--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Define_Time_Function.ML Mon Jan 15 22:50:13 2024 +0100
@@ -0,0 +1,546 @@
+
+signature TIMING_FUNCTIONS =
+sig
+type 'a converter = {
+ constc : local_theory -> term -> (term -> 'a) -> term -> 'a,
+ funcc : local_theory -> term -> (term -> 'a) -> term -> term list -> 'a,
+ ifc : local_theory -> term -> (term -> 'a) -> typ -> term -> term -> term -> 'a,
+ casec : local_theory -> term -> (term -> 'a) -> term -> term list -> 'a,
+ letc : local_theory -> term -> (term -> 'a) -> typ -> term -> string list -> typ list -> term -> 'a
+};
+val walk : local_theory -> term -> 'a converter -> term -> 'a
+
+type pfunc = { name : string, terms : term list, typ : typ }
+val fun_pretty': Proof.context -> pfunc -> Pretty.T
+val fun_pretty: Proof.context -> Function.info -> Pretty.T
+val print_timing': Proof.context -> pfunc -> pfunc -> unit
+val print_timing: Proof.context -> Function.info -> Function.info -> unit
+
+val reg_and_proove_time_func: theory -> term -> term list -> term option converter
+ -> (bool -> local_theory -> term -> term option -> term)
+ -> bool -> Function.info * theory
+val reg_time_func: theory -> term -> term list -> term option converter
+ -> (bool -> local_theory -> term -> term option -> term) -> bool -> theory
+
+val time_dom_tac: Proof.context -> thm -> thm list -> int -> tactic
+
+end
+
+structure Timing_Functions : TIMING_FUNCTIONS =
+struct
+(* Configure config variable to adjust the prefix *)
+val bprefix = Attrib.setup_config_string @{binding "time_prefix"} (K "T_")
+
+(* some default values to build terms easier *)
+val zero = Const (@{const_name "Groups.zero"}, HOLogic.natT)
+val one = Const (@{const_name "Groups.one"}, HOLogic.natT)
+(* Extracts terms from function info *)
+fun terms_of_info (info: Function.info) =
+let
+ val {simps, ...} = info
+in
+ map Thm.prop_of (case simps of SOME s => s | NONE => error "No terms of function found in info")
+end;
+
+type pfunc = {
+ name : string,
+ terms : term list,
+ typ : typ
+}
+fun info_pfunc (info: Function.info): pfunc =
+let
+ val {defname, fs, ...} = info;
+ val T = case hd fs of (Const (_,T)) => T | _ => error "Internal error: Invalid info to print"
+in
+ { name=Binding.name_of defname, terms=terms_of_info info, typ=T }
+end
+
+(* Auxiliary functions for printing functions *)
+fun fun_pretty' ctxt (pfunc: pfunc) =
+let
+ val {name, terms, typ} = pfunc;
+ val header_beg = Pretty.str ("fun " ^ name ^ " :: ");
+ val header_end = Pretty.str (" where\n ");
+ val header = [header_beg, Pretty.quote (Syntax.pretty_typ ctxt typ), header_end];
+ fun separate sep prts =
+ flat (Library.separate [Pretty.str sep] (map single prts));
+ val ptrms = (separate "\n| " (map (Syntax.pretty_term ctxt) terms));
+in
+ Pretty.text_fold (header @ ptrms)
+end
+fun fun_pretty ctxt = fun_pretty' ctxt o info_pfunc
+fun print_timing' ctxt (opfunc: pfunc) (tpfunc: pfunc) =
+let
+ val {name, ...} = opfunc;
+ val poriginal = Pretty.item [Pretty.str "Original function:\n", fun_pretty' ctxt opfunc]
+ val ptiming = Pretty.item [Pretty.str ("Running time function:\n"), fun_pretty' ctxt tpfunc]
+in
+ Pretty.writeln (Pretty.text_fold [Pretty.str ("Converting " ^ name ^ "...\n"), poriginal, Pretty.str "\n", ptiming])
+end
+fun print_timing ctxt (oinfo: Function.info) (tinfo: Function.info) =
+ print_timing' ctxt (info_pfunc oinfo) (info_pfunc tinfo)
+
+val If_name = @{const_name "HOL.If"}
