--- a/src/HOL/Nat.thy Tue May 31 18:31:33 2016 +0200
+++ b/src/HOL/Nat.thy Tue May 31 19:51:01 2016 +0200
@@ -11,8 +11,6 @@
imports Inductive Typedef Fun Rings
begin
-ML_file "~~/src/Tools/rat.ML"
-
named_theorems arith "arith facts -- only ground formulas"
ML_file "Tools/arith_data.ML"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/General/rat.ML Tue May 31 19:51:01 2016 +0200
@@ -0,0 +1,118 @@
+(* Title: Pure/General/rat.ML
+ Author: Tobias Nipkow, Florian Haftmann, TU Muenchen
+
+Canonical implementation of exact rational numbers.
+*)
+
+signature RAT =
+sig
+ eqtype rat
+ exception DIVZERO
+ val zero: rat
+ val one: rat
+ val two: rat
+ val rat_of_int: int -> rat
+ val rat_of_quotient: int * int -> rat
+ val quotient_of_rat: rat -> int * int
+ val string_of_rat: rat -> string
+ val eq: rat * rat -> bool
+ val ord: rat * rat -> order
+ val le: rat -> rat -> bool
+ val lt: rat -> rat -> bool
+ val sign: rat -> order
+ val abs: rat -> rat
+ val add: rat -> rat -> rat
+ val mult: rat -> rat -> rat
+ val neg: rat -> rat
+ val inv: rat -> rat
+ val rounddown: rat -> rat
+ val roundup: rat -> rat
+end;
+
+structure Rat : RAT =
+struct
+
+fun common (p1, q1) (p2, q2) =
+ let
+ val m = Integer.lcm q1 q2;
+ in ((p1 * (m div q1), p2 * (m div q2)), m) end;
+
+datatype rat = Rat of int * int; (*nominator, denominator (positive!)*)
+
+exception DIVZERO;
+
+fun rat_of_quotient (p, q) =
+ let
+ val m = Integer.gcd (Int.abs p) q
+ in Rat (p div m, q div m) end handle Div => raise DIVZERO;
+
+fun quotient_of_rat (Rat r) = r;
+
+fun rat_of_int i = Rat (i, 1);
+
+val zero = rat_of_int 0;
+val one = rat_of_int 1;
+val two = rat_of_int 2;
+
+fun string_of_rat (Rat (p, q)) =
+ string_of_int p ^ "/" ^ string_of_int q;
+
+fun eq (Rat (p1, q1), Rat (p2, q2)) = (p1 = p2 andalso q1 = q2);
+
+fun ord (Rat (p1, q1), Rat (p2, q2)) =
+ case (Integer.sign p1, Integer.sign p2)
+ of (LESS, EQUAL) => LESS
+ | (LESS, GREATER) => LESS
+ | (EQUAL, LESS) => GREATER
+ | (EQUAL, EQUAL) => EQUAL
+ | (EQUAL, GREATER) => LESS
+ | (GREATER, LESS) => GREATER
+ | (GREATER, EQUAL) => GREATER
+ | _ => int_ord (fst (common (p1, q1) (p2, q2)));
+
+fun le a b = not (ord (a, b) = GREATER);
+fun lt a b = (ord (a, b) = LESS);
+
+fun sign (Rat (p, _)) = Integer.sign p;
+
+fun abs (Rat (p, q)) = Rat (Int.abs p, q);
+
+fun add (Rat (p1, q1)) (Rat (p2, q2)) =
+ let
+ val ((m1, m2), n) = common (p1, q1) (p2, q2);
+ in rat_of_quotient (m1 + m2, n) end;
+
+fun mult (Rat (p1, q1)) (Rat (p2, q2)) =
+ rat_of_quotient (p1 * p2, q1 * q2);
+
+fun neg (Rat (p, q)) = Rat (~ p, q);
+
+fun inv (Rat (p, q)) =
+ case Integer.sign p
+ of LESS => Rat (~ q, ~ p)
+ | EQUAL => raise DIVZERO
+ | GREATER => Rat (q, p);
+
+fun rounddown (Rat (p, q)) = Rat (p div q, 1);
+
+fun roundup (Rat (p, q)) =
+ case Integer.div_mod p q
+ of (m, 0) => Rat (m, 1)
+ | (m, _) => Rat (m + 1, 1);
+
+end;
+
+infix 7 */ //;
+infix 6 +/ -/;
+infix 4 =/ </ <=/ >/ >=/ <>/;
+
+fun a +/ b = Rat.add a b;
+fun a -/ b = a +/ Rat.neg b;
+fun a */ b = Rat.mult a b;
+fun a // b = a */ Rat.inv b;
+fun a =/ b = Rat.eq (a, b);
+fun a </ b = Rat.lt a b;
+fun a <=/ b = Rat.le a b;
+fun a >/ b = b </ a;
+fun a >=/ b = b <=/ a;
+fun a <>/ b = not (a =/ b);
--- a/src/Pure/ROOT.ML Tue May 31 18:31:33 2016 +0200
+++ b/src/Pure/ROOT.ML Tue May 31 19:51:01 2016 +0200
@@ -52,6 +52,7 @@
subsection "Library of general tools";
ML_file "General/integer.ML";
+ML_file "General/rat.ML";
ML_file "General/stack.ML";
ML_file "General/queue.ML";
ML_file "General/heap.ML";
--- a/src/Tools/rat.ML Tue May 31 18:31:33 2016 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,118 +0,0 @@
-(* Title: Tools/rat.ML
- Author: Tobias Nipkow, Florian Haftmann, TU Muenchen
-
-Canonical implementation of exact rational numbers.
