renaming LSC_Examples theory to Quickcheck_Narrowing
authorbulwahn
Fri, 11 Mar 2011 15:21:13 +0100
changeset 41931 af501c14d8f0
parent 41930 1e008cc4883a
child 41932 e8f113ce8a94
renaming LSC_Examples theory to Quickcheck_Narrowing
src/HOL/ex/LSC_Examples.thy
src/HOL/ex/Quickcheck_Narrowing.thy
--- a/src/HOL/ex/LSC_Examples.thy	Fri Mar 11 15:21:13 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,141 +0,0 @@
-(*  Title:      HOL/ex/LSC_Examples.thy
-    Author:     Lukas Bulwahn
-    Copyright   2011 TU Muenchen
-*)
-
-header {* Examples for invoking lazysmallcheck (LSC) *}
-
-theory LSC_Examples
-imports "~~/src/HOL/Library/LSC"
-begin
-
-subsection {* Simple list examples *}
-
-lemma "rev xs = xs"
-quickcheck[tester = lazy_exhaustive, finite_types = false, default_type = nat, expect = counterexample]
-oops
-
-text {* Example fails due to some strange thing... *}
-(*
-lemma "rev xs = xs"
-quickcheck[tester = lazy_exhaustive, finite_types = true]
-oops
-*)
-
-subsection {* AVL Trees *}
-
-datatype 'a tree = ET |  MKT 'a "'a tree" "'a tree" nat
-
-primrec set_of :: "'a tree \<Rightarrow> 'a set"
-where
-"set_of ET = {}" |
-"set_of (MKT n l r h) = insert n (set_of l \<union> set_of r)"
-
-primrec height :: "'a tree \<Rightarrow> nat"
-where
-"height ET = 0" |
-"height (MKT x l r h) = max (height l) (height r) + 1"
-
-primrec avl :: "'a tree \<Rightarrow> bool"
-where
-"avl ET = True" |
-"avl (MKT x l r h) =
- ((height l = height r \<or> height l = 1+height r \<or> height r = 1+height l) \<and> 
-  h = max (height l) (height r) + 1 \<and> avl l \<and> avl r)"
-
-primrec is_ord :: "('a::order) tree \<Rightarrow> bool"
-where
-"is_ord ET = True" |
-"is_ord (MKT n l r h) =
- ((\<forall>n' \<in> set_of l. n' < n) \<and> (\<forall>n' \<in> set_of r. n < n') \<and> is_ord l \<and> is_ord r)"
-
-primrec is_in :: "('a::order) \<Rightarrow> 'a tree \<Rightarrow> bool"
-where
- "is_in k ET = False" |
- "is_in k (MKT n l r h) = (if k = n then True else
-                           if k < n then (is_in k l)
-                           else (is_in k r))"
-
-primrec ht :: "'a tree \<Rightarrow> nat"
-where
-"ht ET = 0" |
-"ht (MKT x l r h) = h"
-
-definition
- mkt :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
-"mkt x l r = MKT x l r (max (ht l) (ht r) + 1)"
-
-(* replaced MKT lrn lrl lrr by MKT lrr lrl *)
-fun l_bal where
-"l_bal(n, MKT ln ll lr h, r) =
- (if ht ll < ht lr
-  then case lr of ET \<Rightarrow> ET (* impossible *)
-                | MKT lrn lrr lrl lrh \<Rightarrow>
-                  mkt lrn (mkt ln ll lrl) (mkt n lrr r)
-  else mkt ln ll (mkt n lr r))"
-
-fun r_bal where
-"r_bal(n, l, MKT rn rl rr h) =
- (if ht rl > ht rr
-  then case rl of ET \<Rightarrow> ET (* impossible *)
-                | MKT rln rll rlr h \<Rightarrow> mkt rln (mkt n l rll) (mkt rn rlr rr)
-  else mkt rn (mkt n l rl) rr)"
-
-primrec insrt :: "'a::order \<Rightarrow> 'a tree \<Rightarrow> 'a tree"
-where
-"insrt x ET = MKT x ET ET 1" |
