--- a/NEWS Thu Mar 11 16:56:22 2010 +0100
+++ b/NEWS Thu Mar 11 17:39:45 2010 +0100
@@ -83,6 +83,9 @@
*** HOL ***
+* Split off theory Big_Operators containing setsum, setprod, Inf_fin, Sup_fin,
+Min, Max from theory Finite_Set. INCOMPATIBILITY.
+
* Theory "Rational" renamed to "Rat", for consistency with "Nat", "Int" etc.
INCOMPATIBILITY.
@@ -102,7 +105,7 @@
INCOMPATIBILITY.
-* Class division ring also requires proof of fact divide_inverse. However instantiation
+* Class division_ring also requires proof of fact divide_inverse. However instantiation
of parameter divide has also been required previously. INCOMPATIBILITY.
* More consistent naming of type classes involving orderings (and lattices):
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Big_Operators.thy Thu Mar 11 17:39:45 2010 +0100
@@ -0,0 +1,1711 @@
+(* Title: HOL/Big_Operators.thy
+ Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
+ with contributions by Jeremy Avigad
+*)
+
+header {* Big operators and finite (non-empty) sets *}
+
+theory Big_Operators
+imports Plain
+begin
+
+subsection {* Generalized summation over a set *}
+
+interpretation comm_monoid_add: comm_monoid_mult "op +" "0::'a::comm_monoid_add"
+ proof qed (auto intro: add_assoc add_commute)
+
+definition setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add"
+where "setsum f A == if finite A then fold_image (op +) f 0 A else 0"
+
+abbreviation
+ Setsum ("\<Sum>_" [1000] 999) where
+ "\<Sum>A == setsum (%x. x) A"
+
+text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
+written @{text"\<Sum>x\<in>A. e"}. *}
+
+syntax
+ "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3SUM _:_. _)" [0, 51, 10] 10)
+syntax (xsymbols)
+ "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
+syntax (HTML output)
+ "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
+
+translations -- {* Beware of argument permutation! *}
+ "SUM i:A. b" == "CONST setsum (%i. b) A"
+ "\<Sum>i\<in>A. b" == "CONST setsum (%i. b) A"
+
+text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter
+ @{text"\<Sum>x|P. e"}. *}
+
+syntax
+ "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
+syntax (xsymbols)
+ "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
+syntax (HTML output)
+ "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
+
+translations
+ "SUM x|P. t" => "CONST setsum (%x. t) {x. P}"
+ "\<Sum>x|P. t" => "CONST setsum (%x. t) {x. P}"
+
+print_translation {*
+let
+ fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] =
+ if x <> y then raise Match
+ else
+ let
+ val x' = Syntax.mark_bound x;
+ val t' = subst_bound (x', t);
+ val P' = subst_bound (x', P);
+ in Syntax.const @{syntax_const "_qsetsum"} $ Syntax.mark_bound x $ P' $ t' end
+ | setsum_tr' _ = raise Match;
+in [(@{const_syntax setsum}, setsum_tr')] end
+*}
+
+
+lemma setsum_empty [simp]: "setsum f {} = 0"
+by (simp add: setsum_def)
+
+lemma setsum_insert [simp]:
+ "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F"
+by (simp add: setsum_def)
+
+lemma setsum_infinite [simp]: "~ finite A ==> setsum f A = 0"
+by (simp add: setsum_def)
+
+lemma setsum_reindex:
+ "inj_on f B ==> setsum h (f ` B) = setsum (h \<circ> f) B"
+by(auto simp add: setsum_def comm_monoid_add.fold_image_reindex dest!:finite_imageD)
+
+lemma setsum_reindex_id:
+ "inj_on f B ==> setsum f B = setsum id (f ` B)"
+by (auto simp add: setsum_reindex)
+
+lemma setsum_reindex_nonzero:
+ assumes fS: "finite S"
+ and nz: "\<And> x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x \<noteq> y \<Longrightarrow> f x = f y \<Longrightarrow> h (f x) = 0"
+ shows "setsum h (f ` S) = setsum (h o f) S"
+using nz
+proof(induct rule: finite_induct[OF fS])
+ case 1 thus ?case by simp
+next
+ case (2 x F)
+ {assume fxF: "f x \<in> f ` F" hence "\<exists>y \<in> F . f y = f x" by auto
+ then obtain y where y: "y \<in> F" "f x = f y" by auto
+ from "2.hyps" y have xy: "x \<noteq> y" by auto
+
+ from "2.prems"[of x y] "2.hyps" xy y have h0: "h (f x) = 0" by simp
+ have "setsum h (f ` insert x F) = setsum h (f ` F)" using fxF by auto
+ also have "\<dots> = setsum (h o f) (insert x F)"
+ unfolding setsum_insert[OF `finite F` `x\<notin>F`]
+ using h0
+ apply simp
+ apply (rule "2.hyps"(3))
+ apply (rule_tac y="y" in "2.prems")
+ apply simp_all
+ done
+ finally have ?case .}
+ moreover
+ {assume fxF: "f x \<notin> f ` F"
+ have "setsum h (f ` insert x F) = h (f x) + setsum h (f ` F)"
+ using fxF "2.hyps" by simp
+ also have "\<dots> = setsum (h o f) (insert x F)"
+ unfolding setsum_insert[OF `finite F` `x\<notin>F`]
+ apply simp
+ apply (rule cong[OF refl[of "op + (h (f x))"]])
+ apply (rule "2.hyps"(3))
+ apply (rule_tac y="y" in "2.prems")
+ apply simp_all
+ done
+ finally have ?case .}
+ ultimately show ?case by blast
+qed
+
+lemma setsum_cong:
+ "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B"
+by(fastsimp simp: setsum_def intro: comm_monoid_add.fold_image_cong)
+
+lemma strong_setsum_cong[cong]:
+ "A = B ==> (!!x. x:B =simp=> f x = g x)
+ ==> setsum (%x. f x) A = setsum (%x. g x) B"
+by(fastsimp simp: simp_implies_def setsum_def intro: comm_monoid_add.fold_image_cong)
+
+lemma setsum_cong2: "\<lbrakk>\<And>x. x \<in> A \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> setsum f A = setsum g A"
+by (rule setsum_cong[OF refl], auto)
+
+lemma setsum_reindex_cong:
+ "[|inj_on f A; B = f ` A; !!a. a:A \<Longrightarrow> g a = h (f a)|]
+ ==> setsum h B = setsum g A"
+by (simp add: setsum_reindex cong: setsum_cong)
+
+
+lemma setsum_0[simp]: "setsum (%i. 0) A = 0"
+apply (clarsimp simp: setsum_def)
+apply (erule finite_induct, auto)
+done
+
+lemma setsum_0': "ALL a:A. f a = 0 ==> setsum f A = 0"
+by(simp add:setsum_cong)
+
+lemma setsum_Un_Int: "finite A ==> finite B ==>
+ setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B"
+ -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
+by(simp add: setsum_def comm_monoid_add.fold_image_Un_Int [symmetric])
+
+lemma setsum_Un_disjoint: "finite A ==> finite B
+ ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
+by (subst setsum_Un_Int [symmetric], auto)
+
+lemma setsum_mono_zero_left:
+ assumes fT: "finite T" and ST: "S \<subseteq> T"
+ and z: "\<forall>i \<in> T - S. f i = 0"
+ shows "setsum f S = setsum f T"
+proof-
+ have eq: "T = S \<union> (T - S)" using ST by blast
+ have d: "S \<inter> (T - S) = {}" using ST by blast
+ from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset)
+ show ?thesis
+ by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z])
+qed
+
+lemma setsum_mono_zero_right:
+ "finite T \<Longrightarrow> S \<subseteq> T \<Longrightarrow> \<forall>i \<in> T - S. f i = 0 \<Longrightarrow> setsum f T = setsum f S"
+by(blast intro!: setsum_mono_zero_left[symmetric])
+
+lemma setsum_mono_zero_cong_left:
+ assumes fT: "finite T" and ST: "S \<subseteq> T"
+ and z: "\<forall>i \<in> T - S. g i = 0"
+ and fg: "\<And>x. x \<in> S \<Longrightarrow> f x = g x"
+ shows "setsum f S = setsum g T"
+proof-
+ have eq: "T = S \<union> (T - S)" using ST by blast
+ have d: "S \<inter> (T - S) = {}" using ST by blast
+ from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset)
+ show ?thesis
+ using fg by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z])
+qed
+
+lemma setsum_mono_zero_cong_right:
+ assumes fT: "finite T" and ST: "S \<subseteq> T"
+ and z: "\<forall>i \<in> T - S. f i = 0"
+ and fg: "\<And>x. x \<in> S \<Longrightarrow> f x = g x"
+ shows "setsum f T = setsum g S"
+using setsum_mono_zero_cong_left[OF fT ST z] fg[symmetric] by auto
+
+lemma setsum_delta:
+ assumes fS: "finite S"
+ shows "setsum (\<lambda>k. if k=a then b k else 0) S = (if a \<in> S then b a else 0)"
+proof-
+ let ?f = "(\<lambda>k. if k=a then b k else 0)"
+ {assume a: "a \<notin> S"
+ hence "\<forall> k\<in> S. ?f k = 0" by simp
+ hence ?thesis using a by simp}
+ moreover
+ {assume a: "a \<in> S"
+ let ?A = "S - {a}"
+ let ?B = "{a}"
+ have eq: "S = ?A \<union> ?B" using a by blast
+ have dj: "?A \<inter> ?B = {}" by simp
+ from fS have fAB: "finite ?A" "finite ?B" by auto
+ have "setsum ?f S = setsum ?f ?A + setsum ?f ?B"
+ using setsum_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
+ by simp
+ then have ?thesis using a by simp}
+ ultimately show ?thesis by blast
+qed
+lemma setsum_delta':
+ assumes fS: "finite S" shows
+ "setsum (\<lambda>k. if a = k then b k else 0) S =
+ (if a\<in> S then b a else 0)"
+ using setsum_delta[OF fS, of a b, symmetric]
+ by (auto intro: setsum_cong)
+
+lemma setsum_restrict_set:
+ assumes fA: "finite A"
+ shows "setsum f (A \<inter> B) = setsum (\<lambda>x. if x \<in> B then f x else 0) A"
+proof-
+ from fA have fab: "finite (A \<inter> B)" by auto
+ have aba: "A \<inter> B \<subseteq> A" by blast
+ let ?g = "\<lambda>x. if x \<in> A\<inter>B then f x else 0"
+ from setsum_mono_zero_left[OF fA aba, of ?g]
+ show ?thesis by simp
+qed
+
+lemma setsum_cases:
+ assumes fA: "finite A"
+ shows "setsum (\<lambda>x. if P x then f x else g x) A =
+ setsum f (A \<inter> {x. P x}) + setsum g (A \<inter> - {x. P x})"
+proof-
+ have a: "A = A \<inter> {x. P x} \<union> A \<inter> -{x. P x}"
+ "(A \<inter> {x. P x}) \<inter> (A \<inter> -{x. P x}) = {}"
+ by blast+
+ from fA
+ have f: "finite (A \<inter> {x. P x})" "finite (A \<inter> -{x. P x})" by auto
+ let ?g = "\<lambda>x. if P x then f x else g x"
+ from setsum_Un_disjoint[OF f a(2), of ?g] a(1)
+ show ?thesis by simp
+qed
+
+
+(*But we can't get rid of finite I. If infinite, although the rhs is 0,
+ the lhs need not be, since UNION I A could still be finite.*)
+lemma setsum_UN_disjoint:
+ "finite I ==> (ALL i:I. finite (A i)) ==>
+ (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
+ setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))"
+by(simp add: setsum_def comm_monoid_add.fold_image_UN_disjoint cong: setsum_cong)
+
+text{*No need to assume that @{term C} is finite. If infinite, the rhs is
+directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*}
+lemma setsum_Union_disjoint:
+ "[| (ALL A:C. finite A);
+ (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |]
+ ==> setsum f (Union C) = setsum (setsum f) C"
+apply (cases "finite C")
+ prefer 2 apply (force dest: finite_UnionD simp add: setsum_def)
+ apply (frule setsum_UN_disjoint [of C id f])
+ apply (unfold Union_def id_def, assumption+)
+done
+
+(*But we can't get rid of finite A. If infinite, although the lhs is 0,
+ the rhs need not be, since SIGMA A B could still be finite.*)
+lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
+ (\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = (\<Sum>(x,y)\<in>(SIGMA x:A. B x). f x y)"
+by(simp add:setsum_def comm_monoid_add.fold_image_Sigma split_def cong:setsum_cong)
+
+text{*Here we can eliminate the finiteness assumptions, by cases.*}
+lemma setsum_cartesian_product:
+ "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>(x,y) \<in> A <*> B. f x y)"
+apply (cases "finite A")
+ apply (cases "finite B")
+ apply (simp add: setsum_Sigma)
+ apply (cases "A={}", simp)
+ apply (simp)
+apply (auto simp add: setsum_def
+ dest: finite_cartesian_productD1 finite_cartesian_productD2)
+done
+
+lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)"
+by(simp add:setsum_def comm_monoid_add.fold_image_distrib)
+
+
+subsubsection {* Properties in more restricted classes of structures *}
+
+lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a"
+apply (case_tac "finite A")
+ prefer 2 apply (simp add: setsum_def)
+apply (erule rev_mp)
+apply (erule finite_induct, auto)
+done
+
+lemma setsum_eq_0_iff [simp]:
+ "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))"
+by (induct set: finite) auto
+
+lemma setsum_eq_Suc0_iff: "finite A \<Longrightarrow>
+ (setsum f A = Suc 0) = (EX a:A. f a = Suc 0 & (ALL b:A. a\<noteq>b \<longrightarrow> f b = 0))"
+apply(erule finite_induct)
+apply (auto simp add:add_is_1)
+done
+
+lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]]
+
+lemma setsum_Un_nat: "finite A ==> finite B ==>
+ (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"
+ -- {* For the natural numbers, we have subtraction. *}
+by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps)
+
+lemma setsum_Un: "finite A ==> finite B ==>
+ (setsum f (A Un B) :: 'a :: ab_group_add) =
+ setsum f A + setsum f B - setsum f (A Int B)"
+by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps)
+
+lemma (in comm_monoid_mult) fold_image_1: "finite S \<Longrightarrow> (\<forall>x\<in>S. f x = 1) \<Longrightarrow> fold_image op * f 1 S = 1"
+ apply (induct set: finite)
+ apply simp by auto
+
+lemma (in comm_monoid_mult) fold_image_Un_one:
+ assumes fS: "finite S" and fT: "finite T"
+ and I0: "\<forall>x \<in> S\<inter>T. f x = 1"
+ shows "fold_image (op *) f 1 (S \<union> T) = fold_image (op *) f 1 S * fold_image (op *) f 1 T"
+proof-
+ have "fold_image op * f 1 (S \<inter> T) = 1"
+ apply (rule fold_image_1)
+ using fS fT I0 by auto
+ with fold_image_Un_Int[OF fS fT] show ?thesis by simp
+qed
+
+lemma setsum_eq_general_reverses:
+ assumes fS: "finite S" and fT: "finite T"
+ and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
+ and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = f x"
+ shows "setsum f S = setsum g T"
+ apply (simp add: setsum_def fS fT)
+ apply (rule comm_monoid_add.fold_image_eq_general_inverses[OF fS])
+ apply (erule kh)
+ apply (erule hk)
+ done
+
+
+
+lemma setsum_Un_zero:
+ assumes fS: "finite S" and fT: "finite T"
+ and I0: "\<forall>x \<in> S\<inter>T. f x = 0"
+ shows "setsum f (S \<union> T) = setsum f S + setsum f T"
+ using fS fT
+ apply (simp add: setsum_def)
+ apply (rule comm_monoid_add.fold_image_Un_one)
+ using I0 by auto
+
+
+lemma setsum_UNION_zero:
+ assumes fS: "finite S" and fSS: "\<forall>T \<in> S. finite T"
+ and f0: "\<And>T1 T2 x. T1\<in>S \<Longrightarrow> T2\<in>S \<Longrightarrow> T1 \<noteq> T2 \<Longrightarrow> x \<in> T1 \<Longrightarrow> x \<in> T2 \<Longrightarrow> f x = 0"
+ shows "setsum f (\<Union>S) = setsum (\<lambda>T. setsum f T) S"
+ using fSS f0
+proof(induct rule: finite_induct[OF fS])
+ case 1 thus ?case by simp
+next
+ case (2 T F)
+ then have fTF: "finite T" "\<forall>T\<in>F. finite T" "finite F" and TF: "T \<notin> F"
+ and H: "setsum f (\<Union> F) = setsum (setsum f) F" by auto
+ from fTF have fUF: "finite (\<Union>F)" by auto
+ from "2.prems" TF fTF
+ show ?case
+ by (auto simp add: H[symmetric] intro: setsum_Un_zero[OF fTF(1) fUF, of f])
+qed
+
+
+lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
+ (if a:A then setsum f A - f a else setsum f A)"
+apply (case_tac "finite A")
+ prefer 2 apply (simp add: setsum_def)
+apply (erule finite_induct)
+ apply (auto simp add: insert_Diff_if)
+apply (drule_tac a = a in mk_disjoint_insert, auto)
+done
+
+lemma setsum_diff1: "finite A \<Longrightarrow>
+ (setsum f (A - {a}) :: ('a::ab_group_add)) =
+ (if a:A then setsum f A - f a else setsum f A)"
+by (erule finite_induct) (auto simp add: insert_Diff_if)
+
+lemma setsum_diff1'[rule_format]:
+ "finite A \<Longrightarrow> a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x)"
+apply (erule finite_induct[where F=A and P="% A. (a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x))"])
+apply (auto simp add: insert_Diff_if add_ac)
+done
+
+lemma setsum_diff1_ring: assumes "finite A" "a \<in> A"
+ shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)"
+unfolding setsum_diff1'[OF assms] by auto
+
+(* By Jeremy Siek: *)
+
+lemma setsum_diff_nat:
+assumes "finite B" and "B \<subseteq> A"
+shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)"
+using assms
+proof induct
+ show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
+next
+ fix F x assume finF: "finite F" and xnotinF: "x \<notin> F"
+ and xFinA: "insert x F \<subseteq> A"
+ and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F"
+ from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp
+ from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
+ by (simp add: setsum_diff1_nat)
+ from xFinA have "F \<subseteq> A" by simp
+ with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp
+ with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
+ by simp
+ from xnotinF have "A - insert x F = (A - F) - {x}" by auto
+ with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x"
+ by simp
+ from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp
+ with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)"
+ by simp
+ thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp
+qed
+
+lemma setsum_diff:
+ assumes le: "finite A" "B \<subseteq> A"
+ shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
+proof -
+ from le have finiteB: "finite B" using finite_subset by auto
+ show ?thesis using finiteB le
+ proof induct
+ case empty
+ thus ?case by auto
+ next
+ case (insert x F)
+ thus ?case using le finiteB
+ by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb)
+ qed
+qed
+
+lemma setsum_mono:
+ assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, ordered_ab_semigroup_add}))"
+ shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)"
+proof (cases "finite K")
+ case True
+ thus ?thesis using le
+ proof induct
+ case empty
+ thus ?case by simp
+ next
+ case insert
+ thus ?case using add_mono by fastsimp
+ qed
+next
+ case False
+ thus ?thesis
+ by (simp add: setsum_def)
+qed
+
+lemma setsum_strict_mono:
+ fixes f :: "'a \<Rightarrow> 'b::{ordered_cancel_ab_semigroup_add,comm_monoid_add}"
+ assumes "finite A" "A \<noteq> {}"
+ and "!!x. x:A \<Longrightarrow> f x < g x"
+ shows "setsum f A < setsum g A"
+ using prems
+proof (induct rule: finite_ne_induct)
+ case singleton thus ?case by simp
+next
+ case insert thus ?case by (auto simp: add_strict_mono)
+qed
+
+lemma setsum_negf:
+ "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A"
+proof (cases "finite A")
+ case True thus ?thesis by (induct set: finite) auto
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+lemma setsum_subtractf:
+ "setsum (%x. ((f x)::'a::ab_group_add) - g x) A =
+ setsum f A - setsum g A"
+proof (cases "finite A")
+ case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf)
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+lemma setsum_nonneg:
+ assumes nn: "\<forall>x\<in>A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) \<le> f x"
+ shows "0 \<le> setsum f A"
+proof (cases "finite A")
+ case True thus ?thesis using nn
+ proof induct
+ case empty then show ?case by simp
+ next
+ case (insert x F)
+ then have "0 + 0 \<le> f x + setsum f F" by (blast intro: add_mono)
+ with insert show ?case by simp
+ qed
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+lemma setsum_nonpos:
+ assumes np: "\<forall>x\<in>A. f x \<le> (0::'a::{ordered_ab_semigroup_add,comm_monoid_add})"
+ shows "setsum f A \<le> 0"
+proof (cases "finite A")
+ case True thus ?thesis using np
+ proof induct
+ case empty then show ?case by simp
+ next
+ case (insert x F)
+ then have "f x + setsum f F \<le> 0 + 0" by (blast intro: add_mono)
+ with insert show ?case by simp
+ qed
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+lemma setsum_mono2:
+fixes f :: "'a \<Rightarrow> 'b :: {ordered_ab_semigroup_add_imp_le,comm_monoid_add}"
+assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b"
+shows "setsum f A \<le> setsum f B"
+proof -
+ have "setsum f A \<le> setsum f A + setsum f (B-A)"
+ by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def)
+ also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin]
+ by (simp add:setsum_Un_disjoint del:Un_Diff_cancel)
+ also have "A \<union> (B-A) = B" using sub by blast
+ finally show ?thesis .
+qed
+
+lemma setsum_mono3: "finite B ==> A <= B ==>
+ ALL x: B - A.
+ 0 <= ((f x)::'a::{comm_monoid_add,ordered_ab_semigroup_add}) ==>
+ setsum f A <= setsum f B"
+ apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)")
+ apply (erule ssubst)
+ apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)")
+ apply simp
+ apply (rule add_left_mono)
+ apply (erule setsum_nonneg)
+ apply (subst setsum_Un_disjoint [THEN sym])
+ apply (erule finite_subset, assumption)
+ apply (rule finite_subset)
+ prefer 2
+ apply assumption
+ apply (auto simp add: sup_absorb2)
+done
+
+lemma setsum_right_distrib:
+ fixes f :: "'a => ('b::semiring_0)"
+ shows "r * setsum f A = setsum (%n. r * f n) A"
+proof (cases "finite A")
+ case True
+ thus ?thesis
+ proof induct
+ case empty thus ?case by simp
+ next
+ case (insert x A) thus ?case by (simp add: right_distrib)
+ qed
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+lemma setsum_left_distrib:
+ "setsum f A * (r::'a::semiring_0) = (\<Sum>n\<in>A. f n * r)"
+proof (cases "finite A")
+ case True
+ then show ?thesis
+ proof induct
+ case empty thus ?case by simp
+ next
+ case (insert x A) thus ?case by (simp add: left_distrib)
+ qed
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+lemma setsum_divide_distrib:
+ "setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)"
+proof (cases "finite A")
+ case True
+ then show ?thesis
+ proof induct
+ case empty thus ?case by simp
+ next
+ case (insert x A) thus ?case by (simp add: add_divide_distrib)
+ qed
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+lemma setsum_abs[iff]:
+ fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
+ shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A"
+proof (cases "finite A")
+ case True
+ thus ?thesis
+ proof induct
+ case empty thus ?case by simp
+ next
+ case (insert x A)
+ thus ?case by (auto intro: abs_triangle_ineq order_trans)
+ qed
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+lemma setsum_abs_ge_zero[iff]:
+ fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
+ shows "0 \<le> setsum (%i. abs(f i)) A"
+proof (cases "finite A")
+ case True
+ thus ?thesis
+ proof induct
+ case empty thus ?case by simp
+ next
+ case (insert x A) thus ?case by (auto simp: add_nonneg_nonneg)
+ qed
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+lemma abs_setsum_abs[simp]:
+ fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
+ shows "abs (\<Sum>a\<in>A. abs(f a)) = (\<Sum>a\<in>A. abs(f a))"
+proof (cases "finite A")
+ case True
+ thus ?thesis
+ proof induct
+ case empty thus ?case by simp
+ next
+ case (insert a A)
+ hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp
+ also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>" using insert by simp
+ also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>"
+ by (simp del: abs_of_nonneg)
+ also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp
+ finally show ?case .
