--- a/src/HOL/Word/Misc_Numeric.thy Sat Dec 28 21:06:22 2013 +0100
+++ b/src/HOL/Word/Misc_Numeric.thy Sat Dec 28 21:06:24 2013 +0100
@@ -8,32 +8,6 @@
imports Main Parity
begin
-declare iszero_0 [intro]
-
-lemma min_pm [simp]:
- "min a b + (a - b) = (a :: nat)"
- by arith
-
-lemma min_pm1 [simp]:
- "a - b + min a b = (a :: nat)"
- by arith
-
-lemma rev_min_pm [simp]:
- "min b a + (a - b) = (a :: nat)"
- by arith
-
-lemma rev_min_pm1 [simp]:
- "a - b + min b a = (a :: nat)"
- by arith
-
-lemma min_minus [simp]:
- "min m (m - k) = (m - k :: nat)"
- by arith
-
-lemma min_minus' [simp]:
- "min (m - k) m = (m - k :: nat)"
- by arith
-
lemma mod_2_neq_1_eq_eq_0:
fixes k :: int
shows "k mod 2 \<noteq> 1 \<longleftrightarrow> k mod 2 = 0"
--- a/src/HOL/Word/Word_Miscellaneous.thy Sat Dec 28 21:06:22 2013 +0100
+++ b/src/HOL/Word/Word_Miscellaneous.thy Sat Dec 28 21:06:24 2013 +0100
@@ -377,5 +377,31 @@
apply (auto intro: pos_imp_zdiv_nonneg_iff [THEN iffD2])
done
+declare iszero_0 [intro]
+
+lemma min_pm [simp]:
+ "min a b + (a - b) = (a :: nat)"
+ by arith
+
+lemma min_pm1 [simp]:
+ "a - b + min a b = (a :: nat)"
+ by arith
+
+lemma rev_min_pm [simp]:
+ "min b a + (a - b) = (a :: nat)"
+ by arith
+
+lemma rev_min_pm1 [simp]:
+ "a - b + min b a = (a :: nat)"
+ by arith
+
+lemma min_minus [simp]:
+ "min m (m - k) = (m - k :: nat)"
+ by arith
+
+lemma min_minus' [simp]:
+ "min (m - k) m = (m - k :: nat)"
+ by arith
+
end