+val Let_name = @{const_name "HOL.Let"}
+
+(* returns true if it's an if term *)
+fun is_if (Const (n,_)) = (n = If_name)
+ | is_if _ = false
+(* returns true if it's a case term *)
+fun is_case (Const (n,_)) = String.isPrefix "case_" (List.last (String.fields (fn s => s = #".") n))
+ | is_case _ = false
+(* returns true if it's a let term *)
+fun is_let (Const (n,_)) = (n = Let_name)
+ | is_let _ = false
+(* change type of original function to new type (_ \<Rightarrow> ... \<Rightarrow> _ to _ \<Rightarrow> ... \<Rightarrow> nat)
+ and replace all function arguments f with (t*T_f) *)
+fun change_typ (Type ("fun", [T1, T2])) = Type ("fun", [check_for_fun T1, change_typ T2])
+ | change_typ _ = HOLogic.natT
+and check_for_fun (f as Type ("fun", [_,_])) = HOLogic.mk_prodT (f, change_typ f)
+ | check_for_fun (Type ("Product_Type.prod", [t1,t2])) = HOLogic.mk_prodT (check_for_fun t1, check_for_fun t2)
+ | check_for_fun f = f
+(* Convert string name of function to its timing equivalent *)
+fun fun_name_to_time ctxt name =
+let
+ val prefix = Config.get ctxt bprefix
+ fun replace_last_name [n] = [prefix ^ n]
+ | replace_last_name (n::ns) = n :: (replace_last_name ns)
+ | replace_last_name _ = error "Internal error: Invalid function name to convert"
+ val parts = String.fields (fn s => s = #".") name
+in
+ String.concatWith "." (replace_last_name parts)
+end
+(* Count number of arguments of a function *)
+fun count_args (Type (n, [_,res])) = (if n = "fun" then 1 + count_args res else 0)
+ | count_args _ = 0
+(* Check if number of arguments matches function *)
+fun check_args s (Const (_,T), args) =
+ (if length args = count_args T then () else error ("Partial applications/Lambdas not allowed (" ^ s ^ ")"))
+ | check_args s (Free (_,T), args) =
+ (if length args = count_args T then () else error ("Partial applications/Lambdas not allowed (" ^ s ^ ")"))
+ | check_args s _ = error ("Partial applications/Lambdas not allowed (" ^ s ^ ")")
+(* Removes Abs *)
+fun rem_abs f (Abs (_,_,t)) = rem_abs f t
+ | rem_abs f t = f t
+(* Map right side of equation *)
+fun map_r f (pT $ (eq $ l $ r)) = (pT $ (eq $ l $ f r))
+ | map_r _ _ = error "Internal error: No right side of equation found"
+(* Get left side of equation *)
+fun get_l (_ $ (_ $ l $ _)) = l
+ | get_l _ = error "Internal error: No left side of equation found"
+(* Get right side of equation *)
+fun get_r (_ $ (_ $ _ $ r)) = r
+ | get_r _ = error "Internal error: No right side of equation found"
+(* Return name of Const *)
+fun Const_name (Const (nm,_)) = SOME nm
+ | Const_name _ = NONE
+
+fun time_term ctxt (Const (nm,T)) =
+let
+ val T_nm = fun_name_to_time ctxt nm
+ val T_T = change_typ T
+in
+(SOME (Syntax.check_term ctxt (Const (T_nm,T_T))))
+ handle (ERROR _) =>
+ case Syntax.read_term ctxt (Long_Name.base_name T_nm)
+ of (Const (nm,_)) => SOME (Const (nm,T_T))
+ | _ => error ("Timing function of " ^ nm ^ " is not defined")
+end
+ | time_term _ _ = error "Internal error: No valid function given"
+
+type 'a converter = {
+ constc : local_theory -> term -> (term -> 'a) -> term -> 'a,
+ funcc : local_theory -> term -> (term -> 'a) -> term -> term list -> 'a,
+ ifc : local_theory -> term -> (term -> 'a) -> typ -> term -> term -> term -> 'a,
+ casec : local_theory -> term -> (term -> 'a) -> term -> term list -> 'a,
+ letc : local_theory -> term -> (term -> 'a) -> typ -> term -> string list -> typ list -> term -> 'a
