update by Gertrud Bauer;
authorwenzelm
Mon, 25 Oct 1999 19:24:43 +0200
changeset 7927 b50446a33c16
parent 7926 9c20924de52c
child 7928 06a11f8cf573
update by Gertrud Bauer;
src/HOL/Real/HahnBanach/FunctionNorm.thy
src/HOL/Real/HahnBanach/FunctionOrder.thy
src/HOL/Real/HahnBanach/HahnBanach.thy
src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy
src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy
src/HOL/Real/HahnBanach/NormedSpace.thy
src/HOL/Real/HahnBanach/README.html
src/HOL/Real/HahnBanach/ROOT.ML
src/HOL/Real/HahnBanach/Subspace.thy
src/HOL/Real/HahnBanach/VectorSpace.thy
src/HOL/Real/HahnBanach/ZornLemma.thy
src/HOL/Real/HahnBanach/document/notation.tex
src/HOL/Real/HahnBanach/document/root.bib
src/HOL/Real/HahnBanach/document/root.tex
--- a/src/HOL/Real/HahnBanach/FunctionNorm.thy	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/FunctionNorm.thy	Mon Oct 25 19:24:43 1999 +0200
@@ -12,7 +12,7 @@
 text{* A linearform $f$ on a normed vector space $(V, \norm{\cdot})$
 is \emph{continous}, iff it is bounded, i.~e.
 \[\exists\ap c\in R.\ap \forall\ap x\in V.\ap 
-|f\ap x| \leq c \cdot \norm x.\]
+|f\ap x| \leq c \cdot \norm x\]
 In our application no other functions than linearforms are considered,
 so we can define continous linearforms as follows:
 *};
@@ -48,15 +48,15 @@
 is called the \emph{norm} of $f$.
 
 For the non-trivial vector space $V$ the norm can be defined as 
-\[\fnorm {f} =\sup_{x\neq\zero}\frac{|f\ap x|}{\norm x}. \] 
+\[\fnorm {f} =\sup_{x\neq\zero}\frac{|f\ap x|}{\norm x} \] 
 
-For the case that the vector space $V$ contains only the zero vector 
-set, the set $B$ this supremum is taken from would be empty, and any 
-real number is a supremum of $B$. So it must be guarateed that there 
-is an element in $B$. This element must be greater or equal $0$ so 
-that $\idt{function{\dsh}norm}$ has the norm properties. Furthermore 
-it does not have to change the norm in all other cases, so it must be
-$0$, as all other elements of $B$ are greater or equal $0$.
+For the case that the vector space $V$ contains only the $\zero$
+vector, the set $B$ this supremum is taken from would be empty, and
+any real number is a supremum of $B$. So it must be guarateed that
+there is an element in $B$. This element must be ${} \ge 0$ so that
+$\idt{function{\dsh}norm}$ has the norm properties. Furthermore it
+does not have to change the norm in all other cases, so it must be
+$0$, as all other elements of $B$ are ${} \ge 0$.
 
 Thus $B$ is defined as follows.
 *};
@@ -250,7 +250,7 @@
 
  txt{* The proof is by case analysis on $x$. *};
  
-  show "?thesis";
+  show ?thesis;
   proof (rule case_split);
 
     txt {* For the case $x = \zero$ the thesis follows
--- a/src/HOL/Real/HahnBanach/FunctionOrder.thy	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/FunctionOrder.thy	Mon Oct 25 19:24:43 1999 +0200
@@ -12,11 +12,11 @@
 
 text{* We define the \emph{graph} of a (real) function $f$ with the 
 domain $F$ as the set 
-\begin{matharray}{l}
-\{(x, f\ap x). \ap x:F\}.
-\end{matharray}
+\[
+\{(x, f\ap x). \ap x:F\}
+\]
 So we are modelling partial functions by specifying the domain and 
-the mapping function. We use the notion 'function' also for the graph
+the mapping function. We use the notion ``function'' also for the graph
 of a function. 
 *};
 