+ qed
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+
+lemma setsum_Plus:
+ fixes A :: "'a set" and B :: "'b set"
+ assumes fin: "finite A" "finite B"
+ shows "setsum f (A <+> B) = setsum (f \<circ> Inl) A + setsum (f \<circ> Inr) B"
+proof -
+ have "A <+> B = Inl ` A \<union> Inr ` B" by auto
+ moreover from fin have "finite (Inl ` A :: ('a + 'b) set)" "finite (Inr ` B :: ('a + 'b) set)"
+ by(auto intro: finite_imageI)
+ moreover have "Inl ` A \<inter> Inr ` B = ({} :: ('a + 'b) set)" by auto
+ moreover have "inj_on (Inl :: 'a \<Rightarrow> 'a + 'b) A" "inj_on (Inr :: 'b \<Rightarrow> 'a + 'b) B" by(auto intro: inj_onI)
+ ultimately show ?thesis using fin by(simp add: setsum_Un_disjoint setsum_reindex)
+qed
+
+
+text {* Commuting outer and inner summation *}
+
+lemma swap_inj_on:
+ "inj_on (%(i, j). (j, i)) (A \<times> B)"
+ by (unfold inj_on_def) fast
+
+lemma swap_product:
+ "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
+ by (simp add: split_def image_def) blast
+
+lemma setsum_commute:
+ "(\<Sum>i\<in>A. \<Sum>j\<in>B. f i j) = (\<Sum>j\<in>B. \<Sum>i\<in>A. f i j)"
+proof (simp add: setsum_cartesian_product)
+ have "(\<Sum>(x,y) \<in> A <*> B. f x y) =
+ (\<Sum>(y,x) \<in> (%(i, j). (j, i)) ` (A \<times> B). f x y)"
+ (is "?s = _")
+ apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on)
+ apply (simp add: split_def)
+ done
+ also have "... = (\<Sum>(y,x)\<in>B \<times> A. f x y)"
+ (is "_ = ?t")
+ apply (simp add: swap_product)
+ done
+ finally show "?s = ?t" .
+qed
+
+lemma setsum_product:
+ fixes f :: "'a => ('b::semiring_0)"
+ shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)"
+ by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute)
+
+lemma setsum_mult_setsum_if_inj:
+fixes f :: "'a => ('b::semiring_0)"
+shows "inj_on (%(a,b). f a * g b) (A \<times> B) ==>
+ setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}"
+by(auto simp: setsum_product setsum_cartesian_product
+ intro!: setsum_reindex_cong[symmetric])
+
+lemma setsum_constant [simp]: "(\<Sum>x \<in> A. y) = of_nat(card A) * y"
+apply (cases "finite A")
+apply (erule finite_induct)
+apply (auto simp add: algebra_simps)
+done
+
+lemma setsum_bounded:
+ assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{semiring_1, ordered_ab_semigroup_add})"
+ shows "setsum f A \<le> of_nat(card A) * K"
+proof (cases "finite A")
+ case True
+ thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp
+next
+ case False thus ?thesis by (simp add: setsum_def)
+qed
+
+
+subsubsection {* Cardinality as special case of @{const setsum} *}
+
+lemma card_eq_setsum:
+ "card A = setsum (\<lambda>x. 1) A"
+ by (simp only: card_def setsum_def)
+
+lemma card_UN_disjoint:
+ "finite I ==> (ALL i:I. finite (A i)) ==>
+ (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {})
+ ==> card (UNION I A) = (\<Sum>i\<in>I. card(A i))"
+apply (simp add: card_eq_setsum del: setsum_constant)
+apply (subgoal_tac
+ "setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I")
+apply (simp add: setsum_UN_disjoint del: setsum_constant)
+apply (simp cong: setsum_cong)
+done
+
+lemma card_Union_disjoint:
+ "finite C ==> (ALL A:C. finite A) ==>
+ (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {})
+ ==> card (Union C) = setsum card C"
+apply (frule card_UN_disjoint [of C id])
+apply (unfold Union_def id_def, assumption+)
+done
+
+text{*The image of a finite set can be expressed using @{term fold_image}.*}
+lemma image_eq_fold_image:
+ "finite A ==> f ` A = fold_image (op Un) (%x. {f x}) {} A"
+proof (induct rule: finite_induct)
+ case empty then show ?case by simp
+next
+ interpret ab_semigroup_mult "op Un"
+ proof qed auto
+ case insert
+ then show ?case by simp
+qed
+
+subsubsection {* Cardinality of products *}
+
+lemma card_SigmaI [simp]:
+ "\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk>
+ \<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))"
+by(simp add: card_eq_setsum setsum_Sigma del:setsum_constant)
+
+(*
+lemma SigmaI_insert: "y \<notin> A ==>
+ (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
+ by auto
+*)
+
+lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)"
+ by (cases "finite A \<and> finite B")
+ (auto simp add: card_eq_0_iff dest: finite_cartesian_productD1 finite_cartesian_productD2)
+
+lemma card_cartesian_product_singleton: "card({x} <*> A) = card(A)"
+by (simp add: card_cartesian_product)
+
+
+subsection {* Generalized product over a set *}
+
+definition setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult"
+where "setprod f A == if finite A then fold_image (op *) f 1 A else 1"
+
+abbreviation
+ Setprod ("\<Prod>_" [1000] 999) where
+ "\<Prod>A == setprod (%x. x) A"
+
+syntax
+ "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3PROD _:_. _)" [0, 51, 10] 10)
+syntax (xsymbols)
+ "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
+syntax (HTML output)
+ "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
+
+translations -- {* Beware of argument permutation! *}
+ "PROD i:A. b" == "CONST setprod (%i. b) A"
+ "\<Prod>i\<in>A. b" == "CONST setprod (%i. b) A"
+
+text{* Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter
+ @{text"\<Prod>x|P. e"}. *}
+
+syntax
+ "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)
+syntax (xsymbols)
+ "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
+syntax (HTML output)
+ "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
+
+translations
+ "PROD x|P. t" => "CONST setprod (%x. t) {x. P}"
+ "\<Prod>x|P. t" => "CONST setprod (%x. t) {x. P}"
+
+
+lemma setprod_empty [simp]: "setprod f {} = 1"
+by (auto simp add: setprod_def)
+
+lemma setprod_insert [simp]: "[| finite A; a \<notin> A |] ==>
+ setprod f (insert a A) = f a * setprod f A"
+by (simp add: setprod_def)
+
+lemma setprod_infinite [simp]: "~ finite A ==> setprod f A = 1"
+by (simp add: setprod_def)
+
+lemma setprod_reindex:
+ "inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B"
+by(auto simp: setprod_def fold_image_reindex dest!:finite_imageD)
+
+lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)"
+by (auto simp add: setprod_reindex)
+
+lemma setprod_cong:
+ "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B"
+by(fastsimp simp: setprod_def intro: fold_image_cong)
+
+lemma strong_setprod_cong[cong]:
+ "A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B"
+by(fastsimp simp: simp_implies_def setprod_def intro: fold_image_cong)
+
+lemma setprod_reindex_cong: "inj_on f A ==>
+ B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A"
+by (frule setprod_reindex, simp)
+
+lemma strong_setprod_reindex_cong: assumes i: "inj_on f A"
+ and B: "B = f ` A" and eq: "\<And>x. x \<in> A \<Longrightarrow> g x = (h \<circ> f) x"
+ shows "setprod h B = setprod g A"
+proof-
+ have "setprod h B = setprod (h o f) A"
+ by (simp add: B setprod_reindex[OF i, of h])
+ then show ?thesis apply simp
+ apply (rule setprod_cong)
+ apply simp
+ by (simp add: eq)
+qed
+
+lemma setprod_Un_one:
+ assumes fS: "finite S" and fT: "finite T"
+ and I0: "\<forall>x \<in> S\<inter>T. f x = 1"
+ shows "setprod f (S \<union> T) = setprod f S * setprod f T"
+ using fS fT
+ apply (simp add: setprod_def)
+ apply (rule fold_image_Un_one)
+ using I0 by auto
+
+
+lemma setprod_1: "setprod (%i. 1) A = 1"
+apply (case_tac "finite A")
+apply (erule finite_induct, auto simp add: mult_ac)
+done
+
+lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1"
+apply (subgoal_tac "setprod f F = setprod (%x. 1) F")
+apply (erule ssubst, rule setprod_1)
+apply (rule setprod_cong, auto)
+done
+
+lemma setprod_Un_Int: "finite A ==> finite B
+ ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B"
+by(simp add: setprod_def fold_image_Un_Int[symmetric])
+
+lemma setprod_Un_disjoint: "finite A ==> finite B
+ ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
+by (subst setprod_Un_Int [symmetric], auto)
+
+lemma setprod_mono_one_left:
+ assumes fT: "finite T" and ST: "S \<subseteq> T"
+ and z: "\<forall>i \<in> T - S. f i = 1"
+ shows "setprod f S = setprod f T"
+proof-
+ have eq: "T = S \<union> (T - S)" using ST by blast
+ have d: "S \<inter> (T - S) = {}" using ST by blast
+ from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset)
+ show ?thesis
+ by (simp add: setprod_Un_disjoint[OF f d, unfolded eq[symmetric]] setprod_1'[OF z])
+qed
+
+lemmas setprod_mono_one_right = setprod_mono_one_left [THEN sym]
+
+lemma setprod_delta:
+ assumes fS: "finite S"
+ shows "setprod (\<lambda>k. if k=a then b k else 1) S = (if a \<in> S then b a else 1)"
+proof-
+ let ?f = "(\<lambda>k. if k=a then b k else 1)"
+ {assume a: "a \<notin> S"
+ hence "\<forall> k\<in> S. ?f k = 1" by simp
+ hence ?thesis using a by (simp add: setprod_1 cong add: setprod_cong) }
+ moreover
+ {assume a: "a \<in> S"
+ let ?A = "S - {a}"
+ let ?B = "{a}"
+ have eq: "S = ?A \<union> ?B" using a by blast
+ have dj: "?A \<inter> ?B = {}" by simp
+ from fS have fAB: "finite ?A" "finite ?B" by auto
+ have fA1: "setprod ?f ?A = 1" apply (rule setprod_1') by auto
+ have "setprod ?f ?A * setprod ?f ?B = setprod ?f S"
+ using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
+ by simp
+ then have ?thesis using a by (simp add: fA1 cong add: setprod_cong cong del: if_weak_cong)}
+ ultimately show ?thesis by blast
+qed
+
+lemma setprod_delta':
+ assumes fS: "finite S" shows
+ "setprod (\<lambda>k. if a = k then b k else 1) S =
+ (if a\<in> S then b a else 1)"
+ using setprod_delta[OF fS, of a b, symmetric]
+ by (auto intro: setprod_cong)
+
+
+lemma setprod_UN_disjoint:
+ "finite I ==> (ALL i:I. finite (A i)) ==>
+ (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
+ setprod f (UNION I A) = setprod (%i. setprod f (A i)) I"
+by(simp add: setprod_def fold_image_UN_disjoint cong: setprod_cong)
+
+lemma setprod_Union_disjoint:
+ "[| (ALL A:C. finite A);
+ (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |]
+ ==> setprod f (Union C) = setprod (setprod f) C"
+apply (cases "finite C")
+ prefer 2 apply (force dest: finite_UnionD simp add: setprod_def)
+ apply (frule setprod_UN_disjoint [of C id f])
+ apply (unfold Union_def id_def, assumption+)
+done
+
+lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
+ (\<Prod>x\<in>A. (\<Prod>y\<in> B x. f x y)) =
+ (\<Prod>(x,y)\<in>(SIGMA x:A. B x). f x y)"
+by(simp add:setprod_def fold_image_Sigma split_def cong:setprod_cong)
+
+text{*Here we can eliminate the finiteness assumptions, by cases.*}
+lemma setprod_cartesian_product:
+ "(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>(x,y)\<in>(A <*> B). f x y)"
+apply (cases "finite A")
+ apply (cases "finite B")
+ apply (simp add: setprod_Sigma)
+ apply (cases "A={}", simp)
+ apply (simp add: setprod_1)
+apply (auto simp add: setprod_def
+ dest: finite_cartesian_productD1 finite_cartesian_productD2)
+done
+
+lemma setprod_timesf:
+ "setprod (%x. f x * g x) A = (setprod f A * setprod g A)"
+by(simp add:setprod_def fold_image_distrib)
+
+
+subsubsection {* Properties in more restricted classes of structures *}
+
+lemma setprod_eq_1_iff [simp]:
+ "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))"
+by (induct set: finite) auto
+
+lemma setprod_zero:
+ "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1) ==> setprod f A = 0"
+apply (induct set: finite, force, clarsimp)
+apply (erule disjE, auto)
+done
+
+lemma setprod_nonneg [rule_format]:
+ "(ALL x: A. (0::'a::linordered_semidom) \<le> f x) --> 0 \<le> setprod f A"
+by (cases "finite A", induct set: finite, simp_all add: mult_nonneg_nonneg)
+
+lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::linordered_semidom) < f x)
+ --> 0 < setprod f A"
+by (cases "finite A", induct set: finite, simp_all add: mult_pos_pos)
+
+lemma setprod_zero_iff[simp]: "finite A ==>
+ (setprod f A = (0::'a::{comm_semiring_1,no_zero_divisors})) =
+ (EX x: A. f x = 0)"
+by (erule finite_induct, auto simp:no_zero_divisors)
+
+lemma setprod_pos_nat:
+ "finite S ==> (ALL x : S. f x > (0::nat)) ==> setprod f S > 0"
+using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric])
+
+lemma setprod_pos_nat_iff[simp]:
+ "finite S ==> (setprod f S > 0) = (ALL x : S. f x > (0::nat))"
+using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric])
+
+lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==>
+ (setprod f (A Un B) :: 'a ::{field})
+ = setprod f A * setprod f B / setprod f (A Int B)"
+by (subst setprod_Un_Int [symmetric], auto)
+
+lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==>
+ (setprod f (A - {a}) :: 'a :: {field}) =
+ (if a:A then setprod f A / f a else setprod f A)"
+by (erule finite_induct) (auto simp add: insert_Diff_if)
+
+lemma setprod_inversef:
+ fixes f :: "'b \<Rightarrow> 'a::{field,division_by_zero}"
+ shows "finite A ==> setprod (inverse \<circ> f) A = inverse (setprod f A)"
+by (erule finite_induct) auto
+
+lemma setprod_dividef:
+ fixes f :: "'b \<Rightarrow> 'a::{field,division_by_zero}"
+ shows "finite A
+ ==> setprod (%x. f x / g x) A = setprod f A / setprod g A"
+apply (subgoal_tac
+ "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A")
+apply (erule ssubst)
+apply (subst divide_inverse)
+apply (subst setprod_timesf)
+apply (subst setprod_inversef, assumption+, rule refl)
+apply (rule setprod_cong, rule refl)
+apply (subst divide_inverse, auto)
+done
+
+lemma setprod_dvd_setprod [rule_format]:
+ "(ALL x : A. f x dvd g x) \<longrightarrow> setprod f A dvd setprod g A"
+ apply (cases "finite A")
+ apply (induct set: finite)
+ apply (auto simp add: dvd_def)
+ apply (rule_tac x = "k * ka" in exI)
+ apply (simp add: algebra_simps)
+done
+
+lemma setprod_dvd_setprod_subset:
+ "finite B \<Longrightarrow> A <= B \<Longrightarrow> setprod f A dvd setprod f B"
+ apply (subgoal_tac "setprod f B = setprod f A * setprod f (B - A)")
+ apply (unfold dvd_def, blast)
+ apply (subst setprod_Un_disjoint [symmetric])
+ apply (auto elim: finite_subset intro: setprod_cong)
+done
+
+lemma setprod_dvd_setprod_subset2:
+ "finite B \<Longrightarrow> A <= B \<Longrightarrow> ALL x : A. (f x::'a::comm_semiring_1) dvd g x \<Longrightarrow>
+ setprod f A dvd setprod g B"
+ apply (rule dvd_trans)
+ apply (rule setprod_dvd_setprod, erule (1) bspec)
+ apply (erule (1) setprod_dvd_setprod_subset)
+done
+
+lemma dvd_setprod: "finite A \<Longrightarrow> i:A \<Longrightarrow>
+ (f i ::'a::comm_semiring_1) dvd setprod f A"
+by (induct set: finite) (auto intro: dvd_mult)
+
+lemma dvd_setsum [rule_format]: "(ALL i : A. d dvd f i) \<longrightarrow>
+ (d::'a::comm_semiring_1) dvd (SUM x : A. f x)"
+ apply (cases "finite A")
+ apply (induct set: finite)
+ apply auto
+done
+
+lemma setprod_mono:
+ fixes f :: "'a \<Rightarrow> 'b\<Colon>linordered_semidom"
+ assumes "\<forall>i\<in>A. 0 \<le> f i \<and> f i \<le> g i"
+ shows "setprod f A \<le> setprod g A"
+proof (cases "finite A")
+ case True
+ hence ?thesis "setprod f A \<ge> 0" using subset_refl[of A]
+ proof (induct A rule: finite_subset_induct)
+ case (insert a F)
+ thus "setprod f (insert a F) \<le> setprod g (insert a F)" "0 \<le> setprod f (insert a F)"
+ unfolding setprod_insert[OF insert(1,3)]
+ using assms[rule_format,OF insert(2)] insert
+ by (auto intro: mult_mono mult_nonneg_nonneg)
+ qed auto
+ thus ?thesis by simp
+qed auto
+
+lemma abs_setprod:
+ fixes f :: "'a \<Rightarrow> 'b\<Colon>{linordered_field,abs}"
+ shows "abs (setprod f A) = setprod (\<lambda>x. abs (f x)) A"
+proof (cases "finite A")
+ case True thus ?thesis
+ by induct (auto simp add: field_simps abs_mult)
+qed auto
+
+lemma setprod_constant: "finite A ==> (\<Prod>x\<in> A. (y::'a::{comm_monoid_mult})) = y^(card A)"
+apply (erule finite_induct)
+apply auto
+done
+
+lemma setprod_gen_delta:
+ assumes fS: "finite S"
+ shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::{comm_monoid_mult}) * c^ (card S - 1) else c^ card S)"
+proof-
+ let ?f = "(\<lambda>k. if k=a then b k else c)"
+ {assume a: "a \<notin> S"
+ hence "\<forall> k\<in> S. ?f k = c" by simp
+ hence ?thesis using a setprod_constant[OF fS, of c] by (simp add: setprod_1 cong add: setprod_cong) }
+ moreover
+ {assume a: "a \<in> S"
+ let ?A = "S - {a}"
+ let ?B = "{a}"
+ have eq: "S = ?A \<union> ?B" using a by blast
+ have dj: "?A \<inter> ?B = {}" by simp
+ from fS have fAB: "finite ?A" "finite ?B" by auto
+ have fA0:"setprod ?f ?A = setprod (\<lambda>i. c) ?A"
+ apply (rule setprod_cong) by auto
+ have cA: "card ?A = card S - 1" using fS a by auto
+ have fA1: "setprod ?f ?A = c ^ card ?A" unfolding fA0 apply (rule setprod_constant) using fS by auto
+ have "setprod ?f ?A * setprod ?f ?B = setprod ?f S"
+ using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
+ by simp
+ then have ?thesis using a cA
+ by (simp add: fA1 ring_simps cong add: setprod_cong cong del: if_weak_cong)}
+ ultimately show ?thesis by blast
+qed
+
+
+subsubsection {* Fold1 in lattices with @{const inf} and @{const sup} *}
+
+text{*
+ As an application of @{text fold1} we define infimum
+ and supremum in (not necessarily complete!) lattices
+ over (non-empty) sets by means of @{text fold1}.
+*}
+
+context semilattice_inf
+begin
+
+lemma below_fold1_iff:
+ assumes "finite A" "A \<noteq> {}"
+ shows "x \<le> fold1 inf A \<longleftrightarrow> (\<forall>a\<in>A. x \<le> a)"
+proof -
+ interpret ab_semigroup_idem_mult inf
+ by (rule ab_semigroup_idem_mult_inf)
+ show ?thesis using assms by (induct rule: finite_ne_induct) simp_all
+qed
+
+lemma fold1_belowI:
+ assumes "finite A"
+ and "a \<in> A"
+ shows "fold1 inf A \<le> a"
+proof -
+ from assms have "A \<noteq> {}" by auto
+ from `finite A` `A \<noteq> {}` `a \<in> A` show ?thesis
+ proof (induct rule: finite_ne_induct)
+ case singleton thus ?case by simp
+ next
+ interpret ab_semigroup_idem_mult inf
+ by (rule ab_semigroup_idem_mult_inf)
+ case (insert x F)
+ from insert(5) have "a = x \<or> a \<in> F" by simp
+ thus ?case
+ proof
+ assume "a = x" thus ?thesis using insert
+ by (simp add: mult_ac)
+ next
+ assume "a \<in> F"
+ hence bel: "fold1 inf F \<le> a" by (rule insert)
+ have "inf (fold1 inf (insert x F)) a = inf x (inf (fold1 inf F) a)"
+ using insert by (simp add: mult_ac)
+ also have "inf (fold1 inf F) a = fold1 inf F"
+ using bel by (auto intro: antisym)
+ also have "inf x \<dots> = fold1 inf (insert x F)"
+ using insert by (simp add: mult_ac)
+ finally have aux: "inf (fold1 inf (insert x F)) a = fold1 inf (insert x F)" .
+ moreover have "inf (fold1 inf (insert x F)) a \<le> a" by simp
+ ultimately show ?thesis by simp
+ qed
+ qed
+qed
+
+end
+
+context lattice
+begin
+
+definition
+ Inf_fin :: "'a set \<Rightarrow> 'a" ("\<Sqinter>\<^bsub>fin\<^esub>_" [900] 900)
+where
+ "Inf_fin = fold1 inf"
+
+definition
+ Sup_fin :: "'a set \<Rightarrow> 'a" ("\<Squnion>\<^bsub>fin\<^esub>_" [900] 900)
+where
+ "Sup_fin = fold1 sup"
+
+lemma Inf_le_Sup [simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<Sqinter>\<^bsub>fin\<^esub>A \<le> \<Squnion>\<^bsub>fin\<^esub>A"
+apply(unfold Sup_fin_def Inf_fin_def)
+apply(subgoal_tac "EX a. a:A")
+prefer 2 apply blast
+apply(erule exE)
+apply(rule order_trans)
+apply(erule (1) fold1_belowI)
+apply(erule (1) semilattice_inf.fold1_belowI [OF dual_semilattice])
+done
+
+lemma sup_Inf_absorb [simp]:
+ "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> sup a (\<Sqinter>\<^bsub>fin\<^esub>A) = a"
+apply(subst sup_commute)
+apply(simp add: Inf_fin_def sup_absorb2 fold1_belowI)
+done
+
+lemma inf_Sup_absorb [simp]:
+ "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> inf a (\<Squnion>\<^bsub>fin\<^esub>A) = a"
+by (simp add: Sup_fin_def inf_absorb1
+ semilattice_inf.fold1_belowI [OF dual_semilattice])
+
+end
+
+context distrib_lattice
+begin
+
+lemma sup_Inf1_distrib:
+ assumes "finite A"
+ and "A \<noteq> {}"
+ shows "sup x (\<Sqinter>\<^bsub>fin\<^esub>A) = \<Sqinter>\<^bsub>fin\<^esub>{sup x a|a. a \<in> A}"
+proof -
+ interpret ab_semigroup_idem_mult inf
+ by (rule ab_semigroup_idem_mult_inf)
+ from assms show ?thesis
+ by (simp add: Inf_fin_def image_def
+ hom_fold1_commute [where h="sup x", OF sup_inf_distrib1])
+ (rule arg_cong [where f="fold1 inf"], blast)
+qed
+
+lemma sup_Inf2_distrib:
+ assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
+ shows "sup (\<Sqinter>\<^bsub>fin\<^esub>A) (\<Sqinter>\<^bsub>fin\<^esub>B) = \<Sqinter>\<^bsub>fin\<^esub>{sup a b|a b. a \<in> A \<and> b \<in> B}"
+using A proof (induct rule: finite_ne_induct)
+ case singleton thus ?case
+ by (simp add: sup_Inf1_distrib [OF B] fold1_singleton_def [OF Inf_fin_def])
+next
+ interpret ab_semigroup_idem_mult inf
+ by (rule ab_semigroup_idem_mult_inf)
+ case (insert x A)
+ have finB: "finite {sup x b |b. b \<in> B}"
+ by(rule finite_surj[where f = "sup x", OF B(1)], auto)
+ have finAB: "finite {sup a b |a b. a \<in> A \<and> b \<in> B}"
+ proof -
+ have "{sup a b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {sup a b})"
+ by blast
+ thus ?thesis by(simp add: insert(1) B(1))
+ qed
+ have ne: "{sup a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
+ have "sup (\<Sqinter>\<^bsub>fin\<^esub>(insert x A)) (\<Sqinter>\<^bsub>fin\<^esub>B) = sup (inf x (\<Sqinter>\<^bsub>fin\<^esub>A)) (\<Sqinter>\<^bsub>fin\<^esub>B)"
+ using insert by (simp add: fold1_insert_idem_def [OF Inf_fin_def])
+ also have "\<dots> = inf (sup x (\<Sqinter>\<^bsub>fin\<^esub>B)) (sup (\<Sqinter>\<^bsub>fin\<^esub>A) (\<Sqinter>\<^bsub>fin\<^esub>B))" by(rule sup_inf_distrib2)
+ also have "\<dots> = inf (\<Sqinter>\<^bsub>fin\<^esub>{sup x b|b. b \<in> B}) (\<Sqinter>\<^bsub>fin\<^esub>{sup a b|a b. a \<in> A \<and> b \<in> B})"
+ using insert by(simp add:sup_Inf1_distrib[OF B])
+ also have "\<dots> = \<Sqinter>\<^bsub>fin\<^esub>({sup x b |b. b \<in> B} \<union> {sup a b |a b. a \<in> A \<and> b \<in> B})"
+ (is "_ = \<Sqinter>\<^bsub>fin\<^esub>?M")
+ using B insert
+ by (simp add: Inf_fin_def fold1_Un2 [OF finB _ finAB ne])
+ also have "?M = {sup a b |a b. a \<in> insert x A \<and> b \<in> B}"
+ by blast
+ finally show ?case .