-"insrt x (MKT n l r h) = 
-   (if x=n
-    then MKT n l r h
-    else if x<n
-         then let l' = insrt x l; hl' = ht l'; hr = ht r
-              in if hl' = 2+hr then l_bal(n,l',r)
-                 else MKT n l' r (1 + max hl' hr)
-         else let r' = insrt x r; hl = ht l; hr' = ht r'
-              in if hr' = 2+hl then r_bal(n,l,r')
-                 else MKT n l r' (1 + max hl hr'))"
-
-
-subsubsection {* Necessary setup for code generation *}
-
-primrec set_of'
-where 
-  "set_of' ET = []"
-| "set_of' (MKT n l r h) = n # (set_of' l @ set_of' r)"
-
-lemma set_of':
-  "set (set_of' t) = set_of t"
-by (induct t) auto
-
-lemma is_ord_mkt:
-  "is_ord (MKT n l r h) = ((ALL n': set (set_of' l). n' < n) & (ALL n': set (set_of' r). n < n') & is_ord l & is_ord r)"
-by (simp add: set_of')
-
-declare is_ord.simps(1)[code] is_ord_mkt[code]
-                 
-subsection {* Necessary instantiation for quickcheck generator *}
-
-instantiation tree :: (serial) serial
-begin
-
-function series_tree
-where
-  "series_tree d = sum (cons ET) (apply (apply (apply (apply (cons MKT) series) series_tree) series_tree) series) d"
-by pat_completeness auto
-
-termination proof (relation "measure nat_of")
-qed (auto simp add: of_int_inverse nat_of_def)
-
-instance ..
-
-end
-
-subsubsection {* Invalid Lemma due to typo in lbal *}
-
-lemma is_ord_l_bal:
- "\<lbrakk> is_ord(MKT (x :: nat) l r h); height l = height r + 2 \<rbrakk> \<Longrightarrow> is_ord(l_bal(x,l,r))"
-quickcheck[tester = lazy_exhaustive, finite_types = false, default_type = nat, size = 1, timeout = 100, expect = counterexample]
-oops
-
-
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Quickcheck_Narrowing.thy	Fri Mar 11 15:21:13 2011 +0100
@@ -0,0 +1,141 @@
+(*  Title:      HOL/ex/LSC_Examples.thy
+    Author:     Lukas Bulwahn
+    Copyright   2011 TU Muenchen
+*)
+
+header {* Examples for invoking lazysmallcheck (LSC) *}
+
+theory LSC_Examples
+imports "~~/src/HOL/Library/LSC"
+begin
+
+subsection {* Simple list examples *}
+
+lemma "rev xs = xs"
+quickcheck[tester = lazy_exhaustive, finite_types = false, default_type = nat, expect = counterexample]
+oops
+
+text {* Example fails due to some strange thing... *}
+(*
+lemma "rev xs = xs"
+quickcheck[tester = lazy_exhaustive, finite_types = true]
+oops
+*)
+
+subsection {* AVL Trees *}
+
+datatype 'a tree = ET |  MKT 'a "'a tree" "'a tree" nat
+
+primrec set_of :: "'a tree \<Rightarrow> 'a set"
+where
+"set_of ET = {}" |
+"set_of (MKT n l r h) = insert n (set_of l \<union> set_of r)"
+
+primrec height :: "'a tree \<Rightarrow> nat"
+where
+"height ET = 0" |
+"height (MKT x l r h) = max (height l) (height r) + 1"
+
+primrec avl :: "'a tree \<Rightarrow> bool"
+where
+"avl ET = True" |
+"avl (MKT x l r h) =
+ ((height l = height r \<or> height l = 1+height r \<or> height r = 1+height l) \<and> 
+  h = max (height l) (height r) + 1 \<and> avl l \<and> avl r)"
+
+primrec is_ord :: "('a::order) tree \<Rightarrow> bool"
