\<lambda>x. if x \<in> S then f x else 0) -` {0} = -S"
+      by auto
+    then show ?thesis
+      by (simp add: Compl_in_sets_lebesgue S)
+  qed
+  ultimately show ?thesis
+    by (auto simp: simple_function_def)
+qed
+
+corollary simple_function_measurable_on:
+  fixes f :: "'a::euclidean_space \<Rightarrow> real"
+  assumes f: "simple_function lebesgue f" and nn: "\<And>x. f x \<ge> 0" and S: "S \<in> sets lebesgue"
+  shows "f measurable_on S"
+  by (simp add: measurable_on_UNIV [symmetric, of f] S f simple_function_lebesgue_if nn simple_function_measurable_on_UNIV)
+
+lemma
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::ordered_euclidean_space"
+  assumes f: "f measurable_on S" and g: "g measurable_on S"
+  shows measurable_on_sup: "(\<lambda>x. sup (f x) (g x)) measurable_on S"
+  and   measurable_on_inf: "(\<lambda>x. inf (f x) (g x)) measurable_on S"
+proof -
+  obtain NF and F
+    where NF: "negligible NF"
+      and conF: "\<And>n. continuous_on UNIV (F n)"
+      and tendsF: "\<And>x. x \<notin> NF \<Longrightarrow> (\<lambda>n. F n x) \<longlonglongrightarrow> (if x \<in> S then f x else 0)"
+    using f by (auto simp: measurable_on_def)
+  obtain NG and G
+    where NG: "negligible NG"
+      and conG: "\<And>n. continuous_on UNIV (G n)"
+      and tendsG: "\<And>x. x \<notin> NG \<Longrightarrow> (\<lambda>n. G n x) \<longlonglongrightarrow> (if x \<in> S then g x else 0)"
+    using g by (auto simp: measurable_on_def)
+  show "(\<lambda>x. sup (f x) (g x)) measurable_on S"
+    unfolding measurable_on_def
+  proof (intro exI conjI allI impI)
+    show "continuous_on UNIV (\<lambda>x. sup (F n x) (G n x))" for n
+      unfolding sup_max eucl_sup  by (intro conF conG continuous_intros)
+    show "(\<lambda>n. sup (F n x) (G n x)) \<longlonglongrightarrow> (if x \<in> S then sup (f x) (g x) else 0)"
+      if "x \<notin> NF \<union> NG" for x
+      using tendsto_sup [OF tendsF tendsG, of x x] that by auto
+  qed (simp add: NF NG)
+  show "(\<lambda>x. inf (f x) (g x)) measurable_on S"
+    unfolding measurable_on_def
+  proof (intro exI conjI allI impI)
+    show "continuous_on UNIV (\<lambda>x. inf (F n x) (G n x))" for n
+      unfolding inf_min eucl_inf  by (intro conF conG continuous_intros)
+    show "(\<lambda>n. inf (F n x) (G n x)) \<longlonglongrightarrow> (if x \<in> S then inf (f x) (g x) else 0)"
+      if "x \<notin> NF \<union> NG" for x
+      using tendsto_inf [OF tendsF tendsG, of x x] that by auto
+  qed (simp add: NF NG)
+qed
+
+proposition measurable_on_componentwise_UNIV:
+  "f measurable_on UNIV \<longleftrightarrow> (\<forall>i\<in>Basis. (\<lambda>x. (f x \<bullet> i) *\<^sub>R i) measurable_on UNIV)"
+  (is "?lhs = ?rhs")
+proof
+  assume L: ?lhs
+  show ?rhs
+  proof
+    fix i::'b
+    assume "i \<in> Basis"
+    have cont: "continuous_on UNIV (\<lambda>x. (x \<bullet> i) *\<^sub>R i)"
+      by (intro continuous_intros)
+    show "(\<lambda>x. (f x \<bullet> i) *\<^sub>R i) measurable_on UNIV"
+      using measurable_on_compose_continuous [OF L cont]
+      by (simp add: o_def)
+  qed
+next
+  assume ?rhs
+  then have "\<exists>N g. negligible N \<and>
+              (\<forall>n. continuous_on UNIV (g n)) \<and>
