Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
with Basis Library structure Int
--- a/src/FOL/ex/If.ML Fri Feb 07 17:15:30 1997 +0100
+++ b/src/FOL/ex/If.ML Mon Feb 10 12:31:54 1997 +0100
@@ -7,7 +7,7 @@
*)
open If;
-open Cla; (*in case structure Int is open!*)
+open Cla; (*in case structure IntPr is open!*)
val prems = goalw If.thy [if_def]
"[| P ==> Q; ~P ==> R |] ==> if(P,Q,R)";
--- a/src/FOL/ex/ROOT.ML Fri Feb 07 17:15:30 1997 +0100
+++ b/src/FOL/ex/ROOT.ML Mon Feb 10 12:31:54 1997 +0100
@@ -20,7 +20,7 @@
writeln"\n** Intuitionistic examples **\n";
time_use "int.ML";
-val thy = IFOL.thy and tac = Int.fast_tac 1;
+val thy = IFOL.thy and tac = IntPr.fast_tac 1;
time_use "prop.ML";
time_use "quant.ML";
--- a/src/FOL/ex/cla.ML Fri Feb 07 17:15:30 1997 +0100
+++ b/src/FOL/ex/cla.ML Mon Feb 10 12:31:54 1997 +0100
@@ -8,7 +8,7 @@
writeln"File FOL/ex/cla.ML";
-open Cla; (*in case structure Int is open!*)
+open Cla; (*in case structure IntPr is open!*)
goal FOL.thy "(P --> Q | R) --> (P-->Q) | (P-->R)";
by (Fast_tac 1);
--- a/src/FOL/ex/int.ML Fri Feb 07 17:15:30 1997 +0100
+++ b/src/FOL/ex/int.ML Mon Feb 10 12:31:54 1997 +0100
@@ -6,13 +6,13 @@
Intuitionistic First-Order Logic
Single-step commands:
-by (Int.step_tac 1);
+by (IntPr.step_tac 1);
by (biresolve_tac safe_brls 1);
by (biresolve_tac haz_brls 1);
by (assume_tac 1);
-by (Int.safe_tac 1);
-by (Int.mp_tac 1);
-by (Int.fast_tac 1);
+by (IntPr.safe_tac 1);
+by (IntPr.mp_tac 1);
+by (IntPr.fast_tac 1);
*)
writeln"File FOL/ex/int.";
@@ -30,40 +30,40 @@
intuitionstically equivalent to P. [Andy Pitts] *)
goal IFOL.thy "~~(P&Q) <-> ~~P & ~~Q";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
(* ~~ does NOT distribute over | *)
goal IFOL.thy "~~(P-->Q) <-> (~~P --> ~~Q)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
goal IFOL.thy "~~~P <-> ~P";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
goal IFOL.thy "~~((P --> Q | R) --> (P-->Q) | (P-->R))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
goal IFOL.thy "(P<->Q) <-> (Q<->P)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Lemmas for the propositional double-negation translation";
goal IFOL.thy "P --> ~~P";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
goal IFOL.thy "~~(~~P --> P)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
goal IFOL.thy "~~P & ~~(P --> Q) --> ~~Q";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
@@ -71,12 +71,12 @@
(*The attempt to prove them terminates quickly!*)
goal IFOL.thy "((P-->Q) --> P) --> P";
-by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected";
+by (IntPr.fast_tac 1) handle ERROR => writeln"Failed, as expected";
(*Check that subgoals remain: proof failed.*)
getgoal 1;
goal IFOL.thy "(P&Q-->R) --> (P-->R) | (Q-->R)";
-by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected";
+by (IntPr.fast_tac 1) handle ERROR => writeln"Failed, as expected";
getgoal 1;
@@ -84,105 +84,105 @@
writeln"Problem ~~1";
goal IFOL.thy "~~((P-->Q) <-> (~Q --> ~P))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
(*5 secs*)
writeln"Problem ~~2";
goal IFOL.thy "~~(~~P <-> P)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
(*1 secs*)
writeln"Problem 3";
goal IFOL.thy "~(P-->Q) --> (Q-->P)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem ~~4";
goal IFOL.thy "~~((~P-->Q) <-> (~Q --> P))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
(*9 secs*)
writeln"Problem ~~5";
goal IFOL.thy "~~((P|Q-->P|R) --> P|(Q-->R))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
(*10 secs*)
writeln"Problem ~~6";
goal IFOL.thy "~~(P | ~P)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem ~~7";
goal IFOL.thy "~~(P | ~~~P)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem ~~8. Peirce's law";
goal IFOL.thy "~~(((P-->Q) --> P) --> P)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 9";
goal IFOL.thy "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
(*9 secs*)
writeln"Problem 10";
goal IFOL.thy "(Q-->R) --> (R-->P&Q) --> (P-->(Q|R)) --> (P<->Q)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"11. Proved in each direction (incorrectly, says Pelletier!!) ";
goal IFOL.thy "P<->P";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