+};
+
+(* Walks over term and calls given converter *)
+fun walk_func (t1 $ t2) ts = walk_func t1 (t2::ts)
+ | walk_func t ts = (t, ts)
+fun build_func (f, []) = f
+ | build_func (f, (t::ts)) = build_func (f$t, ts)
+fun walk_abs (Abs (nm,T,t)) nms Ts = walk_abs t (nm::nms) (T::Ts)
+ | walk_abs t nms Ts = (t, nms, Ts)
+fun build_abs t (nm::nms) (T::Ts) = build_abs (Abs (nm,T,t)) nms Ts
+ | build_abs t [] [] = t
+ | build_abs _ _ _ = error "Internal error: Invalid terms to build abs"
+fun walk ctxt origin (conv as {ifc, casec, funcc, letc, ...} : 'a converter) (t as _ $ _) =
+ let
+ val (f, args) = walk_func t []
+ val this = (walk ctxt origin conv)
+ val _ = (case f of Abs _ => error "Lambdas not supported" | _ => ())
+ in
+ (if is_if f then
+ (case f of (Const (_,T)) =>
+ (case args of [cond, t, f] => ifc ctxt origin this T cond t f
+ | _ => error "Partial applications not supported (if)")
+ | _ => error "Internal error: invalid if term")
+ else if is_case f then casec ctxt origin this f args
+ else if is_let f then
+ (case f of (Const (_,lT)) =>
+ (case args of [exp, t] =>
+ let val (t,nms,Ts) = walk_abs t [] [] in letc ctxt origin this lT exp nms Ts t end
+ | _ => error "Partial applications not allowed (let)")
+ | _ => error "Internal error: invalid let term")
+ else funcc ctxt origin this f args)
+ end
+ | walk ctxt origin (conv as {constc, ...}) c =
+ constc ctxt origin (walk ctxt origin conv) c
+
+(* 1. Fix all terms *)
+(* Exchange Var in types and terms to Free *)
+fun fixTerms (Var(ixn,T)) = Free (fst ixn, T)
+ | fixTerms t = t
+fun fixTypes (TVar ((t, _), T)) = TFree (t, T)
+ | fixTypes t = t
+val _ = Variable.variant_fixes
+fun casecBuildBounds n t = if n > 0 then casecBuildBounds (n-1) (t $ (Bound (n-1))) else t
+fun casecAbs ctxt f n (Type (_,[_,Tr])) (Abs (v,Ta,t)) = Abs (v,Ta,casecAbs ctxt f n Tr t)
+ | casecAbs ctxt f n (Type (Tn,[T,Tr])) t =
+ (case Variable.variant_fixes ["x"] ctxt of ([v],ctxt) =>
+ (if Tn = "fun" then Abs(v,T,casecAbs ctxt f (n + 1) Tr t) else f t)
+ | _ => error "Internal error: could not fix variable")
+ | casecAbs _ f n _ t = f (casecBuildBounds n t)
+fun fixCasecCases _ _ _ [t] = [t]
+ | fixCasecCases ctxt f (Type (_,[T,Tr])) (t::ts) = casecAbs ctxt f 0 T t :: fixCasecCases ctxt f Tr ts
+ | fixCasecCases _ _ _ _ = error "Internal error: invalid case types/terms"
+fun fixCasec ctxt _ f (t as Const (n,T)) args =
+ (check_args "cases" (Syntax.read_term ctxt n,args); build_func (t,fixCasecCases ctxt f T args))
+ | fixCasec _ _ _ _ _ = error "Internal error: invalid case term"
+
+fun fixPartTerms ctxt term t =
+ let
+ val _ = check_args "args" (walk_func (get_l t) [])
+ in
+ map_r (walk ctxt term {
+ funcc = (fn _ => fn _ => fn f => fn t => fn args =>
+ (check_args "func" (t,args); build_func (t, map f args))),
+ constc = (fn _ => fn _ => fn _ => fn c => (case c of Abs _ => error "Lambdas not supported" | _ => c)),
+ ifc = (fn _ => fn _ => fn f => fn T => fn cond => fn tt => fn tf =>
+ ((Const (If_name, T)) $ f cond $ (f tt) $ (f tf))),
+ casec = fixCasec,
+ letc = (fn _ => fn _ => fn f => fn expT => fn exp => fn nms => fn Ts => fn t =>
+ let
+ val f' = if length nms = 0 then
+ (case f (t$exp) of t$_ => t | _ => error "Internal error: case could not be fixed (let)")
+ else f t
+ in
+ (Const (Let_name,expT) $ (f exp) $ build_abs f' nms Ts) end)
+ }) t
+ end
+
+(* 2. Check if function is recursive *)
