incorporated More_Set and More_List into the Main body -- to be consolidated later
authorhaftmann
Mon, 26 Dec 2011 22:17:10 +0100
changeset 45990 b7b905b23b2a
parent 45989 b39256df5f8a
child 45991 3289ac99d714
incorporated More_Set and More_List into the Main body -- to be consolidated later
src/HOL/IMP/Abs_Int1_ivl.thy
src/HOL/IMP/Abs_Int_Den/Abs_Int_den1_ivl.thy
src/HOL/IsaMakefile
src/HOL/Library/AList_Impl.thy
src/HOL/Library/Cset.thy
src/HOL/Library/Dlist.thy
src/HOL/Library/Library.thy
src/HOL/Library/Monad_Syntax.thy
src/HOL/Library/More_List.thy
src/HOL/Library/More_Set.thy
src/HOL/Library/RBT_Impl.thy
src/HOL/Main.thy
src/HOL/MicroJava/BV/BVExample.thy
src/HOL/More_List.thy
src/HOL/More_Set.thy
src/HOL/Quotient_Examples/DList.thy
src/HOL/Quotient_Examples/FSet.thy
src/HOL/Quotient_Examples/Quotient_Cset.thy
src/HOL/ex/Quickcheck_Examples.thy
--- a/src/HOL/IMP/Abs_Int1_ivl.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/IMP/Abs_Int1_ivl.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -1,7 +1,7 @@
 (* Author: Tobias Nipkow *)
 
 theory Abs_Int1_ivl
-imports Abs_Int1 Abs_Int_Tests "~~/src/HOL/Library/More_Set"
+imports Abs_Int1 Abs_Int_Tests
 begin
 
 subsection "Interval Analysis"
--- a/src/HOL/IMP/Abs_Int_Den/Abs_Int_den1_ivl.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/IMP/Abs_Int_Den/Abs_Int_den1_ivl.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -1,7 +1,7 @@
 (* Author: Tobias Nipkow *)
 
 theory Abs_Int_den1_ivl
-imports Abs_Int_den1 "~~/src/HOL/Library/More_Set"
+imports Abs_Int_den1
 begin
 
 subsection "Interval Analysis"
--- a/src/HOL/IsaMakefile	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/IsaMakefile	Mon Dec 26 22:17:10 2011 +0100
@@ -286,6 +286,8 @@
   List.thy \
   Main.thy \
   Map.thy \
+  More_List.thy \
+  More_Set.thy \
   Nat_Numeral.thy \
   Nat_Transfer.thy \
   New_DSequence.thy \
@@ -458,7 +460,7 @@
   Library/LaTeXsugar.thy Library/Lattice_Algebras.thy			\
   Library/Lattice_Syntax.thy Library/Library.thy Library/List_Cset.thy	\
   Library/List_Prefix.thy Library/List_lexord.thy Library/Mapping.thy	\
-  Library/Monad_Syntax.thy Library/More_List.thy Library/More_Set.thy	\
+  Library/Monad_Syntax.thy						\
   Library/Multiset.thy Library/Nat_Bijection.thy			\
   Library/Numeral_Type.thy Library/Old_Recdef.thy			\
   Library/OptionalSugar.thy Library/Order_Relation.thy			\
--- a/src/HOL/Library/AList_Impl.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/Library/AList_Impl.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -5,7 +5,7 @@
 header {* Implementation of Association Lists *}
 
 theory AList_Impl
-imports Main More_List
+imports Main
 begin
 
 text {*
--- a/src/HOL/Library/Cset.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/Library/Cset.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -4,7 +4,7 @@
 header {* A dedicated set type which is executable on its finite part *}
 
 theory Cset
-imports More_Set More_List
+imports Main
 begin
 
 subsection {* Lifting *}
--- a/src/HOL/Library/Dlist.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/Library/Dlist.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -3,7 +3,7 @@
 header {* Lists with elements distinct as canonical example for datatype invariants *}
 
