--- a/src/HOL/Library/Reflection.thy Sun Apr 21 10:41:18 2013 +0200
+++ b/src/HOL/Library/Reflection.thy Sun Apr 21 10:41:18 2013 +0200
@@ -8,7 +8,7 @@
imports Main
begin
-ML_file "reflection.ML"
+ML_file "~~/src/HOL/Tools/reflection.ML"
method_setup reify = {*
Attrib.thms --
--- a/src/HOL/Library/reflection.ML Sun Apr 21 10:41:18 2013 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,356 +0,0 @@
-(* Title: HOL/Library/reflection.ML
- Author: Amine Chaieb, TU Muenchen
-
-A trial for automatical reification.
-*)
-
-signature REFLECTION =
-sig
- val gen_reify: Proof.context -> thm list -> term -> thm
- val gen_reify_tac: Proof.context -> thm list -> term option -> int -> tactic
- val gen_reflection_tac: Proof.context -> (cterm -> thm)
- -> thm list -> thm list -> term option -> int -> tactic
- val get_default: Proof.context -> { reification_eqs: thm list, correctness_thms: thm list }
- val add_reification_eq: attribute
- val del_reification_eq: attribute
- val add_correctness_thm: attribute
- val del_correctness_thm: attribute
- val default_reify_tac: Proof.context -> thm list -> term option -> int -> tactic
- val default_reflection_tac: Proof.context -> thm list -> thm list -> term option -> int -> tactic
-end;
-
-structure Reflection : REFLECTION =
-struct
-
-val FWD = curry (op OF);
-
-fun dest_listT (Type (@{type_name "list"}, [T])) = T;
-
-
-(* Make a congruence rule out of a defining equation for the interpretation
-
- th is one defining equation of f,
- i.e. th is "f (Cp ?t1 ... ?tn) = P(f ?t1, .., f ?tn)"
- Cp is a constructor pattern and P is a pattern
-
- The result is:
- [|?A1 = f ?t1 ; .. ; ?An= f ?tn |] ==> P (?A1, .., ?An) = f (Cp ?t1 .. ?tn)
- + the a list of names of the A1 .. An, Those are fresh in the ctxt *)
-
-fun mk_congeq ctxt fs th =
- let
- val Const (fN, _) = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq
- |> fst |> strip_comb |> fst;
- val thy = Proof_Context.theory_of ctxt;
- val cert = Thm.cterm_of thy;
- val ((_, [th']), ctxt') = Variable.import true [th] ctxt;
- val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th'));
- fun add_fterms (t as t1 $ t2) =
- if exists (fn f => Term.could_unify (t |> strip_comb |> fst, f)) fs
- then insert (op aconv) t
- else add_fterms t1 #> add_fterms t2
- | add_fterms (t as Abs _) =
- if exists_Const (fn (c, _) => c = fN) t
- then K [t]
- else K []
- | add_fterms _ = I;
- val fterms = add_fterms rhs [];
- val (xs, ctxt'') = Variable.variant_fixes (replicate (length fterms) "x") ctxt';
- val tys = map fastype_of fterms;
- val vs = map Free (xs ~~ tys);
- val env = fterms ~~ vs; (*FIXME*)
- fun replace_fterms (t as t1 $ t2) =
- (case AList.lookup (op aconv) env t of
- SOME v => v
- | NONE => replace_fterms t1 $ replace_fterms t2)
- | replace_fterms t =
- (case AList.lookup (op aconv) env t of
- SOME v => v
- | NONE => t);
- fun mk_def (Abs (x, xT, t), v) =
- HOLogic.mk_Trueprop (HOLogic.all_const xT $ Abs (x, xT, HOLogic.mk_eq (v $ Bound 0, t)))
- | mk_def (t, v) = HOLogic.mk_Trueprop (HOLogic.mk_eq (v, t));
- fun tryext x =
- (x RS @{lemma "(\<forall>x. f x = g x) \<Longrightarrow> f = g" by blast} handle THM _ => x);
- val cong =
- (Goal.prove ctxt'' [] (map mk_def env)
- (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, replace_fterms rhs)))
- (fn {context, prems, ...} =>
- Local_Defs.unfold_tac context (map tryext prems) THEN rtac th' 1)) RS sym;
- val (cong' :: vars') =
- Variable.export ctxt'' ctxt (cong :: map (Drule.mk_term o cert) vs);
- val vs' = map (fst o fst o Term.dest_Var o Thm.term_of o Drule.dest_term) vars';
-
- in (vs', cong') end;
-
-(* congs is a list of pairs (P,th) where th is a theorem for
- [| f p1 = A1; ...; f pn = An|] ==> f (C p1 .. pn) = P *)
-
-fun rearrange congs =
- let
- fun P (_, th) =
- let val @{term "Trueprop"} $ (Const (@{const_name HOL.eq}, _) $ l $ _) = concl_of th
- in can dest_Var l end;
- val (yes, no) = List.partition P congs;
- in no @ yes end;
-
-fun gen_reify ctxt eqs t =
- let
- fun index_of t bds =
- let
- val tt = HOLogic.listT (fastype_of t);
- in
- (case AList.lookup Type.could_unify bds tt of
- NONE => error "index_of : type not found in environements!"