writeln"Problem ~~12. Dijkstra's law ";
goal IFOL.thy "~~(((P <-> Q) <-> R) <-> (P <-> (Q <-> R)))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
goal IFOL.thy "((P <-> Q) <-> R) --> ~~(P <-> (Q <-> R))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 13. Distributive law";
goal IFOL.thy "P | (Q & R) <-> (P | Q) & (P | R)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem ~~14";
goal IFOL.thy "~~((P <-> Q) <-> ((Q | ~P) & (~Q|P)))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem ~~15";
goal IFOL.thy "~~((P --> Q) <-> (~P | Q))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem ~~16";
goal IFOL.thy "~~((P-->Q) | (Q-->P))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem ~~17";
goal IFOL.thy
"~~(((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S)))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
(*Dijkstra's "Golden Rule"*)
goal IFOL.thy "(P&Q) <-> P <-> Q <-> (P|Q)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
@@ -192,23 +192,23 @@
writeln"The converse is classical in the following implications...";
goal IFOL.thy "(EX x.P(x)-->Q) --> (ALL x.P(x)) --> Q";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
goal IFOL.thy "((ALL x.P(x))-->Q) --> ~ (ALL x. P(x) & ~Q)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
goal IFOL.thy "((ALL x. ~P(x))-->Q) --> ~ (ALL x. ~ (P(x)|Q))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
goal IFOL.thy "(ALL x.P(x)) | Q --> (ALL x. P(x) | Q)";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
goal IFOL.thy "(EX x. P --> Q(x)) --> (P --> (EX x. Q(x)))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
@@ -218,24 +218,24 @@
(*The attempt to prove them terminates quickly!*)
goal IFOL.thy "((ALL x.P(x))-->Q) --> (EX x.P(x)-->Q)";
-by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected";
+by (IntPr.fast_tac 1) handle ERROR => writeln"Failed, as expected";
getgoal 1;
goal IFOL.thy "(P --> (EX x.Q(x))) --> (EX x. P-->Q(x))";
-by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected";
+by (IntPr.fast_tac 1) handle ERROR => writeln"Failed, as expected";
getgoal 1;
goal IFOL.thy "(ALL x. P(x) | Q) --> ((ALL x.P(x)) | Q)";
-by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected";
+by (IntPr.fast_tac 1) handle ERROR => writeln"Failed, as expected";
getgoal 1;
goal IFOL.thy "(ALL x. ~~P(x)) --> ~~(ALL x. P(x))";
-by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected";
+by (IntPr.fast_tac 1) handle ERROR => writeln"Failed, as expected";
getgoal 1;
(*Classically but not intuitionistically valid. Proved by a bug in 1986!*)
goal IFOL.thy "EX x. Q(x) --> (ALL x. Q(x))";
-by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected";
+by (IntPr.fast_tac 1) handle ERROR => writeln"Failed, as expected";
getgoal 1;
@@ -255,7 +255,7 @@
writeln"Problem 20";
goal IFOL.thy "(ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w))) \
\ --> (EX x y. P(x) & Q(y)) --> (EX z. R(z))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 21";
@@ -264,12 +264,12 @@
writeln"Problem 22";
goal IFOL.thy "(ALL x. P <-> Q(x)) --> (P <-> (ALL x. Q(x)))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem ~~23";
goal IFOL.thy "~~ ((ALL x. P | Q(x)) <-> (P | (ALL x. Q(x))))";
-by (Int.best_tac 1);
+by (IntPr.best_tac 1);
result();
writeln"Problem 24";
@@ -277,10 +277,10 @@
\ (~(EX x.P(x)) --> (EX x.Q(x))) & (ALL x. Q(x)|R(x) --> S(x)) \
\ --> ~~(EX x. P(x)&R(x))";
(*Not clear why fast_tac, best_tac, ASTAR and ITER_DEEPEN all take forever*)
-by Int.safe_tac;
+by IntPr.safe_tac;
by (etac impE 1);
-by (Int.fast_tac 1);
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 25";
@@ -289,7 +289,7 @@
\ (ALL x. P(x) --> (M(x) & L(x))) & \
\ ((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x))) \
\ --> (EX x. Q(x)&P(x))";
-by (Int.best_tac 1);
+by (IntPr.best_tac 1);
result();
writeln"Problem ~~26";
@@ -304,7 +304,7 @@
\ (ALL x. M(x) & L(x) --> P(x)) & \
\ ((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x))) \
\ --> (ALL x. M(x) --> ~L(x))";
-by (Int.fast_tac 1); (*21 secs*)
+by (IntPr.fast_tac 1); (*21 secs*)
result();
writeln"Problem ~~28. AMENDED";
@@ -312,21 +312,21 @@
