--- a/src/HOL/Analysis/Analysis.thy Tue Apr 17 16:18:19 2018 +0200
+++ b/src/HOL/Analysis/Analysis.thy Tue Apr 17 18:04:49 2018 +0100
@@ -22,7 +22,7 @@
FPS_Convergence
Generalised_Binomial_Theorem
Gamma_Function
- Ball_Volume
+ Vitali_Covering_Theorem
Lipschitz
begin
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Vitali_Covering_Theorem.thy Tue Apr 17 18:04:49 2018 +0100
@@ -0,0 +1,652 @@
+theory Vitali_Covering_Theorem
+ imports Ball_Volume "HOL-Library.Permutations"
+
+begin
+
+lemma stretch_Galois:
+ fixes x :: "real^'n"
+ shows "(\<And>k. m k \<noteq> 0) \<Longrightarrow> ((y = (\<chi> k. m k * x$k)) \<longleftrightarrow> (\<chi> k. y$k / m k) = x)"
+ by auto
+
+lemma lambda_swap_Galois:
+ "(x = (\<chi> i. y $ Fun.swap m n id i) \<longleftrightarrow> (\<chi> i. x $ Fun.swap m n id i) = y)"
+ by (auto; simp add: pointfree_idE vec_eq_iff)
+
+lemma lambda_add_Galois:
+ fixes x :: "real^'n"
+ shows "m \<noteq> n \<Longrightarrow> (x = (\<chi> i. if i = m then y$m + y$n else y$i) \<longleftrightarrow> (\<chi> i. if i = m then x$m - x$n else x$i) = y)"
+ by (safe; simp add: vec_eq_iff)
+
+
+lemma Vitali_covering_lemma_cballs_balls:
+ fixes a :: "'a \<Rightarrow> 'b::euclidean_space"
+ assumes "\<And>i. i \<in> K \<Longrightarrow> 0 < r i \<and> r i \<le> B"
+ obtains C where "countable C" "C \<subseteq> K"
+ "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
+ "\<And>i. i \<in> K \<Longrightarrow> \<exists>j. j \<in> C \<and>
+ \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
+ cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+proof (cases "K = {}")
+ case True
+ with that show ?thesis
+ by auto
+next
+ case False
+ then have "B > 0"
+ using assms less_le_trans by auto
+ have rgt0[simp]: "\<And>i. i \<in> K \<Longrightarrow> 0 < r i"
+ using assms by auto
+ let ?djnt = "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j)))"
+ have "\<exists>C. \<forall>n. (C n \<subseteq> K \<and>
+ (\<forall>i \<in> C n. B/2 ^ n \<le> r i) \<and> ?djnt (C n) \<and>
+ (\<forall>i \<in> K. B/2 ^ n < r i
+ \<longrightarrow> (\<exists>j. j \<in> C n \<and>
+ \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
+ cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)))) \<and> (C n \<subseteq> C(Suc n))"
+ proof (rule dependent_nat_choice, safe)
+ fix C n
+ define D where "D \<equiv> {i \<in> K. B/2 ^ Suc n < r i \<and> (\<forall>j\<in>C. disjnt (cball(a i)(r i)) (cball (a j) (r j)))}"
+ let ?cover_ar = "\<lambda>i j. \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
+ cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+ assume "C \<subseteq> K"
+ and Ble: "\<forall>i\<in>C. B/2 ^ n \<le> r i"
+ and djntC: "?djnt C"
+ and cov_n: "\<forall>i\<in>K. B/2 ^ n < r i \<longrightarrow> (\<exists>j. j \<in> C \<and> ?cover_ar i j)"
+ have *: "\<forall>C\<in>chains {C. C \<subseteq> D \<and> ?djnt C}. \<Union>C \<in> {C. C \<subseteq> D \<and> ?djnt C}"
+ proof (clarsimp simp: chains_def)
+ fix C
+ assume C: "C \<subseteq> {C. C \<subseteq> D \<and> ?djnt C}" and "chain\<^sub>\<subseteq> C"
+ show "\<Union>C \<subseteq> D \<and> ?djnt (\<Union>C)"
+ unfolding pairwise_def
+ proof (intro ballI conjI impI)
+ show "\<Union>C \<subseteq> D"
+ using C by blast
+ next
+ fix x y
+ assume "x \<in> \<Union>C" and "y \<in> \<Union>C" and "x \<noteq> y"
+ then obtain X Y where XY: "x \<in> X" "X \<in> C" "y \<in> Y" "Y \<in> C"
+ by blast
+ then consider "X \<subseteq> Y" | "Y \<subseteq> X"
+ by (meson \<open>chain\<^sub>\<subseteq> C\<close> chain_subset_def)
+ then show "disjnt (cball (a x) (r x)) (cball (a y) (r y))"
+ proof cases
+ case 1
+ with C XY \<open>x \<noteq> y\<close> show ?thesis
+ unfolding pairwise_def by blast
+ next
+ case 2
+ with C XY \<open>x \<noteq> y\<close> show ?thesis
+ unfolding pairwise_def by blast
+ qed
+ qed
+ qed
+ obtain E where "E \<subseteq> D" and djntE: "?djnt E" and maximalE: "\<And>X. \<lbrakk>X \<subseteq> D; ?djnt X; E \<subseteq> X\<rbrakk> \<Longrightarrow> X = E"
+ using Zorn_Lemma [OF *] by safe blast
+ show "\<exists>L. (L \<subseteq> K \<and>
+ (\<forall>i\<in>L. B/2 ^ Suc n \<le> r i) \<and> ?djnt L \<and>
+ (\<forall>i\<in>K. B/2 ^ Suc n < r i \<longrightarrow> (\<exists>j. j \<in> L \<and> ?cover_ar i j))) \<and> C \<subseteq> L"
+ proof (intro exI conjI ballI)
+ show "C \<union> E \<subseteq> K"
+ using D_def \<open>C \<subseteq> K\<close> \<open>E \<subseteq> D\<close> by blast
+ show "B/2 ^ Suc n \<le> r i" if i: "i \<in> C \<union> E" for i
+ using i
+ proof
+ assume "i \<in> C"
+ have "B/2 ^ Suc n \<le> B/2 ^ n"
+ using \<open>B > 0\<close> by (simp add: divide_simps)
+ also have "\<dots> \<le> r i"
+ using Ble \<open>i \<in> C\<close> by blast
+ finally show ?thesis .
