cleanup of code declarations
authorhaftmann
Sun, 01 Jan 2012 11:28:45 +0100
changeset 46127 af3b95160b59
parent 46126 bab00660539d
child 46128 53e7cc599f58
cleanup of code declarations
src/HOL/More_Set.thy
src/HOL/Relation.thy
src/HOL/Set.thy
src/HOL/Transitive_Closure.thy
--- a/src/HOL/More_Set.thy	Thu Jan 05 20:26:01 2012 +0100
+++ b/src/HOL/More_Set.thy	Sun Jan 01 11:28:45 2012 +0100
@@ -29,11 +29,11 @@
 
 subsection {* Basic set operations *}
 
-lemma is_empty_set:
+lemma is_empty_set [code]:
   "Set.is_empty (set xs) \<longleftrightarrow> List.null xs"
   by (simp add: Set.is_empty_def null_def)
 
-lemma empty_set:
+lemma empty_set [code]:
   "{} = set []"
   by simp
 
@@ -92,49 +92,23 @@
 
 subsection {* Derived set operations *}
 
-lemma member:
+lemma member [code]:
   "a \<in> A \<longleftrightarrow> (\<exists>x\<in>A. a = x)"
   by simp
 
-lemma subset_eq:
-  "A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. x \<in> B)"
-  by (fact subset_eq)
-
-lemma subset:
+lemma subset [code]:
   "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A"
   by (fact less_le_not_le)
 
-lemma set_eq:
+lemma set_eq [code]:
   "A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
   by (fact eq_iff)
 
-lemma inter:
+lemma inter [code]:
   "A \<inter> B = Set.project (\<lambda>x. x \<in> A) B"
   by (auto simp add: project_def)
 
 
-subsection {* Theorems on relations *}
-
-lemma product_code:
-  "Product_Type.product (set xs) (set ys) = set [(x, y). x \<leftarrow> xs, y \<leftarrow> ys]"
-  by (auto simp add: Product_Type.product_def)
-
-lemma Id_on_set:
-  "Id_on (set xs) = set [(x, x). x \<leftarrow> xs]"
-  by (auto simp add: Id_on_def)
-
-lemma trancl_set_ntrancl: "trancl (set xs) = ntrancl (card (set xs) - 1) (set xs)"
-  by (simp add: finite_trancl_ntranl)
-
-lemma set_rel_comp:
-  "set xys O set yzs = set ([(fst xy, snd yz). xy \<leftarrow> xys, yz \<leftarrow> yzs, snd xy = fst yz])"
-  by (auto simp add: Bex_def)
-
-lemma wf_set:
-  "wf (set xs) = acyclic (set xs)"
-  by (simp add: wf_iff_acyclic_if_finite)
-
-
 subsection {* Code generator setup *}
 
 definition coset :: "'a list \<Rightarrow> 'a set" where
@@ -150,14 +124,6 @@
   "x \<in> coset xs \<longleftrightarrow> \<not> List.member xs x"
   by (simp_all add: member_def)
 
-lemma [code_unfold]:
-  "A = {} \<longleftrightarrow> Set.is_empty A"
-  by (simp add: Set.is_empty_def)
-
-declare empty_set [code]
-
-declare is_empty_set [code]
-
 lemma UNIV_coset [code]:
   "UNIV = coset []"
   by simp
@@ -172,10 +138,6 @@
   "Set.remove x (coset xs) = coset (List.insert x xs)"
   by (simp_all add: remove_def Compl_insert)
 
-declare image_set [code]
-
-declare project_set [code]
-
 lemma Ball_set [code]:
   "Ball (set xs) P \<longleftrightarrow> list_all P xs"
   by (simp add: list_all_iff)
@@ -193,13 +155,6 @@
 qed
 
 
-subsection {* Derived operations *}
-
-declare subset_eq [code]
-
-declare subset [code]
-
-
 subsection {* Functorial operations *}
 
 lemma inter_code [code]:
@@ -273,27 +228,24 @@
 
 subsection {* Operations on relations *}
 
-text {* Initially contributed by Tjark Weber. *}
-
-declare Domain_fst [code]
+lemma product_code [code]:
+  "Product_Type.product (set xs) (set ys) = set [(x, y). x \<leftarrow> xs, y \<leftarrow> ys]"
+  by (auto simp add: Product_Type.product_def)
 
