modernized axiomatizations;
authorwenzelm
Mon, 19 Mar 2012 21:49:52 +0100 (2012-03-19)
changeset 47025 b2b8ae61d6ad
parent 47024 6c2b7b0421b5
child 47026 36dacca8a95c
modernized axiomatizations; tuned proofs;
src/LCF/LCF.thy
src/LCF/ex/Ex1.thy
src/LCF/ex/Ex2.thy
src/LCF/ex/Ex3.thy
--- a/src/LCF/LCF.thy	Mon Mar 19 21:25:15 2012 +0100
+++ b/src/LCF/LCF.thy	Mon Mar 19 21:49:52 2012 +0100
@@ -44,77 +44,83 @@
  COND   :: "[tr,'a,'a] => 'a"   ("(_ =>/ (_ |/ _))" [60,60,60] 60)
  less   :: "['a,'a] => o"       (infixl "<<" 50)
 
-axioms
+axiomatization where
   (** DOMAIN THEORY **)
 
-  eq_def:        "x=y == x << y & y << x"
+  eq_def:        "x=y == x << y & y << x" and
 
-  less_trans:    "[| x << y; y << z |] ==> x << z"
+  less_trans:    "[| x << y; y << z |] ==> x << z" and
 
-  less_ext:      "(ALL x. f(x) << g(x)) ==> f << g"
+  less_ext:      "(ALL x. f(x) << g(x)) ==> f << g" and
 
-  mono:          "[| f << g; x << y |] ==> f(x) << g(y)"
+  mono:          "[| f << g; x << y |] ==> f(x) << g(y)" and
+
+  minimal:       "UU << x" and
 
-  minimal:       "UU << x"
+  FIX_eq:        "\<And>f. f(FIX(f)) = FIX(f)"
 
-  FIX_eq:        "f(FIX(f)) = FIX(f)"
-
+axiomatization where
   (** TR **)
 
-  tr_cases:      "p=UU | p=TT | p=FF"
+  tr_cases:      "p=UU | p=TT | p=FF" and
 
-  not_TT_less_FF: "~ TT << FF"
-  not_FF_less_TT: "~ FF << TT"
-  not_TT_less_UU: "~ TT << UU"
-  not_FF_less_UU: "~ FF << UU"
+  not_TT_less_FF: "~ TT << FF" and
+  not_FF_less_TT: "~ FF << TT" and
+  not_TT_less_UU: "~ TT << UU" and
+  not_FF_less_UU: "~ FF << UU" and
 
-  COND_UU:       "UU => x | y  =  UU"
-  COND_TT:       "TT => x | y  =  x"
+  COND_UU:       "UU => x | y  =  UU" and
+  COND_TT:       "TT => x | y  =  x" and
   COND_FF:       "FF => x | y  =  y"
 
+axiomatization where
   (** PAIRS **)
 
-  surj_pairing:  "<FST(z),SND(z)> = z"
+  surj_pairing:  "<FST(z),SND(z)> = z" and
 
-  FST:   "FST(<x,y>) = x"
+  FST:   "FST(<x,y>) = x" and
   SND:   "SND(<x,y>) = y"
 
+axiomatization where
   (*** STRICT SUM ***)
 
-  INL_DEF: "~x=UU ==> ~INL(x)=UU"
-  INR_DEF: "~x=UU ==> ~INR(x)=UU"
+  INL_DEF: "~x=UU ==> ~INL(x)=UU" and
+  INR_DEF: "~x=UU ==> ~INR(x)=UU" and
 
-  INL_STRICT: "INL(UU) = UU"
-  INR_STRICT: "INR(UU) = UU"
+  INL_STRICT: "INL(UU) = UU" and
+  INR_STRICT: "INR(UU) = UU" and
 
-  WHEN_UU:  "WHEN(f,g,UU) = UU"
-  WHEN_INL: "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
-  WHEN_INR: "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"
+  WHEN_UU:  "WHEN(f,g,UU) = UU" and
+  WHEN_INL: "~x=UU ==> WHEN(f,g,INL(x)) = f(x)" and
+  WHEN_INR: "~x=UU ==> WHEN(f,g,INR(x)) = g(x)" and
 
   SUM_EXHAUSTION:
     "z = UU | (EX x. ~x=UU & z = INL(x)) | (EX y. ~y=UU & z = INR(y))"
 
+axiomatization where
   (** VOID **)
 
   void_cases:    "(x::void) = UU"
 
   (** INDUCTION **)
 
+axiomatization where
   induct:        "[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
 
+axiomatization where
   (** Admissibility / Chain Completeness **)
   (* All rules can be found on pages 199--200 of Larry's LCF book.
      Note that "easiness" of types is not taken into account
      because it cannot be expressed schematically; flatness could be. *)
 