+ qed (use D_def \<open>E \<subseteq> D\<close> in auto)
+ show "?djnt (C \<union> E)"
+ using D_def \<open>C \<subseteq> K\<close> \<open>E \<subseteq> D\<close> djntC djntE
+ unfolding pairwise_def disjnt_def by blast
+ next
+ fix i
+ assume "i \<in> K"
+ show "B/2 ^ Suc n < r i \<longrightarrow> (\<exists>j. j \<in> C \<union> E \<and> ?cover_ar i j)"
+ proof (cases "r i \<le> B/2^n")
+ case False
+ then show ?thesis
+ using cov_n \<open>i \<in> K\<close> by auto
+ next
+ case True
+ have "cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+ if less: "B/2 ^ Suc n < r i" and j: "j \<in> C \<union> E"
+ and nondis: "\<not> disjnt (cball (a i) (r i)) (cball (a j) (r j))" for j
+ proof -
+ obtain x where x: "dist (a i) x \<le> r i" "dist (a j) x \<le> r j"
+ using nondis by (force simp: disjnt_def)
+ have "dist (a i) (a j) \<le> dist (a i) x + dist x (a j)"
+ by (simp add: dist_triangle)
+ also have "\<dots> \<le> r i + r j"
+ by (metis add_mono_thms_linordered_semiring(1) dist_commute x)
+ finally have aij: "dist (a i) (a j) + r i < 5 * r j" if "r i < 2 * r j"
+ using that by auto
+ show ?thesis
+ using j
+ proof
+ assume "j \<in> C"
+ have "B/2^n < 2 * r j"
+ using Ble True \<open>j \<in> C\<close> less by auto
+ with aij True show "cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+ by (simp add: cball_subset_ball_iff)
+ next
+ assume "j \<in> E"
+ then have "B/2 ^ n < 2 * r j"
+ using D_def \<open>E \<subseteq> D\<close> by auto
+ with True have "r i < 2 * r j"
+ by auto
+ with aij show "cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+ by (simp add: cball_subset_ball_iff)
+ qed
+ qed
+ moreover have "\<exists>j. j \<in> C \<union> E \<and> \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j))"
+ if "B/2 ^ Suc n < r i"
+ proof (rule classical)
+ assume NON: "\<not> ?thesis"
+ show ?thesis
+ proof (cases "i \<in> D")
+ case True
+ have "insert i E = E"
+ proof (rule maximalE)
+ show "insert i E \<subseteq> D"
+ by (simp add: True \<open>E \<subseteq> D\<close>)
+ show "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) (insert i E)"
+ using False NON by (auto simp: pairwise_insert djntE disjnt_sym)
+ qed auto
+ then show ?thesis
+ using \<open>i \<in> K\<close> assms by fastforce
+ next
+ case False
+ with that show ?thesis
+ by (auto simp: D_def disjnt_def \<open>i \<in> K\<close>)
+ qed
+ qed
+ ultimately
+ show "B/2 ^ Suc n < r i \<longrightarrow>
+ (\<exists>j. j \<in> C \<union> E \<and>
+ \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
+ cball (a i) (r i) \<subseteq> ball (a j) (5 * r j))"
+ by blast
+ qed
+ qed auto
+ qed (use assms in force)
+ then obtain F where FK: "\<And>n. F n \<subseteq> K"
+ and Fle: "\<And>n i. i \<in> F n \<Longrightarrow> B/2 ^ n \<le> r i"
+ and Fdjnt: "\<And>n. ?djnt (F n)"
+ and FF: "\<And>n i. \<lbrakk>i \<in> K; B/2 ^ n < r i\<rbrakk>
+ \<Longrightarrow> \<exists>j. j \<in> F n \<and> \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
+ cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+ and inc: "\<And>n. F n \<subseteq> F(Suc n)"
+ by (force simp: all_conj_distrib)
+ show thesis
+ proof
+ have *: "countable I"
+ if "I \<subseteq> K" and pw: "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) I" for I
+ proof -
+ show ?thesis
+ proof (rule countable_image_inj_on [of "\<lambda>i. cball(a i)(r i)"])
+ show "countable ((\<lambda>i. cball (a i) (r i)) ` I)"
+ proof (rule countable_disjoint_nonempty_interior_subsets)
+ show "disjoint ((\<lambda>i. cball (a i) (r i)) ` I)"
+ by (auto simp: dest: pairwiseD [OF pw] intro: pairwise_imageI)
+ show "\<And>S. \<lbrakk>S \<in> (\<lambda>i. cball (a i) (r i)) ` I; interior S = {}\<rbrakk> \<Longrightarrow> S = {}"
+ using \<open>I \<subseteq> K\<close>
