--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Landau.thy Tue Jun 02 18:26:01 2009 +0200
@@ -0,0 +1,226 @@
+
+(* Author: Florian Haftmann, TU Muenchen *)
+
+header {* Comparing growth of functions on natural numbers by a preorder relation *}
+
+theory Landau
+imports Main Preorder
+begin
+
+text {*
+ We establish a preorder releation @{text "\<lesssim>"} on functions
+ from @{text "\<nat>"} to @{text "\<nat>"} such that @{text "f \<lesssim> g \<longleftrightarrow> f \<in> O(g)"}.
+*}
+
+subsection {* Auxiliary *}
+
+lemma Ex_All_bounded:
+ fixes n :: nat
+ assumes "\<exists>n. \<forall>m\<ge>n. P m"
+ obtains m where "m \<ge> n" and "P m"
+proof -
+ from assms obtain q where m_q: "\<forall>m\<ge>q. P m" ..
+ let ?m = "max q n"
+ have "?m \<ge> n" by auto
+ moreover from m_q have "P ?m" by auto
+ ultimately show thesis ..
+qed
+
+
+subsection {* The @{text "\<lesssim>"} relation *}
+
+definition less_eq_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<lesssim>" 50) where
+ "f \<lesssim> g \<longleftrightarrow> (\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m)"
+
+lemma less_eq_fun_intro:
+ assumes "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m"
+ shows "f \<lesssim> g"
+ unfolding less_eq_fun_def by (rule assms)
+
+lemma less_eq_fun_not_intro:
+ assumes "\<And>c n. \<exists>m\<ge>n. Suc c * g m < f m"
+ shows "\<not> f \<lesssim> g"
+ using assms unfolding less_eq_fun_def linorder_not_le [symmetric]
+ by blast
+
+lemma less_eq_fun_elim:
+ assumes "f \<lesssim> g"
+ obtains n c where "\<And>m. m \<ge> n \<Longrightarrow> f m \<le> Suc c * g m"
+ using assms unfolding less_eq_fun_def by blast
+
+lemma less_eq_fun_not_elim:
+ assumes "\<not> f \<lesssim> g"
+ obtains m where "m \<ge> n" and "Suc c * g m < f m"
+ using assms unfolding less_eq_fun_def linorder_not_le [symmetric]
+ by blast
+
+lemma less_eq_fun_refl:
+ "f \<lesssim> f"
+proof (rule less_eq_fun_intro)
+ have "\<exists>n. \<forall>m\<ge>n. f m \<le> Suc 0 * f m" by auto
+ then show "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * f m" by blast
+qed
+
+lemma less_eq_fun_trans:
+ assumes f_g: "f \<lesssim> g" and g_h: "g \<lesssim> h"
+ shows f_h: "f \<lesssim> h"
+proof -
+ from f_g obtain n\<^isub>1 c\<^isub>1
+ where P1: "\<And>m. m \<ge> n\<^isub>1 \<Longrightarrow> f m \<le> Suc c\<^isub>1 * g m"
+ by (erule less_eq_fun_elim)
+ moreover from g_h obtain n\<^isub>2 c\<^isub>2
+ where P2: "\<And>m. m \<ge> n\<^isub>2 \<Longrightarrow> g m \<le> Suc c\<^isub>2 * h m"
+ by (erule less_eq_fun_elim)
+ ultimately have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> Suc c\<^isub>1 * g m \<and> g m \<le> Suc c\<^isub>2 * h m"
+ by auto
+ moreover {
+ fix k l r :: nat
+ assume k_l: "k \<le> Suc c\<^isub>1 * l" and l_r: "l \<le> Suc c\<^isub>2 * r"
+ from l_r have "Suc c\<^isub>1 * l \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * r"
+ by (auto simp add: mult_le_cancel_left mult_assoc simp del: times_nat.simps mult_Suc_right)
+ with k_l have "k \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * r" by (rule preorder_class.order_trans)
+ }
+ ultimately have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * h m" by auto