--- a/src/HOL/Real/HahnBanach/HahnBanach.thy	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/HahnBanach.thy	Mon Oct 25 19:24:43 1999 +0200
@@ -10,7 +10,7 @@
 
 text {*
   We present the proof of two different versions of the Hahn-Banach 
-  Theorem, closely following \cite{Heuser:1986}.
+  Theorem, closely following \cite[\S36]{Heuser:1986}.
 *};
 
 subsection {* The case of general linear spaces *};
@@ -49,7 +49,7 @@
   the union of all functions in the chain is again a norm preserving
   function. (The union is an upper bound for all elements. 
   It is even the least upper bound, because every upper bound of $M$
-  is also an upper bound for $\cup\; c$.) *};
+  is also an upper bound for $\Union c$.) *};
 
   have "!! c. [| c : chain M; EX x. x:c |] ==> Union c : M";  
   proof -;
@@ -91,7 +91,7 @@
     qed;
   qed;
  
-  txt {* According to Zorn's Lemma there exists 
+  txt {* According to Zorn's Lemma there is
   a maximal norm-preserving extension $g\in M$. *};
   
   with aM; have bex_g: "EX g:M. ALL x:M. g <= x --> g = x";
@@ -283,7 +283,7 @@
     thus ?thesis; ..;
   qed;
 
-  txt {* We have shown, that $h$ can still be extended to 
+  txt {* We have shown that $h$ can still be extended to 
   some $h_0$, in contradiction to the assumption that 
   $h$ is a maximal element. *};
 
@@ -293,7 +293,7 @@
   thus ?thesis; by contradiction;
 qed; 
 
-txt{* It follows $H = E$ and the thesis can be shown. *};
+txt{* It follows $H = E$, and the thesis can be shown. *};
 
 show "is_linearform E h & (ALL x:F. h x = f x) 
      & (ALL x:E. h x <= p x)";
@@ -372,8 +372,8 @@
 
   txt{* We define the function $p$ on $E$ as follows:
   \begin{matharray}{l}
-  p\ap x = \fnorm f * \norm x\\
-  % p\ap x = \fnorm f * \fnorm x.\\
+  p\ap x = \fnorm f \cdot \norm x\\
+  % p\ap x = \fnorm f \cdot \fnorm x\\
   \end{matharray}
   *};
 
@@ -408,7 +408,7 @@
       finally; show ?thesis; .;
     qed;
 
-    txt{* Furthermore $p$ obeys the triangle inequation: *};
+    txt{* Furthermore, $p$ obeys the triangle inequation: *};
 
     show "p (x + y) <= p x + p y";
     proof -;
@@ -478,7 +478,7 @@
         a solution
         for the inequation 
         \begin{matharray}{l}
-        \forall\ap x\in E.\ap |g\ap x| \leq c * \norm x.
+        \forall\ap x\in E.\ap |g\ap x| \leq c \cdot \norm x
         \end{matharray} *};
 
         have "ALL x:E. rabs (g x) <= function_norm F norm f * norm x";
--- a/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Mon Oct 25 19:24:43 1999 +0200
@@ -3,7 +3,7 @@
     Author:     Gertrud Bauer, TU Munich
 *)
 
-header {* Extending a non-ma\-xi\-mal function *};
+header {* Extending a non-maximal function *};
 
 theory HahnBanachExtLemmas = FunctionNorm:;
 
@@ -30,7 +30,7 @@
 \end{matharray}
 it suffices to show that 
 \begin{matharray}{l}
-\forall u\in F. \ap\forall v\in F. \ap a\ap u \leq b \ap v.
+\forall u\in F. \ap\forall v\in F. \ap a\ap u \leq b \ap v
 \end{matharray}
 *};
 
@@ -84,7 +84,7 @@
     show ?thesis;
     proof (intro exI conjI ballI); 
    
-      txt {* For all $y\in F$ is $a\ap y \leq \xi$. *};
+      txt {* For all $y\in F$ holds $a\ap y \leq \xi$. *};
      
       fix y; assume y: "y:F";
       show "a y <= xi";    
@@ -93,7 +93,7 @@
       qed (force!);
     next;
 
