- use TableFun instead of homebrew binary tree in am_interpreter.ML
authorobua
Tue, 12 Jul 2005 21:49:38 +0200
changeset 16782 b214f21ae396
parent 16781 663235466562
child 16783 26fccaaf9cb4
- use TableFun instead of homebrew binary tree in am_interpreter.ML - add Floats to HOL/Real
src/HOL/IsaMakefile
src/HOL/Real/Float.ML
src/HOL/Real/Float.thy
src/HOL/Real/ROOT.ML
src/Pure/Tools/am_compiler.ML
src/Pure/Tools/am_interpreter.ML
--- a/src/HOL/IsaMakefile	Tue Jul 12 19:29:52 2005 +0200
+++ b/src/HOL/IsaMakefile	Tue Jul 12 21:49:38 2005 +0200
@@ -143,6 +143,7 @@
   Real/Rational.thy Real/PReal.thy Real/RComplete.thy				\
   Real/ROOT.ML Real/Real.thy Real/real_arith.ML Real/RealDef.thy		\
   Real/RealPow.thy Real/document/root.tex					\
+  Real/Float.thy Real/Float.ML                                                  \
   Hyperreal/EvenOdd.thy Hyperreal/Fact.thy Hyperreal/HLog.thy			\
   Hyperreal/Filter.thy Hyperreal/HSeries.thy					\
   Hyperreal/HTranscendental.thy Hyperreal/HyperArith.thy			\
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Real/Float.ML	Tue Jul 12 21:49:38 2005 +0200
@@ -0,0 +1,519 @@
+(*  Title: HOL/Real/Float.ML
+    ID:    $Id$
+    Author: Steven Obua
+*)
+
+structure ExactFloatingPoint :
+sig
+    exception Destruct_floatstr of string
+    val destruct_floatstr : (char -> bool) -> (char -> bool) -> string -> bool * string * string * bool * string
+									  
+    exception Floating_point of string
+				
+    type floatrep = IntInf.int * IntInf.int
+    val approx_dec_by_bin : IntInf.int -> floatrep -> floatrep * floatrep
+    val approx_decstr_by_bin : int -> string -> floatrep * floatrep
+end 
+=
+struct
+
+fun fst (a,b) = a
+fun snd (a,b) = b
+
+val filter = List.filter;
+
+exception Destruct_floatstr of string;
+
+fun destruct_floatstr isDigit isExp number = 
+    let
+	val numlist = filter (not o Char.isSpace) (String.explode number)
+	
+	fun countsigns ((#"+")::cs) = countsigns cs
+	  | countsigns ((#"-")::cs) = 
+	    let	
+		val (positive, rest) = countsigns cs 
+	    in
+		(not positive, rest)
+	    end
+	  | countsigns cs = (true, cs)
+
+	fun readdigits [] = ([], [])
+	  | readdigits (q as c::cs) = 
+	    if (isDigit c) then 
+		let
+		    val (digits, rest) = readdigits cs
+		in
+		    (c::digits, rest)
+		end
+	    else
+		([], q)		
+
+	fun readfromexp_helper cs =
+	    let
+		val (positive, rest) = countsigns cs
+		val (digits, rest') = readdigits rest
+	    in
+		case rest' of
+		    [] => (positive, digits)
+		  | _ => raise (Destruct_floatstr number)
+	    end	    
+
+	fun readfromexp [] = (true, [])
+	  | readfromexp (c::cs) = 
+	    if isExp c then
+		readfromexp_helper cs
+	    else 
+		raise (Destruct_floatstr number)		
+
+	fun readfromdot [] = ([], readfromexp [])
+	  | readfromdot ((#".")::cs) = 
+	    let		
+		val (digits, rest) = readdigits cs
+		val exp = readfromexp rest
+	    in
+		(digits, exp)
+	    end		
+	  | readfromdot cs = readfromdot ((#".")::cs)
+			    
+	val (positive, numlist) = countsigns numlist				 
+	val (digits1, numlist) = readdigits numlist				 
+ 	val (digits2, exp) = readfromdot numlist
+    in
+	(positive, String.implode digits1, String.implode digits2, fst exp, String.implode (snd exp))
+    end
+
+type floatrep = IntInf.int * IntInf.int
+
+exception Floating_point of string;
+
+val ln2_10 = (Math.ln 10.0)/(Math.ln 2.0)
+	
+fun intmul a b = IntInf.* (a,b)
+fun intsub a b = IntInf.- (a,b)	
+fun intadd a b = IntInf.+ (a,b) 		 
+fun intpow a b = IntInf.pow (a, IntInf.toInt b);
+fun intle a b = IntInf.<= (a, b);
+fun intless a b = IntInf.< (a, b);
+fun intneg a = IntInf.~ a;
+val zero = IntInf.fromInt 0;
+val one = IntInf.fromInt 1;
+val two = IntInf.fromInt 2;
+val ten = IntInf.fromInt 10;
+val five = IntInf.fromInt 5;
+
+fun find_most_significant q r = 
+    let 
+	fun int2real i = 
+	    case Real.fromString (IntInf.toString i) of 
+		SOME r => r 
+	      | NONE => raise (Floating_point "int2real")	
+	fun subtract (q, r) (q', r') = 
+	    if intle r r' then
+		(intsub q (intmul q' (intpow ten (intsub r' r))), r)
+	    else
+		(intsub (intmul q (intpow ten (intsub r r'))) q', r')
+	fun bin2dec d =
+	    if intle zero d then 
+		(intpow two d, zero)
+	    else
+		(intpow five (intneg d), d)				
+		
+	val L = IntInf.fromInt (Real.floor (int2real (IntInf.fromInt (IntInf.log2 q)) + (int2real r) * ln2_10))	
+	val L1 = intadd L one
+
+	val (q1, r1) = subtract (q, r) (bin2dec L1) 		
+    in
+	if intle zero q1 then 
+	    let
+		val (q2, r2) = subtract (q, r) (bin2dec (intadd L1 one))
+	    in
+		if intle zero q2 then 
+		    raise (Floating_point "find_most_significant")
