new theory defining set as a pcpo
authorhuffman
Thu, 10 Jan 2008 20:53:06 +0100
changeset 25893 b06a09abf79e
parent 25892 3ff9d646a66a
child 25894 0ee6e01c5572
new theory defining set as a pcpo
src/HOLCF/SetPcpo.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/SetPcpo.thy	Thu Jan 10 20:53:06 2008 +0100
@@ -0,0 +1,84 @@
+(*  Title:      HOLCF/SetPcpo.thy
+    ID:         $Id$
+    Author:     Brian Huffman
+*)
+
+header {* Set as a pointed cpo *}
+
+theory SetPcpo
+imports Adm
+begin
+
+instantiation set :: (type) sq_ord
+begin
+
+definition
+  less_set_def: "(op \<sqsubseteq>) = (op \<subseteq>)"
+
+instance ..
+end
+
+instance set :: (type) po
+by (intro_classes, auto simp add: less_set_def)
+
+instance set :: (finite) finite_po ..
+
+lemma Union_is_lub: "A <<| Union A"
+unfolding is_lub_def is_ub_def less_set_def by fast
+
+instance set :: (type) dcpo
+by (intro_classes, rule exI, rule Union_is_lub)
+
+lemma lub_eq_Union: "lub = Union"
+by (rule ext, rule thelubI [OF Union_is_lub])
+
+instance set :: (type) pcpo
+proof
+  have "\<forall>y::'a set. {} \<sqsubseteq> y" unfolding less_set_def by simp
+  thus "\<exists>x::'a set. \<forall>y. x \<sqsubseteq> y" ..
+qed
+
+lemma UU_eq_empty: "\<bottom> = {}"
+by (rule UU_I [symmetric], simp add: less_set_def)
+
+lemmas set_cpo_simps = less_set_def lub_eq_Union UU_eq_empty
+
+subsection {* Admissibility of set predicates *}
+
+lemma adm_nonempty: "adm (\<lambda>A. \<exists>x. x \<in> A)"
+by (rule admI, force simp add: lub_eq_Union)
+
+lemma adm_in: "adm (\<lambda>A. x \<in> A)"
+by (rule admI, simp add: lub_eq_Union)
+
+lemma adm_not_in: "adm (\<lambda>A. x \<notin> A)"
+by (rule admI, simp add: lub_eq_Union)
+
+lemma adm_Ball: "(\<And>x. adm (\<lambda>A. P A x)) \<Longrightarrow> adm (\<lambda>A. \<forall>x\<in>A. P A x)"
+unfolding Ball_def by (simp add: adm_not_in)
+
+lemma adm_Bex: "adm (\<lambda>A. Bex A P)"
+by (rule admI, simp add: lub_eq_Union)
+
+lemma adm_subset: "adm (\<lambda>A. A \<subseteq> B)"
+by (rule admI, auto simp add: lub_eq_Union)
+
+lemma adm_superset: "adm (\<lambda>A. B \<subseteq> A)"
+by (rule admI, auto simp add: lub_eq_Union)
+
+lemmas adm_set_lemmas =
+  adm_nonempty adm_in adm_not_in adm_Bex adm_Ball adm_subset adm_superset
+
+subsection {* Compactness *}
+
+lemma compact_empty: "compact {}"
+by (fold UU_eq_empty, simp)
+
+lemma compact_insert: "compact A \<Longrightarrow> compact (insert x A)"
+unfolding compact_def set_cpo_simps
+by (simp add: adm_set_lemmas)
+
+lemma finite_imp_compact: "finite A \<Longrightarrow> compact A"
+by (induct A set: finite, rule compact_empty, erule compact_insert)
+
+end