-      txt {* For all $y\in F$ is $\xi\leq b\ap y$. *};
+      txt {* For all $y\in F$ holds $\xi\leq b\ap y$. *};
 
       fix y; assume "y:F";
       show "xi <= b y";  
@@ -115,8 +115,8 @@
   qed;
 qed;
 
-text{* The function $h_0$ is defined as a linear extension of $h$
-to $H_0$. $h_0$ is linear. *};
+text{* The function $h_0$ is defined as a canonical linear extension
+of $h$ to $H_0$. *};
 
 lemma h0_lf: 
   "[| h0 = (\<lambda>x. let (y, a) = SOME (y, a). x = y + a <*> x0 & y:H 
@@ -142,7 +142,7 @@
     fix x1 x2; assume x1: "x1 : H0" and x2: "x2 : H0"; 
 
     txt{* We now have to show that $h_0$ is linear 
-    w.~r.~t.~addition, i.~e.~
+    w.~r.~t.~addition, i.~e.\
     $h_0 \ap (x_1\plus x_2) = h_0\ap x_1 + h_0\ap x_2$
     for $x_1, x_2\in H$. *}; 
 
@@ -192,8 +192,8 @@
  
     txt{* We further have to show that $h_0$ is linear 
     w.~r.~t.~scalar multiplication, 
-    i.~e.~ $c\in real$ $h_0\ap (c \mult x_1) = c \cdot h_0\ap x_1$
-    for $x\in H$ and real $c$. 
+    i.~e.\ $h_0\ap (c \mult x_1) = c \cdot h_0\ap x_1$
+    for $x\in H$ and any real number $c$. 
     *}; 
 
   next;  
@@ -268,7 +268,7 @@
       by (rule h0_definite);
 
     txt{* Now we show  
-    $h\ap y + a * xi\leq  p\ap (y\plus a \mult x_0)$ 
+    $h\ap y + a \cdot xi\leq  p\ap (y\plus a \mult x_0)$ 
     by case analysis on $a$. *};
 
     also; have "... <= p (y + a <*> x0)";
@@ -278,7 +278,7 @@
       with vs y a; show ?thesis; by simp;
 
     txt {* In the case $a < 0$ we use $a_1$ with $y$ taken as
-    $\frac{y}{a}$. *};
+    $y/a$. *};
 
     next;
       assume lz: "a < 0r"; hence nz: "a ~= 0r"; by simp;
@@ -308,7 +308,7 @@
       thus ?thesis; by simp;
 
       txt {* In the case $a > 0$ we use $a_2$ with $y$ taken
-      as $\frac{y}{a}$. *};
+      as $y/a$. *};
     next; 
       assume gz: "0r < a"; hence nz: "a ~= 0r"; by simp;
       have "xi <= p (rinv a <*> y + x0) - h (rinv a <*> y)";
--- a/src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy	Mon Oct 25 19:24:43 1999 +0200
@@ -15,7 +15,7 @@
 Let $E$ be a real vector space with a quasinorm $q$ on $E$. 
 $F$ is a subspace of $E$ and $f$ a linearform on $F$. We 
 consider a chain $c$ of norm preserving extensions of $f$, such that
-$\cup\; c = \idt{graph}\ap H\ap h$. 
+$\Union c = \idt{graph}\ap H\ap h$. 
 We will show some properties about the limit function $h$, 
 i.~e.~the supremum of the chain $c$.
 *}; 
@@ -348,8 +348,8 @@
   thus ?thesis;
   proof (elim UnionE chainE2);
 
-    txt{* Since both $(x, y) \in \cup\; c$ and $(x, z) \in cup c$
-    they are menbers of some graphs $G_1$ and $G_2$, resp.~, such that
+    txt{* Since both $(x, y) \in \Union c$ and $(x, z) \in \Union c$
+    they are members of some graphs $G_1$ and $G_2$, resp., such that
     both $G_1$ and $G_2$ are members of $c$*};
 
     fix G1 G2; assume
@@ -390,13 +390,11 @@
   qed;
 qed;
 