+		else
+		    (L1, (q1, r1))
+	    end
+	else
+	    let
+		val (q0, r0) = subtract (q, r) (bin2dec L)
+	    in
+		if intle zero q0 then
+		    (L, (q0, r0))
+		else
+		    raise (Floating_point "find_most_significant")
+	    end		    
+    end
+
+fun approx_dec_by_bin n (q,r) =
+    let	
+	fun addseq acc d' [] = acc
+	  | addseq acc d' (d::ds) = addseq (intadd acc (intpow two (intsub d d'))) d' ds
+
+	fun seq2bin [] = (zero, zero)
+	  | seq2bin (d::ds) = (intadd (addseq zero d ds) one, d)
+
+	fun approx d_seq d0 precision (q,r) = 
+	    if q = zero then 
+		let val x = seq2bin d_seq in
+		    (x, x)
+		end
+	    else    
+		let 
+		    val (d, (q', r')) = find_most_significant q r
+		in	
+		    if intless precision (intsub d0 d) then 
+			let 
+			    val d' = intsub d0 precision
+			    val x1 = seq2bin (d_seq)
+			    val x2 = (intadd (intmul (fst x1) (intpow two (intsub (snd x1) d'))) one,  d') (* = seq2bin (d'::d_seq) *) 
+			in
+			    (x1, x2)
+			end
+		    else
+			approx (d::d_seq) d0 precision (q', r') 						    		
+		end		
+	
+	fun approx_start precision (q, r) =
+	    if q = zero then 
+		((zero, zero), (zero, zero))
+	    else
+		let 
+		    val (d, (q', r')) = find_most_significant q r
+		in	
+		    if intle precision zero then 
+			let
+			    val x1 = seq2bin [d]
+			in
+			    if q' = zero then 
+				(x1, x1)
+			    else
+				(x1, seq2bin [intadd d one])
+			end
+		    else
+			approx [d] d precision (q', r')
+		end		
+    in
+	if intle zero q then 
+	    approx_start n (q,r)
+	else
+	    let 
+		val ((a1,b1), (a2, b2)) = approx_start n (intneg q, r) 
+	    in
+		((intneg a2, b2), (intneg a1, b1))
+	    end					
+    end
+
+fun approx_decstr_by_bin n decstr =
+    let 
+	fun str2int s = case IntInf.fromString s of SOME x => x | NONE => zero 
+	fun signint p x = if p then x else intneg x
+
+	val (p, d1, d2, ep, e) = destruct_floatstr Char.isDigit (fn e => e = #"e" orelse e = #"E") decstr
+	val s = IntInf.fromInt (size d2)
+		
+	val q = signint p (intadd (intmul (str2int d1) (intpow ten s)) (str2int d2))
+	val r = intsub (signint ep (str2int e)) s
+    in
+	approx_dec_by_bin (IntInf.fromInt n) (q,r)
+    end
+
+end;
+
+structure FloatArith = 
+struct
+
+type float = IntInf.int * IntInf.int 
+
+val izero = IntInf.fromInt 0
+val ione = IntInf.fromInt 1
+val imone = IntInf.fromInt ~1
+val itwo = IntInf.fromInt 2
+fun imul a b = IntInf.* (a,b)
+fun isub a b = IntInf.- (a,b)
+fun iadd a b = IntInf.+ (a,b)
+
+val floatzero = (izero, izero)
+
+fun positive_part (a,b) = 
+    (if IntInf.< (a,izero) then izero else a, b)
+
+fun negative_part (a,b) = 
+    (if IntInf.< (a,izero) then a else izero, b)
+
+fun is_negative (a,b) = 
+    if IntInf.< (a, izero) then true else false
+
+fun is_positive (a,b) = 
+    if IntInf.< (izero, a) then true else false
+
+fun is_zero (a,b) = 
+    if a = izero then true else false
+
+fun ipow2 a = IntInf.pow ((IntInf.fromInt 2), IntInf.toInt a)
+
+fun add (a1, b1) (a2, b2) = 
+    if IntInf.< (b1, b2) then
+	(iadd a1 (imul a2 (ipow2 (isub b2 b1))), b1)
+    else
+	(iadd (imul a1 (ipow2 (isub b1 b2))) a2, b2)
+
+fun sub (a1, b1) (a2, b2) = 
+    if IntInf.< (b1, b2) then
+	(isub a1 (imul a2 (ipow2 (isub b2 b1))), b1)
+    else
+	(isub (imul a1 (ipow2 (isub b1 b2))) a2, b2)
+
+fun neg (a, b) = (IntInf.~ a, b)
+
+fun is_equal a b = is_zero (sub a b)
+
+fun is_less a b = is_negative (sub a b)
+
+fun max a b = if is_less a b then b else a
+
+fun min a b = if is_less a b then a else b
+
+fun abs a = if is_negative a then neg a else a
+
+fun mul (a1, b1) (a2, b2) = (imul a1 a2, iadd b1 b2)
+
+end;
+
+
+structure Float:
+sig
+    type float = FloatArith.float
+    type floatfunc = float * float -> float * float
+
+    val mk_intinf : typ -> IntInf.int -> term
+    val mk_float : float -> term
+
+    exception Dest_intinf;
+    val dest_intinf : term -> IntInf.int
+    val dest_nat : term -> IntInf.int
+    
+    exception Dest_float;
+    val dest_float : term -> float
+
+    val float_const : term
+
+    val float_add_const : term
+    val float_diff_const : term
+    val float_uminus_const : term
+    val float_pprt_const : term
+    val float_nprt_const : term
+    val float_abs_const : term
+    val float_mult_const : term 
+    val float_le_const : term
+
+    val nat_le_const : term
+    val nat_less_const : term
+    val nat_eq_const : term
+
+    val approx_float : int -> floatfunc -> string -> term * term
+
+    val sign_term : term -> cterm
+
+(*    exception Float_op_oracle_data of term
+    exception Nat_op_oracle_data of term
+
+    val float_op_oracle : Sign.sg * exn -> term
+    val nat_op_oracle : Sign.sg * exn -> term