- | SOME (tbs, tats) =>
- let
- val i = find_index (fn t' => t' = t) tats;
- val j = find_index (fn t' => t' = t) tbs;
- in
- if j = ~1 then
- if i = ~1
- then (length tbs + length tats, AList.update Type.could_unify (tt, (tbs, tats @ [t])) bds)
- else (i, bds)
- else (j, bds)
- end)
- end;
-
- (* Generic decomp for reification : matches the actual term with the
- rhs of one cong rule. The result of the matching guides the
- proof synthesis: The matches of the introduced Variables A1 .. An are
- processed recursively
- The rest is instantiated in the cong rule,i.e. no reification is needed *)
-
- (* da is the decomposition for atoms, ie. it returns ([],g) where g
- returns the right instance f (AtC n) = t , where AtC is the Atoms
- constructor and n is the number of the atom corresponding to t *)
- fun decomp_genreif da cgns (t, ctxt) bds =
- let
- val thy = Proof_Context.theory_of ctxt;
- val cert = cterm_of thy;
- fun tryabsdecomp (s, ctxt) bds =
- (case s of
- Abs (_, xT, ta) =>
- let
- val ([raw_xn], ctxt') = Variable.variant_fixes ["x"] ctxt;
- val (xn, ta) = Syntax_Trans.variant_abs (raw_xn, xT, ta); (* FIXME !? *)
- val x = Free(xn, xT);
- val bds = (case AList.lookup Type.could_unify bds (HOLogic.listT xT) of
- NONE => error "tryabsdecomp: Type not found in the Environement"
- | SOME (bsT, atsT) => AList.update Type.could_unify (HOLogic.listT xT, (x :: bsT, atsT)) bds);
- in (([(ta, ctxt')],
- fn ([th], bds) =>
- (hd (Variable.export ctxt' ctxt [(Thm.forall_intr (cert x) th) COMP allI]),
- let
- val (bsT, asT) = the (AList.lookup Type.could_unify bds (HOLogic.listT xT));
- in
- AList.update Type.could_unify (HOLogic.listT xT,(tl bsT, asT)) bds
- end)),
- bds)
- end
- | _ => da (s, ctxt) bds)
- in
- (case cgns of
- [] => tryabsdecomp (t, ctxt) bds
- | ((vns, cong) :: congs) =>
- (let
- val cert = cterm_of thy;
- val certy = ctyp_of thy;
- val (tyenv, tmenv) =
- Pattern.match thy
- ((fst o HOLogic.dest_eq o HOLogic.dest_Trueprop) (concl_of cong), t)
- (Vartab.empty, Vartab.empty);
- val (fnvs, invs) = List.partition (fn ((vn, _),_) => member (op =) vns vn) (Vartab.dest tmenv);
- val (fts, its) =
- (map (snd o snd) fnvs,
- map (fn ((vn, vi), (tT, t)) => (cert (Var ((vn, vi), tT)), cert t)) invs);
- val ctyenv = map (fn ((vn, vi), (s, ty)) => (certy (TVar((vn, vi), s)), certy ty)) (Vartab.dest tyenv);
- in
- ((fts ~~ replicate (length fts) ctxt,
- apfst (FWD (Drule.instantiate_normalize (ctyenv, its) cong))), bds)
- end handle Pattern.MATCH => decomp_genreif da congs (t,ctxt) bds))
- end;
-
- (* looks for the atoms equation and instantiates it with the right number *)
- fun mk_decompatom eqs (t, ctxt) bds = (([], fn (_, bds) =>
- let
- val tT = fastype_of t;
- fun isat eq =
- let
- val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd;
- in exists_Const
- (fn (n, ty) => n = @{const_name "List.nth"}
- andalso AList.defined Type.could_unify bds (domain_type ty)) rhs
- andalso Type.could_unify (fastype_of rhs, tT)
- end;
-
- fun get_nths t acc =
- case t of
- Const(@{const_name "List.nth"}, _) $ vs $ n => insert (fn ((a, _), (b, _)) => a aconv b) (t, (vs, n)) acc
- | t1 $ t2 => get_nths t1 (get_nths t2 acc)
- | Abs (_ ,_ ,t') => get_nths t' acc
- | _ => acc;
-
- fun tryeqs [] bds = error "Can not find the atoms equation"
- | tryeqs (eq :: eqs) bds = ((
- let
- val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd;
- val nths = get_nths rhs [];
- val (vss, _) = fold_rev (fn (_, (vs, n)) => fn (vss, ns) =>