+qed
+
+lemma inf_Sup1_distrib:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "inf x (\<Squnion>\<^bsub>fin\<^esub>A) = \<Squnion>\<^bsub>fin\<^esub>{inf x a|a. a \<in> A}"
+proof -
+ interpret ab_semigroup_idem_mult sup
+ by (rule ab_semigroup_idem_mult_sup)
+ from assms show ?thesis
+ by (simp add: Sup_fin_def image_def hom_fold1_commute [where h="inf x", OF inf_sup_distrib1])
+ (rule arg_cong [where f="fold1 sup"], blast)
+qed
+
+lemma inf_Sup2_distrib:
+ assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
+ shows "inf (\<Squnion>\<^bsub>fin\<^esub>A) (\<Squnion>\<^bsub>fin\<^esub>B) = \<Squnion>\<^bsub>fin\<^esub>{inf a b|a b. a \<in> A \<and> b \<in> B}"
+using A proof (induct rule: finite_ne_induct)
+ case singleton thus ?case
+ by(simp add: inf_Sup1_distrib [OF B] fold1_singleton_def [OF Sup_fin_def])
+next
+ case (insert x A)
+ have finB: "finite {inf x b |b. b \<in> B}"
+ by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto)
+ have finAB: "finite {inf a b |a b. a \<in> A \<and> b \<in> B}"
+ proof -
+ have "{inf a b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {inf a b})"
+ by blast
+ thus ?thesis by(simp add: insert(1) B(1))
+ qed
+ have ne: "{inf a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
+ interpret ab_semigroup_idem_mult sup
+ by (rule ab_semigroup_idem_mult_sup)
+ have "inf (\<Squnion>\<^bsub>fin\<^esub>(insert x A)) (\<Squnion>\<^bsub>fin\<^esub>B) = inf (sup x (\<Squnion>\<^bsub>fin\<^esub>A)) (\<Squnion>\<^bsub>fin\<^esub>B)"
+ using insert by (simp add: fold1_insert_idem_def [OF Sup_fin_def])
+ also have "\<dots> = sup (inf x (\<Squnion>\<^bsub>fin\<^esub>B)) (inf (\<Squnion>\<^bsub>fin\<^esub>A) (\<Squnion>\<^bsub>fin\<^esub>B))" by(rule inf_sup_distrib2)
+ also have "\<dots> = sup (\<Squnion>\<^bsub>fin\<^esub>{inf x b|b. b \<in> B}) (\<Squnion>\<^bsub>fin\<^esub>{inf a b|a b. a \<in> A \<and> b \<in> B})"
+ using insert by(simp add:inf_Sup1_distrib[OF B])
+ also have "\<dots> = \<Squnion>\<^bsub>fin\<^esub>({inf x b |b. b \<in> B} \<union> {inf a b |a b. a \<in> A \<and> b \<in> B})"
+ (is "_ = \<Squnion>\<^bsub>fin\<^esub>?M")
+ using B insert
+ by (simp add: Sup_fin_def fold1_Un2 [OF finB _ finAB ne])
+ also have "?M = {inf a b |a b. a \<in> insert x A \<and> b \<in> B}"
+ by blast
+ finally show ?case .
+qed
+
+end
+
+context complete_lattice
+begin
+
+lemma Inf_fin_Inf:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "\<Sqinter>\<^bsub>fin\<^esub>A = Inf A"
+proof -
+ interpret ab_semigroup_idem_mult inf
+ by (rule ab_semigroup_idem_mult_inf)
+ from `A \<noteq> {}` obtain b B where "A = insert b B" by auto
+ moreover with `finite A` have "finite B" by simp
+ ultimately show ?thesis
+ by (simp add: Inf_fin_def fold1_eq_fold_idem inf_Inf_fold_inf [symmetric])
+ (simp add: Inf_fold_inf)
+qed
+
+lemma Sup_fin_Sup:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "\<Squnion>\<^bsub>fin\<^esub>A = Sup A"
+proof -
+ interpret ab_semigroup_idem_mult sup
+ by (rule ab_semigroup_idem_mult_sup)
+ from `A \<noteq> {}` obtain b B where "A = insert b B" by auto
+ moreover with `finite A` have "finite B" by simp
+ ultimately show ?thesis
+ by (simp add: Sup_fin_def fold1_eq_fold_idem sup_Sup_fold_sup [symmetric])
+ (simp add: Sup_fold_sup)
+qed
+
+end
+
+
+subsubsection {* Fold1 in linear orders with @{const min} and @{const max} *}
+
+text{*
+ As an application of @{text fold1} we define minimum
+ and maximum in (not necessarily complete!) linear orders
+ over (non-empty) sets by means of @{text fold1}.
+*}
+
+context linorder
+begin
+
+lemma ab_semigroup_idem_mult_min:
+ "ab_semigroup_idem_mult min"
+ proof qed (auto simp add: min_def)
+
+lemma ab_semigroup_idem_mult_max:
+ "ab_semigroup_idem_mult max"
+ proof qed (auto simp add: max_def)
+
+lemma max_lattice:
+ "semilattice_inf (op \<ge>) (op >) max"
+ by (fact min_max.dual_semilattice)
+
+lemma dual_max:
+ "ord.max (op \<ge>) = min"
+ by (auto simp add: ord.max_def_raw min_def expand_fun_eq)
+
+lemma dual_min:
+ "ord.min (op \<ge>) = max"
+ by (auto simp add: ord.min_def_raw max_def expand_fun_eq)
+
+lemma strict_below_fold1_iff:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "x < fold1 min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)"
+proof -
+ interpret ab_semigroup_idem_mult min
+ by (rule ab_semigroup_idem_mult_min)
+ from assms show ?thesis
+ by (induct rule: finite_ne_induct)
+ (simp_all add: fold1_insert)
+qed
+
+lemma fold1_below_iff:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "fold1 min A \<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<le> x)"
+proof -
+ interpret ab_semigroup_idem_mult min
+ by (rule ab_semigroup_idem_mult_min)
+ from assms show ?thesis
+ by (induct rule: finite_ne_induct)
+ (simp_all add: fold1_insert min_le_iff_disj)
+qed
+
+lemma fold1_strict_below_iff:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "fold1 min A < x \<longleftrightarrow> (\<exists>a\<in>A. a < x)"
+proof -
+ interpret ab_semigroup_idem_mult min
+ by (rule ab_semigroup_idem_mult_min)
+ from assms show ?thesis
+ by (induct rule: finite_ne_induct)
+ (simp_all add: fold1_insert min_less_iff_disj)
+qed
+
+lemma fold1_antimono:
+ assumes "A \<noteq> {}" and "A \<subseteq> B" and "finite B"
+ shows "fold1 min B \<le> fold1 min A"
+proof cases
+ assume "A = B" thus ?thesis by simp
+next
+ interpret ab_semigroup_idem_mult min
+ by (rule ab_semigroup_idem_mult_min)
+ assume "A \<noteq> B"
+ have B: "B = A \<union> (B-A)" using `A \<subseteq> B` by blast
+ have "fold1 min B = fold1 min (A \<union> (B-A))" by(subst B)(rule refl)
+ also have "\<dots> = min (fold1 min A) (fold1 min (B-A))"
+ proof -
+ have "finite A" by(rule finite_subset[OF `A \<subseteq> B` `finite B`])
+ moreover have "finite(B-A)" by(rule finite_Diff[OF `finite B`]) (* by(blast intro:finite_Diff prems) fails *)
+ moreover have "(B-A) \<noteq> {}" using prems by blast
+ moreover have "A Int (B-A) = {}" using prems by blast
+ ultimately show ?thesis using `A \<noteq> {}` by (rule_tac fold1_Un)
+ qed
+ also have "\<dots> \<le> fold1 min A" by (simp add: min_le_iff_disj)
+ finally show ?thesis .
+qed
+
+definition
+ Min :: "'a set \<Rightarrow> 'a"
+where
+ "Min = fold1 min"
+
+definition
+ Max :: "'a set \<Rightarrow> 'a"
+where
+ "Max = fold1 max"
+
+lemmas Min_singleton [simp] = fold1_singleton_def [OF Min_def]
+lemmas Max_singleton [simp] = fold1_singleton_def [OF Max_def]
+
+lemma Min_insert [simp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "Min (insert x A) = min x (Min A)"
+proof -
+ interpret ab_semigroup_idem_mult min
+ by (rule ab_semigroup_idem_mult_min)
+ from assms show ?thesis by (rule fold1_insert_idem_def [OF Min_def])
+qed
+
+lemma Max_insert [simp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "Max (insert x A) = max x (Max A)"
+proof -
+ interpret ab_semigroup_idem_mult max
+ by (rule ab_semigroup_idem_mult_max)
+ from assms show ?thesis by (rule fold1_insert_idem_def [OF Max_def])
+qed
+
+lemma Min_in [simp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "Min A \<in> A"
+proof -
+ interpret ab_semigroup_idem_mult min
+ by (rule ab_semigroup_idem_mult_min)
+ from assms fold1_in show ?thesis by (fastsimp simp: Min_def min_def)
+qed
+
+lemma Max_in [simp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "Max A \<in> A"
+proof -
+ interpret ab_semigroup_idem_mult max
+ by (rule ab_semigroup_idem_mult_max)
+ from assms fold1_in [of A] show ?thesis by (fastsimp simp: Max_def max_def)
+qed
+
+lemma Min_Un:
+ assumes "finite A" and "A \<noteq> {}" and "finite B" and "B \<noteq> {}"
+ shows "Min (A \<union> B) = min (Min A) (Min B)"
+proof -
+ interpret ab_semigroup_idem_mult min
+ by (rule ab_semigroup_idem_mult_min)
+ from assms show ?thesis
+ by (simp add: Min_def fold1_Un2)
+qed
+
+lemma Max_Un:
+ assumes "finite A" and "A \<noteq> {}" and "finite B" and "B \<noteq> {}"
+ shows "Max (A \<union> B) = max (Max A) (Max B)"
+proof -
+ interpret ab_semigroup_idem_mult max
+ by (rule ab_semigroup_idem_mult_max)
+ from assms show ?thesis
+ by (simp add: Max_def fold1_Un2)
+qed
+
+lemma hom_Min_commute:
+ assumes "\<And>x y. h (min x y) = min (h x) (h y)"
+ and "finite N" and "N \<noteq> {}"
+ shows "h (Min N) = Min (h ` N)"
+proof -
+ interpret ab_semigroup_idem_mult min
+ by (rule ab_semigroup_idem_mult_min)
+ from assms show ?thesis
+ by (simp add: Min_def hom_fold1_commute)
+qed
+
+lemma hom_Max_commute:
+ assumes "\<And>x y. h (max x y) = max (h x) (h y)"
+ and "finite N" and "N \<noteq> {}"
+ shows "h (Max N) = Max (h ` N)"
+proof -
+ interpret ab_semigroup_idem_mult max
+ by (rule ab_semigroup_idem_mult_max)
+ from assms show ?thesis
+ by (simp add: Max_def hom_fold1_commute [of h])
+qed
+
+lemma Min_le [simp]:
+ assumes "finite A" and "x \<in> A"
+ shows "Min A \<le> x"
+ using assms by (simp add: Min_def min_max.fold1_belowI)
+
+lemma Max_ge [simp]:
+ assumes "finite A" and "x \<in> A"
+ shows "x \<le> Max A"
+proof -
+ interpret semilattice_inf "op \<ge>" "op >" max
+ by (rule max_lattice)
+ from assms show ?thesis by (simp add: Max_def fold1_belowI)
+qed
+
+lemma Min_ge_iff [simp, noatp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "x \<le> Min A \<longleftrightarrow> (\<forall>a\<in>A. x \<le> a)"
+ using assms by (simp add: Min_def min_max.below_fold1_iff)
+
+lemma Max_le_iff [simp, noatp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "Max A \<le> x \<longleftrightarrow> (\<forall>a\<in>A. a \<le> x)"
+proof -
+ interpret semilattice_inf "op \<ge>" "op >" max
+ by (rule max_lattice)
+ from assms show ?thesis by (simp add: Max_def below_fold1_iff)
+qed
+
+lemma Min_gr_iff [simp, noatp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "x < Min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)"
+ using assms by (simp add: Min_def strict_below_fold1_iff)
+
+lemma Max_less_iff [simp, noatp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "Max A < x \<longleftrightarrow> (\<forall>a\<in>A. a < x)"
+proof -
+ interpret dual: linorder "op \<ge>" "op >"
+ by (rule dual_linorder)
+ from assms show ?thesis
+ by (simp add: Max_def dual.strict_below_fold1_iff [folded dual.dual_max])
+qed
+
+lemma Min_le_iff [noatp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "Min A \<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<le> x)"
+ using assms by (simp add: Min_def fold1_below_iff)
+
+lemma Max_ge_iff [noatp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "x \<le> Max A \<longleftrightarrow> (\<exists>a\<in>A. x \<le> a)"
+proof -
+ interpret dual: linorder "op \<ge>" "op >"
+ by (rule dual_linorder)
+ from assms show ?thesis
+ by (simp add: Max_def dual.fold1_below_iff [folded dual.dual_max])
+qed
+
+lemma Min_less_iff [noatp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "Min A < x \<longleftrightarrow> (\<exists>a\<in>A. a < x)"
+ using assms by (simp add: Min_def fold1_strict_below_iff)
+
+lemma Max_gr_iff [noatp]:
+ assumes "finite A" and "A \<noteq> {}"
+ shows "x < Max A \<longleftrightarrow> (\<exists>a\<in>A. x < a)"
+proof -
+ interpret dual: linorder "op \<ge>" "op >"
+ by (rule dual_linorder)
+ from assms show ?thesis
+ by (simp add: Max_def dual.fold1_strict_below_iff [folded dual.dual_max])
+qed
+
+lemma Min_eqI:
+ assumes "finite A"
+ assumes "\<And>y. y \<in> A \<Longrightarrow> y \<ge> x"
+ and "x \<in> A"
+ shows "Min A = x"
+proof (rule antisym)
+ from `x \<in> A` have "A \<noteq> {}" by auto
+ with assms show "Min A \<ge> x" by simp
+next
+ from assms show "x \<ge> Min A" by simp
+qed
+
+lemma Max_eqI:
+ assumes "finite A"
+ assumes "\<And>y. y \<in> A \<Longrightarrow> y \<le> x"
+ and "x \<in> A"
+ shows "Max A = x"
+proof (rule antisym)
+ from `x \<in> A` have "A \<noteq> {}" by auto
+ with assms show "Max A \<le> x" by simp
+next
+ from assms show "x \<le> Max A" by simp
+qed
+
+lemma Min_antimono:
+ assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
+ shows "Min N \<le> Min M"
+ using assms by (simp add: Min_def fold1_antimono)
+
+lemma Max_mono:
+ assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
+ shows "Max M \<le> Max N"
+proof -
+ interpret dual: linorder "op \<ge>" "op >"
+ by (rule dual_linorder)
+ from assms show ?thesis
+ by (simp add: Max_def dual.fold1_antimono [folded dual.dual_max])
+qed
+
+lemma finite_linorder_max_induct[consumes 1, case_names empty insert]:
+ "finite A \<Longrightarrow> P {} \<Longrightarrow>
+ (!!b A. finite A \<Longrightarrow> ALL a:A. a < b \<Longrightarrow> P A \<Longrightarrow> P(insert b A))
+ \<Longrightarrow> P A"
+proof (induct rule: finite_psubset_induct)
+ fix A :: "'a set"
+ assume IH: "!! B. finite B \<Longrightarrow> B < A \<Longrightarrow> P {} \<Longrightarrow>
+ (!!b A. finite A \<Longrightarrow> (\<forall>a\<in>A. a<b) \<Longrightarrow> P A \<Longrightarrow> P (insert b A))
+ \<Longrightarrow> P B"
+ and "finite A" and "P {}"
+ and step: "!!b A. \<lbrakk>finite A; \<forall>a\<in>A. a < b; P A\<rbrakk> \<Longrightarrow> P (insert b A)"
+ show "P A"
+ proof (cases "A = {}")
+ assume "A = {}" thus "P A" using `P {}` by simp
+ next
+ let ?B = "A - {Max A}" let ?A = "insert (Max A) ?B"
+ assume "A \<noteq> {}"
+ with `finite A` have "Max A : A" by auto
+ hence A: "?A = A" using insert_Diff_single insert_absorb by auto
+ moreover have "finite ?B" using `finite A` by simp
+ ultimately have "P ?B" using `P {}` step IH[of ?B] by blast
+ moreover have "\<forall>a\<in>?B. a < Max A" using Max_ge [OF `finite A`] by fastsimp
+ ultimately show "P A" using A insert_Diff_single step[OF `finite ?B`] by fastsimp
+ qed
+qed
+
+lemma finite_linorder_min_induct[consumes 1, case_names empty insert]:
+ "\<lbrakk>finite A; P {}; \<And>b A. \<lbrakk>finite A; \<forall>a\<in>A. b < a; P A\<rbrakk> \<Longrightarrow> P (insert b A)\<rbrakk> \<Longrightarrow> P A"
+by(rule linorder.finite_linorder_max_induct[OF dual_linorder])
+
+end
+
+context linordered_ab_semigroup_add
+begin
+
+lemma add_Min_commute:
+ fixes k
+ assumes "finite N" and "N \<noteq> {}"
+ shows "k + Min N = Min {k + m | m. m \<in> N}"
+proof -
+ have "\<And>x y. k + min x y = min (k + x) (k + y)"
+ by (simp add: min_def not_le)
+ (blast intro: antisym less_imp_le add_left_mono)
+ with assms show ?thesis
+ using hom_Min_commute [of "plus k" N]
+ by simp (blast intro: arg_cong [where f = Min])
+qed
+
+lemma add_Max_commute:
+ fixes k
+ assumes "finite N" and "N \<noteq> {}"
+ shows "k + Max N = Max {k + m | m. m \<in> N}"
+proof -
+ have "\<And>x y. k + max x y = max (k + x) (k + y)"
+ by (simp add: max_def not_le)
+ (blast intro: antisym less_imp_le add_left_mono)
+ with assms show ?thesis
+ using hom_Max_commute [of "plus k" N]
+ by simp (blast intro: arg_cong [where f = Max])
+qed
+
+end
+
+context linordered_ab_group_add
+begin
+
+lemma minus_Max_eq_Min [simp]:
+ "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Max S) = Min (uminus ` S)"
+ by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min)
+
+lemma minus_Min_eq_Max [simp]:
+ "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Min S) = Max (uminus ` S)"
+ by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max)
+
+end
+
+end
--- a/src/HOL/Equiv_Relations.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/Equiv_Relations.thy Thu Mar 11 17:39:45 2010 +0100
@@ -5,7 +5,7 @@
header {* Equivalence Relations in Higher-Order Set Theory *}
theory Equiv_Relations
-imports Finite_Set Relation Plain
+imports Big_Operators Relation Plain
begin
subsection {* Equivalence relations *}
--- a/src/HOL/Finite_Set.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/Finite_Set.thy Thu Mar 11 17:39:45 2010 +0100
@@ -6,7 +6,7 @@
header {* Finite sets *}
theory Finite_Set
-imports Power Product_Type Sum_Type
+imports Power Option
begin
subsection {* Definition and basic properties *}
@@ -527,17 +527,24 @@
lemma UNIV_unit [noatp]:
"UNIV = {()}" by auto
-instance unit :: finite
- by default (simp add: UNIV_unit)
+instance unit :: finite proof
+qed (simp add: UNIV_unit)
lemma UNIV_bool [noatp]:
"UNIV = {False, True}" by auto
-instance bool :: finite
- by default (simp add: UNIV_bool)
+instance bool :: finite proof
+qed (simp add: UNIV_bool)
+
+instance * :: (finite, finite) finite proof
+qed (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product finite)
-instance * :: (finite, finite) finite
- by default (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product finite)
+lemma finite_option_UNIV [simp]:
+ "finite (UNIV :: 'a option set) = finite (UNIV :: 'a set)"
+ by (auto simp add: UNIV_option_conv elim: finite_imageD intro: inj_Some)
+
+instance option :: (finite) finite proof
+qed (simp add: UNIV_option_conv)
lemma inj_graph: "inj (%f. {(x, y). y = f x})"
by (rule inj_onI, auto simp add: expand_set_eq expand_fun_eq)
@@ -556,8 +563,8 @@
qed
qed
-instance "+" :: (finite, finite) finite
- by default (simp only: UNIV_Plus_UNIV [symmetric] finite_Plus finite)
+instance "+" :: (finite, finite) finite proof
+qed (simp only: UNIV_Plus_UNIV [symmetric] finite_Plus finite)
subsection {* A fold functional for finite sets *}
@@ -1053,1470 +1060,6 @@
end
-subsection {* Generalized summation over a set *}
-
-interpretation comm_monoid_add: comm_monoid_mult "op +" "0::'a::comm_monoid_add"
- proof qed (auto intro: add_assoc add_commute)
-
-definition setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add"
-where "setsum f A == if finite A then fold_image (op +) f 0 A else 0"
-
-abbreviation
- Setsum ("\<Sum>_" [1000] 999) where
- "\<Sum>A == setsum (%x. x) A"
-
-text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
-written @{text"\<Sum>x\<in>A. e"}. *}
-
-syntax
- "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3SUM _:_. _)" [0, 51, 10] 10)
-syntax (xsymbols)
- "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
-syntax (HTML output)
- "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
-
-translations -- {* Beware of argument permutation! *}
- "SUM i:A. b" == "CONST setsum (%i. b) A"
- "\<Sum>i\<in>A. b" == "CONST setsum (%i. b) A"
-
-text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter
- @{text"\<Sum>x|P. e"}. *}
-
-syntax
- "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
-syntax (xsymbols)
- "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
-syntax (HTML output)
- "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
-
-translations
- "SUM x|P. t" => "CONST setsum (%x. t) {x. P}"
- "\<Sum>x|P. t" => "CONST setsum (%x. t) {x. P}"
-
-print_translation {*
-let
- fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] =
- if x <> y then raise Match
- else
- let
- val x' = Syntax.mark_bound x;
- val t' = subst_bound (x', t);
- val P' = subst_bound (x', P);
- in Syntax.const @{syntax_const "_qsetsum"} $ Syntax.mark_bound x $ P' $ t' end
- | setsum_tr' _ = raise Match;
-in [(@{const_syntax setsum}, setsum_tr')] end
-*}
-
-
-lemma setsum_empty [simp]: "setsum f {} = 0"
-by (simp add: setsum_def)
-
-lemma setsum_insert [simp]:
- "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F"
-by (simp add: setsum_def)
-
-lemma setsum_infinite [simp]: "~ finite A ==> setsum f A = 0"
-by (simp add: setsum_def)
-
-lemma setsum_reindex:
- "inj_on f B ==> setsum h (f ` B) = setsum (h \<circ> f) B"
-by(auto simp add: setsum_def comm_monoid_add.fold_image_reindex dest!:finite_imageD)
-
-lemma setsum_reindex_id:
- "inj_on f B ==> setsum f B = setsum id (f ` B)"
-by (auto simp add: setsum_reindex)
-
-lemma setsum_reindex_nonzero:
- assumes fS: "finite S"
- and nz: "\<And> x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x \<noteq> y \<Longrightarrow> f x = f y \<Longrightarrow> h (f x) = 0"
- shows "setsum h (f ` S) = setsum (h o f) S"
-using nz
-proof(induct rule: finite_induct[OF fS])
- case 1 thus ?case by simp
-next
- case (2 x F)
- {assume fxF: "f x \<in> f ` F" hence "\<exists>y \<in> F . f y = f x" by auto
- then obtain y where y: "y \<in> F" "f x = f y" by auto
- from "2.hyps" y have xy: "x \<noteq> y" by auto
-
- from "2.prems"[of x y] "2.hyps" xy y have h0: "h (f x) = 0" by simp