+
+    val invoke_float_op : term -> thm
+    val invoke_nat_op : term -> thm*)
+end 
+= 
+struct
+
+structure Inttab = TableFun(type key = int val ord = (rev_order o int_ord));
+
+type float = IntInf.int*IntInf.int
+type floatfunc = float*float -> float*float
+
+val th = theory "Float"
+val sg = sign_of th
+		
+val float_const = Const ("Float.float", HOLogic.mk_prodT (HOLogic.intT, HOLogic.intT) --> HOLogic.realT)
+
+val float_add_const = Const ("op +", HOLogic.realT --> HOLogic.realT --> HOLogic.realT)
+val float_diff_const = Const ("op -", HOLogic.realT --> HOLogic.realT --> HOLogic.realT)
+val float_mult_const = Const ("op *", HOLogic.realT --> HOLogic.realT --> HOLogic.realT)
+val float_uminus_const = Const ("uminus", HOLogic.realT --> HOLogic.realT)
+val float_abs_const = Const ("HOL.abs", HOLogic.realT --> HOLogic.realT)
+val float_le_const = Const ("op <=", HOLogic.realT --> HOLogic.realT --> HOLogic.boolT)
+val float_pprt_const = Const ("OrderedGroup.pprt", HOLogic.realT --> HOLogic.realT)
+val float_nprt_const = Const ("OrderedGroup.nprt", HOLogic.realT --> HOLogic.realT)
+
+val nat_le_const = Const ("op <=", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT)
+val nat_less_const = Const ("op <", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT)
+val nat_eq_const = Const ("op =", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT)
+ 		  
+val zero = FloatArith.izero
+val minus_one = FloatArith.imone
+val two = FloatArith.itwo
+	  
+exception Dest_intinf;
+exception Dest_float;
+
+fun mk_intinf ty n =
+    let
+	fun mk_bit n = if n = zero then HOLogic.false_const else HOLogic.true_const
+								 
+	fun bin_of n = 
+	    if n = zero then HOLogic.pls_const
+	    else if n = minus_one then HOLogic.min_const
+	    else 
+		let 
+		    (*val (q,r) = IntInf.divMod (n, two): doesn't work in SML 10.0.7, but in newer versions!!!*)
+	            val q = IntInf.div (n, two)
+		    val r = IntInf.mod (n, two)
+		in
+		    HOLogic.bit_const $ bin_of q $ mk_bit r
+		end
+    in 
+	HOLogic.number_of_const ty $ (bin_of n)
+    end
+
+fun dest_intinf n = 
+    let
+	fun dest_bit n = 
+	    case n of 
+		Const ("False", _) => FloatArith.izero
+	      | Const ("True", _) => FloatArith.ione
+	      | _ => raise Dest_intinf
+			 
+	fun int_of n = 
+	    case n of
+		Const ("Numeral.Pls", _) => FloatArith.izero
+	      | Const ("Numeral.Min", _) => FloatArith.imone
+	      | Const ("Numeral.Bit", _) $ q $ r => FloatArith.iadd (FloatArith.imul (int_of q) FloatArith.itwo) (dest_bit r)
+	      | _ => raise Dest_intinf
+    in
+	case n of 
+	    Const ("Numeral.number_of", _) $ n' => int_of n'
+	  | Const ("Numeral0", _) => FloatArith.izero
+	  | Const ("Numeral1", _) => FloatArith.ione    
+	  | _ => raise Dest_intinf
+    end
+
+fun mk_float (a,b) = 
+    float_const $ (HOLogic.mk_prod ((mk_intinf HOLogic.intT a), (mk_intinf HOLogic.intT b)))
+
+fun dest_float f = 
+    case f of 
+	(Const ("Float.float", _) $ (Const ("Pair", _) $ a $ b)) => (dest_intinf a, dest_intinf b)
+      | Const ("Numeral.number_of",_) $ a => (dest_intinf f, 0)
+      | Const ("Numeral0", _) => (FloatArith.izero, FloatArith.izero)
+      | Const ("Numeral1", _) => (FloatArith.ione, FloatArith.izero)
+      | _ => raise Dest_float
+
+fun dest_nat n = 
+    let 
+	val v = dest_intinf n
+    in
+	if IntInf.< (v, FloatArith.izero) then
+	    FloatArith.izero
+	else
+	    v
+    end
+
+fun approx_float prec f value = 
+    let
+	val interval = ExactFloatingPoint.approx_decstr_by_bin prec value
+	val (flower, fupper) = f interval
+    in
+	(mk_float flower, mk_float fupper)
+    end
+
+fun sign_term t = cterm_of sg t
+
+(*exception Float_op_oracle_data of term;
+
+fun float_op_oracle (sg, exn as Float_op_oracle_data t) =
+    Logic.mk_equals (t,
+		     case t of 
+			 f $ a $ b => 
+			 let 
+			     val a' = dest_float a 
+			     val b' = dest_float b
+			 in
+			     if f = float_add_const then
+				 mk_float (FloatArith.add a' b')	
+			     else if f = float_diff_const then
+				 mk_float (FloatArith.sub a' b')
+			     else if f = float_mult_const then
+				 mk_float (FloatArith.mul a' b')		
+			     else if f = float_le_const then
+				 (if FloatArith.is_less b' a' then
+				     HOLogic.false_const
+				 else
+				     HOLogic.true_const)
+			     else raise exn	    		    	       
+			 end
+		       | f $ a => 
+			 let
+			     val a' = dest_float a
+			 in
+			     if f = float_uminus_const then
+				 mk_float (FloatArith.neg a')
+			     else if f = float_abs_const then
+				 mk_float (FloatArith.abs a')
+			     else if f = float_pprt_const then