+              (\<forall>x. x \<notin> N \<longrightarrow> (\<lambda>n. g n x) \<longlonglongrightarrow> (f x \<bullet> i) *\<^sub>R i)"
+    if "i \<in> Basis" for i
+    by (simp add: measurable_on_def that)
+  then obtain N g where N: "\<And>i. i \<in> Basis \<Longrightarrow> negligible (N i)"
+        and cont: "\<And>i n. i \<in> Basis \<Longrightarrow> continuous_on UNIV (g i n)"
+        and tends: "\<And>i x. \<lbrakk>i \<in> Basis; x \<notin> N i\<rbrakk> \<Longrightarrow> (\<lambda>n. g i n x) \<longlonglongrightarrow> (f x \<bullet> i) *\<^sub>R i"
+    by metis
+  show ?lhs
+    unfolding measurable_on_def
+  proof (intro exI conjI allI impI)
+    show "negligible (\<Union>i \<in> Basis. N i)"
+      using N eucl.finite_Basis by blast
+    show "continuous_on UNIV (\<lambda>x. (\<Sum>i\<in>Basis. g i n x))" for n
+      by (intro continuous_intros cont)
+  next
+    fix x
+    assume "x \<notin> (\<Union>i \<in> Basis. N i)"
+    then have "\<And>i. i \<in> Basis \<Longrightarrow> x \<notin> N i"
+      by auto
+    then have "(\<lambda>n. (\<Sum>i\<in>Basis. g i n x)) \<longlonglongrightarrow> (\<Sum>i\<in>Basis. (f x \<bullet> i) *\<^sub>R i)"
+      by (intro tends tendsto_intros)
+    then show "(\<lambda>n. (\<Sum>i\<in>Basis. g i n x)) \<longlonglongrightarrow> (if x \<in> UNIV then f x else 0)"
+      by (simp add: euclidean_representation)
+  qed
+qed
+
+corollary measurable_on_componentwise:
+  "f measurable_on S \<longleftrightarrow> (\<forall>i\<in>Basis. (\<lambda>x. (f x \<bullet> i) *\<^sub>R i) measurable_on S)"
+  apply (subst measurable_on_UNIV [symmetric])
+  apply (subst measurable_on_componentwise_UNIV)
+  apply (simp add: measurable_on_UNIV if_distrib [of "\<lambda>x. inner x _"] if_distrib [of "\<lambda>x. scaleR x _"] cong: if_cong)
+  done
+
+
+(*FIXME: avoid duplication of proofs WRT borel_measurable_implies_simple_function_sequence*)
+lemma\<^marker>\<open>tag important\<close> borel_measurable_implies_simple_function_sequence_real:
+  fixes u :: "'a \<Rightarrow> real"
+  assumes u[measurable]: "u \<in> borel_measurable M" and nn: "\<And>x. u x \<ge> 0"
+  shows "\<exists>f. incseq f \<and> (\<forall>i. simple_function M (f i)) \<and> (\<forall>x. bdd_above (range (\<lambda>i. f i x))) \<and>
+             (\<forall>i x. 0 \<le> f i x) \<and> u = (SUP i. f i)"
+proof -
+  define f where [abs_def]:
+    "f i x = real_of_int (floor ((min i (u x)) * 2^i)) / 2^i" for i x
+
+  have [simp]: "0 \<le> f i x" for i x
+    by (auto simp: f_def intro!: divide_nonneg_nonneg mult_nonneg_nonneg nn)
+
+  have *: "2^n * real_of_int x = real_of_int (2^n * x)" for n x
+    by simp
+
+  have "real_of_int \<lfloor>real i * 2 ^ i\<rfloor> = real_of_int \<lfloor>i * 2 ^ i\<rfloor>" for i
+    by (intro arg_cong[where f=real_of_int]) simp
+  then have [simp]: "real_of_int \<lfloor>real i * 2 ^ i\<rfloor> = i * 2 ^ i" for i
+    unfolding floor_of_nat by simp
+
+  have bdd: "bdd_above (range (\<lambda>i. f i x))" for x
+    by (rule bdd_aboveI [where M = "u x"]) (auto simp: f_def field_simps min_def)
+
+  have "incseq f"
+  proof (intro monoI le_funI)
+    fix m n :: nat and x assume "m \<le> n"
+    moreover
+    { fix d :: nat
+      have "\<lfloor>2^d::real\<rfloor> * \<lfloor>2^m * (min (of_nat m) (u x))\<rfloor> \<le> \<lfloor>2^d * (2^m * (min (of_nat m) (u x)))\<rfloor>"
