added Landau theory
authorhaftmann
Tue, 02 Jun 2009 18:26:01 +0200
changeset 31381 b3a785a69538
parent 31380 f25536c0bb80
child 31382 5c563b968832
added Landau theory
src/HOL/ex/Landau.thy
src/HOL/ex/ROOT.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Landau.thy	Tue Jun 02 18:26:01 2009 +0200
@@ -0,0 +1,226 @@
+
+(* Author: Florian Haftmann, TU Muenchen *)
+
+header {* Comparing growth of functions on natural numbers by a preorder relation *}
+
+theory Landau
+imports Main Preorder
+begin
+
+text {*
+  We establish a preorder releation @{text "\<lesssim>"} on functions
+  from @{text "\<nat>"} to @{text "\<nat>"} such that @{text "f \<lesssim> g \<longleftrightarrow> f \<in> O(g)"}.
+*}
+
+subsection {* Auxiliary *}
+
+lemma Ex_All_bounded:
+  fixes n :: nat
+  assumes "\<exists>n. \<forall>m\<ge>n. P m"
+  obtains m where "m \<ge> n" and "P m"
+proof -
+  from assms obtain q where m_q: "\<forall>m\<ge>q. P m" ..
+  let ?m = "max q n"
+  have "?m \<ge> n" by auto
+  moreover from m_q have "P ?m" by auto
+  ultimately show thesis ..
+qed
+    
+
+subsection {* The @{text "\<lesssim>"} relation *}
+
+definition less_eq_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<lesssim>" 50) where
+  "f \<lesssim> g \<longleftrightarrow> (\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m)"
+
+lemma less_eq_fun_intro:
+  assumes "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m"
+  shows "f \<lesssim> g"
+  unfolding less_eq_fun_def by (rule assms)
+
+lemma less_eq_fun_not_intro:
+  assumes "\<And>c n. \<exists>m\<ge>n. Suc c * g m < f m"
+  shows "\<not> f \<lesssim> g"
+  using assms unfolding less_eq_fun_def linorder_not_le [symmetric]
+  by blast
+
+lemma less_eq_fun_elim:
+  assumes "f \<lesssim> g"
+  obtains n c where "\<And>m. m \<ge> n \<Longrightarrow> f m \<le> Suc c * g m"
+  using assms unfolding less_eq_fun_def by blast
+
+lemma less_eq_fun_not_elim:
+  assumes "\<not> f \<lesssim> g"
+  obtains m where "m \<ge> n" and "Suc c * g m < f m"
+  using assms unfolding less_eq_fun_def linorder_not_le [symmetric]
+  by blast
+
+lemma less_eq_fun_refl:
+  "f \<lesssim> f"
+proof (rule less_eq_fun_intro)
+  have "\<exists>n. \<forall>m\<ge>n. f m \<le> Suc 0 * f m" by auto
+  then show "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * f m" by blast
+qed
+
+lemma less_eq_fun_trans:
+  assumes f_g: "f \<lesssim> g" and g_h: "g \<lesssim> h"
+  shows f_h: "f \<lesssim> h"
+proof -
+  from f_g obtain n\<^isub>1 c\<^isub>1
+    where P1: "\<And>m. m \<ge> n\<^isub>1 \<Longrightarrow> f m \<le> Suc c\<^isub>1 * g m"
+  by (erule less_eq_fun_elim)
+  moreover from g_h obtain n\<^isub>2 c\<^isub>2
+    where P2: "\<And>m. m \<ge> n\<^isub>2 \<Longrightarrow> g m \<le> Suc c\<^isub>2 * h m"
+  by (erule less_eq_fun_elim)
+  ultimately have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> Suc c\<^isub>1 * g m \<and> g m \<le> Suc c\<^isub>2 * h m"
+  by auto
+  moreover {
+    fix k l r :: nat
+    assume k_l: "k \<le> Suc c\<^isub>1 * l" and l_r: "l \<le> Suc c\<^isub>2 * r"
+    from l_r have "Suc c\<^isub>1 * l \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * r"
+    by (auto simp add: mult_le_cancel_left mult_assoc simp del: times_nat.simps mult_Suc_right)
+    with k_l have "k \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * r" by (rule preorder_class.order_trans)
+  }