+ by (auto simp: not_less [symmetric])
+ qed
+ next
+ have "\<And>x y. \<lbrakk>x \<in> I; y \<in> I; a x = a y; r x = r y\<rbrakk> \<Longrightarrow> x = y"
+ using pw \<open>I \<subseteq> K\<close> assms
+ apply (clarsimp simp: pairwise_def disjnt_def)
+ by (metis assms centre_in_cball subsetD empty_iff inf.idem less_eq_real_def)
+ then show "inj_on (\<lambda>i. cball (a i) (r i)) I"
+ using \<open>I \<subseteq> K\<close> by (fastforce simp: inj_on_def cball_eq_cball_iff dest: assms)
+ qed
+ qed
+ show "(Union(range F)) \<subseteq> K"
+ using FK by blast
+ moreover show "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) (Union(range F))"
+ proof (rule pairwise_chain_Union)
+ show "chain\<^sub>\<subseteq> (range F)"
+ unfolding chain_subset_def by clarify (meson inc lift_Suc_mono_le linear subsetCE)
+ qed (use Fdjnt in blast)
+ ultimately show "countable (Union(range F))"
+ by (blast intro: *)
+ next
+ fix i assume "i \<in> K"
+ then obtain n where "(1/2) ^ n < r i / B"
+ using \<open>B > 0\<close> assms real_arch_pow_inv by fastforce
+ then have B2: "B/2 ^ n < r i"
+ using \<open>B > 0\<close> by (simp add: divide_simps)
+ have "0 < r i" "r i \<le> B"
+ by (auto simp: \<open>i \<in> K\<close> assms)
+ show "\<exists>j. j \<in> (Union(range F)) \<and>
+ \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
+ cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+ using FF [OF \<open>i \<in> K\<close> B2] by auto
+ qed
+qed
+
+subsection\<open>Vitali covering theorem\<close>
+
+lemma Vitali_covering_lemma_cballs:
+ fixes a :: "'a \<Rightarrow> 'b::euclidean_space"
+ assumes S: "S \<subseteq> (\<Union>i\<in>K. cball (a i) (r i))"
+ and r: "\<And>i. i \<in> K \<Longrightarrow> 0 < r i \<and> r i \<le> B"
+ obtains C where "countable C" "C \<subseteq> K"
+ "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
+ "S \<subseteq> (\<Union>i\<in>C. cball (a i) (5 * r i))"
+proof -
+ obtain C where C: "countable C" "C \<subseteq> K"
+ "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
+ and cov: "\<And>i. i \<in> K \<Longrightarrow> \<exists>j. j \<in> C \<and> \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
+ cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+ by (rule Vitali_covering_lemma_cballs_balls [OF r, where a=a]) (blast intro: that)+
+ show ?thesis
+ proof
+ have "(\<Union>i\<in>K. cball (a i) (r i)) \<subseteq> (\<Union>i\<in>C. cball (a i) (5 * r i))"
+ using cov subset_iff by fastforce
+ with S show "S \<subseteq> (\<Union>i\<in>C. cball (a i) (5 * r i))"
+ by blast
+ qed (use C in auto)
+qed
+
+lemma Vitali_covering_lemma_balls:
+ fixes a :: "'a \<Rightarrow> 'b::euclidean_space"
+ assumes S: "S \<subseteq> (\<Union>i\<in>K. ball (a i) (r i))"
+ and r: "\<And>i. i \<in> K \<Longrightarrow> 0 < r i \<and> r i \<le> B"
+ obtains C where "countable C" "C \<subseteq> K"
+ "pairwise (\<lambda>i j. disjnt (ball (a i) (r i)) (ball (a j) (r j))) C"
+ "S \<subseteq> (\<Union>i\<in>C. ball (a i) (5 * r i))"
+proof -
+ obtain C where C: "countable C" "C \<subseteq> K"
+ and pw: "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
+ and cov: "\<And>i. i \<in> K \<Longrightarrow> \<exists>j. j \<in> C \<and> \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
+ cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+ by (rule Vitali_covering_lemma_cballs_balls [OF r, where a=a]) (blast intro: that)+
+ show ?thesis
+ proof
+ have "(\<Union>i\<in>K. ball (a i) (r i)) \<subseteq> (\<Union>i\<in>C. ball (a i) (5 * r i))"
+ using cov subset_iff
+ by clarsimp (meson less_imp_le mem_ball mem_cball subset_eq)
+ with S show "S \<subseteq> (\<Union>i\<in>C. ball (a i) (5 * r i))"
+ by blast
+ show "pairwise (\<lambda>i j. disjnt (ball (a i) (r i)) (ball (a j) (r j))) C"
+ using pw