+        by (rule le_mult_floor) (auto simp: nn)
+      also have "\<dots> \<le> \<lfloor>2^d * (2^m *  (min (of_nat d + of_nat m) (u x)))\<rfloor>"
+        by (intro floor_mono mult_mono min.mono)
+           (auto simp: nn min_less_iff_disj of_nat_less_top)
+      finally have "f m x \<le> f(m + d) x"
+        unfolding f_def
+        by (auto simp: field_simps power_add * simp del: of_int_mult) }
+    ultimately show "f m x \<le> f n x"
+      by (auto simp: le_iff_add)
+  qed
+  then have inc_f: "incseq (\<lambda>i. f i x)" for x
+    by (auto simp: incseq_def le_fun_def)
+  moreover
+  have "simple_function M (f i)" for i
+  proof (rule simple_function_borel_measurable)
+    have "\<lfloor>(min (of_nat i) (u x)) * 2 ^ i\<rfloor> \<le> \<lfloor>int i * 2 ^ i\<rfloor>" for x
+      by (auto split: split_min intro!: floor_mono)
+    then have "f i ` space M \<subseteq> (\<lambda>n. real_of_int n / 2^i) ` {0 .. of_nat i * 2^i}"
+      unfolding floor_of_int by (auto simp: f_def nn intro!: imageI)
+    then show "finite (f i ` space M)"
+      by (rule finite_subset) auto
+    show "f i \<in> borel_measurable M"
+      unfolding f_def enn2real_def by measurable
+  qed
+  moreover
+  { fix x
+    have "(SUP i. (f i x)) = u x"
+    proof -
+      obtain n where "u x \<le> of_nat n" using real_arch_simple by auto
+      then have min_eq_r: "\<forall>\<^sub>F i in sequentially. min (real i) (u x) = u x"
+        by (auto simp: eventually_sequentially intro!: exI[of _ n] split: split_min)
+      have "(\<lambda>i. real_of_int \<lfloor>min (real i) (u x) * 2^i\<rfloor> / 2^i) \<longlonglongrightarrow> u x"
+      proof (rule tendsto_sandwich)
+        show "(\<lambda>n. u x - (1/2)^n) \<longlonglongrightarrow> u x"
+          by (auto intro!: tendsto_eq_intros LIMSEQ_power_zero)
+        show "\<forall>\<^sub>F n in sequentially. real_of_int \<lfloor>min (real n) (u x) * 2 ^ n\<rfloor> / 2 ^ n \<le> u x"
+          using min_eq_r by eventually_elim (auto simp: field_simps)
+        have *: "u x * (2 ^ n * 2 ^ n) \<le> 2^n + 2^n * real_of_int \<lfloor>u x * 2 ^ n\<rfloor>" for n
+          using real_of_int_floor_ge_diff_one[of "u x * 2^n", THEN mult_left_mono, of "2^n"]
+          by (auto simp: field_simps)
+        show "\<forall>\<^sub>F n in sequentially. u x - (1/2)^n \<le> real_of_int \<lfloor>min (real n) (u x) * 2 ^ n\<rfloor> / 2 ^ n"
+          using min_eq_r by eventually_elim (insert *, auto simp: field_simps)
+      qed auto
+      then have "(\<lambda>i. (f i x)) \<longlonglongrightarrow> u x"
+        by (simp add: f_def)
+      from LIMSEQ_unique LIMSEQ_incseq_SUP [OF bdd inc_f] this
+      show ?thesis
+        by blast
+    qed }
+  ultimately show ?thesis
+    by (intro exI [of _ "\<lambda>i x. f i x"]) (auto simp: \<open>incseq f\<close> bdd image_comp)
+qed
+
+
+lemma homeomorphic_open_interval_UNIV:
+  fixes a b:: real
+  assumes "a < b"
+  shows "{a<..<b} homeomorphic (UNIV::real set)"
+proof -
+  have "{a<..<b} = ball ((b+a) / 2) ((b-a) / 2)"
+    using assms
+    by (auto simp: dist_real_def abs_if divide_simps split: if_split_asm)
+  then show ?thesis
+    by (simp add: homeomorphic_ball_UNIV assms)
+qed
+
+proposition homeomorphic_box_UNIV:
+  fixes a b:: "'a::euclidean_space"
+  assumes "box a b \<noteq> {}"