+where
+"is_ord ET = True" |
+"is_ord (MKT n l r h) =
+ ((\<forall>n' \<in> set_of l. n' < n) \<and> (\<forall>n' \<in> set_of r. n < n') \<and> is_ord l \<and> is_ord r)"
+
+primrec is_in :: "('a::order) \<Rightarrow> 'a tree \<Rightarrow> bool"
+where
+ "is_in k ET = False" |
+ "is_in k (MKT n l r h) = (if k = n then True else
+                           if k < n then (is_in k l)
+                           else (is_in k r))"
+
+primrec ht :: "'a tree \<Rightarrow> nat"
+where
+"ht ET = 0" |
+"ht (MKT x l r h) = h"
+
+definition
+ mkt :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
+"mkt x l r = MKT x l r (max (ht l) (ht r) + 1)"
+
+(* replaced MKT lrn lrl lrr by MKT lrr lrl *)
+fun l_bal where
+"l_bal(n, MKT ln ll lr h, r) =
+ (if ht ll < ht lr
+  then case lr of ET \<Rightarrow> ET (* impossible *)
+                | MKT lrn lrr lrl lrh \<Rightarrow>
+                  mkt lrn (mkt ln ll lrl) (mkt n lrr r)
+  else mkt ln ll (mkt n lr r))"
+
+fun r_bal where
+"r_bal(n, l, MKT rn rl rr h) =
+ (if ht rl > ht rr
+  then case rl of ET \<Rightarrow> ET (* impossible *)
+                | MKT rln rll rlr h \<Rightarrow> mkt rln (mkt n l rll) (mkt rn rlr rr)
+  else mkt rn (mkt n l rl) rr)"
+
+primrec insrt :: "'a::order \<Rightarrow> 'a tree \<Rightarrow> 'a tree"
+where
+"insrt x ET = MKT x ET ET 1" |
+"insrt x (MKT n l r h) = 
+   (if x=n
+    then MKT n l r h
+    else if x<n
+         then let l' = insrt x l; hl' = ht l'; hr = ht r
+              in if hl' = 2+hr then l_bal(n,l',r)
+                 else MKT n l' r (1 + max hl' hr)
+         else let r' = insrt x r; hl = ht l; hr' = ht r'
+              in if hr' = 2+hl then r_bal(n,l,r')
+                 else MKT n l r' (1 + max hl hr'))"
+
+
+subsubsection {* Necessary setup for code generation *}
+
+primrec set_of'
+where 
+  "set_of' ET = []"
+| "set_of' (MKT n l r h) = n # (set_of' l @ set_of' r)"
+
+lemma set_of':
+  "set (set_of' t) = set_of t"
+by (induct t) auto
+
+lemma is_ord_mkt:
+  "is_ord (MKT n l r h) = ((ALL n': set (set_of' l). n' < n) & (ALL n': set (set_of' r). n < n') & is_ord l & is_ord r)"
+by (simp add: set_of')
+
+declare is_ord.simps(1)[code] is_ord_mkt[code]
+                 
+subsection {* Necessary instantiation for quickcheck generator *}
+
+instantiation tree :: (serial) serial
+begin
+
+function series_tree
+where
+  "series_tree d = sum (cons ET) (apply (apply (apply (apply (cons MKT) series) series_tree) series_tree) series) d"
+by pat_completeness auto
+
+termination proof (relation "measure nat_of")
+qed (auto simp add: of_int_inverse nat_of_def)
+
+instance ..
+
+end
+
+subsubsection {* Invalid Lemma due to typo in lbal *}
+
+lemma is_ord_l_bal:
+ "\<lbrakk> is_ord(MKT (x :: nat) l r h); height l = height r + 2 \<rbrakk> \<Longrightarrow> is_ord(l_bal(x,l,r))"
+quickcheck[tester = lazy_exhaustive, finite_types = false, default_type = nat, size = 1, timeout = 100, expect = counterexample]
+oops
+
+
+end