+ by (clarsimp simp: pairwise_def) (meson ball_subset_cball disjnt_subset1 disjnt_subset2)
+ qed (use C in auto)
+qed
+
+
+proposition Vitali_covering_theorem_cballs:
+ fixes a :: "'a \<Rightarrow> 'n::euclidean_space"
+ assumes r: "\<And>i. i \<in> K \<Longrightarrow> 0 < r i"
+ and S: "\<And>x d. \<lbrakk>x \<in> S; 0 < d\<rbrakk>
+ \<Longrightarrow> \<exists>i. i \<in> K \<and> x \<in> cball (a i) (r i) \<and> r i < d"
+ obtains C where "countable C" "C \<subseteq> K"
+ "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
+ "negligible(S - (\<Union>i \<in> C. cball (a i) (r i)))"
+proof -
+ let ?\<mu> = "measure lebesgue"
+ have *: "\<exists>C. countable C \<and> C \<subseteq> K \<and>
+ pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C \<and>
+ negligible(S - (\<Union>i \<in> C. cball (a i) (r i)))"
+ if r01: "\<And>i. i \<in> K \<Longrightarrow> 0 < r i \<and> r i \<le> 1"
+ and Sd: "\<And>x d. \<lbrakk>x \<in> S; 0 < d\<rbrakk> \<Longrightarrow> \<exists>i. i \<in> K \<and> x \<in> cball (a i) (r i) \<and> r i < d"
+ for K r and a :: "'a \<Rightarrow> 'n"
+ proof -
+ obtain C where C: "countable C" "C \<subseteq> K"
+ and pwC: "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
+ and cov: "\<And>i. i \<in> K \<Longrightarrow> \<exists>j. j \<in> C \<and> \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
+ cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+ by (rule Vitali_covering_lemma_cballs_balls [of K r 1 a]) (auto simp: r01)
+ have ar_injective: "\<And>x y. \<lbrakk>x \<in> C; y \<in> C; a x = a y; r x = r y\<rbrakk> \<Longrightarrow> x = y"
+ using \<open>C \<subseteq> K\<close> pwC cov
+ by (force simp: pairwise_def disjnt_def)
+ show ?thesis
+ proof (intro exI conjI)
+ show "negligible (S - (\<Union>i\<in>C. cball (a i) (r i)))"
+ proof (clarsimp simp: negligible_on_intervals [of "S-T" for T])
+ fix l u
+ show "negligible ((S - (\<Union>i\<in>C. cball (a i) (r i))) \<inter> cbox l u)"
+ unfolding negligible_outer_le
+ proof (intro allI impI)
+ fix e::real
+ assume "e > 0"
+ define D where "D \<equiv> {i \<in> C. \<not> disjnt (ball(a i) (5 * r i)) (cbox l u)}"
+ then have "D \<subseteq> C"
+ by auto
+ have "countable D"
+ unfolding D_def using \<open>countable C\<close> by simp
+ have UD: "(\<Union>i\<in>D. cball (a i) (r i)) \<in> lmeasurable"
+ proof (rule fmeasurableI2)
+ show "cbox (l - 6 *\<^sub>R One) (u + 6 *\<^sub>R One) \<in> lmeasurable"
+ by blast
+ have "y \<in> cbox (l - 6 *\<^sub>R One) (u + 6 *\<^sub>R One)"
+ if "i \<in> C" and x: "x \<in> cbox l u" and ai: "dist (a i) y \<le> r i" "dist (a i) x < 5 * r i"
+ for i x y
+ proof -
+ have d6: "dist y x < 6 * r i"
+ using dist_triangle3 [of y x "a i"] that by linarith
+ show ?thesis
+ proof (clarsimp simp: mem_box algebra_simps)
+ fix j::'n
+ assume j: "j \<in> Basis"
+ then have xyj: "\<bar>x \<bullet> j - y \<bullet> j\<bar> \<le> dist y x"
+ by (metis Basis_le_norm dist_commute dist_norm inner_diff_left)
+ have "l \<bullet> j \<le> x \<bullet> j"
+ using \<open>j \<in> Basis\<close> mem_box \<open>x \<in> cbox l u\<close> by blast
+ also have "\<dots> \<le> y \<bullet> j + 6 * r i"
+ using d6 xyj by (auto simp: algebra_simps)
+ also have "\<dots> \<le> y \<bullet> j + 6"
+ using r01 [of i] \<open>C \<subseteq> K\<close> \<open>i \<in> C\<close> by auto
+ finally have l: "l \<bullet> j \<le> y \<bullet> j + 6" .
+ have "y \<bullet> j \<le> x \<bullet> j + 6 * r i"
+ using d6 xyj by (auto simp: algebra_simps)
+ also have "\<dots> \<le> u \<bullet> j + 6 * r i"
+ using j x by (auto simp: mem_box)
+ also have "\<dots> \<le> u \<bullet> j + 6"
+ using r01 [of i] \<open>C \<subseteq> K\<close> \<open>i \<in> C\<close> by auto
+ finally have u: "y \<bullet> j \<le> u \<bullet> j + 6" .