- (insert (op aconv) vs vss, insert (op aconv) n ns)) nths ([], []);
- val (vsns, ctxt') = Variable.variant_fixes (replicate (length vss) "vs") ctxt;
- val (xns, ctxt'') = Variable.variant_fixes (replicate (length nths) "x") ctxt';
- val thy = Proof_Context.theory_of ctxt'';
- val cert = cterm_of thy;
- val certT = ctyp_of thy;
- val vsns_map = vss ~~ vsns;
- val xns_map = fst (split_list nths) ~~ xns;
- val subst = map (fn (nt, xn) => (nt, Var ((xn, 0), fastype_of nt))) xns_map;
- val rhs_P = subst_free subst rhs;
- val (tyenv, tmenv) = Pattern.match thy (rhs_P, t) (Vartab.empty, Vartab.empty);
- val sbst = Envir.subst_term (tyenv, tmenv);
- val sbsT = Envir.subst_type tyenv;
- val subst_ty = map (fn (n, (s, t)) =>
- (certT (TVar (n, s)), certT t)) (Vartab.dest tyenv)
- val tml = Vartab.dest tmenv;
- val (subst_ns, bds) = fold_map
- (fn (Const _ $ _ $ n, Var (xn0, _)) => fn bds =>
- let
- val name = snd (the (AList.lookup (op =) tml xn0));
- val (idx, bds) = index_of name bds;
- in ((cert n, idx |> (HOLogic.mk_nat #> cert)), bds) end) subst bds;
- val subst_vs =
- let
- fun h (Const _ $ (vs as Var (_, lT)) $ _, Var (_, T)) =
- let
- val cns = sbst (Const (@{const_name "List.Cons"}, T --> lT --> lT));
- val lT' = sbsT lT;
- val (bsT, _) = the (AList.lookup Type.could_unify bds lT);
- val vsn = the (AList.lookup (op =) vsns_map vs);
- val cvs = cert (fold_rev (fn x => fn xs => cns $ x $xs) bsT (Free (vsn, lT')));
- in (cert vs, cvs) end;
- in map h subst end;
- val cts = map (fn ((vn, vi), (tT, t)) => (cert (Var ((vn, vi), tT)), cert t))
- (fold (AList.delete (fn (((a : string), _), (b, _)) => a = b))
- (map (fn n => (n, 0)) xns) tml);
- val substt =
- let
- val ih = Drule.cterm_rule (Thm.instantiate (subst_ty, []));
- in map (fn (v, t) => (ih v, ih t)) (subst_ns @ subst_vs @ cts) end;
- val th = (Drule.instantiate_normalize (subst_ty, substt) eq) RS sym;
- in (hd (Variable.export ctxt'' ctxt [th]), bds) end)
- handle Pattern.MATCH => tryeqs eqs bds)
- in tryeqs (filter isat eqs) bds end), bds);
-
- (* Generic reification procedure: *)
- (* creates all needed cong rules and then just uses the theorem synthesis *)
-
- fun mk_congs ctxt eqs =
- let
- val fs = fold_rev (fn eq => insert (op =) (eq |> prop_of |> HOLogic.dest_Trueprop
- |> HOLogic.dest_eq |> fst |> strip_comb
- |> fst)) eqs [];
- val tys = fold_rev (fn f => fold (insert (op =)) (f |> fastype_of |> binder_types |> tl)) fs [];
- val (vs, ctxt') = Variable.variant_fixes (replicate (length tys) "vs") ctxt;
- val thy = Proof_Context.theory_of ctxt';
- val cert = cterm_of thy;
- val vstys = map (fn (t, v) => (t, SOME (cert (Free (v, t))))) (tys ~~ vs);
- fun prep_eq eq =
- let
- val (_, _ :: vs) = eq |> prop_of |> HOLogic.dest_Trueprop
- |> HOLogic.dest_eq |> fst |> strip_comb;
- val subst = map (fn (v as Var (_, t)) =>
- (cert v, (the o the) (AList.lookup (op =) vstys t))) (filter is_Var vs);
- in Thm.instantiate ([], subst) eq end;
- val (ps, congs) = map_split (mk_congeq ctxt' fs o prep_eq) eqs;
- val bds = AList.make (K ([], [])) tys;
- in (ps ~~ Variable.export ctxt' ctxt congs, bds) end
-
- val (congs, bds) = mk_congs ctxt eqs;
- val congs = rearrange congs;
- val (th, bds) = divide_and_conquer' (decomp_genreif (mk_decompatom eqs) congs) (t,ctxt) bds;
- fun is_listVar (Var (_, t)) = can dest_listT t
- | is_listVar _ = false;
- val vars = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd
- |> strip_comb |> snd |> filter is_listVar;