+fun or f (a,b) = f a orelse b
+fun find_rec ctxt term = (walk ctxt term {
+ funcc = (fn _ => fn _ => fn f => fn t => fn args => (Const_name t = Const_name term) orelse List.foldr (or f) false args),
+ constc = (K o K o K o K) false,
+ ifc = (fn _ => fn _ => fn f => fn _ => fn cond => fn tt => fn tf => f cond orelse f tt orelse f tf),
+ casec = (fn _ => fn _ => fn f => fn t => fn cs => f t orelse List.foldr (or (rem_abs f)) false cs),
+ letc = (fn _ => fn _ => fn f => fn _ => fn exp => fn _ => fn _ => fn t => f exp orelse f t)
+ }) o get_r
+fun is_rec ctxt term = List.foldr (or (find_rec ctxt term)) false
+
+(* 3. Convert equations *)
+(* Some Helper *)
+val plusTyp = @{typ "nat => nat => nat"}
+fun plus (SOME a) (SOME b) = SOME (Const (@{const_name "Groups.plus"}, plusTyp) $ a $ b)
+ | plus (SOME a) NONE = SOME a
+ | plus NONE (SOME b) = SOME b
+ | plus NONE NONE = NONE
+fun opt_term NONE = HOLogic.zero
+ | opt_term (SOME t) = t
+
+(* Converting of function term *)
+fun fun_to_time ctxt origin (func as Const (nm,T)) =
+let
+ val prefix = Config.get ctxt bprefix
+ val timing_name_origin = prefix ^ Term.term_name origin
+ val full_name_origin = origin |> dest_Const |> fst
+in
+ if nm = full_name_origin then SOME (Free (timing_name_origin, change_typ T)) else
+ if Zero_Funcs.is_zero (Proof_Context.theory_of ctxt) (nm,T) then NONE else
+ time_term ctxt func
+end
+ | fun_to_time _ _ (Free (nm,T)) = SOME (HOLogic.mk_snd (Free (nm,HOLogic.mk_prodT (T,change_typ T))))
+ | fun_to_time _ _ _ = error "Internal error: invalid function to convert"
+
+(* Convert arguments of left side of a term *)
+fun conv_arg _ _ (Free (nm,T as Type("fun",_))) = Free (nm, HOLogic.mk_prodT (T, change_typ T))
+ | conv_arg ctxt origin (f as Const (_,T as Type("fun",_))) =
+ (Const (@{const_name "Product_Type.Pair"},
+ Type ("fun", [T,Type ("fun",[change_typ T, HOLogic.mk_prodT (T,change_typ T)])]))
+ $ f $ (fun_to_time ctxt origin f |> Option.valOf))
+ | conv_arg ctxt origin ((Const ("Product_Type.Pair", _)) $ l $ r) = HOLogic.mk_prod (conv_arg ctxt origin l, conv_arg ctxt origin r)
+ | conv_arg _ _ x = x
+fun conv_args ctxt origin = map (conv_arg ctxt origin)
+
+(* Handle function calls *)
+fun build_zero (Type ("fun", [T, R])) = Abs ("x", T, build_zero R)
+ | build_zero _ = zero
+fun funcc_use_origin _ _ (Free (nm, T as Type ("fun",_))) = HOLogic.mk_fst (Free (nm,HOLogic.mk_prodT (T, change_typ T)))
+ | funcc_use_origin _ _ t = t
+fun funcc_conv_arg ctxt origin (t as (_ $ _)) = map_aterms (funcc_use_origin ctxt origin) t
+ | funcc_conv_arg _ _ (Free (nm, T as Type ("fun",_))) = (Free (nm, HOLogic.mk_prodT (T, change_typ T)))
+ | funcc_conv_arg ctxt origin (f as Const (_,T as Type ("fun",_))) =
+ (Const (@{const_name "Product_Type.Pair"},
+ Type ("fun", [T,Type ("fun",[change_typ T, HOLogic.mk_prodT (T,change_typ T)])]))
+ $ f $ (Option.getOpt (fun_to_time ctxt origin f, build_zero T)))
+ | funcc_conv_arg _ _ t = t
+fun funcc_conv_args ctxt origin = map (funcc_conv_arg ctxt origin)
+fun funcc ctxt origin f func args = List.foldr (I #-> plus)
+ (case fun_to_time ctxt origin func of SOME t => SOME (build_func (t,funcc_conv_args ctxt origin args))
+ | NONE => NONE)
+ (map f args)
+
+(* Handle case terms *)
+fun casecIsCase (Type (n1, [_,Type (n2, _)])) = (n1 = "fun" andalso n2 = "fun")
+ | casecIsCase _ = false
+fun casecLastTyp (Type (n, [T1,T2])) = Type (n, [T1, change_typ T2])