+  shows "box a b homeomorphic (UNIV::'a set)"
+proof -
+  have "{a \<bullet> i <..<b \<bullet> i} homeomorphic (UNIV::real set)" if "i \<in> Basis" for i
+    using assms box_ne_empty that by (blast intro: homeomorphic_open_interval_UNIV)
+  then have "\<exists>f g. (\<forall>x. a \<bullet> i < x \<and> x < b \<bullet> i \<longrightarrow> g (f x) = x) \<and>
+                   (\<forall>y. a \<bullet> i < g y \<and> g y < b \<bullet> i \<and> f(g y) = y) \<and>
+                   continuous_on {a \<bullet> i<..<b \<bullet> i} f \<and>
+                   continuous_on (UNIV::real set) g"
+    if "i \<in> Basis" for i
+    using that by (auto simp: homeomorphic_minimal mem_box Ball_def)
+  then obtain f g where gf: "\<And>i x. \<lbrakk>i \<in> Basis; a \<bullet> i < x; x < b \<bullet> i\<rbrakk> \<Longrightarrow> g i (f i x) = x"
+              and fg: "\<And>i y. i \<in> Basis \<Longrightarrow> a \<bullet> i < g i y \<and> g i y < b \<bullet> i \<and> f i (g i y) = y"
+              and contf: "\<And>i. i \<in> Basis \<Longrightarrow> continuous_on {a \<bullet> i<..<b \<bullet> i} (f i)"
+              and contg: "\<And>i. i \<in> Basis \<Longrightarrow> continuous_on (UNIV::real set) (g i)"
+    by metis
+  define F where "F \<equiv> \<lambda>x. \<Sum>i\<in>Basis. (f i (x \<bullet> i)) *\<^sub>R i"
+  define G where "G \<equiv> \<lambda>x. \<Sum>i\<in>Basis. (g i (x \<bullet> i)) *\<^sub>R i"
+  show ?thesis
+    unfolding homeomorphic_minimal
+  proof (intro exI conjI ballI)
+    show "G y \<in> box a b" for y
+      using fg by (simp add: G_def mem_box)
+    show "G (F x) = x" if "x \<in> box a b" for x
+      using that by (simp add: F_def G_def gf mem_box euclidean_representation)
+    show "F (G y) = y" for y
+      by (simp add: F_def G_def fg mem_box euclidean_representation)
+    show "continuous_on (box a b) F"
+      unfolding F_def
+    proof (intro continuous_intros continuous_on_compose2 [OF contf continuous_on_inner])
+      show "(\<lambda>x. x \<bullet> i) ` box a b \<subseteq> {a \<bullet> i<..<b \<bullet> i}" if "i \<in> Basis" for i
+        using that by (auto simp: mem_box)
+    qed
+    show "continuous_on UNIV G"
+      unfolding G_def
+      by (intro continuous_intros continuous_on_compose2 [OF contg continuous_on_inner]) auto
+  qed auto
+qed
+
+
+
+lemma diff_null_sets_lebesgue: "\<lbrakk>N \<in> null_sets (lebesgue_on S); X-N \<in> sets (lebesgue_on S); N \<subseteq> X\<rbrakk>
+    \<Longrightarrow> X \<in> sets (lebesgue_on S)"
+  by (metis Int_Diff_Un inf.commute inf.orderE null_setsD2 sets.Un)
+
+lemma borel_measurable_diff_null:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes N: "N \<in> null_sets (lebesgue_on S)" and S: "S \<in> sets lebesgue"
+  shows "f \<in> borel_measurable (lebesgue_on (S-N)) \<longleftrightarrow> f \<in> borel_measurable (lebesgue_on S)"
+  unfolding in_borel_measurable borel_measurable_UNIV_eq [symmetric] space_lebesgue_on sets_restrict_UNIV
+proof (intro ball_cong iffI)
+  show "f -` T \<inter> S \<in> sets (lebesgue_on S)"
+    if "f -` T \<inter> (S-N) \<in> sets (lebesgue_on (S-N))" for T
+    using that  assms
+    by (smt Diff_Int_distrib completion.complete2 diff_null_sets_lebesgue inf.idem inf_le2 inf_mono lebesgue_on_UNIV_eq null_setsD2 null_sets_restrict_space sets.Diff sets_restrict_space_iff space_lebesgue_on space_restrict_space)