+  ultimately have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * h m" by auto
+  then have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> Suc ((Suc c\<^isub>1 * Suc c\<^isub>2) - 1) * h m" by auto
+  then show ?thesis unfolding less_eq_fun_def by blast
+qed
+
+
+subsection {* The @{text "\<approx>"} relation, the equivalence relation induced by @{text "\<lesssim>"} *}
+
+definition equiv_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<cong>" 50) where
+  "f \<cong> g \<longleftrightarrow> (\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m)"
+
+lemma equiv_fun_intro:
+  assumes "\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
+  shows "f \<cong> g"
+  unfolding equiv_fun_def by (rule assms)
+
+lemma equiv_fun_not_intro:
+  assumes "\<And>d c n. \<exists>m\<ge>n. Suc d * f m < g m \<or> Suc c * g m < f m"
+  shows "\<not> f \<cong> g"
+  unfolding equiv_fun_def
+  by (auto simp add: assms linorder_not_le
+    simp del: times_nat.simps mult_Suc_right)
+
+lemma equiv_fun_elim:
+  assumes "f \<cong> g"
+  obtains n d c
+    where "\<And>m. m \<ge> n \<Longrightarrow> g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
+  using assms unfolding equiv_fun_def by blast
+
+lemma equiv_fun_not_elim:
+  fixes n d c
+  assumes "\<not> f \<cong> g"
+  obtains m where "m \<ge> n"
+    and "Suc d * f m < g m \<or> Suc c * g m < f m"
+  using assms unfolding equiv_fun_def
+  by (auto simp add: linorder_not_le, blast)
+
+lemma equiv_fun_less_eq_fun:
+  "f \<cong> g \<longleftrightarrow> f \<lesssim> g \<and> g \<lesssim> f"
+proof
+  assume x_y: "f \<cong> g"
+  then obtain n d c
+    where interv: "\<And>m. m \<ge> n \<Longrightarrow> g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
+  by (erule equiv_fun_elim)
+  from interv have "\<exists>c n. \<forall>m \<ge> n. f m \<le> Suc c * g m" by auto
+  then have f_g: "f \<lesssim> g" by (rule less_eq_fun_intro)
+  from interv have "\<exists>d n. \<forall>m \<ge> n. g m \<le> Suc d * f m" by auto
+  then have g_f: "g \<lesssim> f" by (rule less_eq_fun_intro)
+  from f_g g_f show "f \<lesssim> g \<and> g \<lesssim> f" by auto
+next
+  assume assm: "f \<lesssim> g \<and> g \<lesssim> f"
+  from assm less_eq_fun_elim obtain c n\<^isub>1 where
+    bound1: "\<And>m. m \<ge> n\<^isub>1 \<Longrightarrow> f m \<le> Suc c * g m" 
+    by blast
+  from assm less_eq_fun_elim obtain d n\<^isub>2 where
+    bound2: "\<And>m. m \<ge> n\<^isub>2 \<Longrightarrow> g m \<le> Suc d * f m"
+    by blast
+  from bound2 have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> g m \<le> Suc d * f m"
+  by auto
+  with bound1
+    have "\<forall>m \<ge> max n\<^isub>1 n\<^isub>2. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
+    by auto
+  then
+    have "\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
+    by blast
+  then show "f \<cong> g" by (rule equiv_fun_intro)
+qed
+
+subsection {* The @{text "\<prec>"} relation, the strict part of @{text "\<lesssim>"} *}
+
+definition less_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<prec>" 50) where
+  "f \<prec> g \<longleftrightarrow> f \<lesssim> g \<and> \<not> g \<lesssim> f"
+
+lemma less_fun_intro:
+  assumes "\<And>c. \<exists>n. \<forall>m\<ge>n. Suc c * f m < g m"
+  shows "f \<prec> g"
+proof (unfold less_fun_def, rule conjI)
+  from assms obtain n
+    where "\<forall>m\<ge>n. Suc 0 * f m < g m" ..