+ show "l \<bullet> j \<le> y \<bullet> j + 6 \<and> y \<bullet> j \<le> u \<bullet> j + 6"
+ using l u by blast
+ qed
+ qed
+ then show "(\<Union>i\<in>D. cball (a i) (r i)) \<subseteq> cbox (l - 6 *\<^sub>R One) (u + 6 *\<^sub>R One)"
+ by (force simp: D_def disjnt_def)
+ show "(\<Union>i\<in>D. cball (a i) (r i)) \<in> sets lebesgue"
+ using \<open>countable D\<close> by auto
+ qed
+ obtain D1 where "D1 \<subseteq> D" "finite D1"
+ and measD1: "?\<mu> (\<Union>i\<in>D. cball (a i) (r i)) - e / 5 ^ DIM('n) < ?\<mu> (\<Union>i\<in>D1. cball (a i) (r i))"
+ proof (rule measure_countable_Union_approachable [where e = "e / 5 ^ (DIM('n))"])
+ show "countable ((\<lambda>i. cball (a i) (r i)) ` D)"
+ using \<open>countable D\<close> by auto
+ show "\<And>d. d \<in> (\<lambda>i. cball (a i) (r i)) ` D \<Longrightarrow> d \<in> lmeasurable"
+ by auto
+ show "\<And>D'. \<lbrakk>D' \<subseteq> (\<lambda>i. cball (a i) (r i)) ` D; finite D'\<rbrakk> \<Longrightarrow> ?\<mu> (\<Union>D') \<le> ?\<mu> (\<Union>i\<in>D. cball (a i) (r i))"
+ by (fastforce simp add: intro!: measure_mono_fmeasurable UD)
+ qed (use \<open>e > 0\<close> in \<open>auto dest: finite_subset_image\<close>)
+ show "\<exists>T. (S - (\<Union>i\<in>C. cball (a i) (r i))) \<inter>
+ cbox l u \<subseteq> T \<and> T \<in> lmeasurable \<and> ?\<mu> T \<le> e"
+ proof (intro exI conjI)
+ show "(S - (\<Union>i\<in>C. cball (a i) (r i))) \<inter> cbox l u \<subseteq> (\<Union>i\<in>D - D1. ball (a i) (5 * r i))"
+ proof clarify
+ fix x
+ assume x: "x \<in> cbox l u" "x \<in> S" "x \<notin> (\<Union>i\<in>C. cball (a i) (r i))"
+ have "closed (\<Union>i\<in>D1. cball (a i) (r i))"
+ using \<open>finite D1\<close> by blast
+ moreover have "x \<notin> (\<Union>j\<in>D1. cball (a j) (r j))"
+ using x \<open>D1 \<subseteq> D\<close> unfolding D_def by blast
+ ultimately obtain q where "q > 0" and q: "ball x q \<subseteq> - (\<Union>i\<in>D1. cball (a i) (r i))"
+ by (metis (no_types, lifting) ComplI open_contains_ball closed_def)
+ obtain i where "i \<in> K" and xi: "x \<in> cball (a i) (r i)" and ri: "r i < q/2"
+ using Sd [OF \<open>x \<in> S\<close>] \<open>q > 0\<close> half_gt_zero by blast
+ then obtain j where "j \<in> C"
+ and nondisj: "\<not> disjnt (cball (a i) (r i)) (cball (a j) (r j))"
+ and sub5j: "cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
+ using cov [OF \<open>i \<in> K\<close>] by metis
+ show "x \<in> (\<Union>i\<in>D - D1. ball (a i) (5 * r i))"
+ proof
+ show "j \<in> D - D1"
+ proof
+ show "j \<in> D"
+ using \<open>j \<in> C\<close> sub5j \<open>x \<in> cbox l u\<close> xi by (auto simp: D_def disjnt_def)
+ obtain y where yi: "dist (a i) y \<le> r i" and yj: "dist (a j) y \<le> r j"
+ using disjnt_def nondisj by fastforce
+ have "dist x y \<le> r i + r i"
+ by (metis add_mono dist_commute dist_triangle_le mem_cball xi yi)
+ also have "\<dots> < q"
+ using ri by linarith
+ finally have "y \<in> ball x q"
+ by simp
+ with yj q show "j \<notin> D1"
+ by (auto simp: disjoint_UN_iff)
+ qed
+ show "x \<in> ball (a j) (5 * r j)"
+ using xi sub5j by blast
+ qed
+ qed
+ have 3: "?\<mu> (\<Union>i\<in>D2. ball (a i) (5 * r i)) \<le> e"
+ if D2: "D2 \<subseteq> D - D1" and "finite D2" for D2
+ proof -
+ have rgt0: "0 < r i" if "i \<in> D2" for i
+ using \<open>C \<subseteq> K\<close> D_def \<open>i \<in> D2\<close> D2 r01
+ by (simp add: subset_iff)
+ then have inj: "inj_on (\<lambda>i. ball (a i) (5 * r i)) D2"
+ using \<open>C \<subseteq> K\<close> D2 by (fastforce simp: inj_on_def D_def ball_eq_ball_iff intro: ar_injective)
+ have "?\<mu> (\<Union>i\<in>D2. ball (a i) (5 * r i)) \<le> sum (?\<mu>) ((\<lambda>i. ball (a i) (5 * r i)) ` D2)"
+ using that by (force intro: measure_Union_le)
+ also have "\<dots> = (\<Sum>i\<in>D2. ?\<mu> (ball (a i) (5 * r i)))"
+ by (simp add: comm_monoid_add_class.sum.reindex [OF inj])
+ also have "\<dots> = (\<Sum>i\<in>D2. 5 ^ DIM('n) * ?\<mu> (ball (a i) (r i)))"
+ proof (rule sum.cong [OF refl])
+ fix i
+ assume "i \<in> D2"
+ show "?\<mu> (ball (a i) (5 * r i)) = 5 ^ DIM('n) * ?\<mu> (ball (a i) (r i))"
+ using rgt0 [OF \<open>i \<in> D2\<close>] by (simp add: content_ball)
+ qed
+ also have "\<dots> = (\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) * 5 ^ DIM('n)"
+ by (simp add: sum_distrib_left mult.commute)
+ finally have "?\<mu> (\<Union>i\<in>D2. ball (a i) (5 * r i)) \<le> (\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) * 5 ^ DIM('n)" .