- have "setsum h (f ` insert x F) = setsum h (f ` F)" using fxF by auto
- also have "\<dots> = setsum (h o f) (insert x F)"
- unfolding setsum_insert[OF `finite F` `x\<notin>F`]
- using h0
- apply simp
- apply (rule "2.hyps"(3))
- apply (rule_tac y="y" in "2.prems")
- apply simp_all
- done
- finally have ?case .}
- moreover
- {assume fxF: "f x \<notin> f ` F"
- have "setsum h (f ` insert x F) = h (f x) + setsum h (f ` F)"
- using fxF "2.hyps" by simp
- also have "\<dots> = setsum (h o f) (insert x F)"
- unfolding setsum_insert[OF `finite F` `x\<notin>F`]
- apply simp
- apply (rule cong[OF refl[of "op + (h (f x))"]])
- apply (rule "2.hyps"(3))
- apply (rule_tac y="y" in "2.prems")
- apply simp_all
- done
- finally have ?case .}
- ultimately show ?case by blast
-qed
-
-lemma setsum_cong:
- "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B"
-by(fastsimp simp: setsum_def intro: comm_monoid_add.fold_image_cong)
-
-lemma strong_setsum_cong[cong]:
- "A = B ==> (!!x. x:B =simp=> f x = g x)
- ==> setsum (%x. f x) A = setsum (%x. g x) B"
-by(fastsimp simp: simp_implies_def setsum_def intro: comm_monoid_add.fold_image_cong)
-
-lemma setsum_cong2: "\<lbrakk>\<And>x. x \<in> A \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> setsum f A = setsum g A"
-by (rule setsum_cong[OF refl], auto)
-
-lemma setsum_reindex_cong:
- "[|inj_on f A; B = f ` A; !!a. a:A \<Longrightarrow> g a = h (f a)|]
- ==> setsum h B = setsum g A"
-by (simp add: setsum_reindex cong: setsum_cong)
-
-
-lemma setsum_0[simp]: "setsum (%i. 0) A = 0"
-apply (clarsimp simp: setsum_def)
-apply (erule finite_induct, auto)
-done
-
-lemma setsum_0': "ALL a:A. f a = 0 ==> setsum f A = 0"
-by(simp add:setsum_cong)
-
-lemma setsum_Un_Int: "finite A ==> finite B ==>
- setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B"
- -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
-by(simp add: setsum_def comm_monoid_add.fold_image_Un_Int [symmetric])
-
-lemma setsum_Un_disjoint: "finite A ==> finite B
- ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
-by (subst setsum_Un_Int [symmetric], auto)
-
-lemma setsum_mono_zero_left:
- assumes fT: "finite T" and ST: "S \<subseteq> T"
- and z: "\<forall>i \<in> T - S. f i = 0"
- shows "setsum f S = setsum f T"
-proof-
- have eq: "T = S \<union> (T - S)" using ST by blast
- have d: "S \<inter> (T - S) = {}" using ST by blast
- from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset)
- show ?thesis
- by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z])
-qed
-
-lemma setsum_mono_zero_right:
- "finite T \<Longrightarrow> S \<subseteq> T \<Longrightarrow> \<forall>i \<in> T - S. f i = 0 \<Longrightarrow> setsum f T = setsum f S"
-by(blast intro!: setsum_mono_zero_left[symmetric])
-
-lemma setsum_mono_zero_cong_left:
- assumes fT: "finite T" and ST: "S \<subseteq> T"
- and z: "\<forall>i \<in> T - S. g i = 0"
- and fg: "\<And>x. x \<in> S \<Longrightarrow> f x = g x"
- shows "setsum f S = setsum g T"
-proof-
- have eq: "T = S \<union> (T - S)" using ST by blast
- have d: "S \<inter> (T - S) = {}" using ST by blast
- from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset)
- show ?thesis
- using fg by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z])
-qed
-
-lemma setsum_mono_zero_cong_right:
- assumes fT: "finite T" and ST: "S \<subseteq> T"
- and z: "\<forall>i \<in> T - S. f i = 0"
- and fg: "\<And>x. x \<in> S \<Longrightarrow> f x = g x"
- shows "setsum f T = setsum g S"
-using setsum_mono_zero_cong_left[OF fT ST z] fg[symmetric] by auto
-
-lemma setsum_delta:
- assumes fS: "finite S"
- shows "setsum (\<lambda>k. if k=a then b k else 0) S = (if a \<in> S then b a else 0)"
-proof-
- let ?f = "(\<lambda>k. if k=a then b k else 0)"
- {assume a: "a \<notin> S"
- hence "\<forall> k\<in> S. ?f k = 0" by simp
- hence ?thesis using a by simp}
- moreover
- {assume a: "a \<in> S"
- let ?A = "S - {a}"
- let ?B = "{a}"
- have eq: "S = ?A \<union> ?B" using a by blast
- have dj: "?A \<inter> ?B = {}" by simp
- from fS have fAB: "finite ?A" "finite ?B" by auto
- have "setsum ?f S = setsum ?f ?A + setsum ?f ?B"
- using setsum_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
- by simp
- then have ?thesis using a by simp}
- ultimately show ?thesis by blast
-qed
-lemma setsum_delta':
- assumes fS: "finite S" shows
- "setsum (\<lambda>k. if a = k then b k else 0) S =
- (if a\<in> S then b a else 0)"
- using setsum_delta[OF fS, of a b, symmetric]
- by (auto intro: setsum_cong)
-
-lemma setsum_restrict_set:
- assumes fA: "finite A"
- shows "setsum f (A \<inter> B) = setsum (\<lambda>x. if x \<in> B then f x else 0) A"
-proof-
- from fA have fab: "finite (A \<inter> B)" by auto
- have aba: "A \<inter> B \<subseteq> A" by blast
- let ?g = "\<lambda>x. if x \<in> A\<inter>B then f x else 0"
- from setsum_mono_zero_left[OF fA aba, of ?g]
- show ?thesis by simp
-qed
-
-lemma setsum_cases:
- assumes fA: "finite A"
- shows "setsum (\<lambda>x. if P x then f x else g x) A =
- setsum f (A \<inter> {x. P x}) + setsum g (A \<inter> - {x. P x})"
-proof-
- have a: "A = A \<inter> {x. P x} \<union> A \<inter> -{x. P x}"
- "(A \<inter> {x. P x}) \<inter> (A \<inter> -{x. P x}) = {}"
- by blast+
- from fA
- have f: "finite (A \<inter> {x. P x})" "finite (A \<inter> -{x. P x})" by auto
- let ?g = "\<lambda>x. if P x then f x else g x"
- from setsum_Un_disjoint[OF f a(2), of ?g] a(1)
- show ?thesis by simp
-qed
-
-
-(*But we can't get rid of finite I. If infinite, although the rhs is 0,
- the lhs need not be, since UNION I A could still be finite.*)
-lemma setsum_UN_disjoint:
- "finite I ==> (ALL i:I. finite (A i)) ==>
- (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
- setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))"
-by(simp add: setsum_def comm_monoid_add.fold_image_UN_disjoint cong: setsum_cong)
-
-text{*No need to assume that @{term C} is finite. If infinite, the rhs is
-directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*}
-lemma setsum_Union_disjoint:
- "[| (ALL A:C. finite A);
- (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |]
- ==> setsum f (Union C) = setsum (setsum f) C"
-apply (cases "finite C")
- prefer 2 apply (force dest: finite_UnionD simp add: setsum_def)
- apply (frule setsum_UN_disjoint [of C id f])
- apply (unfold Union_def id_def, assumption+)
-done
-
-(*But we can't get rid of finite A. If infinite, although the lhs is 0,
- the rhs need not be, since SIGMA A B could still be finite.*)
-lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
- (\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = (\<Sum>(x,y)\<in>(SIGMA x:A. B x). f x y)"
-by(simp add:setsum_def comm_monoid_add.fold_image_Sigma split_def cong:setsum_cong)
-
-text{*Here we can eliminate the finiteness assumptions, by cases.*}
-lemma setsum_cartesian_product:
- "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>(x,y) \<in> A <*> B. f x y)"
-apply (cases "finite A")
- apply (cases "finite B")
- apply (simp add: setsum_Sigma)
- apply (cases "A={}", simp)
- apply (simp)
-apply (auto simp add: setsum_def
- dest: finite_cartesian_productD1 finite_cartesian_productD2)
-done
-
-lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)"
-by(simp add:setsum_def comm_monoid_add.fold_image_distrib)
-
-
-subsubsection {* Properties in more restricted classes of structures *}
-
-lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a"
-apply (case_tac "finite A")
- prefer 2 apply (simp add: setsum_def)
-apply (erule rev_mp)
-apply (erule finite_induct, auto)
-done
-
-lemma setsum_eq_0_iff [simp]:
- "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))"
-by (induct set: finite) auto
-
-lemma setsum_eq_Suc0_iff: "finite A \<Longrightarrow>
- (setsum f A = Suc 0) = (EX a:A. f a = Suc 0 & (ALL b:A. a\<noteq>b \<longrightarrow> f b = 0))"
-apply(erule finite_induct)
-apply (auto simp add:add_is_1)
-done
-
-lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]]
-
-lemma setsum_Un_nat: "finite A ==> finite B ==>
- (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"
- -- {* For the natural numbers, we have subtraction. *}
-by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps)
-
-lemma setsum_Un: "finite A ==> finite B ==>
- (setsum f (A Un B) :: 'a :: ab_group_add) =
- setsum f A + setsum f B - setsum f (A Int B)"
-by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps)
-
-lemma (in comm_monoid_mult) fold_image_1: "finite S \<Longrightarrow> (\<forall>x\<in>S. f x = 1) \<Longrightarrow> fold_image op * f 1 S = 1"
- apply (induct set: finite)
- apply simp by auto
-
-lemma (in comm_monoid_mult) fold_image_Un_one:
- assumes fS: "finite S" and fT: "finite T"
- and I0: "\<forall>x \<in> S\<inter>T. f x = 1"
- shows "fold_image (op *) f 1 (S \<union> T) = fold_image (op *) f 1 S * fold_image (op *) f 1 T"
-proof-
- have "fold_image op * f 1 (S \<inter> T) = 1"
- apply (rule fold_image_1)
- using fS fT I0 by auto
- with fold_image_Un_Int[OF fS fT] show ?thesis by simp
-qed
-
-lemma setsum_eq_general_reverses:
- assumes fS: "finite S" and fT: "finite T"
- and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
- and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = f x"
- shows "setsum f S = setsum g T"
- apply (simp add: setsum_def fS fT)
- apply (rule comm_monoid_add.fold_image_eq_general_inverses[OF fS])
- apply (erule kh)
- apply (erule hk)
- done
-
-
-
-lemma setsum_Un_zero:
- assumes fS: "finite S" and fT: "finite T"
- and I0: "\<forall>x \<in> S\<inter>T. f x = 0"
- shows "setsum f (S \<union> T) = setsum f S + setsum f T"
- using fS fT
- apply (simp add: setsum_def)
- apply (rule comm_monoid_add.fold_image_Un_one)
- using I0 by auto
-
-
-lemma setsum_UNION_zero:
- assumes fS: "finite S" and fSS: "\<forall>T \<in> S. finite T"
- and f0: "\<And>T1 T2 x. T1\<in>S \<Longrightarrow> T2\<in>S \<Longrightarrow> T1 \<noteq> T2 \<Longrightarrow> x \<in> T1 \<Longrightarrow> x \<in> T2 \<Longrightarrow> f x = 0"
- shows "setsum f (\<Union>S) = setsum (\<lambda>T. setsum f T) S"
- using fSS f0
-proof(induct rule: finite_induct[OF fS])
- case 1 thus ?case by simp
-next
- case (2 T F)
- then have fTF: "finite T" "\<forall>T\<in>F. finite T" "finite F" and TF: "T \<notin> F"
- and H: "setsum f (\<Union> F) = setsum (setsum f) F" by auto
- from fTF have fUF: "finite (\<Union>F)" by auto
- from "2.prems" TF fTF
- show ?case
- by (auto simp add: H[symmetric] intro: setsum_Un_zero[OF fTF(1) fUF, of f])
-qed
-
-
-lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
- (if a:A then setsum f A - f a else setsum f A)"
-apply (case_tac "finite A")
- prefer 2 apply (simp add: setsum_def)
-apply (erule finite_induct)
- apply (auto simp add: insert_Diff_if)
-apply (drule_tac a = a in mk_disjoint_insert, auto)
-done
-
-lemma setsum_diff1: "finite A \<Longrightarrow>
- (setsum f (A - {a}) :: ('a::ab_group_add)) =
- (if a:A then setsum f A - f a else setsum f A)"
-by (erule finite_induct) (auto simp add: insert_Diff_if)
-
-lemma setsum_diff1'[rule_format]:
- "finite A \<Longrightarrow> a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x)"
-apply (erule finite_induct[where F=A and P="% A. (a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x))"])
-apply (auto simp add: insert_Diff_if add_ac)
-done
-
-lemma setsum_diff1_ring: assumes "finite A" "a \<in> A"
- shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)"
-unfolding setsum_diff1'[OF assms] by auto
-
-(* By Jeremy Siek: *)
-
-lemma setsum_diff_nat:
-assumes "finite B" and "B \<subseteq> A"
-shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)"
-using assms
-proof induct
- show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
-next
- fix F x assume finF: "finite F" and xnotinF: "x \<notin> F"
- and xFinA: "insert x F \<subseteq> A"
- and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F"
- from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp
- from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
- by (simp add: setsum_diff1_nat)
- from xFinA have "F \<subseteq> A" by simp
- with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp
- with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
- by simp
- from xnotinF have "A - insert x F = (A - F) - {x}" by auto
- with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x"
- by simp
- from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp
- with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)"
- by simp
- thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp
-qed
-
-lemma setsum_diff:
- assumes le: "finite A" "B \<subseteq> A"
- shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
-proof -
- from le have finiteB: "finite B" using finite_subset by auto
- show ?thesis using finiteB le
- proof induct
- case empty
- thus ?case by auto
- next
- case (insert x F)
- thus ?case using le finiteB
- by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb)
- qed
-qed
-
-lemma setsum_mono:
- assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, ordered_ab_semigroup_add}))"
- shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)"
-proof (cases "finite K")
- case True
- thus ?thesis using le
- proof induct
- case empty
- thus ?case by simp
- next
- case insert
- thus ?case using add_mono by fastsimp
- qed
-next
- case False
- thus ?thesis
- by (simp add: setsum_def)
-qed
-
-lemma setsum_strict_mono:
- fixes f :: "'a \<Rightarrow> 'b::{ordered_cancel_ab_semigroup_add,comm_monoid_add}"
- assumes "finite A" "A \<noteq> {}"
- and "!!x. x:A \<Longrightarrow> f x < g x"
- shows "setsum f A < setsum g A"
- using prems
-proof (induct rule: finite_ne_induct)
- case singleton thus ?case by simp
-next
- case insert thus ?case by (auto simp: add_strict_mono)
-qed
-
-lemma setsum_negf:
- "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A"
-proof (cases "finite A")
- case True thus ?thesis by (induct set: finite) auto
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-lemma setsum_subtractf:
- "setsum (%x. ((f x)::'a::ab_group_add) - g x) A =
- setsum f A - setsum g A"
-proof (cases "finite A")
- case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf)
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-lemma setsum_nonneg:
- assumes nn: "\<forall>x\<in>A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) \<le> f x"
- shows "0 \<le> setsum f A"
-proof (cases "finite A")
- case True thus ?thesis using nn
- proof induct
- case empty then show ?case by simp
- next
- case (insert x F)
- then have "0 + 0 \<le> f x + setsum f F" by (blast intro: add_mono)
- with insert show ?case by simp
- qed
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-lemma setsum_nonpos:
- assumes np: "\<forall>x\<in>A. f x \<le> (0::'a::{ordered_ab_semigroup_add,comm_monoid_add})"
- shows "setsum f A \<le> 0"
-proof (cases "finite A")
- case True thus ?thesis using np
- proof induct
- case empty then show ?case by simp
- next
- case (insert x F)
- then have "f x + setsum f F \<le> 0 + 0" by (blast intro: add_mono)
- with insert show ?case by simp
- qed
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-lemma setsum_mono2:
-fixes f :: "'a \<Rightarrow> 'b :: {ordered_ab_semigroup_add_imp_le,comm_monoid_add}"
-assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b"
-shows "setsum f A \<le> setsum f B"
-proof -
- have "setsum f A \<le> setsum f A + setsum f (B-A)"
- by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def)
- also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin]
- by (simp add:setsum_Un_disjoint del:Un_Diff_cancel)
- also have "A \<union> (B-A) = B" using sub by blast
- finally show ?thesis .
-qed
-
-lemma setsum_mono3: "finite B ==> A <= B ==>
- ALL x: B - A.
- 0 <= ((f x)::'a::{comm_monoid_add,ordered_ab_semigroup_add}) ==>
- setsum f A <= setsum f B"
- apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)")
- apply (erule ssubst)
- apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)")
- apply simp
- apply (rule add_left_mono)
- apply (erule setsum_nonneg)
- apply (subst setsum_Un_disjoint [THEN sym])
- apply (erule finite_subset, assumption)
- apply (rule finite_subset)
- prefer 2
- apply assumption
- apply (auto simp add: sup_absorb2)
-done
-
-lemma setsum_right_distrib:
- fixes f :: "'a => ('b::semiring_0)"
- shows "r * setsum f A = setsum (%n. r * f n) A"
-proof (cases "finite A")
- case True
- thus ?thesis
- proof induct
- case empty thus ?case by simp
- next
- case (insert x A) thus ?case by (simp add: right_distrib)
- qed
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-lemma setsum_left_distrib:
- "setsum f A * (r::'a::semiring_0) = (\<Sum>n\<in>A. f n * r)"
-proof (cases "finite A")
- case True
- then show ?thesis
- proof induct
- case empty thus ?case by simp
- next
- case (insert x A) thus ?case by (simp add: left_distrib)
- qed
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-lemma setsum_divide_distrib:
- "setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)"
-proof (cases "finite A")
- case True
- then show ?thesis
- proof induct
- case empty thus ?case by simp
- next
- case (insert x A) thus ?case by (simp add: add_divide_distrib)
- qed
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-lemma setsum_abs[iff]:
- fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
- shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A"
-proof (cases "finite A")
- case True
- thus ?thesis
- proof induct
- case empty thus ?case by simp
- next
- case (insert x A)
- thus ?case by (auto intro: abs_triangle_ineq order_trans)
- qed
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-lemma setsum_abs_ge_zero[iff]:
- fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
- shows "0 \<le> setsum (%i. abs(f i)) A"
-proof (cases "finite A")
- case True
- thus ?thesis
- proof induct
- case empty thus ?case by simp
- next
- case (insert x A) thus ?case by (auto simp: add_nonneg_nonneg)
- qed
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-lemma abs_setsum_abs[simp]:
- fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
- shows "abs (\<Sum>a\<in>A. abs(f a)) = (\<Sum>a\<in>A. abs(f a))"
-proof (cases "finite A")
- case True
- thus ?thesis
- proof induct
- case empty thus ?case by simp
- next
- case (insert a A)
- hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp
- also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>" using insert by simp
- also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>"
- by (simp del: abs_of_nonneg)
- also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp
- finally show ?case .
- qed
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-
-lemma setsum_Plus:
- fixes A :: "'a set" and B :: "'b set"
- assumes fin: "finite A" "finite B"
- shows "setsum f (A <+> B) = setsum (f \<circ> Inl) A + setsum (f \<circ> Inr) B"
-proof -
- have "A <+> B = Inl ` A \<union> Inr ` B" by auto
- moreover from fin have "finite (Inl ` A :: ('a + 'b) set)" "finite (Inr ` B :: ('a + 'b) set)"
- by(auto intro: finite_imageI)
- moreover have "Inl ` A \<inter> Inr ` B = ({} :: ('a + 'b) set)" by auto
- moreover have "inj_on (Inl :: 'a \<Rightarrow> 'a + 'b) A" "inj_on (Inr :: 'b \<Rightarrow> 'a + 'b) B" by(auto intro: inj_onI)
- ultimately show ?thesis using fin by(simp add: setsum_Un_disjoint setsum_reindex)
-qed
-
-
-text {* Commuting outer and inner summation *}
-
-lemma swap_inj_on:
- "inj_on (%(i, j). (j, i)) (A \<times> B)"
- by (unfold inj_on_def) fast
-
-lemma swap_product:
- "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
- by (simp add: split_def image_def) blast
-
-lemma setsum_commute:
- "(\<Sum>i\<in>A. \<Sum>j\<in>B. f i j) = (\<Sum>j\<in>B. \<Sum>i\<in>A. f i j)"
-proof (simp add: setsum_cartesian_product)
- have "(\<Sum>(x,y) \<in> A <*> B. f x y) =
- (\<Sum>(y,x) \<in> (%(i, j). (j, i)) ` (A \<times> B). f x y)"
- (is "?s = _")
- apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on)
- apply (simp add: split_def)
- done
- also have "... = (\<Sum>(y,x)\<in>B \<times> A. f x y)"
- (is "_ = ?t")
- apply (simp add: swap_product)
- done
- finally show "?s = ?t" .