+  then have "\<forall>m\<ge>n. f m \<le> Suc 0 * g m" by auto
+  then have "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m" by blast
+  then show "f \<lesssim> g" by (rule less_eq_fun_intro)
+next
+  show "\<not> g \<lesssim> f"
+  proof (rule less_eq_fun_not_intro)
+    fix c n :: nat
+    from assms have "\<exists>n. \<forall>m\<ge>n. Suc c * f m < g m" by blast
+    then obtain m where "m \<ge> n" and "Suc c * f m < g m"
+      by (rule Ex_All_bounded)
+    then show "\<exists>m\<ge>n. Suc c * f m < g m" by blast
+  qed
+qed
+
+text {*
+  We would like to show (or refute) that @{text "f \<prec> g \<longleftrightarrow> f \<in> o(g)"},
+  i.e.~@{prop "f \<prec> g \<longleftrightarrow> (\<forall>c. \<exists>n. \<forall>m>n. f m < Suc c * g m)"} but did not manage to
+  do so.
+*}
+
+
+subsection {* Assert that @{text "\<lesssim>"} is ineed a preorder *}
+
+interpretation fun_order: preorder_equiv less_eq_fun less_fun
+  where "preorder_equiv.equiv less_eq_fun = equiv_fun"
+proof -
+  interpret preorder_equiv less_eq_fun less_fun proof
+  qed (simp_all add: less_fun_def less_eq_fun_refl, auto intro: less_eq_fun_trans)
+  show "preorder_equiv less_eq_fun less_fun" using preorder_equiv_axioms .
+  show "preorder_equiv.equiv less_eq_fun = equiv_fun"
+    by (simp add: expand_fun_eq equiv_def equiv_fun_less_eq_fun)
+qed
+
+
+subsection {* Simple examples *}
+
+lemma "(\<lambda>_. n) \<lesssim> (\<lambda>n. n)"
+proof (rule less_eq_fun_intro)
+  show "\<exists>c q. \<forall>m\<ge>q. n \<le> Suc c * m"
+  proof -
+    have "\<forall>m\<ge>n. n \<le> Suc 0 * m" by simp
+    then show ?thesis by blast
+  qed
+qed
+
+lemma "(\<lambda>n. n) \<cong> (\<lambda>n. Suc k * n)"
+proof (rule equiv_fun_intro)
+  show "\<exists>d c n. \<forall>m\<ge>n. Suc k * m \<le> Suc d * m \<and> m \<le> Suc c * (Suc k * m)"
+  proof -
+    have "\<forall>m\<ge>n. Suc k * m \<le> Suc k * m \<and> m \<le> Suc c * (Suc k * m)" by simp
+    then show ?thesis by blast
+  qed
+qed  
+
+lemma "(\<lambda>_. n) \<prec> (\<lambda>n. n)"
+proof (rule less_fun_intro)
+  fix c
+  show "\<exists>q. \<forall>m\<ge>q. Suc c * n < m"
+  proof -
+    have "\<forall>m\<ge>Suc c * n + 1. Suc c * n < m" by simp
+    then show ?thesis by blast
+  qed
+qed
+
+end
--- a/src/HOL/ex/ROOT.ML	Tue Jun 02 16:23:43 2009 +0200
+++ b/src/HOL/ex/ROOT.ML	Tue Jun 02 18:26:01 2009 +0200
@@ -6,7 +6,6 @@
 no_document use_thys [
   "State_Monad",
   "Efficient_Nat_examples",
-  "ExecutableContent",
   "FuncSet",
   "Word",
   "Eval_Examples",
@@ -67,7 +66,8 @@
   "HarmonicSeries",
   "Refute_Examples",
   "Quickcheck_Examples",
-  "Formal_Power_Series_Examples"
+  "Formal_Power_Series_Examples",
+  "Landau"
 ];
 
 setmp Proofterm.proofs 2 use_thy "Hilbert_Classical";