+  show "f -` T \<inter> (S-N) \<in> sets (lebesgue_on (S-N))"
+    if "f -` T \<inter> S \<in> sets (lebesgue_on S)" for T
+    using image_eqI inf.commute inf_top_right sets_restrict_space that
+    by (smt Int_Diff S sets.Int_space_eq2 sets_restrict_space_iff space_lebesgue_on)
+qed auto
+
+lemma lebesgue_measurable_diff_null:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "N \<in> null_sets lebesgue"
+  shows "f \<in> borel_measurable (lebesgue_on (-N)) \<longleftrightarrow> f \<in> borel_measurable lebesgue"
+  by (simp add: Compl_eq_Diff_UNIV assms borel_measurable_diff_null lebesgue_on_UNIV_eq)
+
+
+
+proposition measurable_on_imp_borel_measurable_lebesgue_UNIV:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "f measurable_on UNIV"
+  shows "f \<in> borel_measurable lebesgue"
+proof -
+  obtain N and F
+    where NF: "negligible N"
+      and conF: "\<And>n. continuous_on UNIV (F n)"
+      and tendsF: "\<And>x. x \<notin> N \<Longrightarrow> (\<lambda>n. F n x) \<longlonglongrightarrow> f x"
+    using assms by (auto simp: measurable_on_def)
+  obtain N where "N \<in> null_sets lebesgue" "f \<in> borel_measurable (lebesgue_on (-N))"
+  proof
+    show "f \<in> borel_measurable (lebesgue_on (- N))"
+    proof (rule borel_measurable_LIMSEQ_metric)
+      show "F i \<in> borel_measurable (lebesgue_on (- N))" for i
+        by (meson Compl_in_sets_lebesgue NF conF continuous_imp_measurable_on_sets_lebesgue continuous_on_subset negligible_imp_sets subset_UNIV)
+      show "(\<lambda>i. F i x) \<longlonglongrightarrow> f x" if "x \<in> space (lebesgue_on (- N))" for x
+        using that
+        by (simp add: tendsF)
+    qed
+    show "N \<in> null_sets lebesgue"
+      using NF negligible_iff_null_sets by blast
+  qed
+  then show ?thesis
+    using lebesgue_measurable_diff_null by blast
+qed
+
+corollary measurable_on_imp_borel_measurable_lebesgue:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "f measurable_on S" and S: "S \<in> sets lebesgue"
+  shows "f \<in> borel_measurable (lebesgue_on S)"
+proof -
+  have "(\<lambda>x. if x \<in> S then f x else 0) measurable_on UNIV"
+    using assms(1) measurable_on_UNIV by blast
+  then show ?thesis
+    by (simp add: borel_measurable_if_D measurable_on_imp_borel_measurable_lebesgue_UNIV)
+qed
+
+
+proposition measurable_on_limit:
+  fixes f :: "nat \<Rightarrow> 'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes f: "\<And>n. f n measurable_on S" and N: "negligible N"
+    and lim: "\<And>x. x \<in> S - N \<Longrightarrow> (\<lambda>n. f n x) \<longlonglongrightarrow> g x"
+  shows "g measurable_on S"
+proof -
+  have "box (0::'b) One homeomorphic (UNIV::'b set)"
+    by (simp add: homeomorphic_box_UNIV)
+  then obtain h h':: "'b\<Rightarrow>'b" where hh': "\<And>x. x \<in> box 0 One \<Longrightarrow> h (h' x) = x"
+                  and h'im:  "h' ` box 0 One = UNIV"
+                  and conth: "continuous_on UNIV h"
+                  and conth': "continuous_on (box 0 One) h'"
+                  and h'h:   "\<And>y. h' (h y) = y"
+                  and rangeh: "range h = box 0 One"
+    by (auto simp: homeomorphic_def homeomorphism_def)
+  have "norm y \<le> DIM('b)" if y: "y \<in> box 0 One" for y::'b