-qed
-
-lemma setsum_product:
- fixes f :: "'a => ('b::semiring_0)"
- shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)"
- by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute)
-
-lemma setsum_mult_setsum_if_inj:
-fixes f :: "'a => ('b::semiring_0)"
-shows "inj_on (%(a,b). f a * g b) (A \<times> B) ==>
- setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}"
-by(auto simp: setsum_product setsum_cartesian_product
- intro!: setsum_reindex_cong[symmetric])
-
-
-subsection {* Generalized product over a set *}
-
-definition setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult"
-where "setprod f A == if finite A then fold_image (op *) f 1 A else 1"
-
-abbreviation
- Setprod ("\<Prod>_" [1000] 999) where
- "\<Prod>A == setprod (%x. x) A"
-
-syntax
- "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3PROD _:_. _)" [0, 51, 10] 10)
-syntax (xsymbols)
- "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
-syntax (HTML output)
- "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
-
-translations -- {* Beware of argument permutation! *}
- "PROD i:A. b" == "CONST setprod (%i. b) A"
- "\<Prod>i\<in>A. b" == "CONST setprod (%i. b) A"
-
-text{* Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter
- @{text"\<Prod>x|P. e"}. *}
-
-syntax
- "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)
-syntax (xsymbols)
- "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
-syntax (HTML output)
- "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
-
-translations
- "PROD x|P. t" => "CONST setprod (%x. t) {x. P}"
- "\<Prod>x|P. t" => "CONST setprod (%x. t) {x. P}"
-
-
-lemma setprod_empty [simp]: "setprod f {} = 1"
-by (auto simp add: setprod_def)
-
-lemma setprod_insert [simp]: "[| finite A; a \<notin> A |] ==>
- setprod f (insert a A) = f a * setprod f A"
-by (simp add: setprod_def)
-
-lemma setprod_infinite [simp]: "~ finite A ==> setprod f A = 1"
-by (simp add: setprod_def)
-
-lemma setprod_reindex:
- "inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B"
-by(auto simp: setprod_def fold_image_reindex dest!:finite_imageD)
-
-lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)"
-by (auto simp add: setprod_reindex)
-
-lemma setprod_cong:
- "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B"
-by(fastsimp simp: setprod_def intro: fold_image_cong)
-
-lemma strong_setprod_cong[cong]:
- "A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B"
-by(fastsimp simp: simp_implies_def setprod_def intro: fold_image_cong)
-
-lemma setprod_reindex_cong: "inj_on f A ==>
- B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A"
-by (frule setprod_reindex, simp)
-
-lemma strong_setprod_reindex_cong: assumes i: "inj_on f A"
- and B: "B = f ` A" and eq: "\<And>x. x \<in> A \<Longrightarrow> g x = (h \<circ> f) x"
- shows "setprod h B = setprod g A"
-proof-
- have "setprod h B = setprod (h o f) A"
- by (simp add: B setprod_reindex[OF i, of h])
- then show ?thesis apply simp
- apply (rule setprod_cong)
- apply simp
- by (simp add: eq)
-qed
-
-lemma setprod_Un_one:
- assumes fS: "finite S" and fT: "finite T"
- and I0: "\<forall>x \<in> S\<inter>T. f x = 1"
- shows "setprod f (S \<union> T) = setprod f S * setprod f T"
- using fS fT
- apply (simp add: setprod_def)
- apply (rule fold_image_Un_one)
- using I0 by auto
-
-
-lemma setprod_1: "setprod (%i. 1) A = 1"
-apply (case_tac "finite A")
-apply (erule finite_induct, auto simp add: mult_ac)
-done
-
-lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1"
-apply (subgoal_tac "setprod f F = setprod (%x. 1) F")
-apply (erule ssubst, rule setprod_1)
-apply (rule setprod_cong, auto)
-done
-
-lemma setprod_Un_Int: "finite A ==> finite B
- ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B"
-by(simp add: setprod_def fold_image_Un_Int[symmetric])
-
-lemma setprod_Un_disjoint: "finite A ==> finite B
- ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
-by (subst setprod_Un_Int [symmetric], auto)
-
-lemma setprod_mono_one_left:
- assumes fT: "finite T" and ST: "S \<subseteq> T"
- and z: "\<forall>i \<in> T - S. f i = 1"
- shows "setprod f S = setprod f T"
-proof-
- have eq: "T = S \<union> (T - S)" using ST by blast
- have d: "S \<inter> (T - S) = {}" using ST by blast
- from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset)
- show ?thesis
- by (simp add: setprod_Un_disjoint[OF f d, unfolded eq[symmetric]] setprod_1'[OF z])
-qed
-
-lemmas setprod_mono_one_right = setprod_mono_one_left [THEN sym]
-
-lemma setprod_delta:
- assumes fS: "finite S"
- shows "setprod (\<lambda>k. if k=a then b k else 1) S = (if a \<in> S then b a else 1)"
-proof-
- let ?f = "(\<lambda>k. if k=a then b k else 1)"
- {assume a: "a \<notin> S"
- hence "\<forall> k\<in> S. ?f k = 1" by simp
- hence ?thesis using a by (simp add: setprod_1 cong add: setprod_cong) }
- moreover
- {assume a: "a \<in> S"
- let ?A = "S - {a}"
- let ?B = "{a}"
- have eq: "S = ?A \<union> ?B" using a by blast
- have dj: "?A \<inter> ?B = {}" by simp
- from fS have fAB: "finite ?A" "finite ?B" by auto
- have fA1: "setprod ?f ?A = 1" apply (rule setprod_1') by auto
- have "setprod ?f ?A * setprod ?f ?B = setprod ?f S"
- using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
- by simp
- then have ?thesis using a by (simp add: fA1 cong add: setprod_cong cong del: if_weak_cong)}
- ultimately show ?thesis by blast
-qed
-
-lemma setprod_delta':
- assumes fS: "finite S" shows
- "setprod (\<lambda>k. if a = k then b k else 1) S =
- (if a\<in> S then b a else 1)"
- using setprod_delta[OF fS, of a b, symmetric]
- by (auto intro: setprod_cong)
-
-
-lemma setprod_UN_disjoint:
- "finite I ==> (ALL i:I. finite (A i)) ==>
- (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
- setprod f (UNION I A) = setprod (%i. setprod f (A i)) I"
-by(simp add: setprod_def fold_image_UN_disjoint cong: setprod_cong)
-
-lemma setprod_Union_disjoint:
- "[| (ALL A:C. finite A);
- (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |]
- ==> setprod f (Union C) = setprod (setprod f) C"
-apply (cases "finite C")
- prefer 2 apply (force dest: finite_UnionD simp add: setprod_def)
- apply (frule setprod_UN_disjoint [of C id f])
- apply (unfold Union_def id_def, assumption+)
-done
-
-lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
- (\<Prod>x\<in>A. (\<Prod>y\<in> B x. f x y)) =
- (\<Prod>(x,y)\<in>(SIGMA x:A. B x). f x y)"
-by(simp add:setprod_def fold_image_Sigma split_def cong:setprod_cong)
-
-text{*Here we can eliminate the finiteness assumptions, by cases.*}
-lemma setprod_cartesian_product:
- "(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>(x,y)\<in>(A <*> B). f x y)"
-apply (cases "finite A")
- apply (cases "finite B")
- apply (simp add: setprod_Sigma)
- apply (cases "A={}", simp)
- apply (simp add: setprod_1)
-apply (auto simp add: setprod_def
- dest: finite_cartesian_productD1 finite_cartesian_productD2)
-done
-
-lemma setprod_timesf:
- "setprod (%x. f x * g x) A = (setprod f A * setprod g A)"
-by(simp add:setprod_def fold_image_distrib)
-
-
-subsubsection {* Properties in more restricted classes of structures *}
-
-lemma setprod_eq_1_iff [simp]:
- "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))"
-by (induct set: finite) auto
-
-lemma setprod_zero:
- "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1) ==> setprod f A = 0"
-apply (induct set: finite, force, clarsimp)
-apply (erule disjE, auto)
-done
-
-lemma setprod_nonneg [rule_format]:
- "(ALL x: A. (0::'a::linordered_semidom) \<le> f x) --> 0 \<le> setprod f A"
-by (cases "finite A", induct set: finite, simp_all add: mult_nonneg_nonneg)
-
-lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::linordered_semidom) < f x)
- --> 0 < setprod f A"
-by (cases "finite A", induct set: finite, simp_all add: mult_pos_pos)
-
-lemma setprod_zero_iff[simp]: "finite A ==>
- (setprod f A = (0::'a::{comm_semiring_1,no_zero_divisors})) =
- (EX x: A. f x = 0)"
-by (erule finite_induct, auto simp:no_zero_divisors)
-
-lemma setprod_pos_nat:
- "finite S ==> (ALL x : S. f x > (0::nat)) ==> setprod f S > 0"
-using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric])
-
-lemma setprod_pos_nat_iff[simp]:
- "finite S ==> (setprod f S > 0) = (ALL x : S. f x > (0::nat))"
-using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric])
-
-lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==>
- (setprod f (A Un B) :: 'a ::{field})
- = setprod f A * setprod f B / setprod f (A Int B)"
-by (subst setprod_Un_Int [symmetric], auto)
-
-lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==>
- (setprod f (A - {a}) :: 'a :: {field}) =
- (if a:A then setprod f A / f a else setprod f A)"
-by (erule finite_induct) (auto simp add: insert_Diff_if)
-
-lemma setprod_inversef:
- fixes f :: "'b \<Rightarrow> 'a::{field,division_by_zero}"
- shows "finite A ==> setprod (inverse \<circ> f) A = inverse (setprod f A)"
-by (erule finite_induct) auto
-
-lemma setprod_dividef:
- fixes f :: "'b \<Rightarrow> 'a::{field,division_by_zero}"
- shows "finite A
- ==> setprod (%x. f x / g x) A = setprod f A / setprod g A"
-apply (subgoal_tac
- "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A")
-apply (erule ssubst)
-apply (subst divide_inverse)
-apply (subst setprod_timesf)
-apply (subst setprod_inversef, assumption+, rule refl)
-apply (rule setprod_cong, rule refl)
-apply (subst divide_inverse, auto)
-done
-
-lemma setprod_dvd_setprod [rule_format]:
- "(ALL x : A. f x dvd g x) \<longrightarrow> setprod f A dvd setprod g A"
- apply (cases "finite A")
- apply (induct set: finite)
- apply (auto simp add: dvd_def)
- apply (rule_tac x = "k * ka" in exI)
- apply (simp add: algebra_simps)
-done
-
-lemma setprod_dvd_setprod_subset:
- "finite B \<Longrightarrow> A <= B \<Longrightarrow> setprod f A dvd setprod f B"
- apply (subgoal_tac "setprod f B = setprod f A * setprod f (B - A)")
- apply (unfold dvd_def, blast)
- apply (subst setprod_Un_disjoint [symmetric])
- apply (auto elim: finite_subset intro: setprod_cong)
-done
-
-lemma setprod_dvd_setprod_subset2:
- "finite B \<Longrightarrow> A <= B \<Longrightarrow> ALL x : A. (f x::'a::comm_semiring_1) dvd g x \<Longrightarrow>
- setprod f A dvd setprod g B"
- apply (rule dvd_trans)
- apply (rule setprod_dvd_setprod, erule (1) bspec)
- apply (erule (1) setprod_dvd_setprod_subset)
-done
-
-lemma dvd_setprod: "finite A \<Longrightarrow> i:A \<Longrightarrow>
- (f i ::'a::comm_semiring_1) dvd setprod f A"
-by (induct set: finite) (auto intro: dvd_mult)
-
-lemma dvd_setsum [rule_format]: "(ALL i : A. d dvd f i) \<longrightarrow>
- (d::'a::comm_semiring_1) dvd (SUM x : A. f x)"
- apply (cases "finite A")
- apply (induct set: finite)
- apply auto
-done
-
-lemma setprod_mono:
- fixes f :: "'a \<Rightarrow> 'b\<Colon>linordered_semidom"
- assumes "\<forall>i\<in>A. 0 \<le> f i \<and> f i \<le> g i"
- shows "setprod f A \<le> setprod g A"
-proof (cases "finite A")
- case True
- hence ?thesis "setprod f A \<ge> 0" using subset_refl[of A]
- proof (induct A rule: finite_subset_induct)
- case (insert a F)
- thus "setprod f (insert a F) \<le> setprod g (insert a F)" "0 \<le> setprod f (insert a F)"
- unfolding setprod_insert[OF insert(1,3)]
- using assms[rule_format,OF insert(2)] insert
- by (auto intro: mult_mono mult_nonneg_nonneg)
- qed auto
- thus ?thesis by simp
-qed auto
-
-lemma abs_setprod:
- fixes f :: "'a \<Rightarrow> 'b\<Colon>{linordered_field,abs}"
- shows "abs (setprod f A) = setprod (\<lambda>x. abs (f x)) A"
-proof (cases "finite A")
- case True thus ?thesis
- by induct (auto simp add: field_simps abs_mult)
-qed auto
-
-
-subsection {* Finite cardinality *}
-
-text {* This definition, although traditional, is ugly to work with:
-@{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}.
-But now that we have @{text setsum} things are easy:
-*}
-
-definition card :: "'a set \<Rightarrow> nat" where
- "card A = setsum (\<lambda>x. 1) A"
-
-lemmas card_eq_setsum = card_def
-
-lemma card_empty [simp]: "card {} = 0"
- by (simp add: card_def)
-
-lemma card_insert_disjoint [simp]:
- "finite A ==> x \<notin> A ==> card (insert x A) = Suc(card A)"
- by (simp add: card_def)
-
-lemma card_insert_if:
- "finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))"
- by (simp add: insert_absorb)
-
-lemma card_infinite [simp]: "~ finite A ==> card A = 0"
- by (simp add: card_def)
-
-lemma card_ge_0_finite:
- "card A > 0 \<Longrightarrow> finite A"
- by (rule ccontr) simp
-
-lemma card_0_eq [simp,noatp]: "finite A ==> (card A = 0) = (A = {})"
- apply auto
- apply (drule_tac a = x in mk_disjoint_insert, clarify, auto)
- done
-
-lemma finite_UNIV_card_ge_0:
- "finite (UNIV :: 'a set) \<Longrightarrow> card (UNIV :: 'a set) > 0"
- by (rule ccontr) simp
-
-lemma card_eq_0_iff: "(card A = 0) = (A = {} | ~ finite A)"
- by auto
-
-lemma card_gt_0_iff: "(0 < card A) = (A \<noteq> {} & finite A)"
- by (simp add: neq0_conv [symmetric] card_eq_0_iff)
-
-lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A"
-apply(rule_tac t = A in insert_Diff [THEN subst], assumption)
-apply(simp del:insert_Diff_single)
-done
-
-lemma card_Diff_singleton:
- "finite A ==> x: A ==> card (A - {x}) = card A - 1"
-by (simp add: card_Suc_Diff1 [symmetric])
-
-lemma card_Diff_singleton_if:
- "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)"
-by (simp add: card_Diff_singleton)
-
-lemma card_Diff_insert[simp]:
-assumes "finite A" and "a:A" and "a ~: B"
-shows "card(A - insert a B) = card(A - B) - 1"
-proof -
- have "A - insert a B = (A - B) - {a}" using assms by blast
- then show ?thesis using assms by(simp add:card_Diff_singleton)
-qed
-
-lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))"
-by (simp add: card_insert_if card_Suc_Diff1 del:card_Diff_insert)
-
-lemma card_insert_le: "finite A ==> card A <= card (insert x A)"
-by (simp add: card_insert_if)
-
-lemma card_mono: "\<lbrakk> finite B; A \<subseteq> B \<rbrakk> \<Longrightarrow> card A \<le> card B"
-by (simp add: card_def setsum_mono2)
-
-lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)"
-apply (induct set: finite, simp, clarify)
-apply (subgoal_tac "finite A & A - {x} <= F")
- prefer 2 apply (blast intro: finite_subset, atomize)
-apply (drule_tac x = "A - {x}" in spec)
-apply (simp add: card_Diff_singleton_if split add: split_if_asm)
-apply (case_tac "card A", auto)
-done
-
-lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B"
-apply (simp add: psubset_eq linorder_not_le [symmetric])
-apply (blast dest: card_seteq)
-done
-
-lemma card_Un_Int: "finite A ==> finite B
- ==> card A + card B = card (A Un B) + card (A Int B)"
-by(simp add:card_def setsum_Un_Int)
-
-lemma card_Un_disjoint: "finite A ==> finite B
- ==> A Int B = {} ==> card (A Un B) = card A + card B"
-by (simp add: card_Un_Int)
-
-lemma card_Diff_subset:
- "finite B ==> B <= A ==> card (A - B) = card A - card B"
-by(simp add:card_def setsum_diff_nat)
-
-lemma card_Diff_subset_Int:
- assumes AB: "finite (A \<inter> B)" shows "card (A - B) = card A - card (A \<inter> B)"
-proof -
- have "A - B = A - A \<inter> B" by auto
- thus ?thesis
- by (simp add: card_Diff_subset AB)
-qed
-
-lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A"
-apply (rule Suc_less_SucD)
-apply (simp add: card_Suc_Diff1 del:card_Diff_insert)
-done
-
-lemma card_Diff2_less:
- "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A"
-apply (case_tac "x = y")
- apply (simp add: card_Diff1_less del:card_Diff_insert)
-apply (rule less_trans)
- prefer 2 apply (auto intro!: card_Diff1_less simp del:card_Diff_insert)
-done
-
-lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A"
-apply (case_tac "x : A")
- apply (simp_all add: card_Diff1_less less_imp_le)
-done
-
-lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B"
-by (erule psubsetI, blast)
-
-lemma insert_partition:
- "\<lbrakk> x \<notin> F; \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<rbrakk>
- \<Longrightarrow> x \<inter> \<Union> F = {}"
-by auto
-
-lemma finite_psubset_induct[consumes 1, case_names psubset]:
- assumes "finite A" and "!!A. finite A \<Longrightarrow> (!!B. finite B \<Longrightarrow> B \<subset> A \<Longrightarrow> P(B)) \<Longrightarrow> P(A)" shows "P A"
-using assms(1)
-proof (induct A rule: measure_induct_rule[where f=card])
- case (less A)
- show ?case
- proof(rule assms(2)[OF less(2)])
- fix B assume "finite B" "B \<subset> A"
- show "P B" by(rule less(1)[OF psubset_card_mono[OF less(2) `B \<subset> A`] `finite B`])
- qed
-qed
-
-text{* main cardinality theorem *}
-lemma card_partition [rule_format]:
- "finite C ==>
- finite (\<Union> C) -->
- (\<forall>c\<in>C. card c = k) -->
- (\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 --> c1 \<inter> c2 = {}) -->
- k * card(C) = card (\<Union> C)"
-apply (erule finite_induct, simp)
-apply (simp add: card_Un_disjoint insert_partition
- finite_subset [of _ "\<Union> (insert x F)"])
-done
-
-lemma card_eq_UNIV_imp_eq_UNIV:
- assumes fin: "finite (UNIV :: 'a set)"
- and card: "card A = card (UNIV :: 'a set)"
- shows "A = (UNIV :: 'a set)"
-proof
- show "A \<subseteq> UNIV" by simp
- show "UNIV \<subseteq> A"
- proof
- fix x
- show "x \<in> A"
- proof (rule ccontr)
- assume "x \<notin> A"
- then have "A \<subset> UNIV" by auto
- with fin have "card A < card (UNIV :: 'a set)" by (fact psubset_card_mono)
- with card show False by simp
- qed
- qed
-qed
-
-text{*The form of a finite set of given cardinality*}
-
-lemma card_eq_SucD:
-assumes "card A = Suc k"
-shows "\<exists>b B. A = insert b B & b \<notin> B & card B = k & (k=0 \<longrightarrow> B={})"
-proof -
- have fin: "finite A" using assms by (auto intro: ccontr)
- moreover have "card A \<noteq> 0" using assms by auto
- ultimately obtain b where b: "b \<in> A" by auto
- show ?thesis
- proof (intro exI conjI)
- show "A = insert b (A-{b})" using b by blast
- show "b \<notin> A - {b}" by blast
- show "card (A - {b}) = k" and "k = 0 \<longrightarrow> A - {b} = {}"
- using assms b fin by(fastsimp dest:mk_disjoint_insert)+
- qed
-qed
-
-lemma card_Suc_eq:
- "(card A = Suc k) =
- (\<exists>b B. A = insert b B & b \<notin> B & card B = k & (k=0 \<longrightarrow> B={}))"
-apply(rule iffI)
- apply(erule card_eq_SucD)
-apply(auto)
-apply(subst card_insert)
- apply(auto intro:ccontr)
-done
-
-lemma finite_fun_UNIVD2:
- assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
- shows "finite (UNIV :: 'b set)"
-proof -
- from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary))"
- by(rule finite_imageI)
- moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary)"
- by(rule UNIV_eq_I) auto
- ultimately show "finite (UNIV :: 'b set)" by simp
-qed
-
-lemma setsum_constant [simp]: "(\<Sum>x \<in> A. y) = of_nat(card A) * y"
-apply (cases "finite A")
-apply (erule finite_induct)
-apply (auto simp add: algebra_simps)
-done
-
-lemma setprod_constant: "finite A ==> (\<Prod>x\<in> A. (y::'a::{comm_monoid_mult})) = y^(card A)"
-apply (erule finite_induct)
-apply auto
-done
-
-lemma setprod_gen_delta:
- assumes fS: "finite S"
- shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::{comm_monoid_mult}) * c^ (card S - 1) else c^ card S)"
-proof-
- let ?f = "(\<lambda>k. if k=a then b k else c)"
- {assume a: "a \<notin> S"
- hence "\<forall> k\<in> S. ?f k = c" by simp
- hence ?thesis using a setprod_constant[OF fS, of c] by (simp add: setprod_1 cong add: setprod_cong) }
- moreover
- {assume a: "a \<in> S"
- let ?A = "S - {a}"
- let ?B = "{a}"
- have eq: "S = ?A \<union> ?B" using a by blast
- have dj: "?A \<inter> ?B = {}" by simp
- from fS have fAB: "finite ?A" "finite ?B" by auto
- have fA0:"setprod ?f ?A = setprod (\<lambda>i. c) ?A"
- apply (rule setprod_cong) by auto
- have cA: "card ?A = card S - 1" using fS a by auto
- have fA1: "setprod ?f ?A = c ^ card ?A" unfolding fA0 apply (rule setprod_constant) using fS by auto
- have "setprod ?f ?A * setprod ?f ?B = setprod ?f S"
- using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
- by simp
- then have ?thesis using a cA
- by (simp add: fA1 ring_simps cong add: setprod_cong cong del: if_weak_cong)}
- ultimately show ?thesis by blast
-qed
-
-
-lemma setsum_bounded:
- assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{semiring_1, ordered_ab_semigroup_add})"
- shows "setsum f A \<le> of_nat(card A) * K"
-proof (cases "finite A")
- case True
- thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp
-next
- case False thus ?thesis by (simp add: setsum_def)
-qed
-
-
-lemma card_UNIV_unit: "card (UNIV :: unit set) = 1"
- unfolding UNIV_unit by simp
-
-
-subsubsection {* Cardinality of unions *}
-
-lemma card_UN_disjoint:
- "finite I ==> (ALL i:I. finite (A i)) ==>
- (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {})
- ==> card (UNION I A) = (\<Sum>i\<in>I. card(A i))"
-apply (simp add: card_def del: setsum_constant)
-apply (subgoal_tac
- "setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I")
-apply (simp add: setsum_UN_disjoint del: setsum_constant)
-apply (simp cong: setsum_cong)
-done
-
-lemma card_Union_disjoint:
- "finite C ==> (ALL A:C. finite A) ==>
- (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {})
- ==> card (Union C) = setsum card C"
-apply (frule card_UN_disjoint [of C id])
-apply (unfold Union_def id_def, assumption+)
-done
-
-
-subsubsection {* Cardinality of image *}
-
-text{*The image of a finite set can be expressed using @{term fold_image}.*}
-lemma image_eq_fold_image:
- "finite A ==> f ` A = fold_image (op Un) (%x. {f x}) {} A"
-proof (induct rule: finite_induct)
- case empty then show ?case by simp
-next
- interpret ab_semigroup_mult "op Un"
- proof qed auto
- case insert
- then show ?case by simp
-qed
-
-lemma card_image_le: "finite A ==> card (f ` A) <= card A"
-apply (induct set: finite)
- apply simp
-apply (simp add: le_SucI card_insert_if)
-done
-
-lemma card_image: "inj_on f A ==> card (f ` A) = card A"
-by(simp add:card_def setsum_reindex o_def del:setsum_constant)
-
-lemma bij_betw_same_card: "bij_betw f A B \<Longrightarrow> card A = card B"
-by(auto simp: card_image bij_betw_def)
-
-lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A"
-by (simp add: card_seteq card_image)
-
-lemma eq_card_imp_inj_on:
- "[| finite A; card(f ` A) = card A |] ==> inj_on f A"
-apply (induct rule:finite_induct)
-apply simp
-apply(frule card_image_le[where f = f])
-apply(simp add:card_insert_if split:if_splits)
-done
-
-lemma inj_on_iff_eq_card:
- "finite A ==> inj_on f A = (card(f ` A) = card A)"
-by(blast intro: card_image eq_card_imp_inj_on)
-
-
-lemma card_inj_on_le:
- "[|inj_on f A; f ` A \<subseteq> B; finite B |] ==> card A \<le> card B"
-apply (subgoal_tac "finite A")
- apply (force intro: card_mono simp add: card_image [symmetric])
-apply (blast intro: finite_imageD dest: finite_subset)
-done
-
-lemma card_bij_eq:
- "[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A;
- finite A; finite B |] ==> card A = card B"
-by (auto intro: le_antisym card_inj_on_le)
-
-
-subsubsection {* Cardinality of products *}
-
-(*
-lemma SigmaI_insert: "y \<notin> A ==>
- (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
- by auto
-*)
-
-lemma card_SigmaI [simp]:
- "\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk>
- \<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))"
-by(simp add:card_def setsum_Sigma del:setsum_constant)
-
-lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)"
-apply (cases "finite A")
-apply (cases "finite B")
-apply (auto simp add: card_eq_0_iff
- dest: finite_cartesian_productD1 finite_cartesian_productD2)
-done
-
-lemma card_cartesian_product_singleton: "card({x} <*> A) = card(A)"
-by (simp add: card_cartesian_product)
-
-
-subsubsection {* Cardinality of sums *}
-
-lemma card_Plus:
- assumes "finite A" and "finite B"
- shows "card (A <+> B) = card A + card B"
-proof -
- have "Inl`A \<inter> Inr`B = {}" by fast
- with assms show ?thesis
- unfolding Plus_def
- by (simp add: card_Un_disjoint card_image)
-qed
-
-lemma card_Plus_conv_if:
- "card (A <+> B) = (if finite A \<and> finite B then card(A) + card(B) else 0)"
-by(auto simp: card_def setsum_Plus simp del: setsum_constant)
-
-
-subsubsection {* Cardinality of the Powerset *}
-
-lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *)
-apply (induct set: finite)
- apply (simp_all add: Pow_insert)
-apply (subst card_Un_disjoint, blast)
- apply (blast intro: finite_imageI, blast)
-apply (subgoal_tac "inj_on (insert x) (Pow F)")
- apply (simp add: card_image Pow_insert)
-apply (unfold inj_on_def)
-apply (blast elim!: equalityE)
-done
-
-text {* Relates to equivalence classes. Based on a theorem of F. Kammüller. *}
-
-lemma dvd_partition:
- "finite (Union C) ==>
- ALL c : C. k dvd card c ==>
- (ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==>
- k dvd card (Union C)"
-apply(frule finite_UnionD)
-apply(rotate_tac -1)
-apply (induct set: finite, simp_all, clarify)
-apply (subst card_Un_disjoint)
- apply (auto simp add: disjoint_eq_subset_Compl)
-done
-
-
-subsubsection {* Relating injectivity and surjectivity *}
-
-lemma finite_surj_inj: "finite(A) \<Longrightarrow> A <= f`A \<Longrightarrow> inj_on f A"
-apply(rule eq_card_imp_inj_on, assumption)
-apply(frule finite_imageI)
-apply(drule (1) card_seteq)
- apply(erule card_image_le)
-apply simp
-done
-
-lemma finite_UNIV_surj_inj: fixes f :: "'a \<Rightarrow> 'a"
-shows "finite(UNIV:: 'a set) \<Longrightarrow> surj f \<Longrightarrow> inj f"
-by (blast intro: finite_surj_inj subset_UNIV dest:surj_range)
-
-lemma finite_UNIV_inj_surj: fixes f :: "'a \<Rightarrow> 'a"
-shows "finite(UNIV:: 'a set) \<Longrightarrow> inj f \<Longrightarrow> surj f"
-by(fastsimp simp:surj_def dest!: endo_inj_surj)
-
-corollary infinite_UNIV_nat[iff]: "~finite(UNIV::nat set)"
-proof
- assume "finite(UNIV::nat set)"
- with finite_UNIV_inj_surj[of Suc]
- show False by simp (blast dest: Suc_neq_Zero surjD)
-qed
-
-(* Often leads to bogus ATP proofs because of reduced type information, hence noatp *)
-lemma infinite_UNIV_char_0[noatp]:
- "\<not> finite (UNIV::'a::semiring_char_0 set)"
-proof
- assume "finite (UNIV::'a set)"
- with subset_UNIV have "finite (range of_nat::'a set)"
- by (rule finite_subset)
- moreover have "inj (of_nat::nat \<Rightarrow> 'a)"
- by (simp add: inj_on_def)
- ultimately have "finite (UNIV::nat set)"
- by (rule finite_imageD)
- then show "False"
- by simp
-qed
subsection{* A fold functional for non-empty sets *}
@@ -2811,561 +1354,6 @@
qed
-subsubsection {* Fold1 in lattices with @{const inf} and @{const sup} *}
-
-text{*
- As an application of @{text fold1} we define infimum
- and supremum in (not necessarily complete!) lattices
- over (non-empty) sets by means of @{text fold1}.