+ moreover have "(\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) \<le> e / 5 ^ DIM('n)"
+ proof -
+ have D12_dis: "((\<Union>x\<in>D1. cball (a x) (r x)) \<inter> (\<Union>x\<in>D2. cball (a x) (r x))) \<le> {}"
+ proof clarify
+ fix w d1 d2
+ assume "d1 \<in> D1" "w d1 d2 \<in> cball (a d1) (r d1)" "d2 \<in> D2" "w d1 d2 \<in> cball (a d2) (r d2)"
+ then show "w d1 d2 \<in> {}"
+ by (metis DiffE disjnt_iff subsetCE D2 \<open>D1 \<subseteq> D\<close> \<open>D \<subseteq> C\<close> pairwiseD [OF pwC, of d1 d2])
+ qed
+ have inj: "inj_on (\<lambda>i. cball (a i) (r i)) D2"
+ using rgt0 D2 \<open>D \<subseteq> C\<close> by (force simp: inj_on_def cball_eq_cball_iff intro!: ar_injective)
+ have ds: "disjoint ((\<lambda>i. cball (a i) (r i)) ` D2)"
+ using D2 \<open>D \<subseteq> C\<close> by (auto intro: pairwiseI pairwiseD [OF pwC])
+ have "(\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) = (\<Sum>i\<in>D2. ?\<mu> (cball (a i) (r i)))"
+ using rgt0 by (simp add: content_ball content_cball less_eq_real_def)
+ also have "\<dots> = sum ?\<mu> ((\<lambda>i. cball (a i) (r i)) ` D2)"
+ by (simp add: comm_monoid_add_class.sum.reindex [OF inj])
+ also have "\<dots> = ?\<mu> (\<Union>i\<in>D2. cball (a i) (r i))"
+ by (auto intro: measure_Union' [symmetric] ds simp add: \<open>finite D2\<close>)
+ finally have "?\<mu> (\<Union>i\<in>D1. cball (a i) (r i)) + (\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) =
+ ?\<mu> (\<Union>i\<in>D1. cball (a i) (r i)) + ?\<mu> (\<Union>i\<in>D2. cball (a i) (r i))"
+ by simp
+ also have "\<dots> = ?\<mu> (\<Union>i \<in> D1 \<union> D2. cball (a i) (r i))"
+ using D12_dis by (simp add: measure_Un3 \<open>finite D1\<close> \<open>finite D2\<close> fmeasurable.finite_UN)
+ also have "\<dots> \<le> ?\<mu> (\<Union>i\<in>D. cball (a i) (r i))"
+ using D2 \<open>D1 \<subseteq> D\<close> by (fastforce intro!: measure_mono_fmeasurable [OF _ _ UD] \<open>finite D1\<close> \<open>finite D2\<close>)
+ finally have "?\<mu> (\<Union>i\<in>D1. cball (a i) (r i)) + (\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) \<le> ?\<mu> (\<Union>i\<in>D. cball (a i) (r i))" .
+ with measD1 show ?thesis
+ by simp
+ qed
+ ultimately show ?thesis
+ by (simp add: divide_simps)
+ qed
+ have co: "countable (D - D1)"
+ by (simp add: \<open>countable D\<close>)
+ show "(\<Union>i\<in>D - D1. ball (a i) (5 * r i)) \<in> lmeasurable"
+ using \<open>e > 0\<close> by (auto simp: fmeasurable_UN_bound [OF co _ 3])
+ show "?\<mu> (\<Union>i\<in>D - D1. ball (a i) (5 * r i)) \<le> e"
+ using \<open>e > 0\<close> by (auto simp: measure_UN_bound [OF co _ 3])
+ qed
+ qed
+ qed
+ qed (use C pwC in auto)
+ qed
+ define K' where "K' \<equiv> {i \<in> K. r i \<le> 1}"
+ have 1: "\<And>i. i \<in> K' \<Longrightarrow> 0 < r i \<and> r i \<le> 1"
+ using K'_def r by auto
+ have 2: "\<exists>i. i \<in> K' \<and> x \<in> cball (a i) (r i) \<and> r i < d"
+ if "x \<in> S \<and> 0 < d" for x d
+ using that by (auto simp: K'_def dest!: S [where d = "min d 1"])
+ have "K' \<subseteq> K"
+ using K'_def by auto
+ then show thesis
+ using * [OF 1 2] that by fastforce
+qed
+
+
+proposition Vitali_covering_theorem_balls:
+ fixes a :: "'a \<Rightarrow> 'b::euclidean_space"
+ assumes S: "\<And>x d. \<lbrakk>x \<in> S; 0 < d\<rbrakk> \<Longrightarrow> \<exists>i. i \<in> K \<and> x \<in> ball (a i) (r i) \<and> r i < d"
+ obtains C where "countable C" "C \<subseteq> K"
+ "pairwise (\<lambda>i j. disjnt (ball (a i) (r i)) (ball (a j) (r j))) C"
+ "negligible(S - (\<Union>i \<in> C. ball (a i) (r i)))"
+proof -
+ have 1: "\<exists>i. i \<in> {i \<in> K. 0 < r i} \<and> x \<in> cball (a i) (r i) \<and> r i < d"
+ if xd: "x \<in> S" "d > 0" for x d
+ by (metis (mono_tags, lifting) assms ball_eq_empty less_eq_real_def mem_Collect_eq mem_ball mem_cball not_le xd(1) xd(2))
+ obtain C where C: "countable C" "C \<subseteq> K"
+ and pw: "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
+ and neg: "negligible(S - (\<Union>i \<in> C. cball (a i) (r i)))"
+ by (rule Vitali_covering_theorem_cballs [of "{i \<in> K. 0 < r i}" r S a, OF _ 1]) auto
+ show thesis
+ proof
+ show "pairwise (\<lambda>i j. disjnt (ball (a i) (r i)) (ball (a j) (r j))) C"
+ apply (rule pairwise_mono [OF pw])
+ apply (auto simp: disjnt_def)
+ by (meson disjoint_iff_not_equal less_imp_le mem_cball)
+ have "negligible (\<Union>i\<in>C. sphere (a i) (r i))"
+ by (auto intro: negligible_sphere \<open>countable C\<close>)
+ then have "negligible (S - (\<Union>i \<in> C. cball(a i)(r i)) \<union> (\<Union>i \<in> C. sphere (a i) (r i)))"
+ by (rule negligible_Un [OF neg])
+ then show "negligible (S - (\<Union>i\<in>C. ball (a i) (r i)))"
+ by (rule negligible_subset) force
+ qed (use C in auto)
+qed
+
+
+lemma negligible_eq_zero_density_alt:
+ "negligible S \<longleftrightarrow>
+ (\<forall>x \<in> S. \<forall>e > 0.