-text{* The limit function $h$ is linear: Every element $x$
-in the domain of $h$ is in the domain of 
-a function $h'$ in the chain of norm preserving extensions.
-Futher $h$ is an extension of $h'$ so the value
-of $x$ are identical for $h'$ and $h$.
-Finally, the function $h'$ is linear by construction of $M$.
-*};
+text{* The limit function $h$ is linear: every element $x$ in the
+domain of $h$ is in the domain of a function $h'$ in the chain of norm
+preserving extensions.  Furthermore, $h$ is an extension of $h'$ so
+the value of $x$ are identical for $h'$ and $h$.  Finally, the
+function $h'$ is linear by construction of $M$.  *};
 
 lemma sup_lf: 
   "[| M = norm_pres_extensions E p F f; c: chain M; 
@@ -439,7 +437,7 @@
       by (rule some_H'h');
 
     txt{* We have to show that h is linear w.~r.~t. 
-    skalar multiplication. *};
+    scalar multiplication. *};
 
     thus "h (a <*> x) = a * h x";
     proof (elim exE conjE);
@@ -494,10 +492,10 @@
   qed;
 qed;
 
-text{* The domain $H$ of the limit function is a superspace
-of $F$, since $F$ is a subset of $H$. The existence of 
-the $\zero$ element in $F$ and the closeness properties
-follow from the fact that $F$ is a vectorspace. *};
+text{* The domain $H$ of the limit function is a superspace of $F$,
+since $F$ is a subset of $H$. The existence of the $\zero$ element in
+$F$ and the closure properties follow from the fact that $F$ is a
+vectorspace. *};
 
 lemma sup_supF: 
   "[| M = norm_pres_extensions E p F f; c: chain M; EX x. x:c;
@@ -528,7 +526,7 @@
   qed;
 qed;
 
-text{* The domain $H$ of the limt function is a subspace
+text{* The domain $H$ of the limit function is a subspace
 of $E$. *};
 
 lemma sup_subE: 
@@ -588,7 +586,7 @@
       qed;
     qed;      
 
-    txt{* $H$ is closed under skalar multiplication. *};
+    txt{* $H$ is closed under scalar multiplication. *};
 
     show "ALL x:H. ALL a. a <*> x : H"; 
     proof (intro ballI allI); 
@@ -610,8 +608,8 @@
   qed;
 qed;
 
-text {* The limit functon is bounded by 
-the norm $p$ as well, simce all elements in the chain are norm preserving.
+text {* The limit function is bounded by 
+the norm $p$ as well, since all elements in the chain are norm preserving.
 *};
 
 lemma sup_norm_pres: 
--- a/src/HOL/Real/HahnBanach/NormedSpace.thy	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/NormedSpace.thy	Mon Oct 25 19:24:43 1999 +0200
@@ -72,7 +72,8 @@
 
 subsection {* Norms *};
 
-text{* A \emph{norm} $\norm{\cdot}$ is a quasinorm that maps only $\zero$ to $0$. *};
+text{* A \emph{norm} $\norm{\cdot}$ is a quasinorm that maps only the
+$\zero$ vector to $0$. *};
 
 constdefs
   is_norm :: "['a::{minus, plus} set, 'a => real] => bool"
--- a/src/HOL/Real/HahnBanach/README.html	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/README.html	Mon Oct 25 19:24:43 1999 +0200
@@ -1,6 +1,6 @@
 <HTML><HEAD><TITLE>HOL/Real/HahnBanach/README</TITLE></HEAD><BODY>
 
-<H3> The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar).</H3>
+<H3> The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar).</H3>
 
 Author:     Gertrud Bauer, Technische Universit&auml;t M&uuml;nchen<P>
 
--- a/src/HOL/Real/HahnBanach/ROOT.ML	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/ROOT.ML	Mon Oct 25 19:24:43 1999 +0200
@@ -2,7 +2,7 @@
     ID:         $Id$
     Author:     Gertrud Bauer, TU Munich
 