+  proof -
+    have y01: "0 < y \<bullet> i" "y \<bullet> i < 1" if "i \<in> Basis" for i
+      using that y by (auto simp: mem_box)
+    have "norm y \<le> (\<Sum>i\<in>Basis. \<bar>y \<bullet> i\<bar>)"
+      using norm_le_l1 by blast
+    also have "\<dots> \<le> (\<Sum>i::'b\<in>Basis. 1)"
+    proof (rule sum_mono)
+      show "\<bar>y \<bullet> i\<bar> \<le> 1" if "i \<in> Basis" for i
+        using y01 that by fastforce
+    qed
+    also have "\<dots> \<le> DIM('b)"
+      by auto
+    finally show ?thesis .
+  qed
+  then have norm_le: "norm(h y) \<le> DIM('b)" for y
+    by (metis UNIV_I image_eqI rangeh)
+  have "(h' \<circ> (h \<circ> (\<lambda>x. if x \<in> S then g x else 0))) measurable_on UNIV"
+  proof (rule measurable_on_compose_continuous_box)
+    let ?\<chi> =  "h \<circ> (\<lambda>x. if x \<in> S then g x else 0)"
+    let ?f = "\<lambda>n. h \<circ> (\<lambda>x. if x \<in> S then f n x else 0)"
+    show "?\<chi> measurable_on UNIV"
+    proof (rule integrable_subintervals_imp_measurable)
+      show "?\<chi> integrable_on cbox a b" for a b
+      proof (rule integrable_spike_set)
+        show "?\<chi> integrable_on (cbox a b - N)"
+        proof (rule dominated_convergence_integrable)
+          show const: "(\<lambda>x. DIM('b)) integrable_on cbox a b - N"
+            by (simp add: N has_integral_iff integrable_const integrable_negligible integrable_setdiff negligible_diff)
+          show "norm ((h \<circ> (\<lambda>x. if x \<in> S then g x else 0)) x) \<le> DIM('b)" if "x \<in> cbox a b - N" for x
+            using that norm_le  by (simp add: o_def)
+          show "(\<lambda>k. ?f k x) \<longlonglongrightarrow> ?\<chi> x" if "x \<in> cbox a b - N" for x
+            using that lim [of x] conth
+            by (auto simp: continuous_on_def intro: tendsto_compose)
+          show "(?f n) absolutely_integrable_on cbox a b - N" for n
+          proof (rule measurable_bounded_by_integrable_imp_absolutely_integrable)
+            show "?f n \<in> borel_measurable (lebesgue_on (cbox a b - N))"
+            proof (rule measurable_on_imp_borel_measurable_lebesgue [OF measurable_on_spike_set])
+              show "?f n measurable_on cbox a b"
+                unfolding measurable_on_UNIV [symmetric, of _ "cbox a b"]
+              proof (rule measurable_on_restrict)
+                have f': "(\<lambda>x. if x \<in> S then f n x else 0) measurable_on UNIV"
+                  by (simp add: f measurable_on_UNIV)
+                show "?f n measurable_on UNIV"
+                  using measurable_on_compose_continuous [OF f' conth] by auto
+              qed auto
+              show "negligible (sym_diff (cbox a b) (cbox a b - N))"
+                by (auto intro: negligible_subset [OF N])
+              show "cbox a b - N \<in> sets lebesgue"
+                by (simp add: N negligible_imp_sets sets.Diff)
+            qed
+            show "cbox a b - N \<in> sets lebesgue"
+              by (simp add: N negligible_imp_sets sets.Diff)
+            show "norm (?f n x) \<le> DIM('b)"
+              if "x \<in> cbox a b - N" for x
+              using that local.norm_le by simp
+          qed (auto simp: const)
+        qed
+        show "negligible {x \<in> cbox a b - N - cbox a b. ?\<chi> x \<noteq> 0}"