+				 mk_float (FloatArith.positive_part a')
+			     else if f = float_nprt_const then
+				 mk_float (FloatArith.negative_part a')
+			     else
+				 raise exn
+			 end
+		       | _ => raise exn
+		    )
+val th = ref ([]: Theory.theory list)
+val sg = ref ([]: Sign.sg list)
+
+fun invoke_float_op c = 
+    let
+	val th = (if length(!th) = 0 then th := [theory "MatrixLP"] else (); hd (!th))
+	val sg = (if length(!sg) = 0 then sg := [sign_of th] else (); hd (!sg))
+    in
+	invoke_oracle th "float_op" (sg, Float_op_oracle_data c)
+    end
+
+exception Nat_op_oracle_data of term;
+
+fun nat_op_oracle (sg, exn as Nat_op_oracle_data t) =
+    Logic.mk_equals (t,
+		     case t of 
+			 f $ a $ b => 
+			 let 
+			     val a' = dest_nat a 
+			     val b' = dest_nat b
+			 in
+			     if f = nat_le_const then
+				 (if IntInf.<= (a', b') then
+				     HOLogic.true_const
+				 else
+				     HOLogic.false_const)
+			     else if f = nat_eq_const then
+				 (if a' = b' then 
+				      HOLogic.true_const
+				  else
+				      HOLogic.false_const)
+			     else if f = nat_less_const then
+				 (if IntInf.< (a', b') then
+				      HOLogic.true_const
+				  else
+				      HOLogic.false_const)
+			     else 
+				 raise exn	    	
+			 end
+		       | _ => raise exn)
+
+fun invoke_nat_op c = 
+    let
+	val th = (if length (!th) = 0 then th := [theory "MatrixLP"] else (); hd (!th))
+	val sg = (if length (!sg) = 0 then sg := [sign_of th] else (); hd (!sg))
+    in
+	invoke_oracle th "nat_op" (sg, Nat_op_oracle_data c)
+    end
+*)
+end;
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Real/Float.thy	Tue Jul 12 21:49:38 2005 +0200
@@ -0,0 +1,525 @@
+(*  Title: HOL/Real/Float.thy
+    ID:    $Id$
+    Author: Steven Obua
+*)
+
+theory Float = Real:
+
+constdefs  
+  pow2 :: "int \<Rightarrow> real"
+  "pow2 a == if (0 <= a) then (2^(nat a)) else (inverse (2^(nat (-a))))" 
+  float :: "int * int \<Rightarrow> real"
+  "float x == (real (fst x)) * (pow2 (snd x))"
+
+lemma pow2_0[simp]: "pow2 0 = 1"
+by (simp add: pow2_def)
+
+lemma pow2_1[simp]: "pow2 1 = 2"
+by (simp add: pow2_def)
+
+lemma pow2_neg: "pow2 x = inverse (pow2 (-x))"
+by (simp add: pow2_def)
+
+lemma pow2_add1: "pow2 (1 + a) = 2 * (pow2 a)" 
+proof -
+  have h: "! n. nat (2 + int n) - Suc 0 = nat (1 + int n)" by arith
+  have g: "! a b. a - -1 = a + (1::int)" by arith
+  have pos: "! n. pow2 (int n + 1) = 2 * pow2 (int n)"
+    apply (auto, induct_tac n)
+    apply (simp_all add: pow2_def)
+    apply (rule_tac m1="2" and n1="nat (2 + int na)" in ssubst[OF realpow_num_eq_if])
+    apply (auto simp add: h)
+    apply arith
+    done  
+  show ?thesis
+  proof (induct a)
+    case (1 n)
+    from pos show ?case by (simp add: ring_eq_simps)
+  next
+    case (2 n)
+    show ?case
+      apply (auto)
+      apply (subst pow2_neg[of "- int n"])
+      apply (subst pow2_neg[of "-1 - int n"])
+      apply (auto simp add: g pos)
+      done
+  qed  
+qed
+  
+lemma pow2_add: "pow2 (a+b) = (pow2 a) * (pow2 b)"
+proof (induct b)
+  case (1 n) 
+  show ?case
+  proof (induct n)
+    case 0
+    show ?case by simp
+  next
+    case (Suc m)
+    show ?case by (auto simp add: ring_eq_simps pow2_add1 prems)
+  qed
+next
+  case (2 n)
+  show ?case 
+  proof (induct n)
+    case 0
+    show ?case 
+      apply (auto)
+      apply (subst pow2_neg[of "a + -1"])
+      apply (subst pow2_neg[of "-1"])
+      apply (simp)
+      apply (insert pow2_add1[of "-a"])
+      apply (simp add: ring_eq_simps)
+      apply (subst pow2_neg[of "-a"])
+      apply (simp)
+      done
+    case (Suc m)
+    have a: "int m - (a + -2) =  1 + (int m - a + 1)" by arith	
+    have b: "int m - -2 = 1 + (int m + 1)" by arith
+    show ?case
+      apply (auto)
+      apply (subst pow2_neg[of "a + (-2 - int m)"])
+      apply (subst pow2_neg[of "-2 - int m"])
+      apply (auto simp add: ring_eq_simps)
+      apply (subst a)
+      apply (subst b)
+      apply (simp only: pow2_add1)
+      apply (subst pow2_neg[of "int m - a + 1"])
+      apply (subst pow2_neg[of "int m + 1"])
+      apply auto
+      apply (insert prems)
+      apply (auto simp add: ring_eq_simps)
+      done
+  qed
+qed
+
+lemma "float (a, e) + float (b, e) = float (a + b, e)"  
+by (simp add: float_def ring_eq_simps)
+
+constdefs 
+  int_of_real :: "real \<Rightarrow> int"
+  "int_of_real x == SOME y. real y = x"  
+  real_is_int :: "real \<Rightarrow> bool"
+  "real_is_int x == ? (u::int). x = real u" 
+
+lemma real_is_int_def2: "real_is_int x = (x = real (int_of_real x))"
+by (auto simp add: real_is_int_def int_of_real_def)
+