-The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar).
+The Hahn-Banach theorem for real vector spaces (Isabelle/Isar).
 *)
 
 time_use_thy "Bounds";
--- a/src/HOL/Real/HahnBanach/Subspace.thy	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/Subspace.thy	Mon Oct 25 19:24:43 1999 +0200
@@ -213,9 +213,8 @@
 instance set :: (plus) plus; by intro_classes;
 
 defs vs_sum_def:
-  "U + V == {x. EX u:U. EX v:V. x = u + v}";
+  "U + V == {x. EX u:U. EX v:V. x = u + v}";(***  
 
-(***
 constdefs 
   vs_sum :: 
   "['a::{minus, plus} set, 'a set] => 'a set"         (infixl "+" 65)
@@ -318,7 +317,7 @@
 text {* The sum of $U$ and $V$ is called \emph{direct}, iff the zero 
 element is the only common element of $U$ and $V$. For every element
 $x$ of the direct sum of $U$ and $V$ the decomposition in
-$x = u + v$ with $u:U$ and $v:V$ is unique.*}; 
+$x = u + v$ with $u \in U$ and $v \in V$ is unique.*}; 
 
 lemma decomp: 
   "[| is_vectorspace E; is_subspace U E; is_subspace V E; 
@@ -352,7 +351,7 @@
 text {* An application of the previous lemma will be used in the 
 proof of the Hahn-Banach theorem: for an element $y + a \mult x_0$ 
 of the direct sum of a vectorspace $H$ and the linear closure of 
-$x_0$ the components $y:H$ and $a$ are unique. *}; 
+$x_0$ the components $y \in H$ and $a$ are unique. *}; 
 
 lemma decomp_H0: 
   "[| is_vectorspace E; is_subspace H E; y1 : H; y2 : H; 
@@ -426,7 +425,7 @@
 
 text {* The components $y\in H$ and $a$ in $y \plus a \mult x_0$ 
 are unique, so the function $h_0$ defined by 
-$h_0 (y \plus a \mult x_0) = h y + a * xi$ is definite. *};
+$h_0 (y \plus a \mult x_0) = h y + a \cdot \xi$ is definite. *};
 
 lemma h0_definite:
   "[| h0 = (\<lambda>x. let (y, a) = SOME (y, a). (x = y + a <*> x0 & y:H)
--- a/src/HOL/Real/HahnBanach/VectorSpace.thy	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/VectorSpace.thy	Mon Oct 25 19:24:43 1999 +0200
@@ -9,9 +9,10 @@
 
 subsection {* Signature *};
 
-text {* For the definition of real vector spaces a type $\alpha$ is 
-considered, on which the operations addition and real scalar
-multiplication are defined, and which has an zero element.*};
+text {* For the definition of real vector spaces a type $\alpha$
+of the sort $\idt{plus}, \idt{minus}$ is considered, on which a
+real scalar multiplication $\mult$ is defined, and which has an zero 
+element $\zero$.*};
 
 consts
 (***
@@ -24,8 +25,9 @@
   prod  :: "[real, 'a] => 'a"                       (infixr "\<prod>" 70)
   zero  :: 'a                                       ("\<zero>");
 
-text {* The unary and binary minus can be considered as 
+(* text {* The unary and binary minus can be considered as 
 abbreviations: *};
+*)
 
 (***
 constdefs 
@@ -37,15 +39,14 @@
 
 subsection {* Vector space laws *};
 