- val cert = cterm_of (Proof_Context.theory_of ctxt);
- val cvs = map (fn (v as Var(_, t)) => (cert v,
- the (AList.lookup Type.could_unify bds t) |> snd |> HOLogic.mk_list (dest_listT t) |> cert)) vars;
- val th' = Drule.instantiate_normalize ([], cvs) th;
- val t' = (fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) th';
- val th'' = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop (HOLogic.mk_eq (t, t')))
- (fn _ => simp_tac ctxt 1)
- in FWD trans [th'',th'] end;
-
-fun gen_reflect ctxt conv corr_thms eqs t =
- let
- val reify_thm = gen_reify ctxt eqs t;
- fun try_corr thm =
- SOME (FWD trans [reify_thm, thm RS sym]) handle THM _ => NONE;
- val thm = case get_first try_corr corr_thms
- of NONE => error "No suitable correctness theorem found"
- | SOME thm => thm;
- val ft = (Thm.dest_arg1 o Thm.dest_arg o Thm.dest_arg o cprop_of) thm;
- val rth = conv ft;
- in
- thm
- |> simplify (put_simpset HOL_basic_ss ctxt addsimps [rth])
- |> simplify (put_simpset HOL_basic_ss ctxt addsimps eqs addsimps @{thms nth_Cons_0 nth_Cons_Suc})
- end;
-
-fun tac_of_thm mk_thm to = SUBGOAL (fn (goal, i) =>
- let
- val t = (case to of NONE => HOLogic.dest_Trueprop goal | SOME t => t)
- val thm = mk_thm t RS ssubst;
- in rtac thm i end);
-
-fun gen_reify_tac ctxt eqs = tac_of_thm (gen_reify ctxt eqs);
-
-(*Reflection calls reification and uses the correctness theorem assumed to be the head of the list*)
-fun gen_reflection_tac ctxt conv corr_thms eqs =
- tac_of_thm (gen_reflect ctxt conv corr_thms eqs);
-
-structure Data = Generic_Data
-(
- type T = thm list * thm list;
- val empty = ([], []);
- val extend = I;
- fun merge ((ths1, rths1), (ths2, rths2)) =
- (Thm.merge_thms (ths1, ths2), Thm.merge_thms (rths1, rths2));
-);
-
-fun get_default ctxt =
- let
- val (reification_eqs, correctness_thms) = Data.get (Context.Proof ctxt);
- in { reification_eqs = reification_eqs, correctness_thms = correctness_thms } end;
-
-val add_reification_eq = Thm.declaration_attribute (Data.map o apfst o Thm.add_thm);
-val del_reification_eq = Thm.declaration_attribute (Data.map o apfst o Thm.del_thm);
-val add_correctness_thm = Thm.declaration_attribute (Data.map o apsnd o Thm.add_thm);
-val del_correctness_thm = Thm.declaration_attribute (Data.map o apsnd o Thm.del_thm);
-
-val _ = Context.>> (Context.map_theory
- (Attrib.setup @{binding reify}
- (Attrib.add_del add_reification_eq del_reification_eq) "declare reification equations" #>
- Attrib.setup @{binding reflection}
- (Attrib.add_del add_correctness_thm del_correctness_thm) "declare reflection correctness theorems"));
-
-fun default_reify_tac ctxt user_eqs =
- let
- val { reification_eqs = default_eqs, correctness_thms = _ } =
- get_default ctxt;
- val eqs = fold Thm.add_thm user_eqs default_eqs;
- in gen_reify_tac ctxt eqs end;
-
-fun default_reflection_tac ctxt user_thms user_eqs =
- let
- val { reification_eqs = default_eqs, correctness_thms = default_thms } =
- get_default ctxt;
- val corr_thms = fold Thm.add_thm user_thms default_thms;
- val eqs = fold Thm.add_thm user_eqs default_eqs;
- val conv = Code_Evaluation.dynamic_conv (Proof_Context.theory_of ctxt);
- (*FIXME why Code_Evaluation.dynamic_conv? very specific*)
- in gen_reflection_tac ctxt conv corr_thms eqs end;
-
-
-end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/reflection.ML Sun Apr 21 10:41:18 2013 +0200
@@ -0,0 +1,356 @@
+(* Title: HOL/Tools/reflection.ML
+ Author: Amine Chaieb, TU Muenchen
+
+A trial for automatical reification.