+ | casecLastTyp _ = error "Internal error: invalid case type"
+fun casecTyp (Type (n, [T1, T2])) =
+ Type (n, [change_typ T1, (if casecIsCase T2 then casecTyp else casecLastTyp) T2])
+ | casecTyp _ = error "Internal error: invalid case type"
+fun casecAbs f (Abs (v,Ta,t)) = (case casecAbs f t of (nconst,t) => (nconst,Abs (v,Ta,t)))
+ | casecAbs f t = (case f t of NONE => (false,HOLogic.zero) | SOME t => (true,t))
+fun casecArgs _ [t] = (false, [t])
+ | casecArgs f (t::ar) =
+ (case casecAbs f t of (nconst, tt) =>
+ casecArgs f ar ||> (fn ar => tt :: ar) |>> (if nconst then K true else I))
+ | casecArgs _ _ = error "Internal error: invalid case term"
+fun casec _ _ f (Const (t,T)) args =
+ if not (casecIsCase T) then error "Internal error: invalid case type" else
+ let val (nconst, args') = casecArgs f args in
+ plus
+ (if nconst then
+ SOME (build_func (Const (t,casecTyp T), args'))
+ else NONE)
+ (f (List.last args))
+ end
+ | casec _ _ _ _ _ = error "Internal error: invalid case term"
+
+(* Handle if terms -> drop the term if true and false terms are zero *)
+fun ifc ctxt origin f _ cond tt ft =
+ let
+ fun use_origin _ _ (Free (nm, T as Type ("fun",_))) = HOLogic.mk_fst (Free (nm,HOLogic.mk_prodT (T, change_typ T)))
+ | use_origin _ _ t = t
+ val rcond = map_aterms (use_origin ctxt origin) cond
+ val tt = f tt
+ val ft = f ft
+ in
+ plus (case (tt,ft) of (NONE, NONE) => NONE | _ =>
+ (SOME ((Const (If_name, @{typ "bool \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"})) $ rcond $ (opt_term tt) $ (opt_term ft)))) (f cond)
+ end
+
+fun exp_type (Type (_, [T1, _])) = T1
+ | exp_type _ = error "Internal errror: no valid let type"
+fun letc _ _ f expT exp nms Ts t =
+ if length nms = 0
+ then plus (f exp) (case f (t $ Bound 0) of SOME t' => SOME (Abs ("x", exp_type expT, t') $ exp)
+ | NONE => NONE)
+ else plus (f exp) (case f t of SOME t' => SOME (build_abs t' nms Ts $ exp)
+ | NONE => NONE)
+
+(* The converter for timing functions given to the walker *)
+val converter : term option converter = {
+ constc = fn _ => fn _ => fn _ => fn _ => NONE,
+ funcc = funcc,
+ ifc = ifc,
+ casec = casec,
+ letc = letc
+ }
+fun top_converter is_rec _ _ = opt_term o (plus (if is_rec then SOME one else NONE))
+
+(* Use converter to convert right side of a term *)
+fun to_time ctxt origin converter top_converter term =
+ top_converter ctxt origin (walk ctxt origin converter term)
+
+(* Converts a term to its running time version *)
+fun convert_term ctxt origin conv topConv (pT $ (Const (eqN, _) $ l $ r)) =
+ pT
+ $ (Const (eqN, @{typ "nat \<Rightarrow> nat \<Rightarrow> bool"})
+ $ (build_func ((walk_func l []) |>> (fun_to_time ctxt origin) |>> Option.valOf ||> conv_args ctxt origin))
+ $ (to_time ctxt origin conv topConv r))
+ | convert_term _ _ _ _ _ = error "Internal error: invalid term to convert"
+
+(* 4. Tactic to prove "f_dom n" *)
+fun time_dom_tac ctxt induct_rule domintros =
+ (Induction.induction_tac ctxt true [] [[]] [] (SOME [induct_rule]) []
+ THEN_ALL_NEW ((K (auto_tac ctxt)) THEN' (fn i => FIRST' (
+ (if i <= length domintros then [Metis_Tactic.metis_tac [] ATP_Problem_Generate.combsN ctxt [List.nth (domintros, i-1)]] else []) @
+ [Metis_Tactic.metis_tac [] ATP_Problem_Generate.combsN ctxt domintros]) i)))
+
+
+fun get_terms theory (term: term) =
+ Spec_Rules.retrieve_global theory term
+ |> hd |> #rules
+ |> map Thm.prop_of
+ handle Empty => error "Function or terms of function not found"