+ then have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> Suc ((Suc c\<^isub>1 * Suc c\<^isub>2) - 1) * h m" by auto
+ then show ?thesis unfolding less_eq_fun_def by blast
+qed
+
+
+subsection {* The @{text "\<approx>"} relation, the equivalence relation induced by @{text "\<lesssim>"} *}
+
+definition equiv_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<cong>" 50) where
+ "f \<cong> g \<longleftrightarrow> (\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m)"
+
+lemma equiv_fun_intro:
+ assumes "\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
+ shows "f \<cong> g"
+ unfolding equiv_fun_def by (rule assms)
+
+lemma equiv_fun_not_intro:
+ assumes "\<And>d c n. \<exists>m\<ge>n. Suc d * f m < g m \<or> Suc c * g m < f m"
+ shows "\<not> f \<cong> g"
+ unfolding equiv_fun_def
+ by (auto simp add: assms linorder_not_le
+ simp del: times_nat.simps mult_Suc_right)
+
+lemma equiv_fun_elim:
+ assumes "f \<cong> g"
+ obtains n d c
+ where "\<And>m. m \<ge> n \<Longrightarrow> g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
+ using assms unfolding equiv_fun_def by blast
+
+lemma equiv_fun_not_elim:
+ fixes n d c
+ assumes "\<not> f \<cong> g"
+ obtains m where "m \<ge> n"
+ and "Suc d * f m < g m \<or> Suc c * g m < f m"
+ using assms unfolding equiv_fun_def
+ by (auto simp add: linorder_not_le, blast)
+
+lemma equiv_fun_less_eq_fun:
+ "f \<cong> g \<longleftrightarrow> f \<lesssim> g \<and> g \<lesssim> f"
+proof
+ assume x_y: "f \<cong> g"
+ then obtain n d c
+ where interv: "\<And>m. m \<ge> n \<Longrightarrow> g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
+ by (erule equiv_fun_elim)
+ from interv have "\<exists>c n. \<forall>m \<ge> n. f m \<le> Suc c * g m" by auto
+ then have f_g: "f \<lesssim> g" by (rule less_eq_fun_intro)
+ from interv have "\<exists>d n. \<forall>m \<ge> n. g m \<le> Suc d * f m" by auto
+ then have g_f: "g \<lesssim> f" by (rule less_eq_fun_intro)
+ from f_g g_f show "f \<lesssim> g \<and> g \<lesssim> f" by auto
+next
+ assume assm: "f \<lesssim> g \<and> g \<lesssim> f"
+ from assm less_eq_fun_elim obtain c n\<^isub>1 where
+ bound1: "\<And>m. m \<ge> n\<^isub>1 \<Longrightarrow> f m \<le> Suc c * g m"
+ by blast
+ from assm less_eq_fun_elim obtain d n\<^isub>2 where
+ bound2: "\<And>m. m \<ge> n\<^isub>2 \<Longrightarrow> g m \<le> Suc d * f m"
+ by blast
+ from bound2 have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> g m \<le> Suc d * f m"
+ by auto
+ with bound1
+ have "\<forall>m \<ge> max n\<^isub>1 n\<^isub>2. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
+ by auto
+ then
+ have "\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
+ by blast
+ then show "f \<cong> g" by (rule equiv_fun_intro)
+qed
+
+subsection {* The @{text "\<prec>"} relation, the strict part of @{text "\<lesssim>"} *}
+
+definition less_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<prec>" 50) where
+ "f \<prec> g \<longleftrightarrow> f \<lesssim> g \<and> \<not> g \<lesssim> f"
+
+lemma less_fun_intro:
+ assumes "\<And>c. \<exists>n. \<forall>m\<ge>n. Suc c * f m < g m"
+ shows "f \<prec> g"
+proof (unfold less_fun_def, rule conjI)
+ from assms obtain n
+ where "\<forall>m\<ge>n. Suc 0 * f m < g m" ..