+lemma float_transfer: "real_is_int ((real a)*(pow2 c)) \<Longrightarrow> float (a, b) = float (int_of_real ((real a)*(pow2 c)), b - c)"
+by (simp add: float_def real_is_int_def2 pow2_add[symmetric])
+
+lemma pow2_int: "pow2 (int c) = (2::real)^c"
+by (simp add: pow2_def)
+
+lemma float_transfer_nat: "float (a, b) = float (a * 2^c, b - int c)" 
+by (simp add: float_def pow2_int[symmetric] pow2_add[symmetric])
+
+lemma real_is_int_real[simp]: "real_is_int (real (x::int))"
+by (auto simp add: real_is_int_def int_of_real_def)
+
+lemma int_of_real_real[simp]: "int_of_real (real x) = x"
+by (simp add: int_of_real_def)
+
+lemma real_int_of_real[simp]: "real_is_int x \<Longrightarrow> real (int_of_real x) = x"
+by (auto simp add: int_of_real_def real_is_int_def)
+
+lemma real_is_int_add_int_of_real: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> (int_of_real (a+b)) = (int_of_real a) + (int_of_real b)"
+by (auto simp add: int_of_real_def real_is_int_def)
+
+lemma real_is_int_add[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a+b)"
+apply (subst real_is_int_def2)
+apply (simp add: real_is_int_add_int_of_real real_int_of_real)
+done
+
+lemma int_of_real_sub: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> (int_of_real (a-b)) = (int_of_real a) - (int_of_real b)"
+by (auto simp add: int_of_real_def real_is_int_def)
+
+lemma real_is_int_sub[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a-b)"
+apply (subst real_is_int_def2)
+apply (simp add: int_of_real_sub real_int_of_real)
+done
+
+lemma real_is_int_rep: "real_is_int x \<Longrightarrow> ?! (a::int). real a = x"
+by (auto simp add: real_is_int_def)
+
+lemma int_of_real_mult: 
+  assumes "real_is_int a" "real_is_int b"
+  shows "(int_of_real (a*b)) = (int_of_real a) * (int_of_real b)"
+proof -
+  from prems have a: "?! (a'::int). real a' = a" by (rule_tac real_is_int_rep, auto)
+  from prems have b: "?! (b'::int). real b' = b" by (rule_tac real_is_int_rep, auto)
+  from a obtain a'::int where a':"a = real a'" by auto
+  from b obtain b'::int where b':"b = real b'" by auto
+  have r: "real a' * real b' = real (a' * b')" by auto
+  show ?thesis
+    apply (simp add: a' b')
+    apply (subst r)
+    apply (simp only: int_of_real_real)
+    done
+qed
+
+lemma real_is_int_mult[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a*b)"
+apply (subst real_is_int_def2)
+apply (simp add: int_of_real_mult)
+done
+
+lemma real_is_int_0[simp]: "real_is_int (0::real)"
+by (simp add: real_is_int_def int_of_real_def)
+
+lemma real_is_int_1[simp]: "real_is_int (1::real)"
+proof -
+  have "real_is_int (1::real) = real_is_int(real (1::int))" by auto
+  also have "\<dots> = True" by (simp only: real_is_int_real)
+  ultimately show ?thesis by auto
+qed
+
+lemma real_is_int_n1: "real_is_int (-1::real)"
+proof -
+  have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto
+  also have "\<dots> = True" by (simp only: real_is_int_real)
+  ultimately show ?thesis by auto
+qed
+
+lemma real_is_int_number_of[simp]: "real_is_int ((number_of::bin\<Rightarrow>real) x)"
+proof -
+  have neg1: "real_is_int (-1::real)"
+  proof -
+    have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto
+    also have "\<dots> = True" by (simp only: real_is_int_real)
+    ultimately show ?thesis by auto
+  qed
+  
+  { 
+    fix x::int
+    have "!! y. real_is_int ((number_of::bin\<Rightarrow>real) (Abs_Bin x))"
+      apply (simp add: number_of_eq)
+      apply (subst Abs_Bin_inverse)
+      apply (simp add: Bin_def)
+      apply (induct x)
+      apply (induct_tac n)
+      apply (simp)
+      apply (simp)
+      apply (induct_tac n)
+      apply (simp add: neg1)
+    proof -
+      fix n :: nat
+      assume rn: "(real_is_int (of_int (- (int (Suc n)))))"
+      have s: "-(int (Suc (Suc n))) = -1 + - (int (Suc n))" by simp
+      show "real_is_int (of_int (- (int (Suc (Suc n)))))"
+	apply (simp only: s of_int_add)
+	apply (rule real_is_int_add)
+	apply (simp add: neg1)
+	apply (simp only: rn)
+	done
+    qed
+  }
+  note Abs_Bin = this
+  {
+    fix x :: bin
+    have "? u. x = Abs_Bin u"
+      apply (rule exI[where x = "Rep_Bin x"])
+      apply (simp add: Rep_Bin_inverse)
+      done
+  }
+  then obtain u::int where "x = Abs_Bin u" by auto
+  with Abs_Bin show ?thesis by auto
+qed
+
+lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)"
+by (simp add: int_of_real_def)
+
+lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)"
+proof - 
+  have 1: "(1::real) = real (1::int)" by auto
+  show ?thesis by (simp only: 1 int_of_real_real)
+qed
+
+lemma int_of_real_number_of[simp]: "int_of_real (number_of b) = number_of b"
+proof -