 theory Dlist
-imports Main More_List
+imports Main
 begin
 
 subsection {* The type of distinct lists *}
--- a/src/HOL/Library/Library.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/Library/Library.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -33,7 +33,6 @@
   Kleene_Algebra
   Mapping
   Monad_Syntax
-  More_List
   Multiset
   Numeral_Type
   Old_Recdef
--- a/src/HOL/Library/Monad_Syntax.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/Library/Monad_Syntax.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -5,7 +5,7 @@
 header {* Monad notation for arbitrary types *}
 
 theory Monad_Syntax
-imports Main "~~/src/Tools/Adhoc_Overloading" "~~/src/HOL/Library/More_List"
+imports Main "~~/src/Tools/Adhoc_Overloading"
 begin
 
 text {*
--- a/src/HOL/Library/More_List.thy	Mon Dec 26 22:17:10 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,312 +0,0 @@
-(* Author:  Florian Haftmann, TU Muenchen *)
-
-header {* Operations on lists beyond the standard List theory *}
-
-theory More_List
-imports Main Multiset
-begin
-
-hide_const (open) Finite_Set.fold
-
-text {* Repairing code generator setup *}
-
-declare (in lattice) Inf_fin_set_fold [code_unfold del]
-declare (in lattice) Sup_fin_set_fold [code_unfold del]
-declare (in linorder) Min_fin_set_fold [code_unfold del]
-declare (in linorder) Max_fin_set_fold [code_unfold del]
-declare (in complete_lattice) Inf_set_fold [code_unfold del]
-declare (in complete_lattice) Sup_set_fold [code_unfold del]
-
-
-text {* Fold combinator with canonical argument order *}
-
-primrec fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
-    "fold f [] = id"
-  | "fold f (x # xs) = fold f xs \<circ> f x"
-
-lemma foldl_fold:
-  "foldl f s xs = fold (\<lambda>x s. f s x) xs s"
-  by (induct xs arbitrary: s) simp_all
-
-lemma foldr_fold_rev:
-  "foldr f xs = fold f (rev xs)"
-  by (simp add: foldr_foldl foldl_fold fun_eq_iff)
-
-lemma fold_rev_conv [code_unfold]:
-  "fold f (rev xs) = foldr f xs"
-  by (simp add: foldr_fold_rev)
-  
-lemma fold_cong [fundef_cong]:
-  "a = b \<Longrightarrow> xs = ys \<Longrightarrow> (\<And>x. x \<in> set xs \<Longrightarrow> f x = g x)
-    \<Longrightarrow> fold f xs a = fold g ys b"
-  by (induct ys arbitrary: a b xs) simp_all
-
-lemma fold_id:
-  assumes "\<And>x. x \<in> set xs \<Longrightarrow> f x = id"
-  shows "fold f xs = id"
-  using assms by (induct xs) simp_all
-
-lemma fold_commute:
-  assumes "\<And>x. x \<in> set xs \<Longrightarrow> h \<circ> g x = f x \<circ> h"
-  shows "h \<circ> fold g xs = fold f xs \<circ> h"
-  using assms by (induct xs) (simp_all add: fun_eq_iff)
-
-lemma fold_commute_apply:
-  assumes "\<And>x. x \<in> set xs \<Longrightarrow> h \<circ> g x = f x \<circ> h"
-  shows "h (fold g xs s) = fold f xs (h s)"
-proof -
-  from assms have "h \<circ> fold g xs = fold f xs \<circ> h" by (rule fold_commute)
-  then show ?thesis by (simp add: fun_eq_iff)
-qed
-
-lemma fold_invariant: 
-  assumes "\<And>x. x \<in> set xs \<Longrightarrow> Q x" and "P s"
-    and "\<And>x s. Q x \<Longrightarrow> P s \<Longrightarrow> P (f x s)"
-  shows "P (fold f xs s)"
-  using assms by (induct xs arbitrary: s) simp_all
-
-lemma fold_weak_invariant:
-  assumes "P s"