+ then have "\<forall>m\<ge>n. f m \<le> Suc 0 * g m" by auto
+ then have "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m" by blast
+ then show "f \<lesssim> g" by (rule less_eq_fun_intro)
+next
+ show "\<not> g \<lesssim> f"
+ proof (rule less_eq_fun_not_intro)
+ fix c n :: nat
+ from assms have "\<exists>n. \<forall>m\<ge>n. Suc c * f m < g m" by blast
+ then obtain m where "m \<ge> n" and "Suc c * f m < g m"
+ by (rule Ex_All_bounded)
+ then show "\<exists>m\<ge>n. Suc c * f m < g m" by blast
+ qed
+qed
+
+text {*
+ We would like to show (or refute) that @{text "f \<prec> g \<longleftrightarrow> f \<in> o(g)"},
+ i.e.~@{prop "f \<prec> g \<longleftrightarrow> (\<forall>c. \<exists>n. \<forall>m>n. f m < Suc c * g m)"} but did not manage to
+ do so.
+*}
+
+
+subsection {* Assert that @{text "\<lesssim>"} is ineed a preorder *}
+
+interpretation fun_order: preorder_equiv less_eq_fun less_fun
+ where "preorder_equiv.equiv less_eq_fun = equiv_fun"
+proof -
+ interpret preorder_equiv less_eq_fun less_fun proof
+ qed (simp_all add: less_fun_def less_eq_fun_refl, auto intro: less_eq_fun_trans)
+ show "preorder_equiv less_eq_fun less_fun" using preorder_equiv_axioms .
+ show "preorder_equiv.equiv less_eq_fun = equiv_fun"
+ by (simp add: expand_fun_eq equiv_def equiv_fun_less_eq_fun)
+qed
+
+
+subsection {* Simple examples *}
+
+lemma "(\<lambda>_. n) \<lesssim> (\<lambda>n. n)"
+proof (rule less_eq_fun_intro)
+ show "\<exists>c q. \<forall>m\<ge>q. n \<le> Suc c * m"
+ proof -
+ have "\<forall>m\<ge>n. n \<le> Suc 0 * m" by simp
+ then show ?thesis by blast
+ qed
+qed
+
+lemma "(\<lambda>n. n) \<cong> (\<lambda>n. Suc k * n)"
+proof (rule equiv_fun_intro)
+ show "\<exists>d c n. \<forall>m\<ge>n. Suc k * m \<le> Suc d * m \<and> m \<le> Suc c * (Suc k * m)"
+ proof -
+ have "\<forall>m\<ge>n. Suc k * m \<le> Suc k * m \<and> m \<le> Suc c * (Suc k * m)" by simp
+ then show ?thesis by blast
+ qed
+qed
+
+lemma "(\<lambda>_. n) \<prec> (\<lambda>n. n)"
+proof (rule less_fun_intro)
+ fix c
+ show "\<exists>q. \<forall>m\<ge>q. Suc c * n < m"
+ proof -
+ have "\<forall>m\<ge>Suc c * n + 1. Suc c * n < m" by simp
+ then show ?thesis by blast
+ qed
+qed
+
+end
--- a/src/HOL/ex/ROOT.ML Tue Jun 02 16:23:43 2009 +0200
+++ b/src/HOL/ex/ROOT.ML Tue Jun 02 18:26:01 2009 +0200
@@ -6,7 +6,6 @@
no_document use_thys [
"State_Monad",
"Efficient_Nat_examples",
- "ExecutableContent",
"FuncSet",
"Word",
"Eval_Examples",
@@ -67,7 +66,8 @@
"HarmonicSeries",
"Refute_Examples",
"Quickcheck_Examples",
- "Formal_Power_Series_Examples"
+ "Formal_Power_Series_Examples",
+ "Landau"
];
setmp Proofterm.proofs 2 use_thy "Hilbert_Classical";