+*)
+
+signature REFLECTION =
+sig
+ val gen_reify: Proof.context -> thm list -> term -> thm
+ val gen_reify_tac: Proof.context -> thm list -> term option -> int -> tactic
+ val gen_reflection_tac: Proof.context -> (cterm -> thm)
+ -> thm list -> thm list -> term option -> int -> tactic
+ val get_default: Proof.context -> { reification_eqs: thm list, correctness_thms: thm list }
+ val add_reification_eq: attribute
+ val del_reification_eq: attribute
+ val add_correctness_thm: attribute
+ val del_correctness_thm: attribute
+ val default_reify_tac: Proof.context -> thm list -> term option -> int -> tactic
+ val default_reflection_tac: Proof.context -> thm list -> thm list -> term option -> int -> tactic
+end;
+
+structure Reflection : REFLECTION =
+struct
+
+val FWD = curry (op OF);
+
+fun dest_listT (Type (@{type_name "list"}, [T])) = T;
+
+
+(* Make a congruence rule out of a defining equation for the interpretation
+
+ th is one defining equation of f,
+ i.e. th is "f (Cp ?t1 ... ?tn) = P(f ?t1, .., f ?tn)"
+ Cp is a constructor pattern and P is a pattern
+
+ The result is:
+ [|?A1 = f ?t1 ; .. ; ?An= f ?tn |] ==> P (?A1, .., ?An) = f (Cp ?t1 .. ?tn)
+ + the a list of names of the A1 .. An, Those are fresh in the ctxt *)
+
+fun mk_congeq ctxt fs th =
+ let
+ val Const (fN, _) = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq
+ |> fst |> strip_comb |> fst;
+ val thy = Proof_Context.theory_of ctxt;
+ val cert = Thm.cterm_of thy;
+ val ((_, [th']), ctxt') = Variable.import true [th] ctxt;
+ val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th'));
+ fun add_fterms (t as t1 $ t2) =
+ if exists (fn f => Term.could_unify (t |> strip_comb |> fst, f)) fs
+ then insert (op aconv) t
+ else add_fterms t1 #> add_fterms t2
+ | add_fterms (t as Abs _) =
+ if exists_Const (fn (c, _) => c = fN) t
+ then K [t]
+ else K []
+ | add_fterms _ = I;
+ val fterms = add_fterms rhs [];
+ val (xs, ctxt'') = Variable.variant_fixes (replicate (length fterms) "x") ctxt';
+ val tys = map fastype_of fterms;
+ val vs = map Free (xs ~~ tys);
+ val env = fterms ~~ vs; (*FIXME*)
+ fun replace_fterms (t as t1 $ t2) =
+ (case AList.lookup (op aconv) env t of
+ SOME v => v
+ | NONE => replace_fterms t1 $ replace_fterms t2)
+ | replace_fterms t =
+ (case AList.lookup (op aconv) env t of
+ SOME v => v
+ | NONE => t);
+ fun mk_def (Abs (x, xT, t), v) =
+ HOLogic.mk_Trueprop (HOLogic.all_const xT $ Abs (x, xT, HOLogic.mk_eq (v $ Bound 0, t)))
+ | mk_def (t, v) = HOLogic.mk_Trueprop (HOLogic.mk_eq (v, t));
+ fun tryext x =
+ (x RS @{lemma "(\<forall>x. f x = g x) \<Longrightarrow> f = g" by blast} handle THM _ => x);
+ val cong =
+ (Goal.prove ctxt'' [] (map mk_def env)
+ (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, replace_fterms rhs)))
+ (fn {context, prems, ...} =>
+ Local_Defs.unfold_tac context (map tryext prems) THEN rtac th' 1)) RS sym;
+ val (cong' :: vars') =
+ Variable.export ctxt'' ctxt (cong :: map (Drule.mk_term o cert) vs);
+ val vs' = map (fst o fst o Term.dest_Var o Thm.term_of o Drule.dest_term) vars';
+
+ in (vs', cong') end;
+
+(* congs is a list of pairs (P,th) where th is a theorem for
+ [| f p1 = A1; ...; f pn = An|] ==> f (C p1 .. pn) = P *)
+
+fun rearrange congs =
+ let
+ fun P (_, th) =
+ let val @{term "Trueprop"} $ (Const (@{const_name HOL.eq}, _) $ l $ _) = concl_of th
+ in can dest_Var l end;
+ val (yes, no) = List.partition P congs;
+ in no @ yes end;
+
+fun gen_reify ctxt eqs t =
+ let
+ fun index_of t bds =
+ let
+ val tt = HOLogic.listT (fastype_of t);
+ in
+ (case AList.lookup Type.could_unify bds tt of
+ NONE => error "index_of : type not found in environements!"