\ (~~(ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x))) & \
\ (~~(EX x.S(x)) --> (ALL x. L(x) --> M(x))) \
\ --> (ALL x. P(x) & L(x) --> M(x))";
-by (Int.fast_tac 1); (*48 secs*)
+by (IntPr.fast_tac 1); (*48 secs*)
result();
writeln"Problem 29. Essentially the same as Principia Mathematica *11.71";
goal IFOL.thy "(EX x. P(x)) & (EX y. Q(y)) \
\ --> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y)) <-> \
\ (ALL x y. P(x) & Q(y) --> R(x) & S(y)))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem ~~30";
goal IFOL.thy "(ALL x. (P(x) | Q(x)) --> ~ R(x)) & \
\ (ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x)) \
\ --> (ALL x. ~~S(x))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 31";
@@ -334,7 +334,7 @@
\ (EX x. L(x) & P(x)) & \
\ (ALL x. ~ R(x) --> M(x)) \
\ --> (EX x. L(x) & M(x))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 32";
@@ -342,13 +342,13 @@
\ (ALL x. S(x) & R(x) --> L(x)) & \
\ (ALL x. M(x) --> R(x)) \
\ --> (ALL x. P(x) & M(x) --> L(x))";
-by (Int.best_tac 1);
+by (IntPr.best_tac 1);
result();
writeln"Problem ~~33";
goal IFOL.thy "(ALL x. ~~(P(a) & (P(x)-->P(b))-->P(c))) <-> \
\ (ALL x. ~~((~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c))))";
-by (Int.best_tac 1);
+by (IntPr.best_tac 1);
result();
@@ -358,7 +358,7 @@
\ (ALL x. EX y. G(x,y)) & \
\ (ALL x y. J(x,y) | G(x,y) --> (ALL z. J(y,z) | G(y,z) --> H(x,z))) \
\ --> (ALL x. EX y. H(x,y))";
-by (Int.fast_tac 1); (*35 secs*)
+by (IntPr.fast_tac 1); (*35 secs*)
result();
writeln"Problem 37";
@@ -372,13 +372,13 @@
writeln"Problem 39";
goal IFOL.thy "~ (EX x. ALL y. F(y,x) <-> ~F(y,y))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 40. AMENDED";
goal IFOL.thy "(EX y. ALL x. F(x,y) <-> F(x,x)) --> \
\ ~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 44";
@@ -386,19 +386,19 @@
\ (EX y. g(y) & h(x,y) & (EX y. g(y) & ~ h(x,y)))) & \
\ (EX x. j(x) & (ALL y. g(y) --> h(x,y))) \
\ --> (EX x. j(x) & ~f(x))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 48";
goal IFOL.thy "(a=b | c=d) & (a=c | b=d) --> a=d | b=c";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 51";
goal IFOL.thy
"(EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> \
\ (EX z. ALL x. EX w. (ALL y. P(x,y) <-> y=w) <-> x=z)";
-by (Int.best_tac 1); (*34 seconds*)
+by (IntPr.best_tac 1); (*34 seconds*)
result();
writeln"Problem 52";
@@ -406,26 +406,26 @@
goal IFOL.thy
"(EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> \
\ (EX w. ALL y. EX z. (ALL x. P(x,y) <-> x=z) <-> y=w)";
-by (Int.best_tac 1); (*34 seconds*)
+by (IntPr.best_tac 1); (*34 seconds*)
result();
writeln"Problem 56";
goal IFOL.thy
"(ALL x. (EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 57";
goal IFOL.thy
"P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) & \
\ (ALL x y z. P(x,y) & P(y,z) --> P(x,z)) --> P(f(a,b), f(a,c))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Problem 60";
goal IFOL.thy
"ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))";
-by (Int.fast_tac 1);
+by (IntPr.fast_tac 1);
result();
writeln"Reached end of file.";
--- a/src/FOL/intprover.ML Fri Feb 07 17:15:30 1997 +0100
+++ b/src/FOL/intprover.ML Mon Feb 10 12:31:54 1997 +0100
@@ -5,7 +5,7 @@
A naive prover for intuitionistic logic
-BEWARE OF NAME CLASHES WITH CLASSICAL TACTICS -- use Int.fast_tac ...
+BEWARE OF NAME CLASHES WITH CLASSICAL TACTICS -- use IntPr.fast_tac ...
Completeness (for propositional logic) is proved in
@@ -29,7 +29,7 @@
end;
-structure Int : INT_PROVER =
+structure IntPr : INT_PROVER =
struct
(*Negation is treated as a primitive symbol, with rules notI (introduction),
--- a/src/FOL/simpdata.ML Fri Feb 07 17:15:30 1997 +0100
+++ b/src/FOL/simpdata.ML Mon Feb 10 12:31:54 1997 +0100
@@ -12,7 +12,7 @@
(writeln s;
prove_goal IFOL.thy s
(fn prems => [ (cut_facts_tac prems 1),
- (Int.fast_tac 1) ]));
+ (IntPr.fast_tac 1) ]));
val conj_simps = map int_prove_fun
["P & True <-> P", "True & P <-> P",
@@ -123,7 +123,7 @@
fun int_prove nm thm = qed_goal nm IFOL.thy thm
(fn prems => [ (cut_facts_tac prems 1),
- (Int.fast_tac 1) ]);
+ (IntPr.fast_tac 1) ]);
fun prove nm thm = qed_goal nm FOL.thy thm (fn _ => [fast_tac FOL_cs 1]);