+
+(* Register timing function of a given function *)
+fun reg_and_proove_time_func (theory: theory) (term: term) (terms: term list) conv topConv print =
+ reg_time_func theory term terms conv topConv false
+ |> proove_termination term terms print
+and reg_time_func (theory: theory) (term: term) (terms: term list) conv topConv print =
+ let
+ val lthy = Named_Target.theory_init theory
+ val _ =
+ case time_term lthy term
+ handle (ERROR _) => NONE
+ of SOME _ => error ("Timing function already declared: " ^ (Term.term_name term))
+ | NONE => ()
+
+
+ val info = SOME (Function.get_info lthy term) handle Empty => NONE
+ val is_partial = case info of SOME {is_partial, ...} => is_partial | _ => false
+
+ (* 1. Fix all terms *)
+ (* Exchange Var in types and terms to Free and check constraints *)
+ val terms = map (map_aterms fixTerms #> map_types (map_atyps fixTypes) #> fixPartTerms lthy term) terms
+
+ (* 2. Check if function is recursive *)
+ val is_rec = is_rec lthy term terms
+
+ (* 3. Convert every equation
+ - Change type of toplevel equation from _ \<Rightarrow> _ \<Rightarrow> bool to nat \<Rightarrow> nat \<Rightarrow> bool
+ - On left side change name of function to timing function
+ - Convert right side of equation with conversion schema
+ *)
+ val timing_terms = map (convert_term lthy term conv (topConv is_rec)) terms
+
+ (* 4. Register function and prove termination *)
+ val name = Term.term_name term
+ val timing_name = fun_name_to_time lthy name
+ val bindings = [(Binding.name timing_name, NONE, NoSyn)]
+ fun pat_completeness_auto ctxt =
+ Pat_Completeness.pat_completeness_tac ctxt 1 THEN auto_tac ctxt
+ val specs = map (fn eq => (((Binding.empty, []), eq), [], [])) timing_terms
+
+ (* For partial functions sequential=true is needed in order to support them
+ We need sequential=false to support the automatic proof of termination over dom
+ *)
+ fun register seq =
+ let
+ val _ = (if seq then warning "Falling back on sequential function..." else ())
+ val fun_config = Function_Common.FunctionConfig
+ {sequential=seq, default=NONE, domintros=true, partials=is_partial}
+ in
+ Function.add_function bindings specs fun_config pat_completeness_auto lthy
+ end
+
+ (* Context for printing without showing question marks *)
+ val print_ctxt = lthy
+ |> Config.put show_question_marks false
+ |> Config.put show_sorts false (* Change it for debugging *)
+ (* Print result if print *)
+ val _ = if not print then () else
+ let
+ val (nm,T) = case term of Const t => t | _ => error "Internal error: invalid term to print"
+ in
+ print_timing' print_ctxt { name=nm, terms=terms, typ=T } { name=timing_name, terms=timing_terms, typ=change_typ T }
+ end
+
+ (* Register function *)
+ val (_, lthy) =
+ register false
+ handle (ERROR _) =>
+ register true
+ | Match =>
+ register true
+ in
+ Local_Theory.exit_global lthy
+ end
+and proove_termination term terms print (theory: theory) =
+ let
+ val lthy = Named_Target.theory_init theory
+
+ (* Start proving the termination *)
+ val info = SOME (Function.get_info lthy term) handle Empty => NONE
+ val timing_name = term
+ |> Term.term_name
+ |> fun_name_to_time lthy
+
+ (* Proof by lexicographic_order_tac *)
+ val (time_info, lthy') =
+ (Function.prove_termination NONE
+ (Lexicographic_Order.lexicographic_order_tac false lthy) lthy)
+ handle (ERROR _) =>
+ let
+ val _ = warning "Falling back on proof over dom..."