+ | SOME (tbs, tats) =>
+ let
+ val i = find_index (fn t' => t' = t) tats;
+ val j = find_index (fn t' => t' = t) tbs;
+ in
+ if j = ~1 then
+ if i = ~1
+ then (length tbs + length tats, AList.update Type.could_unify (tt, (tbs, tats @ [t])) bds)
+ else (i, bds)
+ else (j, bds)
+ end)
+ end;
+
+ (* Generic decomp for reification : matches the actual term with the
+ rhs of one cong rule. The result of the matching guides the
+ proof synthesis: The matches of the introduced Variables A1 .. An are
+ processed recursively
+ The rest is instantiated in the cong rule,i.e. no reification is needed *)
+
+ (* da is the decomposition for atoms, ie. it returns ([],g) where g
+ returns the right instance f (AtC n) = t , where AtC is the Atoms
+ constructor and n is the number of the atom corresponding to t *)
+ fun decomp_genreif da cgns (t, ctxt) bds =
+ let
+ val thy = Proof_Context.theory_of ctxt;
+ val cert = cterm_of thy;
+ fun tryabsdecomp (s, ctxt) bds =
+ (case s of
+ Abs (_, xT, ta) =>
+ let
+ val ([raw_xn], ctxt') = Variable.variant_fixes ["x"] ctxt;
+ val (xn, ta) = Syntax_Trans.variant_abs (raw_xn, xT, ta); (* FIXME !? *)
+ val x = Free(xn, xT);
+ val bds = (case AList.lookup Type.could_unify bds (HOLogic.listT xT) of
+ NONE => error "tryabsdecomp: Type not found in the Environement"
+ | SOME (bsT, atsT) => AList.update Type.could_unify (HOLogic.listT xT, (x :: bsT, atsT)) bds);
+ in (([(ta, ctxt')],
+ fn ([th], bds) =>
+ (hd (Variable.export ctxt' ctxt [(Thm.forall_intr (cert x) th) COMP allI]),
+ let
+ val (bsT, asT) = the (AList.lookup Type.could_unify bds (HOLogic.listT xT));
+ in
+ AList.update Type.could_unify (HOLogic.listT xT,(tl bsT, asT)) bds
+ end)),
+ bds)
+ end
+ | _ => da (s, ctxt) bds)
+ in
+ (case cgns of
+ [] => tryabsdecomp (t, ctxt) bds
+ | ((vns, cong) :: congs) =>
+ (let
+ val cert = cterm_of thy;
+ val certy = ctyp_of thy;
+ val (tyenv, tmenv) =
+ Pattern.match thy
+ ((fst o HOLogic.dest_eq o HOLogic.dest_Trueprop) (concl_of cong), t)
+ (Vartab.empty, Vartab.empty);
+ val (fnvs, invs) = List.partition (fn ((vn, _),_) => member (op =) vns vn) (Vartab.dest tmenv);
+ val (fts, its) =
+ (map (snd o snd) fnvs,
+ map (fn ((vn, vi), (tT, t)) => (cert (Var ((vn, vi), tT)), cert t)) invs);
+ val ctyenv = map (fn ((vn, vi), (s, ty)) => (certy (TVar((vn, vi), s)), certy ty)) (Vartab.dest tyenv);
+ in
+ ((fts ~~ replicate (length fts) ctxt,
+ apfst (FWD (Drule.instantiate_normalize (ctyenv, its) cong))), bds)
+ end handle Pattern.MATCH => decomp_genreif da congs (t,ctxt) bds))
+ end;
+
+ (* looks for the atoms equation and instantiates it with the right number *)
+ fun mk_decompatom eqs (t, ctxt) bds = (([], fn (_, bds) =>
+ let
+ val tT = fastype_of t;
+ fun isat eq =
+ let
+ val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd;
+ in exists_Const
+ (fn (n, ty) => n = @{const_name "List.nth"}
+ andalso AList.defined Type.could_unify bds (domain_type ty)) rhs
+ andalso Type.could_unify (fastype_of rhs, tT)
+ end;
+
+ fun get_nths t acc =
+ case t of
+ Const(@{const_name "List.nth"}, _) $ vs $ n => insert (fn ((a, _), (b, _)) => a aconv b) (t, (vs, n)) acc
+ | t1 $ t2 => get_nths t1 (get_nths t2 acc)
+ | Abs (_ ,_ ,t') => get_nths t' acc
+ | _ => acc;
+
+ fun tryeqs [] bds = error "Can not find the atoms equation"
+ | tryeqs (eq :: eqs) bds = ((
+ let
+ val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd;
+ val nths = get_nths rhs [];