+ \<exists>d U. 0 < d \<and> d \<le> e \<and> S \<inter> ball x d \<subseteq> U \<and>
+ U \<in> lmeasurable \<and> measure lebesgue U < e * measure lebesgue (ball x d))"
+ (is "_ = (\<forall>x \<in> S. \<forall>e > 0. ?Q x e)")
+proof (intro iffI ballI allI impI)
+ fix x and e :: real
+ assume "negligible S" and "x \<in> S" and "e > 0"
+ then
+ show "\<exists>d U. 0 < d \<and> d \<le> e \<and> S \<inter> ball x d \<subseteq> U \<and> U \<in> lmeasurable \<and>
+ measure lebesgue U < e * measure lebesgue (ball x d)"
+ apply (rule_tac x=e in exI)
+ apply (rule_tac x="S \<inter> ball x e" in exI)
+ apply (auto simp: negligible_imp_measurable negligible_Int negligible_imp_measure0 zero_less_measure_iff)
+ done
+next
+ assume R [rule_format]: "\<forall>x \<in> S. \<forall>e > 0. ?Q x e"
+ let ?\<mu> = "measure lebesgue"
+ have "\<exists>U. openin (subtopology euclidean S) U \<and> z \<in> U \<and> negligible U"
+ if "z \<in> S" for z
+ proof (intro exI conjI)
+ show "openin (subtopology euclidean S) (S \<inter> ball z 1)"
+ by (simp add: openin_open_Int)
+ show "z \<in> S \<inter> ball z 1"
+ using \<open>z \<in> S\<close> by auto
+ show "negligible (S \<inter> ball z 1)"
+ proof (clarsimp simp: negligible_outer_le)
+ fix e :: "real"
+ assume "e > 0"
+ let ?K = "{(x,d). x \<in> S \<and> 0 < d \<and> ball x d \<subseteq> ball z 1 \<and>
+ (\<exists>U. S \<inter> ball x d \<subseteq> U \<and> U \<in> lmeasurable \<and>
+ ?\<mu> U < e / ?\<mu> (ball z 1) * ?\<mu> (ball x d))}"
+ obtain C where "countable C" and Csub: "C \<subseteq> ?K"
+ and pwC: "pairwise (\<lambda>i j. disjnt (ball (fst i) (snd i)) (ball (fst j) (snd j))) C"
+ and negC: "negligible((S \<inter> ball z 1) - (\<Union>i \<in> C. ball (fst i) (snd i)))"
+ proof (rule Vitali_covering_theorem_balls [of "S \<inter> ball z 1" ?K fst snd])
+ fix x and d :: "real"
+ assume x: "x \<in> S \<inter> ball z 1" and "d > 0"
+ obtain k where "k > 0" and k: "ball x k \<subseteq> ball z 1"
+ by (meson Int_iff open_ball openE x)
+ let ?\<epsilon> = "min (e / ?\<mu> (ball z 1) / 2) (min (d / 2) k)"
+ obtain r U where r: "r > 0" "r \<le> ?\<epsilon>" and U: "S \<inter> ball x r \<subseteq> U" "U \<in> lmeasurable"
+ and mU: "?\<mu> U < ?\<epsilon> * ?\<mu> (ball x r)"
+ using R [of x ?\<epsilon>] \<open>d > 0\<close> \<open>e > 0\<close> \<open>k > 0\<close> x by auto
+ show "\<exists>i. i \<in> ?K \<and> x \<in> ball (fst i) (snd i) \<and> snd i < d"
+ proof (rule exI [of _ "(x,r)"], simp, intro conjI exI)
+ have "ball x r \<subseteq> ball x k"
+ using r by (simp add: ball_subset_ball_iff)
+ also have "\<dots> \<subseteq> ball z 1"
+ using ball_subset_ball_iff k by auto
+ finally show "ball x r \<subseteq> ball z 1" .