-*}
-
-context semilattice_inf
-begin
-
-lemma below_fold1_iff:
- assumes "finite A" "A \<noteq> {}"
- shows "x \<le> fold1 inf A \<longleftrightarrow> (\<forall>a\<in>A. x \<le> a)"
-proof -
- interpret ab_semigroup_idem_mult inf
- by (rule ab_semigroup_idem_mult_inf)
- show ?thesis using assms by (induct rule: finite_ne_induct) simp_all
-qed
-
-lemma fold1_belowI:
- assumes "finite A"
- and "a \<in> A"
- shows "fold1 inf A \<le> a"
-proof -
- from assms have "A \<noteq> {}" by auto
- from `finite A` `A \<noteq> {}` `a \<in> A` show ?thesis
- proof (induct rule: finite_ne_induct)
- case singleton thus ?case by simp
- next
- interpret ab_semigroup_idem_mult inf
- by (rule ab_semigroup_idem_mult_inf)
- case (insert x F)
- from insert(5) have "a = x \<or> a \<in> F" by simp
- thus ?case
- proof
- assume "a = x" thus ?thesis using insert
- by (simp add: mult_ac)
- next
- assume "a \<in> F"
- hence bel: "fold1 inf F \<le> a" by (rule insert)
- have "inf (fold1 inf (insert x F)) a = inf x (inf (fold1 inf F) a)"
- using insert by (simp add: mult_ac)
- also have "inf (fold1 inf F) a = fold1 inf F"
- using bel by (auto intro: antisym)
- also have "inf x \<dots> = fold1 inf (insert x F)"
- using insert by (simp add: mult_ac)
- finally have aux: "inf (fold1 inf (insert x F)) a = fold1 inf (insert x F)" .
- moreover have "inf (fold1 inf (insert x F)) a \<le> a" by simp
- ultimately show ?thesis by simp
- qed
- qed
-qed
-
-end
-
-context lattice
-begin
-
-definition
- Inf_fin :: "'a set \<Rightarrow> 'a" ("\<Sqinter>\<^bsub>fin\<^esub>_" [900] 900)
-where
- "Inf_fin = fold1 inf"
-
-definition
- Sup_fin :: "'a set \<Rightarrow> 'a" ("\<Squnion>\<^bsub>fin\<^esub>_" [900] 900)
-where
- "Sup_fin = fold1 sup"
-
-lemma Inf_le_Sup [simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<Sqinter>\<^bsub>fin\<^esub>A \<le> \<Squnion>\<^bsub>fin\<^esub>A"
-apply(unfold Sup_fin_def Inf_fin_def)
-apply(subgoal_tac "EX a. a:A")
-prefer 2 apply blast
-apply(erule exE)
-apply(rule order_trans)
-apply(erule (1) fold1_belowI)
-apply(erule (1) semilattice_inf.fold1_belowI [OF dual_semilattice])
-done
-
-lemma sup_Inf_absorb [simp]:
- "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> sup a (\<Sqinter>\<^bsub>fin\<^esub>A) = a"
-apply(subst sup_commute)
-apply(simp add: Inf_fin_def sup_absorb2 fold1_belowI)
-done
-
-lemma inf_Sup_absorb [simp]:
- "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> inf a (\<Squnion>\<^bsub>fin\<^esub>A) = a"
-by (simp add: Sup_fin_def inf_absorb1
- semilattice_inf.fold1_belowI [OF dual_semilattice])
-
-end
-
-context distrib_lattice
-begin
-
-lemma sup_Inf1_distrib:
- assumes "finite A"
- and "A \<noteq> {}"
- shows "sup x (\<Sqinter>\<^bsub>fin\<^esub>A) = \<Sqinter>\<^bsub>fin\<^esub>{sup x a|a. a \<in> A}"
-proof -
- interpret ab_semigroup_idem_mult inf
- by (rule ab_semigroup_idem_mult_inf)
- from assms show ?thesis
- by (simp add: Inf_fin_def image_def
- hom_fold1_commute [where h="sup x", OF sup_inf_distrib1])
- (rule arg_cong [where f="fold1 inf"], blast)
-qed
-
-lemma sup_Inf2_distrib:
- assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
- shows "sup (\<Sqinter>\<^bsub>fin\<^esub>A) (\<Sqinter>\<^bsub>fin\<^esub>B) = \<Sqinter>\<^bsub>fin\<^esub>{sup a b|a b. a \<in> A \<and> b \<in> B}"
-using A proof (induct rule: finite_ne_induct)
- case singleton thus ?case
- by (simp add: sup_Inf1_distrib [OF B] fold1_singleton_def [OF Inf_fin_def])
-next
- interpret ab_semigroup_idem_mult inf
- by (rule ab_semigroup_idem_mult_inf)
- case (insert x A)
- have finB: "finite {sup x b |b. b \<in> B}"
- by(rule finite_surj[where f = "sup x", OF B(1)], auto)
- have finAB: "finite {sup a b |a b. a \<in> A \<and> b \<in> B}"
- proof -
- have "{sup a b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {sup a b})"
- by blast
- thus ?thesis by(simp add: insert(1) B(1))
- qed
- have ne: "{sup a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
- have "sup (\<Sqinter>\<^bsub>fin\<^esub>(insert x A)) (\<Sqinter>\<^bsub>fin\<^esub>B) = sup (inf x (\<Sqinter>\<^bsub>fin\<^esub>A)) (\<Sqinter>\<^bsub>fin\<^esub>B)"
- using insert by (simp add: fold1_insert_idem_def [OF Inf_fin_def])
- also have "\<dots> = inf (sup x (\<Sqinter>\<^bsub>fin\<^esub>B)) (sup (\<Sqinter>\<^bsub>fin\<^esub>A) (\<Sqinter>\<^bsub>fin\<^esub>B))" by(rule sup_inf_distrib2)
- also have "\<dots> = inf (\<Sqinter>\<^bsub>fin\<^esub>{sup x b|b. b \<in> B}) (\<Sqinter>\<^bsub>fin\<^esub>{sup a b|a b. a \<in> A \<and> b \<in> B})"
- using insert by(simp add:sup_Inf1_distrib[OF B])
- also have "\<dots> = \<Sqinter>\<^bsub>fin\<^esub>({sup x b |b. b \<in> B} \<union> {sup a b |a b. a \<in> A \<and> b \<in> B})"
- (is "_ = \<Sqinter>\<^bsub>fin\<^esub>?M")
- using B insert
- by (simp add: Inf_fin_def fold1_Un2 [OF finB _ finAB ne])
- also have "?M = {sup a b |a b. a \<in> insert x A \<and> b \<in> B}"
- by blast
- finally show ?case .
-qed
-
-lemma inf_Sup1_distrib:
- assumes "finite A" and "A \<noteq> {}"
- shows "inf x (\<Squnion>\<^bsub>fin\<^esub>A) = \<Squnion>\<^bsub>fin\<^esub>{inf x a|a. a \<in> A}"
-proof -
- interpret ab_semigroup_idem_mult sup
- by (rule ab_semigroup_idem_mult_sup)
- from assms show ?thesis
- by (simp add: Sup_fin_def image_def hom_fold1_commute [where h="inf x", OF inf_sup_distrib1])
- (rule arg_cong [where f="fold1 sup"], blast)
-qed
-
-lemma inf_Sup2_distrib:
- assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
- shows "inf (\<Squnion>\<^bsub>fin\<^esub>A) (\<Squnion>\<^bsub>fin\<^esub>B) = \<Squnion>\<^bsub>fin\<^esub>{inf a b|a b. a \<in> A \<and> b \<in> B}"
-using A proof (induct rule: finite_ne_induct)
- case singleton thus ?case
- by(simp add: inf_Sup1_distrib [OF B] fold1_singleton_def [OF Sup_fin_def])
-next
- case (insert x A)
- have finB: "finite {inf x b |b. b \<in> B}"
- by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto)
- have finAB: "finite {inf a b |a b. a \<in> A \<and> b \<in> B}"
- proof -
- have "{inf a b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {inf a b})"
- by blast
- thus ?thesis by(simp add: insert(1) B(1))
- qed
- have ne: "{inf a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
- interpret ab_semigroup_idem_mult sup
- by (rule ab_semigroup_idem_mult_sup)
- have "inf (\<Squnion>\<^bsub>fin\<^esub>(insert x A)) (\<Squnion>\<^bsub>fin\<^esub>B) = inf (sup x (\<Squnion>\<^bsub>fin\<^esub>A)) (\<Squnion>\<^bsub>fin\<^esub>B)"
- using insert by (simp add: fold1_insert_idem_def [OF Sup_fin_def])
- also have "\<dots> = sup (inf x (\<Squnion>\<^bsub>fin\<^esub>B)) (inf (\<Squnion>\<^bsub>fin\<^esub>A) (\<Squnion>\<^bsub>fin\<^esub>B))" by(rule inf_sup_distrib2)
- also have "\<dots> = sup (\<Squnion>\<^bsub>fin\<^esub>{inf x b|b. b \<in> B}) (\<Squnion>\<^bsub>fin\<^esub>{inf a b|a b. a \<in> A \<and> b \<in> B})"
- using insert by(simp add:inf_Sup1_distrib[OF B])
- also have "\<dots> = \<Squnion>\<^bsub>fin\<^esub>({inf x b |b. b \<in> B} \<union> {inf a b |a b. a \<in> A \<and> b \<in> B})"
- (is "_ = \<Squnion>\<^bsub>fin\<^esub>?M")
- using B insert
- by (simp add: Sup_fin_def fold1_Un2 [OF finB _ finAB ne])
- also have "?M = {inf a b |a b. a \<in> insert x A \<and> b \<in> B}"
- by blast
- finally show ?case .
-qed
-
-end
-
-
-subsubsection {* Fold1 in linear orders with @{const min} and @{const max} *}
-
-text{*
- As an application of @{text fold1} we define minimum
- and maximum in (not necessarily complete!) linear orders
- over (non-empty) sets by means of @{text fold1}.
-*}
-
-context linorder
-begin
-
-lemma ab_semigroup_idem_mult_min:
- "ab_semigroup_idem_mult min"
- proof qed (auto simp add: min_def)
-
-lemma ab_semigroup_idem_mult_max:
- "ab_semigroup_idem_mult max"
- proof qed (auto simp add: max_def)
-
-lemma max_lattice:
- "semilattice_inf (op \<ge>) (op >) max"
- by (fact min_max.dual_semilattice)
-
-lemma dual_max:
- "ord.max (op \<ge>) = min"
- by (auto simp add: ord.max_def_raw min_def expand_fun_eq)
-
-lemma dual_min:
- "ord.min (op \<ge>) = max"
- by (auto simp add: ord.min_def_raw max_def expand_fun_eq)
-
-lemma strict_below_fold1_iff:
- assumes "finite A" and "A \<noteq> {}"
- shows "x < fold1 min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)"
-proof -
- interpret ab_semigroup_idem_mult min
- by (rule ab_semigroup_idem_mult_min)
- from assms show ?thesis
- by (induct rule: finite_ne_induct)
- (simp_all add: fold1_insert)
-qed
-
-lemma fold1_below_iff:
- assumes "finite A" and "A \<noteq> {}"
- shows "fold1 min A \<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<le> x)"
-proof -
- interpret ab_semigroup_idem_mult min
- by (rule ab_semigroup_idem_mult_min)
- from assms show ?thesis
- by (induct rule: finite_ne_induct)
- (simp_all add: fold1_insert min_le_iff_disj)
-qed
-
-lemma fold1_strict_below_iff:
- assumes "finite A" and "A \<noteq> {}"
- shows "fold1 min A < x \<longleftrightarrow> (\<exists>a\<in>A. a < x)"
-proof -
- interpret ab_semigroup_idem_mult min
- by (rule ab_semigroup_idem_mult_min)
- from assms show ?thesis
- by (induct rule: finite_ne_induct)
- (simp_all add: fold1_insert min_less_iff_disj)
-qed
-
-lemma fold1_antimono:
- assumes "A \<noteq> {}" and "A \<subseteq> B" and "finite B"
- shows "fold1 min B \<le> fold1 min A"
-proof cases
- assume "A = B" thus ?thesis by simp
-next
- interpret ab_semigroup_idem_mult min
- by (rule ab_semigroup_idem_mult_min)
- assume "A \<noteq> B"
- have B: "B = A \<union> (B-A)" using `A \<subseteq> B` by blast
- have "fold1 min B = fold1 min (A \<union> (B-A))" by(subst B)(rule refl)
- also have "\<dots> = min (fold1 min A) (fold1 min (B-A))"
- proof -
- have "finite A" by(rule finite_subset[OF `A \<subseteq> B` `finite B`])
- moreover have "finite(B-A)" by(rule finite_Diff[OF `finite B`]) (* by(blast intro:finite_Diff prems) fails *)
- moreover have "(B-A) \<noteq> {}" using prems by blast
- moreover have "A Int (B-A) = {}" using prems by blast
- ultimately show ?thesis using `A \<noteq> {}` by (rule_tac fold1_Un)
- qed
- also have "\<dots> \<le> fold1 min A" by (simp add: min_le_iff_disj)
- finally show ?thesis .
