added the lemma perm_diff
authorurbanc
Mon, 05 Jun 2006 18:38:41 +0200
changeset 19771 b4a0da62126e
parent 19770 be5c23ebe1eb
child 19772 45897b49fdd2
added the lemma perm_diff
src/HOL/Nominal/Nominal.thy
--- a/src/HOL/Nominal/Nominal.thy	Mon Jun 05 14:26:07 2006 +0200
+++ b/src/HOL/Nominal/Nominal.thy	Mon Jun 05 18:38:41 2006 +0200
@@ -985,6 +985,15 @@
 section {* further lemmas for permutation types *}
 (*==============================================*)
 
+lemma perm_diff:
+  fixes X::"'a set"
+  and   Y::"'a set"
+  and   pi::"'x prm"
+  assumes pt: "pt TYPE('a) TYPE('x)"
+  and     at: "at TYPE('x)"
+  shows "pi \<bullet> (X - Y) = (pi \<bullet> X) - (pi \<bullet> Y)"
+  by (auto simp add: perm_set_def pt_bij[OF pt, OF at])
+
 lemma pt_rev_pi:
   fixes pi :: "'x prm"
   and   x  :: "'a"