+ val (vss, _) = fold_rev (fn (_, (vs, n)) => fn (vss, ns) =>
+ (insert (op aconv) vs vss, insert (op aconv) n ns)) nths ([], []);
+ val (vsns, ctxt') = Variable.variant_fixes (replicate (length vss) "vs") ctxt;
+ val (xns, ctxt'') = Variable.variant_fixes (replicate (length nths) "x") ctxt';
+ val thy = Proof_Context.theory_of ctxt'';
+ val cert = cterm_of thy;
+ val certT = ctyp_of thy;
+ val vsns_map = vss ~~ vsns;
+ val xns_map = fst (split_list nths) ~~ xns;
+ val subst = map (fn (nt, xn) => (nt, Var ((xn, 0), fastype_of nt))) xns_map;
+ val rhs_P = subst_free subst rhs;
+ val (tyenv, tmenv) = Pattern.match thy (rhs_P, t) (Vartab.empty, Vartab.empty);
+ val sbst = Envir.subst_term (tyenv, tmenv);
+ val sbsT = Envir.subst_type tyenv;
+ val subst_ty = map (fn (n, (s, t)) =>
+ (certT (TVar (n, s)), certT t)) (Vartab.dest tyenv)
+ val tml = Vartab.dest tmenv;
+ val (subst_ns, bds) = fold_map
+ (fn (Const _ $ _ $ n, Var (xn0, _)) => fn bds =>
+ let
+ val name = snd (the (AList.lookup (op =) tml xn0));
+ val (idx, bds) = index_of name bds;
+ in ((cert n, idx |> (HOLogic.mk_nat #> cert)), bds) end) subst bds;
+ val subst_vs =
+ let
+ fun h (Const _ $ (vs as Var (_, lT)) $ _, Var (_, T)) =
+ let
+ val cns = sbst (Const (@{const_name "List.Cons"}, T --> lT --> lT));
+ val lT' = sbsT lT;
+ val (bsT, _) = the (AList.lookup Type.could_unify bds lT);
+ val vsn = the (AList.lookup (op =) vsns_map vs);
+ val cvs = cert (fold_rev (fn x => fn xs => cns $ x $xs) bsT (Free (vsn, lT')));
+ in (cert vs, cvs) end;
+ in map h subst end;
+ val cts = map (fn ((vn, vi), (tT, t)) => (cert (Var ((vn, vi), tT)), cert t))
+ (fold (AList.delete (fn (((a : string), _), (b, _)) => a = b))
+ (map (fn n => (n, 0)) xns) tml);
+ val substt =
+ let
+ val ih = Drule.cterm_rule (Thm.instantiate (subst_ty, []));
+ in map (fn (v, t) => (ih v, ih t)) (subst_ns @ subst_vs @ cts) end;
+ val th = (Drule.instantiate_normalize (subst_ty, substt) eq) RS sym;
+ in (hd (Variable.export ctxt'' ctxt [th]), bds) end)
+ handle Pattern.MATCH => tryeqs eqs bds)
+ in tryeqs (filter isat eqs) bds end), bds);
+
+ (* Generic reification procedure: *)
+ (* creates all needed cong rules and then just uses the theorem synthesis *)
+
+ fun mk_congs ctxt eqs =
+ let
+ val fs = fold_rev (fn eq => insert (op =) (eq |> prop_of |> HOLogic.dest_Trueprop
+ |> HOLogic.dest_eq |> fst |> strip_comb
+ |> fst)) eqs [];
+ val tys = fold_rev (fn f => fold (insert (op =)) (f |> fastype_of |> binder_types |> tl)) fs [];
+ val (vs, ctxt') = Variable.variant_fixes (replicate (length tys) "vs") ctxt;
+ val thy = Proof_Context.theory_of ctxt';
+ val cert = cterm_of thy;
+ val vstys = map (fn (t, v) => (t, SOME (cert (Free (v, t))))) (tys ~~ vs);
+ fun prep_eq eq =
+ let
+ val (_, _ :: vs) = eq |> prop_of |> HOLogic.dest_Trueprop
+ |> HOLogic.dest_eq |> fst |> strip_comb;
+ val subst = map (fn (v as Var (_, t)) =>
+ (cert v, (the o the) (AList.lookup (op =) vstys t))) (filter is_Var vs);
+ in Thm.instantiate ([], subst) eq end;
+ val (ps, congs) = map_split (mk_congeq ctxt' fs o prep_eq) eqs;
+ val bds = AList.make (K ([], [])) tys;
+ in (ps ~~ Variable.export ctxt' ctxt congs, bds) end
+
+ val (congs, bds) = mk_congs ctxt eqs;
+ val congs = rearrange congs;
+ val (th, bds) = divide_and_conquer' (decomp_genreif (mk_decompatom eqs) congs) (t,ctxt) bds;
+ fun is_listVar (Var (_, t)) = can dest_listT t