+ have "?\<epsilon> * ?\<mu> (ball x r) \<le> e * content (ball x r) / content (ball z 1)"
+ using r \<open>e > 0\<close> by (simp add: ord_class.min_def divide_simps)
+ with mU show "?\<mu> U < e * content (ball x r) / content (ball z 1)"
+ by auto
+ qed (use r U x in auto)
+ qed
+ have "\<exists>U. case p of (x,d) \<Rightarrow> S \<inter> ball x d \<subseteq> U \<and>
+ U \<in> lmeasurable \<and> ?\<mu> U < e / ?\<mu> (ball z 1) * ?\<mu> (ball x d)"
+ if "p \<in> C" for p
+ using that Csub by auto
+ then obtain U where U:
+ "\<And>p. p \<in> C \<Longrightarrow>
+ case p of (x,d) \<Rightarrow> S \<inter> ball x d \<subseteq> U p \<and>
+ U p \<in> lmeasurable \<and> ?\<mu> (U p) < e / ?\<mu> (ball z 1) * ?\<mu> (ball x d)"
+ by (rule that [OF someI_ex])
+ let ?T = "((S \<inter> ball z 1) - (\<Union>(x,d)\<in>C. ball x d)) \<union> \<Union>(U ` C)"
+ show "\<exists>T. S \<inter> ball z 1 \<subseteq> T \<and> T \<in> lmeasurable \<and> ?\<mu> T \<le> e"
+ proof (intro exI conjI)
+ show "S \<inter> ball z 1 \<subseteq> ?T"
+ using U by fastforce
+ { have Um: "U i \<in> lmeasurable" if "i \<in> C" for i
+ using that U by blast
+ have lee: "?\<mu> (\<Union>i\<in>I. U i) \<le> e" if "I \<subseteq> C" "finite I" for I
+ proof -
+ have "?\<mu> (\<Union>(x,d)\<in>I. ball x d) \<le> ?\<mu> (ball z 1)"
+ apply (rule measure_mono_fmeasurable)
+ using \<open>I \<subseteq> C\<close> \<open>finite I\<close> Csub by (force simp: prod.case_eq_if sets.finite_UN)+
+ then have le1: "(?\<mu> (\<Union>(x,d)\<in>I. ball x d) / ?\<mu> (ball z 1)) \<le> 1"
+ by simp
+ have "?\<mu> (\<Union>i\<in>I. U i) \<le> (\<Sum>i\<in>I. ?\<mu> (U i))"
+ using that U by (blast intro: measure_UNION_le)
+ also have "\<dots> \<le> (\<Sum>(x,r)\<in>I. e / ?\<mu> (ball z 1) * ?\<mu> (ball x r))"
+ by (rule sum_mono) (use \<open>I \<subseteq> C\<close> U in force)
+ also have "\<dots> = (e / ?\<mu> (ball z 1)) * (\<Sum>(x,r)\<in>I. ?\<mu> (ball x r))"
+ by (simp add: case_prod_app prod.case_distrib sum_distrib_left)
+ also have "\<dots> = e * (?\<mu> (\<Union>(x,r)\<in>I. ball x r) / ?\<mu> (ball z 1))"
+ apply (subst measure_UNION')
+ using that pwC by (auto simp: case_prod_unfold elim: pairwise_mono)
+ also have "\<dots> \<le> e"
+ by (metis mult.commute mult.left_neutral real_mult_le_cancel_iff1 \<open>e > 0\<close> le1)
+ finally show ?thesis .
+ qed
+ have "UNION C U \<in> lmeasurable" "?\<mu> (\<Union>(U ` C)) \<le> e"
+ using \<open>e > 0\<close> Um lee
+ by(auto intro!: fmeasurable_UN_bound [OF \<open>countable C\<close>] measure_UN_bound [OF \<open>countable C\<close>])
+ }
+ moreover have "?\<mu> ?T = ?\<mu> (UNION C U)"
+ proof (rule measure_negligible_symdiff [OF \<open>UNION C U \<in> lmeasurable\<close>])
+ show "negligible((UNION C U - ?T) \<union> (?T - UNION C U))"
+ by (force intro!: negligible_subset [OF negC])
+ qed
+ ultimately show "?T \<in> lmeasurable" "?\<mu> ?T \<le> e"
+ by (simp_all add: fmeasurable.Un negC negligible_imp_measurable split_def)
+ qed
+ qed
+ qed
+ with locally_negligible_alt show "negligible S"
+ by metis
+qed
+
+
+proposition negligible_eq_zero_density:
+ "negligible S \<longleftrightarrow>
+ (\<forall>x\<in>S. \<forall>r>0. \<forall>e>0. \<exists>d. 0 < d \<and> d \<le> r \<and>
+ (\<exists>U. S \<inter> ball x d \<subseteq> U \<and> U \<in> lmeasurable \<and> measure lebesgue U < e * measure lebesgue (ball x d)))"
+proof -
+ let ?Q = "\<lambda>x d e. \<exists>U. S \<inter> ball x d \<subseteq> U \<and> U \<in> lmeasurable \<and> measure lebesgue U < e * content (ball x d)"
+ have "(\<forall>e>0. \<exists>d>0. d \<le> e \<and> ?Q x d e) = (\<forall>r>0. \<forall>e>0. \<exists>d>0. d \<le> r \<and> ?Q x d e)"
+ if "x \<in> S" for x
+ proof (intro iffI allI impI)
+ fix r :: "real" and e :: "real"
+ assume L [rule_format]: "\<forall>e>0. \<exists>d>0. d \<le> e \<and> ?Q x d e" and "r > 0" "e > 0"
+ show "\<exists>d>0. d \<le> r \<and> ?Q x d e"
+ using L [of "min r e"] apply (rule ex_forward)
+ using \<open>r > 0\<close> \<open>e > 0\<close> by (auto intro: less_le_trans elim!: ex_forward)
+ qed auto
+ then show ?thesis
+ by (force simp: negligible_eq_zero_density_alt)
+qed
+
+end