-qed
-
-definition
- Min :: "'a set \<Rightarrow> 'a"
-where
- "Min = fold1 min"
-
-definition
- Max :: "'a set \<Rightarrow> 'a"
-where
- "Max = fold1 max"
-
-lemmas Min_singleton [simp] = fold1_singleton_def [OF Min_def]
-lemmas Max_singleton [simp] = fold1_singleton_def [OF Max_def]
-
-lemma Min_insert [simp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "Min (insert x A) = min x (Min A)"
-proof -
- interpret ab_semigroup_idem_mult min
- by (rule ab_semigroup_idem_mult_min)
- from assms show ?thesis by (rule fold1_insert_idem_def [OF Min_def])
-qed
-
-lemma Max_insert [simp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "Max (insert x A) = max x (Max A)"
-proof -
- interpret ab_semigroup_idem_mult max
- by (rule ab_semigroup_idem_mult_max)
- from assms show ?thesis by (rule fold1_insert_idem_def [OF Max_def])
-qed
-
-lemma Min_in [simp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "Min A \<in> A"
-proof -
- interpret ab_semigroup_idem_mult min
- by (rule ab_semigroup_idem_mult_min)
- from assms fold1_in show ?thesis by (fastsimp simp: Min_def min_def)
-qed
-
-lemma Max_in [simp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "Max A \<in> A"
-proof -
- interpret ab_semigroup_idem_mult max
- by (rule ab_semigroup_idem_mult_max)
- from assms fold1_in [of A] show ?thesis by (fastsimp simp: Max_def max_def)
-qed
-
-lemma Min_Un:
- assumes "finite A" and "A \<noteq> {}" and "finite B" and "B \<noteq> {}"
- shows "Min (A \<union> B) = min (Min A) (Min B)"
-proof -
- interpret ab_semigroup_idem_mult min
- by (rule ab_semigroup_idem_mult_min)
- from assms show ?thesis
- by (simp add: Min_def fold1_Un2)
-qed
-
-lemma Max_Un:
- assumes "finite A" and "A \<noteq> {}" and "finite B" and "B \<noteq> {}"
- shows "Max (A \<union> B) = max (Max A) (Max B)"
-proof -
- interpret ab_semigroup_idem_mult max
- by (rule ab_semigroup_idem_mult_max)
- from assms show ?thesis
- by (simp add: Max_def fold1_Un2)
-qed
-
-lemma hom_Min_commute:
- assumes "\<And>x y. h (min x y) = min (h x) (h y)"
- and "finite N" and "N \<noteq> {}"
- shows "h (Min N) = Min (h ` N)"
-proof -
- interpret ab_semigroup_idem_mult min
- by (rule ab_semigroup_idem_mult_min)
- from assms show ?thesis
- by (simp add: Min_def hom_fold1_commute)
-qed
-
-lemma hom_Max_commute:
- assumes "\<And>x y. h (max x y) = max (h x) (h y)"
- and "finite N" and "N \<noteq> {}"
- shows "h (Max N) = Max (h ` N)"
-proof -
- interpret ab_semigroup_idem_mult max
- by (rule ab_semigroup_idem_mult_max)
- from assms show ?thesis
- by (simp add: Max_def hom_fold1_commute [of h])
-qed
-
-lemma Min_le [simp]:
- assumes "finite A" and "x \<in> A"
- shows "Min A \<le> x"
- using assms by (simp add: Min_def min_max.fold1_belowI)
-
-lemma Max_ge [simp]:
- assumes "finite A" and "x \<in> A"
- shows "x \<le> Max A"
-proof -
- interpret semilattice_inf "op \<ge>" "op >" max
- by (rule max_lattice)
- from assms show ?thesis by (simp add: Max_def fold1_belowI)
-qed
-
-lemma Min_ge_iff [simp, noatp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "x \<le> Min A \<longleftrightarrow> (\<forall>a\<in>A. x \<le> a)"
- using assms by (simp add: Min_def min_max.below_fold1_iff)
-
-lemma Max_le_iff [simp, noatp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "Max A \<le> x \<longleftrightarrow> (\<forall>a\<in>A. a \<le> x)"
-proof -
- interpret semilattice_inf "op \<ge>" "op >" max
- by (rule max_lattice)
- from assms show ?thesis by (simp add: Max_def below_fold1_iff)
-qed
-
-lemma Min_gr_iff [simp, noatp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "x < Min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)"
- using assms by (simp add: Min_def strict_below_fold1_iff)
-
-lemma Max_less_iff [simp, noatp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "Max A < x \<longleftrightarrow> (\<forall>a\<in>A. a < x)"
-proof -
- interpret dual: linorder "op \<ge>" "op >"
- by (rule dual_linorder)
- from assms show ?thesis
- by (simp add: Max_def dual.strict_below_fold1_iff [folded dual.dual_max])
-qed
-
-lemma Min_le_iff [noatp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "Min A \<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<le> x)"
- using assms by (simp add: Min_def fold1_below_iff)
-
-lemma Max_ge_iff [noatp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "x \<le> Max A \<longleftrightarrow> (\<exists>a\<in>A. x \<le> a)"
-proof -
- interpret dual: linorder "op \<ge>" "op >"
- by (rule dual_linorder)
- from assms show ?thesis
- by (simp add: Max_def dual.fold1_below_iff [folded dual.dual_max])
-qed
-
-lemma Min_less_iff [noatp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "Min A < x \<longleftrightarrow> (\<exists>a\<in>A. a < x)"
- using assms by (simp add: Min_def fold1_strict_below_iff)
-
-lemma Max_gr_iff [noatp]:
- assumes "finite A" and "A \<noteq> {}"
- shows "x < Max A \<longleftrightarrow> (\<exists>a\<in>A. x < a)"
-proof -
- interpret dual: linorder "op \<ge>" "op >"
- by (rule dual_linorder)
- from assms show ?thesis
- by (simp add: Max_def dual.fold1_strict_below_iff [folded dual.dual_max])
-qed
-
-lemma Min_eqI:
- assumes "finite A"
- assumes "\<And>y. y \<in> A \<Longrightarrow> y \<ge> x"
- and "x \<in> A"
- shows "Min A = x"
-proof (rule antisym)
- from `x \<in> A` have "A \<noteq> {}" by auto
- with assms show "Min A \<ge> x" by simp
-next
- from assms show "x \<ge> Min A" by simp
-qed
-
-lemma Max_eqI:
- assumes "finite A"
- assumes "\<And>y. y \<in> A \<Longrightarrow> y \<le> x"
- and "x \<in> A"
- shows "Max A = x"
-proof (rule antisym)
- from `x \<in> A` have "A \<noteq> {}" by auto
- with assms show "Max A \<le> x" by simp
-next
- from assms show "x \<le> Max A" by simp
-qed
-
-lemma Min_antimono:
- assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
- shows "Min N \<le> Min M"
- using assms by (simp add: Min_def fold1_antimono)
-
-lemma Max_mono:
- assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
- shows "Max M \<le> Max N"
-proof -
- interpret dual: linorder "op \<ge>" "op >"
- by (rule dual_linorder)
- from assms show ?thesis
- by (simp add: Max_def dual.fold1_antimono [folded dual.dual_max])
-qed
-
-lemma finite_linorder_max_induct[consumes 1, case_names empty insert]:
- "finite A \<Longrightarrow> P {} \<Longrightarrow>
- (!!b A. finite A \<Longrightarrow> ALL a:A. a < b \<Longrightarrow> P A \<Longrightarrow> P(insert b A))
- \<Longrightarrow> P A"
-proof (induct rule: finite_psubset_induct)
- fix A :: "'a set"
- assume IH: "!! B. finite B \<Longrightarrow> B < A \<Longrightarrow> P {} \<Longrightarrow>
- (!!b A. finite A \<Longrightarrow> (\<forall>a\<in>A. a<b) \<Longrightarrow> P A \<Longrightarrow> P (insert b A))
- \<Longrightarrow> P B"
- and "finite A" and "P {}"
- and step: "!!b A. \<lbrakk>finite A; \<forall>a\<in>A. a < b; P A\<rbrakk> \<Longrightarrow> P (insert b A)"
- show "P A"
- proof (cases "A = {}")
- assume "A = {}" thus "P A" using `P {}` by simp
- next
- let ?B = "A - {Max A}" let ?A = "insert (Max A) ?B"
- assume "A \<noteq> {}"
- with `finite A` have "Max A : A" by auto
- hence A: "?A = A" using insert_Diff_single insert_absorb by auto
- moreover have "finite ?B" using `finite A` by simp
- ultimately have "P ?B" using `P {}` step IH[of ?B] by blast
- moreover have "\<forall>a\<in>?B. a < Max A" using Max_ge [OF `finite A`] by fastsimp
- ultimately show "P A" using A insert_Diff_single step[OF `finite ?B`] by fastsimp
- qed
-qed
-
-lemma finite_linorder_min_induct[consumes 1, case_names empty insert]:
- "\<lbrakk>finite A; P {}; \<And>b A. \<lbrakk>finite A; \<forall>a\<in>A. b < a; P A\<rbrakk> \<Longrightarrow> P (insert b A)\<rbrakk> \<Longrightarrow> P A"
-by(rule linorder.finite_linorder_max_induct[OF dual_linorder])
-
-end
-
-context linordered_ab_semigroup_add
-begin
-
-lemma add_Min_commute:
- fixes k
- assumes "finite N" and "N \<noteq> {}"
- shows "k + Min N = Min {k + m | m. m \<in> N}"
-proof -
- have "\<And>x y. k + min x y = min (k + x) (k + y)"
- by (simp add: min_def not_le)
- (blast intro: antisym less_imp_le add_left_mono)
- with assms show ?thesis
- using hom_Min_commute [of "plus k" N]
- by simp (blast intro: arg_cong [where f = Min])
-qed
-
-lemma add_Max_commute:
- fixes k
- assumes "finite N" and "N \<noteq> {}"
- shows "k + Max N = Max {k + m | m. m \<in> N}"
-proof -
- have "\<And>x y. k + max x y = max (k + x) (k + y)"
- by (simp add: max_def not_le)
- (blast intro: antisym less_imp_le add_left_mono)
- with assms show ?thesis
- using hom_Max_commute [of "plus k" N]
- by simp (blast intro: arg_cong [where f = Max])
-qed
-
-end
-
-context linordered_ab_group_add
-begin
-
-lemma minus_Max_eq_Min [simp]:
- "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Max S) = Min (uminus ` S)"
- by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min)
-
-lemma minus_Min_eq_Max [simp]:
- "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Min S) = Max (uminus ` S)"
- by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max)
-
-end
-
-
subsection {* Expressing set operations via @{const fold} *}
lemma (in fun_left_comm) fun_left_comm_apply:
@@ -3445,32 +1433,6 @@
shows "Sup A = fold sup bot A"
using assms sup_Sup_fold_sup [of A bot] by (simp add: sup_absorb2)
-lemma Inf_fin_Inf:
- assumes "finite A" and "A \<noteq> {}"
- shows "\<Sqinter>\<^bsub>fin\<^esub>A = Inf A"
-proof -
- interpret ab_semigroup_idem_mult inf
- by (rule ab_semigroup_idem_mult_inf)
- from `A \<noteq> {}` obtain b B where "A = insert b B" by auto
- moreover with `finite A` have "finite B" by simp
- ultimately show ?thesis
- by (simp add: Inf_fin_def fold1_eq_fold_idem inf_Inf_fold_inf [symmetric])
- (simp add: Inf_fold_inf)
-qed
-
-lemma Sup_fin_Sup:
- assumes "finite A" and "A \<noteq> {}"
- shows "\<Squnion>\<^bsub>fin\<^esub>A = Sup A"
-proof -
- interpret ab_semigroup_idem_mult sup
- by (rule ab_semigroup_idem_mult_sup)
- from `A \<noteq> {}` obtain b B where "A = insert b B" by auto
- moreover with `finite A` have "finite B" by simp
- ultimately show ?thesis
- by (simp add: Sup_fin_def fold1_eq_fold_idem sup_Sup_fold_sup [symmetric])
- (simp add: Sup_fold_sup)
-qed
-
lemma inf_INFI_fold_inf:
assumes "finite A"
shows "inf B (INFI A f) = fold (\<lambda>A. inf (f A)) B A" (is "?inf = ?fold")
@@ -3505,4 +1467,661 @@
end
+
+subsection {* Locales as mini-packages *}
+
+locale folding =
+ fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b"
+ fixes F :: "'a set \<Rightarrow> 'b \<Rightarrow> 'b"
+ assumes commute_comp: "f x \<circ> f y = f y \<circ> f x"
+ assumes eq_fold: "finite A \<Longrightarrow> F A s = fold f s A"
+begin
+
+lemma fun_left_commute:
+ "f x (f y s) = f y (f x s)"
+ using commute_comp [of x y] by (simp add: expand_fun_eq)
+
+lemma fun_left_comm:
+ "fun_left_comm f"
+proof
+qed (fact fun_left_commute)
+
+lemma empty [simp]:
+ "F {} = id"
+ by (simp add: eq_fold expand_fun_eq)
+
+lemma insert [simp]:
+ assumes "finite A" and "x \<notin> A"
+ shows "F (insert x A) = F A \<circ> f x"
+proof -
+ interpret fun_left_comm f by (fact fun_left_comm)
+ from fold_insert2 assms
+ have "\<And>s. fold f s (insert x A) = fold f (f x s) A" .
+ with `finite A` show ?thesis by (simp add: eq_fold expand_fun_eq)
+qed
+
+lemma remove:
+ assumes "finite A" and "x \<in> A"
+ shows "F A = F (A - {x}) \<circ> f x"
+proof -
+ from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B"
+ by (auto dest: mk_disjoint_insert)
+ moreover from `finite A` this have "finite B" by simp
+ ultimately show ?thesis by simp
+qed
+
+lemma insert_remove:
+ assumes "finite A"
+ shows "F (insert x A) = F (A - {x}) \<circ> f x"
+ using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb)
+
+lemma commute_comp':
+ assumes "finite A"
+ shows "f x \<circ> F A = F A \<circ> f x"
+proof (rule ext)
+ fix s
+ from assms show "(f x \<circ> F A) s = (F A \<circ> f x) s"
+ by (induct A arbitrary: s) (simp_all add: fun_left_commute)
+qed
+
+lemma fun_left_commute':
+ assumes "finite A"
+ shows "f x (F A s) = F A (f x s)"
+ using commute_comp' assms by (simp add: expand_fun_eq)
+
+lemma union:
+ assumes "finite A" and "finite B"
+ and "A \<inter> B = {}"
+ shows "F (A \<union> B) = F A \<circ> F B"
+using `finite A` `A \<inter> B = {}` proof (induct A)
+ case empty show ?case by simp
+next
+ case (insert x A)
+ then have "A \<inter> B = {}" by auto
+ with insert(3) have "F (A \<union> B) = F A \<circ> F B" .
+ moreover from insert have "x \<notin> B" by simp
+ moreover from `finite A` `finite B` have fin: "finite (A \<union> B)" by simp
+ moreover from `x \<notin> A` `x \<notin> B` have "x \<notin> A \<union> B" by simp
+ ultimately show ?case by (simp add: fun_left_commute')
+qed
+
end
+
+locale folding_idem = folding +
+ assumes idem_comp: "f x \<circ> f x = f x"
+begin
+
+declare insert [simp del]
+
+lemma fun_idem:
+ "f x (f x s) = f x s"
+ using idem_comp [of x] by (simp add: expand_fun_eq)
+
+lemma fun_left_comm_idem:
+ "fun_left_comm_idem f"
+proof
+qed (fact fun_left_commute fun_idem)+
+
+lemma insert_idem [simp]:
+ assumes "finite A"
+ shows "F (insert x A) = F A \<circ> f x"
+proof -
+ interpret fun_left_comm_idem f by (fact fun_left_comm_idem)
+ from fold_insert_idem2 assms
+ have "\<And>s. fold f s (insert x A) = fold f (f x s) A" .
+ with assms show ?thesis by (simp add: eq_fold expand_fun_eq)
+qed
+
+lemma union_idem:
+ assumes "finite A" and "finite B"
+ shows "F (A \<union> B) = F A \<circ> F B"
+using `finite A` proof (induct A)
+ case empty show ?case by simp
+next
+ case (insert x A)
+ from insert(3) have "F (A \<union> B) = F A \<circ> F B" .
+ moreover from `finite A` `finite B` have fin: "finite (A \<union> B)" by simp
+ ultimately show ?case by (simp add: fun_left_commute')
+qed
+
+end
+
+no_notation (in times) times (infixl "*" 70)
+no_notation (in one) Groups.one ("1")
+
+locale folding_image_simple = comm_monoid +
+ fixes g :: "('b \<Rightarrow> 'a)"
+ fixes F :: "'b set \<Rightarrow> 'a"
+ assumes eq_fold: "finite A \<Longrightarrow> F A = fold_image f g 1 A"
+begin
+
+lemma empty [simp]:
+ "F {} = 1"
+ by (simp add: eq_fold)
+
+lemma insert [simp]:
+ assumes "finite A" and "x \<notin> A"
+ shows "F (insert x A) = g x * F A"
+proof -
+ interpret fun_left_comm "%x y. (g x) * y" proof
+ qed (simp add: ac_simps)
+ with assms have "fold_image (op *) g 1 (insert x A) = g x * fold_image (op *) g 1 A"
+ by (simp add: fold_image_def)
+ with `finite A` show ?thesis by (simp add: eq_fold)
+qed
+
+lemma remove:
+ assumes "finite A" and "x \<in> A"
+ shows "F A = g x * F (A - {x})"
+proof -
+ from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B"
+ by (auto dest: mk_disjoint_insert)
+ moreover from `finite A` this have "finite B" by simp
+ ultimately show ?thesis by simp
+qed
+
+lemma insert_remove:
+ assumes "finite A"
+ shows "F (insert x A) = g x * F (A - {x})"
+ using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb)
+
+lemma union_inter:
+ assumes "finite A" and "finite B"
+ shows "F A * F B = F (A \<union> B) * F (A \<inter> B)"
+using assms proof (induct A)
+ case empty then show ?case by simp
+next
+ case (insert x A) then show ?case
+ by (auto simp add: insert_absorb Int_insert_left commute [of _ "g x"] assoc left_commute)
+qed
+
+corollary union_disjoint:
+ assumes "finite A" and "finite B"
+ assumes "A \<inter> B = {}"
+ shows "F (A \<union> B) = F A * F B"
+ using assms by (simp add: union_inter)
+
+end
+
+locale folding_image = comm_monoid +
+ fixes F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
+ assumes eq_fold: "\<And>g. finite A \<Longrightarrow> F g A = fold_image f g 1 A"
+
+sublocale folding_image < folding_image_simple "op *" 1 g "F g" proof
+qed (fact eq_fold)
+
+context folding_image
+begin
+
+lemma reindex:
+ assumes "finite A" and "inj_on h A"
+ shows "F g (h ` A) = F (g \<circ> h) A"
+ using assms by (induct A) auto
+
+lemma cong:
+ assumes "finite A" and "\<And>x. x \<in> A \<Longrightarrow> g x = h x"
+ shows "F g A = F h A"
+proof -
+ from assms have "ALL C. C <= A --> (ALL x:C. g x = h x) --> F g C = F h C"
+ apply - apply (erule finite_induct) apply simp
+ apply (simp add: subset_insert_iff, clarify)
+ apply (subgoal_tac "finite C")
+ prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])
+ apply (subgoal_tac "C = insert x (C - {x})")
+ prefer 2 apply blast
+ apply (erule ssubst)
+ apply (drule spec)
+ apply (erule (1) notE impE)
+ apply (simp add: Ball_def del: insert_Diff_single)
+ done
+ with assms show ?thesis by simp
+qed
+
+lemma UNION_disjoint:
+ assumes "finite I" and "\<forall>i\<in>I. finite (A i)"
+ and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}"
+ shows "F g (UNION I A) = F (F g \<circ> A) I"
+apply (insert assms)
+apply (induct set: finite, simp, atomize)
+apply (subgoal_tac "\<forall>i\<in>Fa. x \<noteq> i")
+ prefer 2 apply blast
+apply (subgoal_tac "A x Int UNION Fa A = {}")
+ prefer 2 apply blast
+apply (simp add: union_disjoint)
+done
+
+lemma distrib:
+ assumes "finite A"
+ shows "F (\<lambda>x. g x * h x) A = F g A * F h A"
+ using assms by (rule finite_induct) (simp_all add: assoc commute left_commute)
+
+lemma related:
+ assumes Re: "R 1 1"
+ and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)"
+ and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
+ shows "R (F h S) (F g S)"
+ using fS by (rule finite_subset_induct) (insert assms, auto)
+
+lemma eq_general:
+ assumes fS: "finite S"
+ and h: "\<forall>y\<in>S'. \<exists>!x. x \<in> S \<and> h x = y"
+ and f12: "\<forall>x\<in>S. h x \<in> S' \<and> f2 (h x) = f1 x"
+ shows "F f1 S = F f2 S'"
+proof-
+ from h f12 have hS: "h ` S = S'" by blast
+ {fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y"
+ from f12 h H have "x = y" by auto }
+ hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast
+ from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto
+ from hS have "F f2 S' = F f2 (h ` S)" by simp
+ also have "\<dots> = F (f2 o h) S" using reindex [OF fS hinj, of f2] .
+ also have "\<dots> = F f1 S " using th cong [OF fS, of "f2 o h" f1]
+ by blast
+ finally show ?thesis ..
+qed
+
+lemma eq_general_inverses:
+ assumes fS: "finite S"
+ and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
+ and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = j x"
+ shows "F j S = F g T"
+ (* metis solves it, but not yet available here *)
+ apply (rule eq_general [OF fS, of T h g j])
+ apply (rule ballI)
+ apply (frule kh)
+ apply (rule ex1I[])
+ apply blast
+ apply clarsimp
+ apply (drule hk) apply simp
+ apply (rule sym)
+ apply (erule conjunct1[OF conjunct2[OF hk]])
+ apply (rule ballI)
+ apply (drule hk)
+ apply blast
+ done
+
+end
+
+notation (in times) times (infixl "*" 70)
+notation (in one) Groups.one ("1")
+
+
+subsection {* Finite cardinality *}
+
+text {* This definition, although traditional, is ugly to work with:
+@{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}.
+But now that we have @{text fold_image} things are easy:
+*}
+
+definition card :: "'a set \<Rightarrow> nat" where
+ "card A = (if finite A then fold_image (op +) (\<lambda>x. 1) 0 A else 0)"
+
+interpretation card!: folding_image_simple "op +" 0 "\<lambda>x. 1" card proof
+qed (simp add: card_def)
+
+lemma card_infinite [simp]:
+ "\<not> finite A \<Longrightarrow> card A = 0"
+ by (simp add: card_def)
+
+lemma card_empty:
+ "card {} = 0"
+ by (fact card.empty)
+
+lemma card_insert_disjoint:
+ "finite A ==> x \<notin> A ==> card (insert x A) = Suc (card A)"
+ by simp
+
+lemma card_insert_if:
+ "finite A ==> card (insert x A) = (if x \<in> A then card A else Suc (card A))"
+ by auto (simp add: card.insert_remove card.remove)
+
+lemma card_ge_0_finite:
+ "card A > 0 \<Longrightarrow> finite A"
+ by (rule ccontr) simp
+
+lemma card_0_eq [simp, noatp]:
+ "finite A \<Longrightarrow> card A = 0 \<longleftrightarrow> A = {}"
+ by (auto dest: mk_disjoint_insert)
+
+lemma finite_UNIV_card_ge_0:
+ "finite (UNIV :: 'a set) \<Longrightarrow> card (UNIV :: 'a set) > 0"
+ by (rule ccontr) simp
+
+lemma card_eq_0_iff:
+ "card A = 0 \<longleftrightarrow> A = {} \<or> \<not> finite A"
+ by auto
+
+lemma card_gt_0_iff:
+ "0 < card A \<longleftrightarrow> A \<noteq> {} \<and> finite A"
+ by (simp add: neq0_conv [symmetric] card_eq_0_iff)
+
+lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A"
+apply(rule_tac t = A in insert_Diff [THEN subst], assumption)
+apply(simp del:insert_Diff_single)
+done
+
+lemma card_Diff_singleton:
+ "finite A ==> x: A ==> card (A - {x}) = card A - 1"
+by (simp add: card_Suc_Diff1 [symmetric])
+
+lemma card_Diff_singleton_if:
+ "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)"
+by (simp add: card_Diff_singleton)
+
+lemma card_Diff_insert[simp]:
+assumes "finite A" and "a:A" and "a ~: B"
+shows "card(A - insert a B) = card(A - B) - 1"
+proof -
+ have "A - insert a B = (A - B) - {a}" using assms by blast
+ then show ?thesis using assms by(simp add:card_Diff_singleton)
+qed
+
+lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))"
+by (simp add: card_insert_if card_Suc_Diff1 del:card_Diff_insert)
+
+lemma card_insert_le: "finite A ==> card A <= card (insert x A)"
+by (simp add: card_insert_if)
+
+lemma card_mono:
+ assumes "finite B" and "A \<subseteq> B"
+ shows "card A \<le> card B"
+proof -
+ from assms have "finite A" by (auto intro: finite_subset)
+ then show ?thesis using assms proof (induct A arbitrary: B)
+ case empty then show ?case by simp
+ next
+ case (insert x A)
+ then have "x \<in> B" by simp
+ from insert have "A \<subseteq> B - {x}" and "finite (B - {x})" by auto
+ with insert.hyps have "card A \<le> card (B - {x})" by auto
+ with `finite A` `x \<notin> A` `finite B` `x \<in> B` show ?case by simp (simp only: card.remove)
+ qed
+qed
+
+lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)"
+apply (induct set: finite, simp, clarify)
+apply (subgoal_tac "finite A & A - {x} <= F")
+ prefer 2 apply (blast intro: finite_subset, atomize)
+apply (drule_tac x = "A - {x}" in spec)
+apply (simp add: card_Diff_singleton_if split add: split_if_asm)
+apply (case_tac "card A", auto)
+done
+
+lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B"
+apply (simp add: psubset_eq linorder_not_le [symmetric])
+apply (blast dest: card_seteq)
+done
+
+lemma card_Un_Int: "finite A ==> finite B
+ ==> card A + card B = card (A Un B) + card (A Int B)"
