--- a/src/HOL/Multivariate_Analysis/Derivative.thy Thu Jan 17 12:09:48 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Derivative.thy Thu Jan 17 12:21:24 2013 +0100
@@ -1403,14 +1403,14 @@
proof
fix x assume "x\<in>s" show "Cauchy (\<lambda>n. f n x)"
proof(cases "x=x0")
- case True thus ?thesis using convergent_imp_cauchy[OF assms(5)] by auto
+ case True thus ?thesis using LIMSEQ_imp_Cauchy[OF assms(5)] by auto
next
case False show ?thesis unfolding Cauchy_def
proof(rule,rule)
fix e::real assume "e>0"
hence *:"e/2>0" "e/2/norm(x-x0)>0"
using False by (auto intro!: divide_pos_pos)
- guess M using convergent_imp_cauchy[OF assms(5), unfolded Cauchy_def, rule_format,OF *(1)] .. note M=this
+ guess M using LIMSEQ_imp_Cauchy[OF assms(5), unfolded Cauchy_def, rule_format,OF *(1)] .. note M=this
guess N using lem1[rule_format,OF *(2)] .. note N = this
show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (f m x) (f n x) < e"
apply(rule_tac x="max M N" in exI)
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Jan 17 12:09:48 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Jan 17 12:21:24 2013 +0100
@@ -3249,14 +3249,6 @@
by blast
qed
-lemma convergent_imp_cauchy:
- "(s ---> l) sequentially ==> Cauchy s"
-proof(simp only: cauchy_def, rule, rule)
- fix e::real assume "e>0" "(s ---> l) sequentially"
- then obtain N::nat where N:"\<forall>n\<ge>N. dist (s n) l < e/2" unfolding LIMSEQ_def by(erule_tac x="e/2" in allE) auto
- thus "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < e" using dist_triangle_half_l[of _ l e _] by (rule_tac x=N in exI) auto
-qed
-
lemma cauchy_imp_bounded: assumes "Cauchy s" shows "bounded (range s)"
proof-
from assms obtain N::nat where "\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < 1" unfolding cauchy_def apply(erule_tac x= 1 in allE) by auto
@@ -3323,7 +3315,7 @@
then obtain f where f: "\<forall>n. f n \<in> s - {x}" "(f ---> x) sequentially"
unfolding islimpt_sequential by auto
then obtain l where l: "l\<in>s" "(f ---> l) sequentially"
- using `complete s`[unfolded complete_def] using convergent_imp_cauchy[of f x] by auto
+ using `complete s`[unfolded complete_def] using LIMSEQ_imp_Cauchy[of f x] by auto
hence "x \<in> s" using tendsto_unique[of sequentially f l x] trivial_limit_sequentially f(2) by auto
}
thus "closed s" unfolding closed_limpt by auto
@@ -3350,7 +3342,7 @@
lemma convergent_imp_bounded:
fixes s :: "nat \<Rightarrow> 'a::metric_space"
shows "(s ---> l) sequentially \<Longrightarrow> bounded (range s)"
- by (intro cauchy_imp_bounded convergent_imp_cauchy)
+ by (intro cauchy_imp_bounded LIMSEQ_imp_Cauchy)
subsubsection{* Total boundedness *}
@@ -3377,7 +3369,7 @@
qed }
hence "\<forall>n::nat. x n \<in> s" and x:"\<forall>n. \<forall>m < n. \<not> (dist (x m) (x n) < e)" by blast+
then obtain l r where "l\<in>s" and r:"subseq r" and "((x \<circ> r) ---> l) sequentially" using assms(1)[unfolded seq_compact_def, THEN spec[where x=x]] by auto
- from this(3) have "Cauchy (x \<circ> r)" using convergent_imp_cauchy by auto
+ from this(3) have "Cauchy (x \<circ> r)" using LIMSEQ_imp_Cauchy by auto
then obtain N::nat where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist ((x \<circ> r) m) ((x \<circ> r) n) < e" unfolding cauchy_def using `e>0` by auto
show False
using N[THEN spec[where x=N], THEN spec[where x="N+1"]]