-text {* A \emph{vector space} is a non-empty set $V$ of elements 
-from $\alpha$ with the following vector space laws: 
-The set $V$ is closed under addition and scalar multiplication, 
-addition is associative and  commutative. $\minus x$ is the inverse
-of $x$ w.~r.~t.~addition and $\zero$ is the neutral element of 
-addition. 
-Addition and multiplication are distributive. 
-Scalar multiplication is associative and the real $1$ is the neutral 
-element of scalar multiplication.
+text {* A \emph{vector space} is a non-empty set $V$ of elements from
+  $\alpha$ with the following vector space laws: The set $V$ is closed
+  under addition and scalar multiplication, addition is associative
+  and commutative; $\minus x$ is the inverse of $x$ w.~r.~t.~addition
+  and $\zero$ is the neutral element of addition.  Addition and
+  multiplication are distributive; scalar multiplication is
+  associative and the real $1$ is the neutral element of scalar
+  multiplication.
 *};
 
 constdefs
--- a/src/HOL/Real/HahnBanach/ZornLemma.thy	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/ZornLemma.thy	Mon Oct 25 19:24:43 1999 +0200
@@ -13,8 +13,8 @@
 In our application $S$ is a set of sets, ordered by set inclusion. Since 
 the union of a chain of sets is an upperbound for all elements of the 
 chain, the conditions of Zorn's lemma can be modified:
-If $S$ is non-empty, it suffices to show that for every non-empty 
-chain $c$ in $S$ the union of $c$ also lies in $S$:
+if $S$ is non-empty, it suffices to show that for every non-empty 
+chain $c$ in $S$ the union of $c$ also lies in $S$.
 *};
 
 theorem Zorn's_Lemma: 
@@ -35,7 +35,7 @@
       assume "c={}"; 
       with aS; show ?thesis; by fast;
 
-      txt{* If $c$ is non-empty, then $\cup\; c$ 
+      txt{* If $c$ is non-empty, then $\Union c$ 
       is an upperbound of $c$, that lies in $S$. *};
 
     next;
--- a/src/HOL/Real/HahnBanach/document/notation.tex	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/document/notation.tex	Mon Oct 25 19:24:43 1999 +0200
@@ -2,7 +2,7 @@
 \renewcommand{\isamarkupheader}[1]{\section{#1}}
 \newcommand{\isasymbollambda}{${\mathtt{\lambda}}$}
 
-\parindent 0pt \parskip 0.5ex
+
 
 \newcommand{\name}[1]{\textsf{#1}}
 
@@ -34,16 +34,17 @@
 \newcommand{\Le}{\le}
 \newcommand{\Lt}{\lt}
 \newcommand{\lam}[1]{\mathop{\lambda} #1\dt\;}
-\newcommand{\ap}{\mathbin{\!}}
+\newcommand{\ap}{\mathbin{}}
+\newcommand{\Union}{\bigcup}
 
 
-\newcommand{\norm}[1]{\|\, #1\,\|}
-\newcommand{\fnorm}[1]{\|\, #1\,\|}
-\newcommand{\zero}{{\mathord{\mathbf {0}}}}
-\newcommand{\plus}{{\mathbin{\;\mathtt {+}\;}}}
-\newcommand{\minus}{{\mathbin{\;\mathtt {-}\;}}}
-\newcommand{\mult}{{\mathbin{\;\mathbf {\odot}\;}}}
-\newcommand{\1}{{\mathord{\mathrm{1}}}}
+\newcommand{\norm}[1]{\left\|#1\right\|}
+\newcommand{\fnorm}[1]{\left\|#1\right\|}
+\newcommand{\zero}{\mathord{\mathbf 0}}
+\newcommand{\plus}{\mathbin{\mathbf +}}
+\newcommand{\minus}{\mathbin{\mathbf -}}
+\newcommand{\mult}{\mathbin{\mathbf\odot}}
+\newcommand{\1}{\mathord{\mathrm{1}}}
 %\newcommand{\zero}{{\mathord{\small\sl\tt {<0>}}}}
 %\newcommand{\plus}{{\mathbin{\;\small\sl\tt {[+]}\;}}}
 %\newcommand{\minus}{{\mathbin{\;\small\sl\tt {[-]}\;}}}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Real/HahnBanach/document/root.bib	Mon Oct 25 19:24:43 1999 +0200
@@ -0,0 +1,27 @@
+
+@Book{Heuser:1986,
+  author = 	 {H. Heuser},
+  title = 	 {Funktionalanalysis: Theorie und Anwendung},
+  publisher = 	 {Teubner},
+  year = 	 1986
+}
+
+@InCollection{Narici:1996,
+  author = 	 {L. Narici and E. Beckenstein},
+  title = 	 {The {Hahn-Banach Theorem}: The Life and Times},
+  booktitle = 	 {Topology Atlas},
+  publisher =	 {York University, Toronto, Ontario, Canada},
+  year =	 1996,
+  note =	 {\url{http://at.yorku.ca/topology/preprint.htm} and
+                  \url{http://at.yorku.ca/p/a/a/a/16.htm}}
+}
+
+@Article{Nowak:1993,
+  author =       {B. Nowak and A. Trybulec},
+  title =	 {{Hahn-Banach} Theorem},
+  journal =      {Journal of Formalized Mathematics},
+  year =         {1993},
+  volume =       {5},
+  institution =  {University of Bialystok},
+  note =         {\url{http://mizar.uwb.edu.pl/JFM/Vol5/hahnban.html}}
+}
--- a/src/HOL/Real/HahnBanach/document/root.tex	Mon Oct 25 19:24:31 1999 +0200
+++ b/src/HOL/Real/HahnBanach/document/root.tex	Mon Oct 25 19:24:43 1999 +0200
@@ -12,32 +12,42 @@
 \pagestyle{headings}
 \pagenumbering{arabic}
 