-*)
-
-signature RAT =
-sig
- eqtype rat
- exception DIVZERO
- val zero: rat
- val one: rat
- val two: rat
- val rat_of_int: int -> rat
- val rat_of_quotient: int * int -> rat
- val quotient_of_rat: rat -> int * int
- val string_of_rat: rat -> string
- val eq: rat * rat -> bool
- val ord: rat * rat -> order
- val le: rat -> rat -> bool
- val lt: rat -> rat -> bool
- val sign: rat -> order
- val abs: rat -> rat
- val add: rat -> rat -> rat
- val mult: rat -> rat -> rat
- val neg: rat -> rat
- val inv: rat -> rat
- val rounddown: rat -> rat
- val roundup: rat -> rat
-end;
-
-structure Rat : RAT =
-struct
-
-fun common (p1, q1) (p2, q2) =
- let
- val m = Integer.lcm q1 q2;
- in ((p1 * (m div q1), p2 * (m div q2)), m) end;
-
-datatype rat = Rat of int * int; (*nominator, denominator (positive!)*)
-
-exception DIVZERO;
-
-fun rat_of_quotient (p, q) =
- let
- val m = Integer.gcd (Int.abs p) q
- in Rat (p div m, q div m) end handle Div => raise DIVZERO;
-
-fun quotient_of_rat (Rat r) = r;
-
-fun rat_of_int i = Rat (i, 1);
-
-val zero = rat_of_int 0;
-val one = rat_of_int 1;
-val two = rat_of_int 2;
-
-fun string_of_rat (Rat (p, q)) =
- string_of_int p ^ "/" ^ string_of_int q;
-
-fun eq (Rat (p1, q1), Rat (p2, q2)) = (p1 = p2 andalso q1 = q2);
-
-fun ord (Rat (p1, q1), Rat (p2, q2)) =
- case (Integer.sign p1, Integer.sign p2)
- of (LESS, EQUAL) => LESS
- | (LESS, GREATER) => LESS
- | (EQUAL, LESS) => GREATER
- | (EQUAL, EQUAL) => EQUAL
- | (EQUAL, GREATER) => LESS
- | (GREATER, LESS) => GREATER
- | (GREATER, EQUAL) => GREATER
- | _ => int_ord (fst (common (p1, q1) (p2, q2)));
-
-fun le a b = not (ord (a, b) = GREATER);
-fun lt a b = (ord (a, b) = LESS);
-
-fun sign (Rat (p, _)) = Integer.sign p;
-
-fun abs (Rat (p, q)) = Rat (Int.abs p, q);
-
-fun add (Rat (p1, q1)) (Rat (p2, q2)) =
- let
- val ((m1, m2), n) = common (p1, q1) (p2, q2);
- in rat_of_quotient (m1 + m2, n) end;
-
-fun mult (Rat (p1, q1)) (Rat (p2, q2)) =
- rat_of_quotient (p1 * p2, q1 * q2);
-
-fun neg (Rat (p, q)) = Rat (~ p, q);
-
-fun inv (Rat (p, q)) =
- case Integer.sign p
- of LESS => Rat (~ q, ~ p)
- | EQUAL => raise DIVZERO
- | GREATER => Rat (q, p);
-
-fun rounddown (Rat (p, q)) = Rat (p div q, 1);
-
-fun roundup (Rat (p, q)) =
- case Integer.div_mod p q
- of (m, 0) => Rat (m, 1)
- | (m, _) => Rat (m + 1, 1);
-
-end;
-
-infix 7 */ //;
-infix 6 +/ -/;
-infix 4 =/ </ <=/ >/ >=/ <>/;
-
-fun a +/ b = Rat.add a b;
-fun a -/ b = a +/ Rat.neg b;
-fun a */ b = Rat.mult a b;
-fun a // b = a */ Rat.inv b;
-fun a =/ b = Rat.eq (a, b);
-fun a </ b = Rat.lt a b;
-fun a <=/ b = Rat.le a b;
-fun a >/ b = b </ a;
-fun a >=/ b = b <=/ a;
-fun a <>/ b = not (a =/ b);