+          by (auto simp: empty_imp_negligible)
+        have "{x \<in> cbox a b - (cbox a b - N). ?\<chi> x \<noteq> 0} \<subseteq> N"
+          by auto
+        then show "negligible {x \<in> cbox a b - (cbox a b - N). ?\<chi> x \<noteq> 0}"
+          using N negligible_subset by blast
+      qed
+    qed
+    show "?\<chi> x \<in> box 0 One" for x
+      using rangeh by auto
+    show "continuous_on (box 0 One) h'"
+      by (rule conth')
+  qed
+  then show ?thesis
+    by (simp add: o_def h'h measurable_on_UNIV)
+qed
+
+
+lemma measurable_on_if_simple_function_limit:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  shows  "\<lbrakk>\<And>n. g n measurable_on UNIV; \<And>n. finite (range (g n)); \<And>x. (\<lambda>n. g n x) \<longlonglongrightarrow> f x\<rbrakk>
+   \<Longrightarrow> f measurable_on UNIV"
+  by (force intro: measurable_on_limit [where N="{}"])
+
+
+lemma lebesgue_measurable_imp_measurable_on_nnreal_UNIV:
+  fixes u :: "'a::euclidean_space \<Rightarrow> real"
+  assumes u: "u \<in> borel_measurable lebesgue" and nn: "\<And>x. u x \<ge> 0"
+  shows "u measurable_on UNIV"
+proof -
+  obtain f where "incseq f" and f: "\<forall>i. simple_function lebesgue (f i)"
+    and bdd: "\<And>x. bdd_above (range (\<lambda>i. f i x))"
+    and nnf: "\<And>i x. 0 \<le> f i x" and *: "u = (SUP i. f i)"
+    using borel_measurable_implies_simple_function_sequence_real nn u by metis
+  show ?thesis
+    unfolding *
+  proof (rule measurable_on_if_simple_function_limit [of concl: "Sup (range f)"])
+    show "(f i) measurable_on UNIV" for i
+      by (simp add: f nnf simple_function_measurable_on_UNIV)
+    show "finite (range (f i))" for i
+      by (metis f simple_function_def space_borel space_completion space_lborel)
+    show "(\<lambda>i. f i x) \<longlonglongrightarrow> Sup (range f) x" for x
+    proof -
+      have "incseq (\<lambda>i. f i x)"
+        using \<open>incseq f\<close> apply (auto simp: incseq_def)
+        by (simp add: le_funD)
+      then show ?thesis
+        by (metis SUP_apply bdd LIMSEQ_incseq_SUP)
+    qed
+  qed
+qed
+
+lemma lebesgue_measurable_imp_measurable_on_nnreal:
+  fixes u :: "'a::euclidean_space \<Rightarrow> real"
+  assumes "u \<in> borel_measurable lebesgue" "\<And>x. u x \<ge> 0""S \<in> sets lebesgue"
+  shows "u measurable_on S"
+  unfolding measurable_on_UNIV [symmetric, of u]
+  using assms
+  by (auto intro: lebesgue_measurable_imp_measurable_on_nnreal_UNIV)
+
+lemma lebesgue_measurable_imp_measurable_on_real:
+  fixes u :: "'a::euclidean_space \<Rightarrow> real"
+  assumes u: "u \<in> borel_measurable lebesgue" and S: "S \<in> sets lebesgue"
+  shows "u measurable_on S"
+proof -
+  let ?f = "\<lambda>x. \<bar>u x\<bar> + u x"
+  let ?g = "\<lambda>x. \<bar>u x\<bar> - u x"
+  have "?f measurable_on S" "?g measurable_on S"
+    using S u by (auto intro: lebesgue_measurable_imp_measurable_on_nnreal)
+  then have "(\<lambda>x. (?f x - ?g x) / 2) measurable_on S"
+    using measurable_on_cdivide measurable_on_diff by blast
+  then show ?thesis
+    by auto
+qed
+
+
+proposition lebesgue_measurable_imp_measurable_on:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes f: "f \<in> borel_measurable lebesgue" and S: "S \<in> sets lebesgue"