-\title{The Hahn-Banach Theorem for Real Vectorspaces}
+\title{The Hahn-Banach Theorem for Real Vector Spaces}
 \author{Gertrud Bauer}
 \maketitle
 
 \begin{abstract}
-The Hahn-Banach theorem is one of the most important theorems
-of functional analysis. We present the fully formal proof of two versions of
-the theorem, one for general linear spaces and one for normed spaces
-as a corollary of the first. 
-
-The first part contains the definition of basic notions of
-linear algebra, such as vector spaces, subspaces, normed spaces,
-continous linearforms, norm of functions and an order on
-functions by domain extension.
-
-The second part contains some lemmas about the supremum w.r.t. the
-function order and the extension of a non-maximal function, 
-which are needed for the proof of the main theorem.
-
-The third part is the proof of the theorem in its two different versions.
-
+  The Hahn-Banach theorem is one of the most fundamental results in functional
+  analysis. We present a fully formal proof of two versions of the theorem,
+  one for general linear spaces and another for normed spaces.  This
+  development is based on simply-typed classical set-theory, as provided by
+  Isabelle/HOL.
 \end{abstract}
 
+
 \tableofcontents
+\parindent 0pt \parskip 0.5ex
+
+\clearpage
+\section{Preface}
 
-\part {Basic notions}
+This is a fully formal proof of the Hahn-Banach theorem. It closely follows
+the informal presentation given in the textbook \cite[\S 36]{Heuser:1986}.
+Another formal proof of the same theorem has been done in Mizar
+\cite{Nowak:1993}.  A general overview of the relevance and history of the
+Hahn-Banach theorem is given in \cite{Narici:1996}.
+
+\medskip The document is structured as follows.  The first part contains
+definitions of basic notions of linear algebra: vector spaces, subspaces,
+normed spaces, continuous linearforms, norm of functions and an order on
+functions by domain extension.  The second part contains some lemmas about the
+supremum (w.r.t.\ the function order) and extension of non-maximal functions.
+With these preliminaries, the main proof of the theorem (in its two versions)
+is conducted in the third part.
+
+
+\clearpage
+\part {Basic Notions}
 
 \input{Bounds.tex}
 \input{Aux.tex}
@@ -49,15 +59,17 @@
 \input{FunctionNorm.tex}
 \input{ZornLemma.tex}
 
-\part {Lemmas for the proof}
+\clearpage
+\part {Lemmas for the Proof}
 
 \input{HahnBanachSupLemmas.tex}
 \input{HahnBanachExtLemmas.tex}
 
-\part {The proof}
+\clearpage
+\part {The Main Proof}
 
 \input{HahnBanach.tex}
 \bibliographystyle{abbrv}
-\bibliography{bib}
+\bibliography{root}
 
 \end{document}