-    and "\<And>s x. x \<in> set xs \<Longrightarrow> P s \<Longrightarrow> P (f x s)"
-  shows "P (fold f xs s)"
-  using assms by (induct xs arbitrary: s) simp_all
-
-lemma fold_append [simp]:
-  "fold f (xs @ ys) = fold f ys \<circ> fold f xs"
-  by (induct xs) simp_all
-
-lemma fold_map [code_unfold]:
-  "fold g (map f xs) = fold (g o f) xs"
-  by (induct xs) simp_all
-
-lemma fold_remove1_split:
-  assumes f: "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f x \<circ> f y = f y \<circ> f x"
-    and x: "x \<in> set xs"
-  shows "fold f xs = fold f (remove1 x xs) \<circ> f x"
-  using assms by (induct xs) (auto simp add: o_assoc [symmetric])
-
-lemma fold_multiset_equiv:
-  assumes f: "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f x \<circ> f y = f y \<circ> f x"
-    and equiv: "multiset_of xs = multiset_of ys"
-  shows "fold f xs = fold f ys"
-using f equiv [symmetric] proof (induct xs arbitrary: ys)
-  case Nil then show ?case by simp
-next
-  case (Cons x xs)
-  then have *: "set ys = set (x # xs)" by (blast dest: multiset_of_eq_setD)
-  have "\<And>x y. x \<in> set ys \<Longrightarrow> y \<in> set ys \<Longrightarrow> f x \<circ> f y = f y \<circ> f x" 
-    by (rule Cons.prems(1)) (simp_all add: *)
-  moreover from * have "x \<in> set ys" by simp
-  ultimately have "fold f ys = fold f (remove1 x ys) \<circ> f x" by (fact fold_remove1_split)
-  moreover from Cons.prems have "fold f xs = fold f (remove1 x ys)" by (auto intro: Cons.hyps)
-  ultimately show ?case by simp
-qed
-
-lemma fold_rev:
-  assumes "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f y \<circ> f x = f x \<circ> f y"
-  shows "fold f (rev xs) = fold f xs"
-  by (rule fold_multiset_equiv, rule assms) (simp_all add: in_multiset_in_set)
-
-lemma foldr_fold:
-  assumes "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f y \<circ> f x = f x \<circ> f y"
-  shows "foldr f xs = fold f xs"
-  using assms unfolding foldr_fold_rev by (rule fold_rev)
-
-lemma fold_Cons_rev:
-  "fold Cons xs = append (rev xs)"
-  by (induct xs) simp_all
-
-lemma rev_conv_fold [code]:
-  "rev xs = fold Cons xs []"
-  by (simp add: fold_Cons_rev)
-
-lemma fold_append_concat_rev:
-  "fold append xss = append (concat (rev xss))"
-  by (induct xss) simp_all
-
-lemma concat_conv_foldr [code]:
-  "concat xss = foldr append xss []"
-  by (simp add: fold_append_concat_rev foldr_fold_rev)
-
-lemma fold_plus_listsum_rev:
-  "fold plus xs = plus (listsum (rev xs))"
-  by (induct xs) (simp_all add: add.assoc)
-
-lemma (in monoid_add) listsum_conv_fold [code]:
-  "listsum xs = fold (\<lambda>x y. y + x) xs 0"
-  by (auto simp add: listsum_foldl foldl_fold fun_eq_iff)
-
-lemma (in linorder) sort_key_conv_fold:
-  assumes "inj_on f (set xs)"
-  shows "sort_key f xs = fold (insort_key f) xs []"
-proof -
-  have "fold (insort_key f) (rev xs) = fold (insort_key f) xs"
-  proof (rule fold_rev, rule ext)
-    fix zs
-    fix x y
-    assume "x \<in> set xs" "y \<in> set xs"
-    with assms have *: "f y = f x \<Longrightarrow> y = x" by (auto dest: inj_onD)
-    have **: "x = y \<longleftrightarrow> y = x" by auto
-    show "(insort_key f y \<circ> insort_key f x) zs = (insort_key f x \<circ> insort_key f y) zs"
-      by (induct zs) (auto intro: * simp add: **)