+  have "real_is_int (number_of b)" by simp
+  then have uu: "?! u::int. number_of b = real u" by (auto simp add: real_is_int_rep)
+  then obtain u::int where u:"number_of b = real u" by auto
+  have "number_of b = real ((number_of b)::int)" 
+    by (simp add: number_of_eq real_of_int_def)
+  have ub: "number_of b = real ((number_of b)::int)" 
+    by (simp add: number_of_eq real_of_int_def)
+  from uu u ub have unb: "u = number_of b"
+    by blast
+  have "int_of_real (number_of b) = u" by (simp add: u)
+  with unb show ?thesis by simp
+qed
+
+lemma float_transfer_even: "even a \<Longrightarrow> float (a, b) = float (a div 2, b+1)"
+  apply (subst float_transfer[where a="a" and b="b" and c="-1", simplified])
+  apply (simp_all add: pow2_def even_def real_is_int_def ring_eq_simps)
+  apply (auto)
+proof -
+  fix q::int
+  have a:"b - (-1\<Colon>int) = (1\<Colon>int) + b" by arith
+  show "(float (q, (b - (-1\<Colon>int)))) = (float (q, ((1\<Colon>int) + b)))" 
+    by (simp add: a)
+qed
+    
+consts
+  norm_float :: "int*int \<Rightarrow> int*int"
+
+lemma int_div_zdiv: "int (a div b) = (int a) div (int b)"
+apply (subst split_div, auto)
+apply (subst split_zdiv, auto)
+apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in IntDiv.unique_quotient)
+apply (auto simp add: IntDiv.quorem_def int_eq_of_nat)
+done
+
+lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)"
+apply (subst split_mod, auto)
+apply (subst split_zmod, auto)
+apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia in IntDiv.unique_remainder)
+apply (auto simp add: IntDiv.quorem_def int_eq_of_nat)
+done
+
+lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
+by arith
+
+lemma terminating_norm_float: "\<forall>a. (a::int) \<noteq> 0 \<and> even a \<longrightarrow> a \<noteq> 0 \<and> \<bar>a div 2\<bar> < \<bar>a\<bar>"
+apply (auto)
+apply (rule abs_div_2_less)
+apply (auto)
+done
+
+ML {* simp_depth_limit := 2 *} 
+recdef norm_float "measure (% (a,b). nat (abs a))"
+  "norm_float (a,b) = (if (a \<noteq> 0) & (even a) then norm_float (a div 2, b+1) else (if a=0 then (0,0) else (a,b)))"
+(hints simp: terminating_norm_float)
+ML {* simp_depth_limit := 1000 *}
+
+lemma norm_float: "float x = float (norm_float x)"
+proof -
+  {
+    fix a b :: int 
+    have norm_float_pair: "float (a,b) = float (norm_float (a,b))" 
+    proof (induct a b rule: norm_float.induct)
+      case (1 u v)
+      show ?case 
+      proof cases
+	assume u: "u \<noteq> 0 \<and> even u"
+	with prems have ind: "float (u div 2, v + 1) = float (norm_float (u div 2, v + 1))" by auto
+	with u have "float (u,v) = float (u div 2, v+1)" by (simp add: float_transfer_even) 
+	then show ?thesis
+	  apply (subst norm_float.simps)
+	  apply (simp add: ind)
+	  done
+      next
+	assume "~(u \<noteq> 0 \<and> even u)"
+	then show ?thesis
+	  by (simp add: prems float_def)
+      qed
+    qed
+  }
+  note helper = this
+  have "? a b. x = (a,b)" by auto
+  then obtain a b where "x = (a, b)" by blast
+  then show ?thesis by (simp only: helper)
+qed
+
+lemma pow2_int: "pow2 (int n) = 2^n"
+  by (simp add: pow2_def)
+
+lemma float_add: 
+  "float (a1, e1) + float (a2, e2) = 
+  (if e1<=e2 then float (a1+a2*2^(nat(e2-e1)), e1) 
+  else float (a1*2^(nat (e1-e2))+a2, e2))"
+  apply (simp add: float_def ring_eq_simps)
+  apply (auto simp add: pow2_int[symmetric] pow2_add[symmetric])
+  done
+
+lemma float_mult:
+  "float (a1, e1) * float (a2, e2) = 
+  (float (a1 * a2, e1 + e2))"
+  by (simp add: float_def pow2_add)
+
+lemma float_minus:
+  "- (float (a,b)) = float (-a, b)"
+  by (simp add: float_def)
+
+lemma zero_less_pow2:
+  "0 < pow2 x"
+proof -
+  {
+    fix y
+    have "0 <= y \<Longrightarrow> 0 < pow2 y"    
+      by (induct y, induct_tac n, simp_all add: pow2_add)
+  }
+  note helper=this
+  show ?thesis
+    apply (case_tac "0 <= x")
+    apply (simp add: helper)
+    apply (subst pow2_neg)
+    apply (simp add: helper)
+    done
+qed
+
+lemma zero_le_float:
+  "(0 <= float (a,b)) = (0 <= a)"
+  apply (auto simp add: float_def)
+  apply (auto simp add: zero_le_mult_iff zero_less_pow2) 
+  apply (insert zero_less_pow2[of b])
+  apply (simp_all)
+  done
+
+lemma float_le_zero:
+  "(float (a,b) <= 0) = (a <= 0)"
+  apply (auto simp add: float_def)
+  apply (auto simp add: mult_le_0_iff)
+  apply (insert zero_less_pow2[of b])
+  apply auto
+  done
+
+lemma float_abs:
+  "abs (float (a,b)) = (if 0 <= a then (float (a,b)) else (float (-a,b)))"
+  apply (auto simp add: abs_if)
+  apply (simp_all add: zero_le_float[symmetric, of a b] float_minus)
+  done
+
+lemma float_zero:
+  "float (0, b) = 0"
+  by (simp add: float_def)
