--- a/src/HOL/Library/Topology_Euclidean_Space.thy Fri May 29 10:26:36 2009 -0700
+++ b/src/HOL/Library/Topology_Euclidean_Space.thy Fri May 29 10:31:35 2009 -0700
@@ -1192,6 +1192,9 @@
(\<forall>e >0. \<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e)"
by (auto simp add: tendsto_def eventually_at)
+lemma Lim_at_iff_LIM: "(f ---> l) (at a) \<longleftrightarrow> f -- a --> l"
+ unfolding Lim_at LIM_def by (simp only: zero_less_dist_iff)
+
lemma Lim_at_infinity:
"(f ---> l) at_infinity \<longleftrightarrow> (\<forall>e>0. \<exists>b. \<forall>x::real^'n::finite. norm x >= b \<longrightarrow> dist (f x) l < e)"
by (auto simp add: tendsto_def eventually_at_infinity)
@@ -1201,6 +1204,9 @@
(\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (S n) l < e)"
by (auto simp add: tendsto_def eventually_sequentially)
+lemma Lim_sequentially_iff_LIMSEQ: "(S ---> l) sequentially \<longleftrightarrow> S ----> l"
+ unfolding Lim_sequentially LIMSEQ_def ..
+
lemma Lim_eventually: "eventually (\<lambda>x. f x = l) net \<Longrightarrow> (f ---> l) net"
by (auto simp add: eventually_def Lim)