+ | is_listVar _ = false;
+ val vars = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd
+ |> strip_comb |> snd |> filter is_listVar;
+ val cert = cterm_of (Proof_Context.theory_of ctxt);
+ val cvs = map (fn (v as Var(_, t)) => (cert v,
+ the (AList.lookup Type.could_unify bds t) |> snd |> HOLogic.mk_list (dest_listT t) |> cert)) vars;
+ val th' = Drule.instantiate_normalize ([], cvs) th;
+ val t' = (fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) th';
+ val th'' = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop (HOLogic.mk_eq (t, t')))
+ (fn _ => simp_tac ctxt 1)
+ in FWD trans [th'',th'] end;
+
+fun gen_reflect ctxt conv corr_thms eqs t =
+ let
+ val reify_thm = gen_reify ctxt eqs t;
+ fun try_corr thm =
+ SOME (FWD trans [reify_thm, thm RS sym]) handle THM _ => NONE;
+ val thm = case get_first try_corr corr_thms
+ of NONE => error "No suitable correctness theorem found"
+ | SOME thm => thm;
+ val ft = (Thm.dest_arg1 o Thm.dest_arg o Thm.dest_arg o cprop_of) thm;
+ val rth = conv ft;
+ in
+ thm
+ |> simplify (put_simpset HOL_basic_ss ctxt addsimps [rth])
+ |> simplify (put_simpset HOL_basic_ss ctxt addsimps eqs addsimps @{thms nth_Cons_0 nth_Cons_Suc})
+ end;
+
+fun tac_of_thm mk_thm to = SUBGOAL (fn (goal, i) =>
+ let
+ val t = (case to of NONE => HOLogic.dest_Trueprop goal | SOME t => t)
+ val thm = mk_thm t RS ssubst;
+ in rtac thm i end);
+
+fun gen_reify_tac ctxt eqs = tac_of_thm (gen_reify ctxt eqs);
+
+(*Reflection calls reification and uses the correctness theorem assumed to be the head of the list*)
+fun gen_reflection_tac ctxt conv corr_thms eqs =
+ tac_of_thm (gen_reflect ctxt conv corr_thms eqs);
+
+structure Data = Generic_Data
+(
+ type T = thm list * thm list;
+ val empty = ([], []);
+ val extend = I;
+ fun merge ((ths1, rths1), (ths2, rths2)) =
+ (Thm.merge_thms (ths1, ths2), Thm.merge_thms (rths1, rths2));
+);
+
+fun get_default ctxt =
+ let
+ val (reification_eqs, correctness_thms) = Data.get (Context.Proof ctxt);
+ in { reification_eqs = reification_eqs, correctness_thms = correctness_thms } end;
+
+val add_reification_eq = Thm.declaration_attribute (Data.map o apfst o Thm.add_thm);
+val del_reification_eq = Thm.declaration_attribute (Data.map o apfst o Thm.del_thm);
+val add_correctness_thm = Thm.declaration_attribute (Data.map o apsnd o Thm.add_thm);
+val del_correctness_thm = Thm.declaration_attribute (Data.map o apsnd o Thm.del_thm);
+
+val _ = Context.>> (Context.map_theory
+ (Attrib.setup @{binding reify}
+ (Attrib.add_del add_reification_eq del_reification_eq) "declare reification equations" #>
+ Attrib.setup @{binding reflection}
+ (Attrib.add_del add_correctness_thm del_correctness_thm) "declare reflection correctness theorems"));
+
+fun default_reify_tac ctxt user_eqs =
+ let
+ val { reification_eqs = default_eqs, correctness_thms = _ } =
+ get_default ctxt;
+ val eqs = fold Thm.add_thm user_eqs default_eqs;
+ in gen_reify_tac ctxt eqs end;
+
+fun default_reflection_tac ctxt user_thms user_eqs =
+ let
+ val { reification_eqs = default_eqs, correctness_thms = default_thms } =
+ get_default ctxt;
+ val corr_thms = fold Thm.add_thm user_thms default_thms;
+ val eqs = fold Thm.add_thm user_eqs default_eqs;
+ val conv = Code_Evaluation.dynamic_conv (Proof_Context.theory_of ctxt);
+ (*FIXME why Code_Evaluation.dynamic_conv? very specific*)
+ in gen_reflection_tac ctxt conv corr_thms eqs end;
+
+
+end