+ by (fact card.union_inter)
+
+lemma card_Un_disjoint: "finite A ==> finite B
+ ==> A Int B = {} ==> card (A Un B) = card A + card B"
+ by (fact card.union_disjoint)
+
+lemma card_Diff_subset:
+ assumes "finite B" and "B \<subseteq> A"
+ shows "card (A - B) = card A - card B"
+proof (cases "finite A")
+ case False with assms show ?thesis by simp
+next
+ case True with assms show ?thesis by (induct B arbitrary: A) simp_all
+qed
+
+lemma card_Diff_subset_Int:
+ assumes AB: "finite (A \<inter> B)" shows "card (A - B) = card A - card (A \<inter> B)"
+proof -
+ have "A - B = A - A \<inter> B" by auto
+ thus ?thesis
+ by (simp add: card_Diff_subset AB)
+qed
+
+lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A"
+apply (rule Suc_less_SucD)
+apply (simp add: card_Suc_Diff1 del:card_Diff_insert)
+done
+
+lemma card_Diff2_less:
+ "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A"
+apply (case_tac "x = y")
+ apply (simp add: card_Diff1_less del:card_Diff_insert)
+apply (rule less_trans)
+ prefer 2 apply (auto intro!: card_Diff1_less simp del:card_Diff_insert)
+done
+
+lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A"
+apply (case_tac "x : A")
+ apply (simp_all add: card_Diff1_less less_imp_le)
+done
+
+lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B"
+by (erule psubsetI, blast)
+
+lemma insert_partition:
+ "\<lbrakk> x \<notin> F; \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<rbrakk>
+ \<Longrightarrow> x \<inter> \<Union> F = {}"
+by auto
+
+lemma finite_psubset_induct[consumes 1, case_names psubset]:
+ assumes "finite A" and "!!A. finite A \<Longrightarrow> (!!B. finite B \<Longrightarrow> B \<subset> A \<Longrightarrow> P(B)) \<Longrightarrow> P(A)" shows "P A"
+using assms(1)
+proof (induct A rule: measure_induct_rule[where f=card])
+ case (less A)
+ show ?case
+ proof(rule assms(2)[OF less(2)])
+ fix B assume "finite B" "B \<subset> A"
+ show "P B" by(rule less(1)[OF psubset_card_mono[OF less(2) `B \<subset> A`] `finite B`])
+ qed
+qed
+
+text{* main cardinality theorem *}
+lemma card_partition [rule_format]:
+ "finite C ==>
+ finite (\<Union> C) -->
+ (\<forall>c\<in>C. card c = k) -->
+ (\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 --> c1 \<inter> c2 = {}) -->
+ k * card(C) = card (\<Union> C)"
+apply (erule finite_induct, simp)
+apply (simp add: card_Un_disjoint insert_partition
+ finite_subset [of _ "\<Union> (insert x F)"])
+done
+
+lemma card_eq_UNIV_imp_eq_UNIV:
+ assumes fin: "finite (UNIV :: 'a set)"
+ and card: "card A = card (UNIV :: 'a set)"
+ shows "A = (UNIV :: 'a set)"
+proof
+ show "A \<subseteq> UNIV" by simp
+ show "UNIV \<subseteq> A"
+ proof
+ fix x
+ show "x \<in> A"
+ proof (rule ccontr)
+ assume "x \<notin> A"
+ then have "A \<subset> UNIV" by auto
+ with fin have "card A < card (UNIV :: 'a set)" by (fact psubset_card_mono)
+ with card show False by simp
+ qed
+ qed
+qed
+
+text{*The form of a finite set of given cardinality*}
+
+lemma card_eq_SucD:
+assumes "card A = Suc k"
+shows "\<exists>b B. A = insert b B & b \<notin> B & card B = k & (k=0 \<longrightarrow> B={})"
+proof -
+ have fin: "finite A" using assms by (auto intro: ccontr)
+ moreover have "card A \<noteq> 0" using assms by auto
+ ultimately obtain b where b: "b \<in> A" by auto
+ show ?thesis
+ proof (intro exI conjI)
+ show "A = insert b (A-{b})" using b by blast
+ show "b \<notin> A - {b}" by blast
+ show "card (A - {b}) = k" and "k = 0 \<longrightarrow> A - {b} = {}"
+ using assms b fin by(fastsimp dest:mk_disjoint_insert)+
+ qed
+qed
+
+lemma card_Suc_eq:
+ "(card A = Suc k) =
+ (\<exists>b B. A = insert b B & b \<notin> B & card B = k & (k=0 \<longrightarrow> B={}))"
+apply(rule iffI)
+ apply(erule card_eq_SucD)
+apply(auto)
+apply(subst card_insert)
+ apply(auto intro:ccontr)
+done
+
+lemma finite_fun_UNIVD2:
+ assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
+ shows "finite (UNIV :: 'b set)"
+proof -
+ from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary))"
+ by(rule finite_imageI)
+ moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary)"
+ by(rule UNIV_eq_I) auto
+ ultimately show "finite (UNIV :: 'b set)" by simp
+qed
+
+lemma card_UNIV_unit: "card (UNIV :: unit set) = 1"
+ unfolding UNIV_unit by simp
+
+
+subsubsection {* Cardinality of image *}
+
+lemma card_image_le: "finite A ==> card (f ` A) <= card A"
+apply (induct set: finite)
+ apply simp
+apply (simp add: le_SucI card_insert_if)
+done
+
+lemma card_image:
+ assumes "inj_on f A"
+ shows "card (f ` A) = card A"
+proof (cases "finite A")
+ case True then show ?thesis using assms by (induct A) simp_all
+next
+ case False then have "\<not> finite (f ` A)" using assms by (auto dest: finite_imageD)
+ with False show ?thesis by simp
+qed
+
+lemma bij_betw_same_card: "bij_betw f A B \<Longrightarrow> card A = card B"
+by(auto simp: card_image bij_betw_def)
+
+lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A"
+by (simp add: card_seteq card_image)
+
+lemma eq_card_imp_inj_on:
+ "[| finite A; card(f ` A) = card A |] ==> inj_on f A"
+apply (induct rule:finite_induct)
+apply simp
+apply(frule card_image_le[where f = f])
+apply(simp add:card_insert_if split:if_splits)
+done
+
+lemma inj_on_iff_eq_card:
+ "finite A ==> inj_on f A = (card(f ` A) = card A)"
+by(blast intro: card_image eq_card_imp_inj_on)
+
+
+lemma card_inj_on_le:
+ "[|inj_on f A; f ` A \<subseteq> B; finite B |] ==> card A \<le> card B"
+apply (subgoal_tac "finite A")
+ apply (force intro: card_mono simp add: card_image [symmetric])
+apply (blast intro: finite_imageD dest: finite_subset)
+done
+
+lemma card_bij_eq:
+ "[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A;
+ finite A; finite B |] ==> card A = card B"
+by (auto intro: le_antisym card_inj_on_le)
+
+
+subsubsection {* Cardinality of sums *}
+
+lemma card_Plus:
+ assumes "finite A" and "finite B"
+ shows "card (A <+> B) = card A + card B"
+proof -
+ have "Inl`A \<inter> Inr`B = {}" by fast
+ with assms show ?thesis
+ unfolding Plus_def
+ by (simp add: card_Un_disjoint card_image)
+qed
+
+lemma card_Plus_conv_if:
+ "card (A <+> B) = (if finite A \<and> finite B then card A + card B else 0)"
+ by (auto simp add: card_Plus)
+
+
+subsubsection {* Cardinality of the Powerset *}
+
+lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *)
+apply (induct set: finite)
+ apply (simp_all add: Pow_insert)
+apply (subst card_Un_disjoint, blast)
+ apply (blast intro: finite_imageI, blast)
+apply (subgoal_tac "inj_on (insert x) (Pow F)")
+ apply (simp add: card_image Pow_insert)
+apply (unfold inj_on_def)
+apply (blast elim!: equalityE)
+done
+
+text {* Relates to equivalence classes. Based on a theorem of F. Kammüller. *}
+
+lemma dvd_partition:
+ "finite (Union C) ==>
+ ALL c : C. k dvd card c ==>
+ (ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==>
+ k dvd card (Union C)"
+apply(frule finite_UnionD)
+apply(rotate_tac -1)
+apply (induct set: finite, simp_all, clarify)
+apply (subst card_Un_disjoint)
+ apply (auto simp add: disjoint_eq_subset_Compl)
+done
+
+
+subsubsection {* Relating injectivity and surjectivity *}
+
+lemma finite_surj_inj: "finite(A) \<Longrightarrow> A <= f`A \<Longrightarrow> inj_on f A"
+apply(rule eq_card_imp_inj_on, assumption)
+apply(frule finite_imageI)
+apply(drule (1) card_seteq)
+ apply(erule card_image_le)
+apply simp
+done
+
+lemma finite_UNIV_surj_inj: fixes f :: "'a \<Rightarrow> 'a"
+shows "finite(UNIV:: 'a set) \<Longrightarrow> surj f \<Longrightarrow> inj f"
+by (blast intro: finite_surj_inj subset_UNIV dest:surj_range)
+
+lemma finite_UNIV_inj_surj: fixes f :: "'a \<Rightarrow> 'a"
+shows "finite(UNIV:: 'a set) \<Longrightarrow> inj f \<Longrightarrow> surj f"
+by(fastsimp simp:surj_def dest!: endo_inj_surj)
+
+corollary infinite_UNIV_nat[iff]: "~finite(UNIV::nat set)"
+proof
+ assume "finite(UNIV::nat set)"
+ with finite_UNIV_inj_surj[of Suc]
+ show False by simp (blast dest: Suc_neq_Zero surjD)
+qed
+
+(* Often leads to bogus ATP proofs because of reduced type information, hence noatp *)
+lemma infinite_UNIV_char_0[noatp]:
+ "\<not> finite (UNIV::'a::semiring_char_0 set)"
+proof
+ assume "finite (UNIV::'a set)"
+ with subset_UNIV have "finite (range of_nat::'a set)"
+ by (rule finite_subset)
+ moreover have "inj (of_nat::nat \<Rightarrow> 'a)"
+ by (simp add: inj_on_def)
+ ultimately have "finite (UNIV::nat set)"
+ by (rule finite_imageD)
+ then show "False"
+ by simp
+qed
+
+end
--- a/src/HOL/GCD.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/GCD.thy Thu Mar 11 17:39:45 2010 +0100
@@ -1358,10 +1358,10 @@
done
lemma lcm_dvd2_nat: "(n::nat) dvd lcm m n"
- using lcm_dvd1_nat [of n m] by (simp only: lcm_nat_def times.commute gcd_nat.commute)
+ using lcm_dvd1_nat [of n m] by (simp only: lcm_nat_def mult.commute gcd_nat.commute)
lemma lcm_dvd2_int: "(n::int) dvd lcm m n"
- using lcm_dvd1_int [of n m] by (simp only: lcm_int_def lcm_nat_def times.commute gcd_nat.commute)
+ using lcm_dvd1_int [of n m] by (simp only: lcm_int_def lcm_nat_def mult.commute gcd_nat.commute)
lemma dvd_lcm_I1_nat[simp]: "(k::nat) dvd m \<Longrightarrow> k dvd lcm m n"
by(metis lcm_dvd1_nat dvd_trans)
--- a/src/HOL/Groups.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/Groups.thy Thu Mar 11 17:39:45 2010 +0100
@@ -67,6 +67,18 @@
end
+locale monoid = semigroup +
+ fixes z :: 'a ("1")
+ assumes left_neutral [simp]: "1 * a = a"
+ assumes right_neutral [simp]: "a * 1 = a"
+
+locale comm_monoid = abel_semigroup +
+ fixes z :: 'a ("1")
+ assumes comm_neutral: "a * 1 = a"
+
+sublocale comm_monoid < monoid proof
+qed (simp_all add: commute comm_neutral)
+
subsection {* Generic operations *}
@@ -129,19 +141,19 @@
class semigroup_add = plus +
assumes add_assoc [algebra_simps]: "(a + b) + c = a + (b + c)"
-sublocale semigroup_add < plus!: semigroup plus proof
+sublocale semigroup_add < add!: semigroup plus proof
qed (fact add_assoc)
class ab_semigroup_add = semigroup_add +
assumes add_commute [algebra_simps]: "a + b = b + a"
-sublocale ab_semigroup_add < plus!: abel_semigroup plus proof
+sublocale ab_semigroup_add < add!: abel_semigroup plus proof
qed (fact add_commute)
context ab_semigroup_add
begin
-lemmas add_left_commute [algebra_simps] = plus.left_commute
+lemmas add_left_commute [algebra_simps] = add.left_commute
theorems add_ac = add_assoc add_commute add_left_commute
@@ -152,19 +164,19 @@
class semigroup_mult = times +
assumes mult_assoc [algebra_simps]: "(a * b) * c = a * (b * c)"
-sublocale semigroup_mult < times!: semigroup times proof
+sublocale semigroup_mult < mult!: semigroup times proof
qed (fact mult_assoc)
class ab_semigroup_mult = semigroup_mult +
assumes mult_commute [algebra_simps]: "a * b = b * a"
-sublocale ab_semigroup_mult < times!: abel_semigroup times proof
+sublocale ab_semigroup_mult < mult!: abel_semigroup times proof
qed (fact mult_commute)
context ab_semigroup_mult
begin
-lemmas mult_left_commute [algebra_simps] = times.left_commute
+lemmas mult_left_commute [algebra_simps] = mult.left_commute
theorems mult_ac = mult_assoc mult_commute mult_left_commute
@@ -173,36 +185,42 @@
theorems mult_ac = mult_assoc mult_commute mult_left_commute
class monoid_add = zero + semigroup_add +
- assumes add_0_left [simp]: "0 + a = a"
- and add_0_right [simp]: "a + 0 = a"
+ assumes add_0_left: "0 + a = a"
+ and add_0_right: "a + 0 = a"
+
+sublocale monoid_add < add!: monoid plus 0 proof
+qed (fact add_0_left add_0_right)+
lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0"
by (rule eq_commute)
class comm_monoid_add = zero + ab_semigroup_add +
assumes add_0: "0 + a = a"
-begin
-subclass monoid_add
- proof qed (insert add_0, simp_all add: add_commute)
+sublocale comm_monoid_add < add!: comm_monoid plus 0 proof
+qed (insert add_0, simp add: ac_simps)
-end
+subclass (in comm_monoid_add) monoid_add proof
+qed (fact add.left_neutral add.right_neutral)+
class monoid_mult = one + semigroup_mult +
- assumes mult_1_left [simp]: "1 * a = a"
- assumes mult_1_right [simp]: "a * 1 = a"
+ assumes mult_1_left: "1 * a = a"
+ and mult_1_right: "a * 1 = a"
+
+sublocale monoid_mult < mult!: monoid times 1 proof
+qed (fact mult_1_left mult_1_right)+
lemma one_reorient: "1 = x \<longleftrightarrow> x = 1"
by (rule eq_commute)
class comm_monoid_mult = one + ab_semigroup_mult +
assumes mult_1: "1 * a = a"
-begin
-subclass monoid_mult
- proof qed (insert mult_1, simp_all add: mult_commute)
+sublocale comm_monoid_mult < mult!: comm_monoid times 1 proof
+qed (insert mult_1, simp add: ac_simps)
-end
+subclass (in comm_monoid_mult) monoid_mult proof
+qed (fact mult.left_neutral mult.right_neutral)+
class cancel_semigroup_add = semigroup_add +
assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
--- a/src/HOL/IsaMakefile Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/IsaMakefile Thu Mar 11 17:39:45 2010 +0100
@@ -247,6 +247,7 @@
MAIN_DEPENDENCIES = $(PLAIN_DEPENDENCIES) \
ATP_Linkup.thy \
+ Big_Operators.thy \
Code_Evaluation.thy \
Code_Numeral.thy \
Divides.thy \
--- a/src/HOL/Lattices.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/Lattices.thy Thu Mar 11 17:39:45 2010 +0100
@@ -43,7 +43,7 @@
end
-subsection {* Conrete lattices *}
+subsection {* Concrete lattices *}
notation
less_eq (infix "\<sqsubseteq>" 50) and
--- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Thu Mar 11 17:39:45 2010 +0100
@@ -94,8 +94,8 @@
using lem1[unfolded lem3 lem2 lem5] by auto
have even_minus_odd:"\<And>x y. even x \<Longrightarrow> odd (y::int) \<Longrightarrow> odd (x - y)" using assms by auto
have odd_minus_even:"\<And>x y. odd x \<Longrightarrow> even (y::int) \<Longrightarrow> odd (x - y)" using assms by auto
- show ?thesis unfolding even_nat_def unfolding card_def and lem4[THEN sym] and *[unfolded card_def]
- unfolding card_def[THEN sym] apply(rule odd_minus_even) unfolding zadd_int[THEN sym] apply(rule odd_plus_even)
+ show ?thesis unfolding even_nat_def unfolding card_eq_setsum and lem4[THEN sym] and *[unfolded card_eq_setsum]
+ unfolding card_eq_setsum[THEN sym] apply (rule odd_minus_even) unfolding zadd_int[THEN sym] apply(rule odd_plus_even)
apply(rule assms(7)[unfolded even_nat_def]) unfolding int_mult by auto qed
subsection {* The odd/even result for faces of complete vertices, generalized. *}
--- a/src/HOL/Multivariate_Analysis/Integration.cert Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/Multivariate_Analysis/Integration.cert Thu Mar 11 17:39:45 2010 +0100
@@ -3294,3 +3294,215 @@
else -> val!7
}
sat
+qkVrmXMcHAG5MLuJ9d8jXQ 211 0
+#2 := false
+#33 := 0::real
+decl uf_11 :: (-> T5 T6 real)
+decl uf_15 :: T6
+#28 := uf_15
+decl uf_16 :: T5
+#30 := uf_16
+#31 := (uf_11 uf_16 uf_15)
+decl uf_12 :: (-> T7 T8 T5)
+decl uf_14 :: T8
+#26 := uf_14
+decl uf_13 :: (-> T1 T7)
+decl uf_8 :: T1
+#16 := uf_8
+#25 := (uf_13 uf_8)
+#27 := (uf_12 #25 uf_14)
+#29 := (uf_11 #27 uf_15)
+#73 := -1::real
+#84 := (* -1::real #29)
+#85 := (+ #84 #31)
+#74 := (* -1::real #31)
+#75 := (+ #29 #74)
+#112 := (>= #75 0::real)
+#119 := (ite #112 #75 #85)
+#127 := (* -1::real #119)
+decl uf_17 :: T5
+#37 := uf_17
+#38 := (uf_11 uf_17 uf_15)
+#102 := -1/3::real
+#103 := (* -1/3::real #38)
+#128 := (+ #103 #127)
+#100 := 1/3::real
+#101 := (* 1/3::real #31)
+#129 := (+ #101 #128)
+#130 := (<= #129 0::real)
+#131 := (not #130)
+#40 := 3::real
+#39 := (- #31 #38)
+#41 := (/ #39 3::real)
+#32 := (- #29 #31)
+#35 := (- #32)
+#34 := (< #32 0::real)
+#36 := (ite #34 #35 #32)
+#42 := (< #36 #41)
+#136 := (iff #42 #131)
+#104 := (+ #101 #103)
+#78 := (< #75 0::real)
+#90 := (ite #78 #85 #75)
+#109 := (< #90 #104)
+#134 := (iff #109 #131)
+#124 := (< #119 #104)
+#132 := (iff #124 #131)
+#133 := [rewrite]: #132
+#125 := (iff #109 #124)
+#122 := (= #90 #119)
+#113 := (not #112)
+#116 := (ite #113 #85 #75)
+#120 := (= #116 #119)
+#121 := [rewrite]: #120
+#117 := (= #90 #116)
+#114 := (iff #78 #113)
+#115 := [rewrite]: #114
+#118 := [monotonicity #115]: #117
+#123 := [trans #118 #121]: #122
+#126 := [monotonicity #123]: #125
+#135 := [trans #126 #133]: #134
+#110 := (iff #42 #109)
+#107 := (= #41 #104)
+#93 := (* -1::real #38)
+#94 := (+ #31 #93)
+#97 := (/ #94 3::real)
+#105 := (= #97 #104)
+#106 := [rewrite]: #105
+#98 := (= #41 #97)
+#95 := (= #39 #94)
+#96 := [rewrite]: #95
+#99 := [monotonicity #96]: #98
+#108 := [trans #99 #106]: #107
+#91 := (= #36 #90)
+#76 := (= #32 #75)
+#77 := [rewrite]: #76
+#88 := (= #35 #85)
+#81 := (- #75)
+#86 := (= #81 #85)
+#87 := [rewrite]: #86
+#82 := (= #35 #81)
+#83 := [monotonicity #77]: #82
+#89 := [trans #83 #87]: #88
+#79 := (iff #34 #78)
+#80 := [monotonicity #77]: #79
+#92 := [monotonicity #80 #89 #77]: #91
+#111 := [monotonicity #92 #108]: #110
+#137 := [trans #111 #135]: #136
+#72 := [asserted]: #42
+#138 := [mp #72 #137]: #131
+decl uf_1 :: T1
+#4 := uf_1
+#43 := (uf_13 uf_1)
+#44 := (uf_12 #43 uf_14)
+#45 := (uf_11 #44 uf_15)
+#149 := (* -1::real #45)
+#150 := (+ #38 #149)
+#140 := (+ #93 #45)
+#161 := (<= #150 0::real)
+#168 := (ite #161 #140 #150)
+#176 := (* -1::real #168)
+#177 := (+ #103 #176)
+#178 := (+ #101 #177)
+#179 := (<= #178 0::real)
+#180 := (not #179)
+#46 := (- #45 #38)
+#48 := (- #46)
+#47 := (< #46 0::real)
+#49 := (ite #47 #48 #46)
+#50 := (< #49 #41)
+#185 := (iff #50 #180)
+#143 := (< #140 0::real)
+#155 := (ite #143 #150 #140)
+#158 := (< #155 #104)
+#183 := (iff #158 #180)
+#173 := (< #168 #104)
+#181 := (iff #173 #180)
+#182 := [rewrite]: #181
+#174 := (iff #158 #173)
+#171 := (= #155 #168)
+#162 := (not #161)
+#165 := (ite #162 #150 #140)
+#169 := (= #165 #168)
+#170 := [rewrite]: #169
+#166 := (= #155 #165)
+#163 := (iff #143 #162)
+#164 := [rewrite]: #163
+#167 := [monotonicity #164]: #166
+#172 := [trans #167 #170]: #171
+#175 := [monotonicity #172]: #174
+#184 := [trans #175 #182]: #183
+#159 := (iff #50 #158)
+#156 := (= #49 #155)
+#141 := (= #46 #140)
+#142 := [rewrite]: #141
+#153 := (= #48 #150)
+#146 := (- #140)
+#151 := (= #146 #150)
+#152 := [rewrite]: #151
+#147 := (= #48 #146)
+#148 := [monotonicity #142]: #147
+#154 := [trans #148 #152]: #153
+#144 := (iff #47 #143)
+#145 := [monotonicity #142]: #144
+#157 := [monotonicity #145 #154 #142]: #156
+#160 := [monotonicity #157 #108]: #159
+#186 := [trans #160 #184]: #185
+#139 := [asserted]: #50
+#187 := [mp #139 #186]: #180
+#299 := (+ #140 #176)
+#300 := (<= #299 0::real)
+#290 := (= #140 #168)
+#329 := [hypothesis]: #162
+#191 := (+ #29 #149)
+#192 := (<= #191 0::real)
+#51 := (<= #29 #45)
+#193 := (iff #51 #192)
+#194 := [rewrite]: #193
+#188 := [asserted]: #51
+#195 := [mp #188 #194]: #192
+#298 := (+ #75 #127)
+#301 := (<= #298 0::real)
+#284 := (= #75 #119)
+#302 := [hypothesis]: #113
+#296 := (+ #85 #127)
+#297 := (<= #296 0::real)
+#285 := (= #85 #119)
+#288 := (or #112 #285)
+#289 := [def-axiom]: #288
+#303 := [unit-resolution #289 #302]: #285
+#304 := (not #285)
+#305 := (or #304 #297)
+#306 := [th-lemma]: #305
+#307 := [unit-resolution #306 #303]: #297
+#315 := (not #290)
+#310 := (not #300)
+#311 := (or #310 #112)
+#308 := [hypothesis]: #300
+#309 := [th-lemma #308 #307 #138 #302 #187 #195]: false
+#312 := [lemma #309]: #311
+#322 := [unit-resolution #312 #302]: #310
+#316 := (or #315 #300)
+#313 := [hypothesis]: #310
+#314 := [hypothesis]: #290
+#317 := [th-lemma]: #316
+#318 := [unit-resolution #317 #314 #313]: false
+#319 := [lemma #318]: #316
+#323 := [unit-resolution #319 #322]: #315
+#292 := (or #162 #290)
+#293 := [def-axiom]: #292
+#324 := [unit-resolution #293 #323]: #162
+#325 := [th-lemma #324 #307 #138 #302 #195]: false
+#326 := [lemma #325]: #112
+#286 := (or #113 #284)
+#287 := [def-axiom]: #286
+#330 := [unit-resolution #287 #326]: #284
+#331 := (not #284)
+#332 := (or #331 #301)
+#333 := [th-lemma]: #332
+#334 := [unit-resolution #333 #330]: #301
+#335 := [th-lemma #326 #334 #195 #329 #138]: false
+#336 := [lemma #335]: #161
+#327 := [unit-resolution #293 #336]: #290
+#328 := [unit-resolution #319 #327]: #300
+[th-lemma #326 #334 #195 #328 #187 #138]: false
+unsat
--- a/src/HOL/Number_Theory/Binomial.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/Number_Theory/Binomial.thy Thu Mar 11 17:39:45 2010 +0100
@@ -364,7 +364,7 @@
finally have "card ({T. T \<le> insert x F \<and> card T = k + 1}) =
card F choose (k + 1) + (card F choose k)".
with iassms choose_plus_one_nat show ?thesis
- by auto
+ by (auto simp del: card.insert)
qed
qed
qed
--- a/src/HOL/Option.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/Option.thy Thu Mar 11 17:39:45 2010 +0100
@@ -5,7 +5,7 @@
header {* Datatype option *}
theory Option
-imports Datatype Finite_Set
+imports Datatype
begin
datatype 'a option = None | Some 'a
@@ -33,13 +33,6 @@
lemma UNIV_option_conv: "UNIV = insert None (range Some)"
by(auto intro: classical)
-lemma finite_option_UNIV[simp]:
- "finite (UNIV :: 'a option set) = finite (UNIV :: 'a set)"
-by(auto simp add: UNIV_option_conv elim: finite_imageD intro: inj_Some)
-
-instance option :: (finite) finite proof
-qed (simp add: UNIV_option_conv)
-
subsubsection {* Operations *}
--- a/src/HOL/Rat.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/Rat.thy Thu Mar 11 17:39:45 2010 +0100
@@ -1104,11 +1104,11 @@
lemma rat_less_eq_code [code]:
"p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)"
- by (cases p, cases q) (simp add: quotient_of_Fract times.commute)
+ by (cases p, cases q) (simp add: quotient_of_Fract mult.commute)
lemma rat_less_code [code]:
"p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)"
- by (cases p, cases q) (simp add: quotient_of_Fract times.commute)
+ by (cases p, cases q) (simp add: quotient_of_Fract mult.commute)
lemma [code]:
"of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)"
--- a/src/HOL/Wellfounded.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/Wellfounded.thy Thu Mar 11 17:39:45 2010 +0100
@@ -8,7 +8,7 @@
header {*Well-founded Recursion*}
theory Wellfounded
-imports Finite_Set Transitive_Closure
+imports Transitive_Closure
uses ("Tools/Function/size.ML")
begin
--- a/src/HOL/ex/Summation.thy Thu Mar 11 16:56:22 2010 +0100
+++ b/src/HOL/ex/Summation.thy Thu Mar 11 17:39:45 2010 +0100
@@ -10,7 +10,7 @@
lemma add_setsum_orient:
"setsum f {k..<j} + setsum f {l..<k} = setsum f {l..<k} + setsum f {k..<j}"
- by (fact plus.commute)
+ by (fact add.commute)
lemma add_setsum_int:
fixes j k l :: int