+
+lemma float_pprt:
+  "pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0, b)))"
+  by (auto simp add: zero_le_float float_le_zero float_zero)
+
+lemma float_nprt:
+  "nprt (float (a, b)) = (if 0 <= a then (float (0,b)) else (float (a, b)))"
+  by (auto simp add: zero_le_float float_le_zero float_zero)
+
+lemma norm_0_1: "(0::_::number_ring) = Numeral0 & (1::_::number_ring) = Numeral1"
+  by auto
+  
+lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)"
+  by simp
+
+lemma add_right_zero: "a + 0 = (a::'a::comm_monoid_add)"
+  by simp
+
+lemma mult_left_one: "1 * a = (a::'a::semiring_1)"
+  by simp
+
+lemma mult_right_one: "a * 1 = (a::'a::semiring_1)"
+  by simp
+
+lemma int_pow_0: "(a::int)^(Numeral0) = 1"
+  by simp
+
+lemma int_pow_1: "(a::int)^(Numeral1) = a"
+  by simp
+
+lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0"
+  by simp
+
+lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1"
+  by simp
+
+lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0"
+  by simp
+
+lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1"
+  by simp
+
+lemma zpower_Pls: "(z::int)^Numeral0 = Numeral1"
+  by simp
+
+lemma zpower_Min: "(z::int)^((-1)::nat) = Numeral1"
+proof -
+  have 1:"((-1)::nat) = 0"
+    by simp
+  show ?thesis by (simp add: 1)
+qed
+
+lemma fst_cong: "a=a' \<Longrightarrow> fst (a,b) = fst (a',b)"
+  by simp
+
+lemma snd_cong: "b=b' \<Longrightarrow> snd (a,b) = snd (a,b')"
+  by simp
+
+lemma lift_bool: "x \<Longrightarrow> x=True"
+  by simp
+
+lemma nlift_bool: "~x \<Longrightarrow> x=False"
+  by simp
+
+lemma not_false_eq_true: "(~ False) = True" by simp
+
+lemma not_true_eq_false: "(~ True) = False" by simp
+
+
+lemmas binarith = 
+  Pls_0_eq Min_1_eq
+  bin_pred_Pls bin_pred_Min bin_pred_1 bin_pred_0     
+  bin_succ_Pls bin_succ_Min bin_succ_1 bin_succ_0
+  bin_add_Pls bin_add_Min bin_add_BIT_0 bin_add_BIT_10
+  bin_add_BIT_11 bin_minus_Pls bin_minus_Min bin_minus_1 
+  bin_minus_0 bin_mult_Pls bin_mult_Min bin_mult_1 bin_mult_0 
+  bin_add_Pls_right bin_add_Min_right
+
+lemma int_eq_number_of_eq: "(((number_of v)::int)=(number_of w)) = iszero ((number_of (bin_add v (bin_minus w)))::int)"
+  by simp
+
+lemma int_iszero_number_of_Pls: "iszero (Numeral0::int)" 
+  by (simp only: iszero_number_of_Pls)
+
+lemma int_nonzero_number_of_Min: "~(iszero ((-1)::int))"
+  by simp
+
+lemma int_iszero_number_of_0: "iszero ((number_of (w BIT bit.B0))::int) = iszero ((number_of w)::int)"
+  by simp
+
+lemma int_iszero_number_of_1: "\<not> iszero ((number_of (w BIT bit.B1))::int)" 
+  by simp
+
+lemma int_less_number_of_eq_neg: "(((number_of x)::int) < number_of y) = neg ((number_of (bin_add x (bin_minus y)))::int)"
+  by simp
+
+lemma int_not_neg_number_of_Pls: "\<not> (neg (Numeral0::int))" 
+  by simp
+
+lemma int_neg_number_of_Min: "neg (-1::int)"
+  by simp
+
+lemma int_neg_number_of_BIT: "neg ((number_of (w BIT x))::int) = neg ((number_of w)::int)"
+  by simp
+
+lemma int_le_number_of_eq: "(((number_of x)::int) \<le> number_of y) = (\<not> neg ((number_of (bin_add y (bin_minus x)))::int))"
+  by simp
+
+lemmas intarithrel = 
+  int_eq_number_of_eq 
+  lift_bool[OF int_iszero_number_of_Pls] nlift_bool[OF int_nonzero_number_of_Min] int_iszero_number_of_0 
+  lift_bool[OF int_iszero_number_of_1] int_less_number_of_eq_neg nlift_bool[OF int_not_neg_number_of_Pls] lift_bool[OF int_neg_number_of_Min]
+  int_neg_number_of_BIT int_le_number_of_eq
+
+lemma int_number_of_add_sym: "((number_of v)::int) + number_of w = number_of (bin_add v w)"
+  by simp
+
+lemma int_number_of_diff_sym: "((number_of v)::int) - number_of w = number_of (bin_add v (bin_minus w))"
+  by simp
+
+lemma int_number_of_mult_sym: "((number_of v)::int) * number_of w = number_of (bin_mult v w)"
+  by simp
+
+lemma int_number_of_minus_sym: "- ((number_of v)::int) = number_of (bin_minus v)"
+  by simp
+
+lemmas intarith = int_number_of_add_sym int_number_of_minus_sym int_number_of_diff_sym int_number_of_mult_sym
+
+lemmas natarith = add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of
+
+lemmas powerarith = nat_number_of zpower_number_of_even 
+  zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring]   
+  zpower_Pls zpower_Min
+
+lemmas floatarith[simplified norm_0_1] = float_add float_mult float_minus float_abs zero_le_float float_pprt float_nprt
+
+(* for use with the compute oracle *)
+lemmas arith = binarith intarith intarithrel natarith powerarith floatarith not_false_eq_true not_true_eq_false
+
+end
+ 
--- a/src/HOL/Real/ROOT.ML	Tue Jul 12 19:29:52 2005 +0200
+++ b/src/HOL/Real/ROOT.ML	Tue Jul 12 21:49:38 2005 +0200
@@ -8,3 +8,4 @@
 *)
 