+ fun args (a$(Var ((nm,_),T))) = args a |> (fn ar => (nm,T)::ar)
+ | args (a$(Const (_,T))) = args a |> (fn ar => ("x",T)::ar)
+ | args _ = []
+ val dom_args =
+ terms |> hd |> get_l |> args
+ |> Variable.variant_frees lthy []
+ |> map fst
+
+ val {inducts, ...} = case info of SOME i => i | _ => error "Proof over dom failed as no induct rule was found"
+ val induct = (Option.valOf inducts |> hd)
+
+ val domintros = Proof_Context.get_fact lthy (Facts.named (timing_name ^ ".domintros"))
+ val prop = (timing_name ^ "_dom (" ^ (String.concatWith "," dom_args) ^ ")")
+ |> Syntax.read_prop lthy
+
+ (* Prove a helper lemma *)
+ val dom_lemma = Goal.prove lthy dom_args [] prop
+ (fn {context, ...} => HEADGOAL (time_dom_tac context induct domintros))
+ (* Add dom_lemma to simplification set *)
+ val simp_lthy = Simplifier.add_simp dom_lemma lthy
+ in
+ (* Use lemma to prove termination *)
+ Function.prove_termination NONE
+ (auto_tac simp_lthy) lthy
+ end
+
+ (* Context for printing without showing question marks *)
+ val print_ctxt = lthy'
+ |> Config.put show_question_marks false
+ |> Config.put show_sorts false (* Change it for debugging *)
+ (* Print result if print *)
+ val _ = if not print then () else
+ let
+ val (nm,T) = case term of Const t => t | _ => error "Internal error: invalid term to print"
+ in
+ print_timing' print_ctxt { name=nm, terms=terms, typ=T } (info_pfunc time_info)
+ end
+ in
+ (time_info, Local_Theory.exit_global lthy')
+ end
+
+(* Convert function into its timing function (called by command) *)
+fun reg_time_fun_cmd (func, thms) conv topConv (theory: theory) =
+let
+ val ctxt = Proof_Context.init_global theory
+ val fterm = Syntax.read_term ctxt func
+ val (_, lthy') = reg_and_proove_time_func theory fterm
+ (case thms of NONE => get_terms theory fterm
+ | SOME thms => thms |> Attrib.eval_thms ctxt |> List.map Thm.prop_of)
+ conv topConv true
+in lthy'
+end
+
+(* Convert function into its timing function (called by command) with termination proof provided by user*)
+fun reg_time_function_cmd (func, thms) conv topConv (theory: theory) =
+let
+ val ctxt = Proof_Context.init_global theory
+ val fterm = Syntax.read_term ctxt func
+ val theory = reg_time_func theory fterm
+ (case thms of NONE => get_terms theory fterm
+ | SOME thms => thms |> Attrib.eval_thms ctxt |> List.map Thm.prop_of)
+ conv topConv true
+in theory
+end
+
+val parser = Parse.prop -- (Scan.option (Parse.keyword_improper "equations" -- Parse.thms1 >> snd))
+
+val _ = Outer_Syntax.command @{command_keyword "define_time_fun"}
+ "Defines runtime function of a function"
+ (parser >> (fn p => Toplevel.theory (reg_time_fun_cmd p converter top_converter)))
+
+val _ = Outer_Syntax.command @{command_keyword "define_time_function"}
+ "Defines runtime function of a function"
+ (parser >> (fn p => Toplevel.theory (reg_time_function_cmd p converter top_converter)))
+
+end