+  shows "f measurable_on S"
+  unfolding measurable_on_componentwise [of f]
+proof
+  fix i::'b
+  assume "i \<in> Basis"
+  have "(\<lambda>x. (f x \<bullet> i)) \<in> borel_measurable lebesgue"
+    using \<open>i \<in> Basis\<close> borel_measurable_euclidean_space f by blast
+  then have "(\<lambda>x. (f x \<bullet> i)) measurable_on S"
+    using S lebesgue_measurable_imp_measurable_on_real by blast
+  then show "(\<lambda>x. (f x \<bullet> i) *\<^sub>R i) measurable_on S"
+    by (intro measurable_on_scaleR measurable_on_const S)
+qed
+
+proposition measurable_on_iff_borel_measurable:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "S \<in> sets lebesgue"
+  shows "f measurable_on S \<longleftrightarrow> f \<in> borel_measurable (lebesgue_on S)" (is "?lhs = ?rhs")
+proof
+  show "f \<in> borel_measurable (lebesgue_on S)"
+    if "f measurable_on S"
+    using that by (simp add: assms measurable_on_imp_borel_measurable_lebesgue)
+next
+  assume "f \<in> borel_measurable (lebesgue_on S)"
+  then have "(\<lambda>a. if a \<in> S then f a else 0) measurable_on UNIV"
+    by (simp add: assms borel_measurable_if lebesgue_measurable_imp_measurable_on)
+  then show "f measurable_on S"
+    using measurable_on_UNIV by blast
+qed
+
+end
--- a/src/HOL/Analysis/Lebesgue_Measure.thy	Thu Sep 12 17:17:52 2019 +0200
+++ b/src/HOL/Analysis/Lebesgue_Measure.thy	Fri Sep 13 12:46:36 2019 +0100
@@ -544,6 +544,20 @@
   shows "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable lebesgue \<longleftrightarrow> f \<in> borel_measurable (lebesgue_on S)"
   using assms borel_measurable_if_D borel_measurable_if_I by blast
 
+lemma borel_measurable_if_lebesgue_on:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "S \<in> sets lebesgue" "T \<in> sets lebesgue" "S \<subseteq> T"
+  shows "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable (lebesgue_on T) \<longleftrightarrow> f \<in> borel_measurable (lebesgue_on S)"
+    (is "?lhs = ?rhs")
+proof
+  assume ?lhs then show ?rhs
+    using measurable_restrict_mono [OF _ \<open>S \<subseteq> T\<close>]
+    by (subst measurable_lebesgue_cong [where g = "(\<lambda>x. if x \<in> S then f x else 0)"]) auto
+next
+  assume ?rhs then show ?lhs
+    by (simp add: \<open>S \<in> sets lebesgue\<close> borel_measurable_if_I measurable_restrict_space1)
+qed
+
 lemma borel_measurable_vimage_halfspace_component_lt:
      "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow>
       (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i < a} \<in> sets (lebesgue_on S))"
--- a/src/HOL/Limits.thy	Thu Sep 12 17:17:52 2019 +0200
+++ b/src/HOL/Limits.thy	Fri Sep 13 12:46:36 2019 +0100
@@ -2340,6 +2340,21 @@
     by (auto intro!: exI[of _ L] decseq_ge)
 qed
 
+lemma monoseq_convergent:
+  fixes X :: "nat \<Rightarrow> real"
+  assumes X: "monoseq X" and B: "\<And>i. \<bar>X i\<bar> \<le> B"
+  obtains L where "X \<longlonglongrightarrow> L"
+  using X unfolding monoseq_iff
+proof
+  assume "incseq X"
+  show thesis
+    using abs_le_D1 [OF B] incseq_convergent [OF \<open>incseq X\<close>] that by meson
+next
+  assume "decseq X"
+  show thesis
+    using decseq_convergent [OF \<open>decseq X\<close>] that
+    by (metis B abs_le_iff add.inverse_inverse neg_le_iff_le)
+qed
 
 subsection \<open>Power Sequences\<close>