-declare Range_snd [code]
-
-declare trans_join [code]
-
-declare irrefl_distinct [code]
+lemma Id_on_set [code]:
+  "Id_on (set xs) = set [(x, x). x \<leftarrow> xs]"
+  by (auto simp add: Id_on_def)
 
-declare trancl_set_ntrancl [code]
-
-declare acyclic_irrefl [code]
-
-declare product_code [code]
+lemma trancl_set_ntrancl [code]: "trancl (set xs) = ntrancl (card (set xs) - 1) (set xs)"
+  by (simp add: finite_trancl_ntranl)
 
-declare Id_on_set [code]
+lemma set_rel_comp [code]:
+  "set xys O set yzs = set ([(fst xy, snd yz). xy \<leftarrow> xys, yz \<leftarrow> yzs, snd xy = fst yz])"
+  by (auto simp add: Bex_def)
 
-declare set_rel_comp [code]
-
-declare wf_set [code]
+lemma wf_set [code]:
+  "wf (set xs) = acyclic (set xs)"
+  by (simp add: wf_iff_acyclic_if_finite)
 
 end
 
--- a/src/HOL/Relation.thy	Thu Jan 05 20:26:01 2012 +0100
+++ b/src/HOL/Relation.thy	Sun Jan 01 11:28:45 2012 +0100
@@ -275,7 +275,7 @@
 
 subsection {* Transitivity *}
 
-lemma trans_join:
+lemma trans_join [code]:
   "trans r \<longleftrightarrow> (\<forall>(x, y1) \<in> r. \<forall>(y2, z) \<in> r. y1 = y2 \<longrightarrow> (x, z) \<in> r)"
   by (auto simp add: trans_def)
 
@@ -300,7 +300,7 @@
 
 subsection {* Irreflexivity *}
 
-lemma irrefl_distinct:
+lemma irrefl_distinct [code]:
   "irrefl r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<noteq> y)"
   by (auto simp add: irrefl_def)
 
@@ -395,7 +395,7 @@
   "a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"
 by (iprover dest!: iffD1 [OF Domain_iff])
 
-lemma Domain_fst:
+lemma Domain_fst [code]:
   "Domain r = fst ` r"
   by (auto simp add: image_def Bex_def)
 
@@ -453,7 +453,7 @@
 lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"
 by (unfold Range_def) (iprover elim!: DomainE dest!: converseD)
 
-lemma Range_snd:
+lemma Range_snd [code]:
   "Range r = snd ` r"
   by (auto simp add: image_def Bex_def)
 
--- a/src/HOL/Set.thy	Thu Jan 05 20:26:01 2012 +0100
+++ b/src/HOL/Set.thy	Sun Jan 01 11:28:45 2012 +0100
@@ -508,7 +508,7 @@
   -- {* Classical elimination rule. *}
   by (auto simp add: less_eq_set_def le_fun_def)
 
-lemma subset_eq [no_atp]: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blast
+lemma subset_eq [code, no_atp]: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blast
 
 lemma contra_subsetD [no_atp]: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A"
   by blast
@@ -1810,12 +1810,12 @@
 subsubsection {* Operations for execution *}
 
 definition is_empty :: "'a set \<Rightarrow> bool" where
-  "is_empty A \<longleftrightarrow> A = {}"
+  [code_abbrev]: "is_empty A \<longleftrightarrow> A = {}"
 
 hide_const (open) is_empty
 
 definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
-  "remove x A = A - {x}"
+  [code_abbrev]: "remove x A = A - {x}"
 
 hide_const (open) remove
 
@@ -1835,6 +1835,7 @@
 
 end
 
+
 text {* Misc *}
 
 hide_const (open) member not_member
--- a/src/HOL/Transitive_Closure.thy	Thu Jan 05 20:26:01 2012 +0100
+++ b/src/HOL/Transitive_Closure.thy	Sun Jan 01 11:28:45 2012 +0100
@@ -1047,7 +1047,7 @@
 abbreviation acyclicP :: "('a => 'a => bool) => bool" where
   "acyclicP r \<equiv> acyclic {(x, y). r x y}"
 
-lemma acyclic_irrefl:
+lemma acyclic_irrefl [code]:
   "acyclic r \<longleftrightarrow> irrefl (r^+)"
   by (simp add: acyclic_def irrefl_def)