-  adm_less:      "adm(%x. t(x) << u(x))"
-  adm_not_less:  "adm(%x.~ t(x) << u)"
-  adm_not_free:  "adm(%x. A)"
-  adm_subst:     "adm(P) ==> adm(%x. P(t(x)))"
-  adm_conj:      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)&Q(x))"
-  adm_disj:      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)|Q(x))"
-  adm_imp:       "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x. P(x)-->Q(x))"
-  adm_all:       "(!!y. adm(P(y))) ==> adm(%x. ALL y. P(y,x))"
+  adm_less:      "\<And>t u. adm(%x. t(x) << u(x))" and
+  adm_not_less:  "\<And>t u. adm(%x.~ t(x) << u)" and
+  adm_not_free:  "\<And>A. adm(%x. A)" and
+  adm_subst:     "\<And>P t. adm(P) ==> adm(%x. P(t(x)))" and
+  adm_conj:      "\<And>P Q. [| adm(P); adm(Q) |] ==> adm(%x. P(x)&Q(x))" and
+  adm_disj:      "\<And>P Q. [| adm(P); adm(Q) |] ==> adm(%x. P(x)|Q(x))" and
+  adm_imp:       "\<And>P Q. [| adm(%x.~P(x)); adm(Q) |] ==> adm(%x. P(x)-->Q(x))" and
+  adm_all:       "\<And>P. (!!y. adm(P(y))) ==> adm(%x. ALL y. P(y,x))"
 
 
 lemma eq_imp_less1: "x = y ==> x << y"
--- a/src/LCF/ex/Ex1.thy	Mon Mar 19 21:25:15 2012 +0100
+++ b/src/LCF/ex/Ex1.thy	Mon Mar 19 21:49:52 2012 +0100
@@ -4,15 +4,14 @@
 imports LCF
 begin
 
-consts
-  P     :: "'a => tr"
-  G     :: "'a => 'a"
-  H     :: "'a => 'a"
+axiomatization
+  P     :: "'a => tr" and
+  G     :: "'a => 'a" and
+  H     :: "'a => 'a" and
   K     :: "('a => 'a) => ('a => 'a)"
-
-axioms
-  P_strict:     "P(UU) = UU"
-  K:            "K = (%h x. P(x) => x | h(h(G(x))))"
+where
+  P_strict:     "P(UU) = UU" and
+  K:            "K = (%h x. P(x) => x | h(h(G(x))))" and
   H:            "H = FIX(K)"
 
 
@@ -30,11 +29,11 @@
 
 lemma H_idemp_lemma: "ALL x. H(FIX(K,x)) = FIX(K,x)"
   apply (tactic {* induct_tac @{context} "K" 1 *})
-  apply (simp (no_asm))
-  apply (simp (no_asm) split: COND_cases_iff)
+  apply simp
+  apply (simp split: COND_cases_iff)
   apply (intro strip)
   apply (subst H_unfold)
-  apply (simp (no_asm_simp))
+  apply simp
   done
 
 lemma H_idemp: "ALL x. H(H(x)) = H(x)"
--- a/src/LCF/ex/Ex2.thy	Mon Mar 19 21:25:15 2012 +0100
+++ b/src/LCF/ex/Ex2.thy	Mon Mar 19 21:49:52 2012 +0100
@@ -4,16 +4,15 @@
 imports LCF
 begin
 
-consts
-  P     :: "'a => tr"
-  F     :: "'a => 'a"
-  G     :: "'a => 'a"
-  H     :: "'a => 'b => 'b"
+axiomatization
+  P     :: "'a => tr" and
+  F     :: "'b => 'b" and
+  G     :: "'a => 'a" and
+  H     :: "'a => 'b => 'b" and
   K     :: "('a => 'b => 'b) => ('a => 'b => 'b)"
-
-axioms
-  F_strict:     "F(UU) = UU"
-  K:            "K = (%h x y. P(x) => y | F(h(G(x),y)))"
+where
+  F_strict:     "F(UU) = UU" and
+  K:            "K = (%h x y. P(x) => y | F(h(G(x),y)))" and
   H:            "H = FIX(K)"
 
 declare F_strict [simp] K [simp]
@@ -21,8 +20,8 @@
 lemma example: "ALL x. F(H(x::'a,y::'b)) = H(x,F(y))"
   apply (simplesubst H)
   apply (tactic {* induct_tac @{context} "K:: ('a=>'b=>'b) => ('a=>'b=>'b)" 1 *})
-  apply (simp (no_asm))
-  apply (simp (no_asm_simp) split: COND_cases_iff)
+  apply simp
+  apply (simp split: COND_cases_iff)
   done
 
 end
--- a/src/LCF/ex/Ex3.thy	Mon Mar 19 21:25:15 2012 +0100
+++ b/src/LCF/ex/Ex3.thy	Mon Mar 19 21:49:52 2012 +0100
@@ -4,20 +4,19 @@
 imports LCF
 begin
 
-consts
-  s     :: "'a => 'a"
+axiomatization
+  s     :: "'a => 'a" and
   p     :: "'a => 'a => 'a"
-
-axioms
-  p_strict:     "p(UU) = UU"
+where
+  p_strict:     "p(UU) = UU" and
   p_s:          "p(s(x),y) = s(p(x,y))"
 
 declare p_strict [simp] p_s [simp]
 
 lemma example: "p(FIX(s),y) = FIX(s)"
   apply (tactic {* induct_tac @{context} "s" 1 *})
-  apply (simp (no_asm))
-  apply (simp (no_asm))
+  apply simp
+  apply simp
   done
 
 end