 time_use_thy "Real";
+use_thy "Float";
\ No newline at end of file
--- a/src/Pure/Tools/am_compiler.ML	Tue Jul 12 19:29:52 2005 +0200
+++ b/src/Pure/Tools/am_compiler.ML	Tue Jul 12 21:49:38 2005 +0200
@@ -11,10 +11,15 @@
 		     | CApp of closure * closure | CAbs of closure | Closure of (closure list) * closure
 
     val set_compiled_rewriter : (term -> closure) -> unit
+    val list_nth : 'a list * int -> 'a
+    val list_map : ('a -> 'b) -> 'a list -> 'b list
 end
 
 structure AM_Compiler :> COMPILING_AM = struct
 
+val list_nth = List.nth;
+val list_map = map;
+
 datatype term = Var of int | Const of int | App of term * term | Abs of term
 
 datatype pattern = PVar | PConst of int * (pattern list)
@@ -133,7 +138,7 @@
 		"and weak stack (Closure (e, App (a, b))) = weak (SAppL (Closure (e, b), stack)) (Closure (e, a))",
 		"  | weak (SAppL (b, stack)) (Closure (e, Abs m)) =  weak stack (Closure (b::e, m))",
 		"  | weak stack (clos as Closure (_, Abs _)) = weak_last stack clos",
-		"  | weak stack (Closure (e, Var n)) = weak stack (List.nth (e, n) handle Subscript => (Var (n-(length e))))",
+		"  | weak stack (Closure (e, Var n)) = weak stack ("^sname^".list_nth (e, n) handle _ => (Var (n-(length e))))",
 		"  | weak stack (Closure (e, c)) = weak stack c",
 		"  | weak stack clos = lookup stack clos",
 		"and weak_last (SAppR (a, stack)) b = weak stack (App(a, b))",
@@ -177,7 +182,7 @@
 		"  | exportTerm (Const c) = "^sname^".CConst c",
 		"  | exportTerm (App (a,b)) = "^sname^".CApp (exportTerm a, exportTerm b)",
 		"  | exportTerm (Abs m) = "^sname^".CAbs (exportTerm m)",
-		"  | exportTerm (Closure (closlist, clos)) = "^sname^".Closure (map exportTerm closlist, exportTerm clos)"]
+		"  | exportTerm (Closure (closlist, clos)) = "^sname^".Closure ("^sname^".list_map exportTerm closlist, exportTerm clos)"]
 	val _ = writelist (map ec constants)
 		
 	val _ = writelist [
@@ -199,9 +204,9 @@
 
 	val _ = 
 	    let
-		val fout = TextIO.openOut "gen_code.ML"
+		(*val fout = TextIO.openOut "gen_code.ML"
 		val _ = TextIO.output (fout, !buffer)
-		val _  = TextIO.closeOut fout
+		val _  = TextIO.closeOut fout*)
 	    in
 		()
 	    end
--- a/src/Pure/Tools/am_interpreter.ML	Tue Jul 12 19:29:52 2005 +0200
+++ b/src/Pure/Tools/am_interpreter.ML	Tue Jul 12 21:49:38 2005 +0200
@@ -18,66 +18,6 @@
 
 end
 
-signature BIN_TREE_KEY =
-sig
-  type key
-  val less : key * key -> bool
-  val eq : key * key -> bool
-end
-
-signature BIN_TREE = 
-sig
-    type key    
-    type 'a t
-    val tree_of_list : (key * 'a list -> 'b) -> (key * 'a) list -> 'b t
-    val lookup : 'a t -> key -> 'a Option.option
-    val empty : 'a t
-end
-
-functor BinTreeFun(Key: BIN_TREE_KEY) : BIN_TREE  =
-struct
-
-type key = Key.key
-
-datatype 'a t = Empty | Node of key * 'a * 'a t * 'a t 
-
-val empty = Empty
-
-fun insert (k, a) [] = [(k, a)]
-  | insert (k, a) ((l,b)::x') = 
-    if Key.less (k, l) then (k, a)::(l,b)::x'
-    else if Key.eq (k, l) then (k, a@b)::x'
-    else (l,b)::(insert (k, a) x')
-
-fun sort ((k, a)::x) = insert (k, a) (sort x)
-  | sort [] = []
-
-fun tree_of_sorted_list [] = Empty
-  | tree_of_sorted_list l = 
-    let
-	val len = length l
-	val leftlen = (len - 1) div 2
-	val left = tree_of_sorted_list (List.take (l, leftlen))
-	val rightl = List.drop (l, leftlen)
-	val (k, x) = hd rightl
-    in
-	Node (k, x, left, tree_of_sorted_list (tl rightl))
-    end
-	
-fun tree_of_list f l = tree_of_sorted_list (map (fn (k, a) => (k, f (k,a))) (sort (map (fn (k, a) => (k, [a])) l)))
-		 
-fun lookup Empty key = NONE
-  | lookup (Node (k, x, left, right)) key =
-    if Key.less (key, k) then
-	lookup left key
-    else if Key.less (k, key) then
-	lookup right key
-    else
-	SOME x
-end;
-
-structure IntBinTree = BinTreeFun (type key = int val less = (op <) val eq = (op = : int * int -> bool));
-
 structure AM_Interpreter :> ABSTRACT_MACHINE = struct
 
 datatype term = Var of int | Const of int | App of term * term | Abs of term
@@ -88,16 +28,9 @@
 		 | CApp of closure * closure | CAbs of closure 
 		 | Closure of (closure list) * closure 
 
-structure IntPairKey = 
-struct
-type key = int * int
-fun less ((x1, y1), (x2, y2)) = x1 < x2 orelse (x1 = x2 andalso y1 < y2)
-fun eq (k1, k2) = (k1 = k2)
-end
+structure prog_struct = TableFun(type key = int*int val ord = prod_ord int_ord int_ord);
 
-structure prog_struct = BinTreeFun (IntPairKey)
-
-type program = ((pattern * closure) list) prog_struct.t
+type program = ((pattern * closure) list) prog_struct.table
 
 datatype stack = SEmpty | SAppL of closure * stack | SAppR of closure * stack | SAbs of stack
 
@@ -160,7 +93,7 @@
 	val eqs = map (fn (p, r) => (check_freevars (count_patternvars p) r; 
 				     (pattern_key p, (p, clos_of_term r)))) eqs
     in
-	prog_struct.tree_of_list (fn (key, rules) => rules) eqs
+	prog_struct.make (map (fn (k, a) => (k, [a])) eqs)
     end	
 
 fun match_rules n [] clos = NONE
@@ -172,7 +105,7 @@
 fun match_closure prog clos = 
     case len_head_of_closure 0 clos of
 	(len, CConst c) =>
-	(case prog_struct.lookup prog (c, len) of
+	(case prog_struct.lookup (prog, (c, len)) of
 	    NONE => NONE
 	  | SOME rules => match_rules 0 rules clos)
       | _ => NONE