-  qed
-  then show ?thesis by (simp add: sort_key_def foldr_fold_rev)
-qed
-
-lemma (in linorder) sort_conv_fold:
-  "sort xs = fold insort xs []"
-  by (rule sort_key_conv_fold) simp
-
-
-text {* @{const Finite_Set.fold} and @{const fold} *}
-
-lemma (in comp_fun_commute) fold_set_remdups:
-  "Finite_Set.fold f y (set xs) = fold f (remdups xs) y"
-  by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm insert_absorb)
-
-lemma (in comp_fun_idem) fold_set:
-  "Finite_Set.fold f y (set xs) = fold f xs y"
-  by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm)
-
-lemma (in ab_semigroup_idem_mult) fold1_set:
-  assumes "xs \<noteq> []"
-  shows "Finite_Set.fold1 times (set xs) = fold times (tl xs) (hd xs)"
-proof -
-  interpret comp_fun_idem times by (fact comp_fun_idem)
-  from assms obtain y ys where xs: "xs = y # ys"
-    by (cases xs) auto
-  show ?thesis
-  proof (cases "set ys = {}")
-    case True with xs show ?thesis by simp
-  next
-    case False
-    then have "fold1 times (insert y (set ys)) = Finite_Set.fold times y (set ys)"
-      by (simp only: finite_set fold1_eq_fold_idem)
-    with xs show ?thesis by (simp add: fold_set mult_commute)
-  qed
-qed
-
-lemma (in lattice) Inf_fin_set_fold:
-  "Inf_fin (set (x # xs)) = fold inf xs x"
-proof -
-  interpret ab_semigroup_idem_mult "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (fact ab_semigroup_idem_mult_inf)
-  show ?thesis
-    by (simp add: Inf_fin_def fold1_set del: set.simps)
-qed
-
-lemma (in lattice) Inf_fin_set_foldr [code_unfold]:
-  "Inf_fin (set (x # xs)) = foldr inf xs x"
-  by (simp add: Inf_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
-
-lemma (in lattice) Sup_fin_set_fold:
-  "Sup_fin (set (x # xs)) = fold sup xs x"
-proof -
-  interpret ab_semigroup_idem_mult "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (fact ab_semigroup_idem_mult_sup)
-  show ?thesis
-    by (simp add: Sup_fin_def fold1_set del: set.simps)
-qed
-
-lemma (in lattice) Sup_fin_set_foldr [code_unfold]:
-  "Sup_fin (set (x # xs)) = foldr sup xs x"
-  by (simp add: Sup_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
-
-lemma (in linorder) Min_fin_set_fold:
-  "Min (set (x # xs)) = fold min xs x"
-proof -
-  interpret ab_semigroup_idem_mult "min :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (fact ab_semigroup_idem_mult_min)
-  show ?thesis
-    by (simp add: Min_def fold1_set del: set.simps)
-qed
-
-lemma (in linorder) Min_fin_set_foldr [code_unfold]:
-  "Min (set (x # xs)) = foldr min xs x"
-  by (simp add: Min_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
-
-lemma (in linorder) Max_fin_set_fold:
-  "Max (set (x # xs)) = fold max xs x"
-proof -
-  interpret ab_semigroup_idem_mult "max :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (fact ab_semigroup_idem_mult_max)
-  show ?thesis
-    by (simp add: Max_def fold1_set del: set.simps)
-qed
-
-lemma (in linorder) Max_fin_set_foldr [code_unfold]:
-  "Max (set (x # xs)) = foldr max xs x"
-  by (simp add: Max_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
-
-lemma (in complete_lattice) Inf_set_fold:
-  "Inf (set xs) = fold inf xs top"
-proof -
-  interpret comp_fun_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (fact comp_fun_idem_inf)
-  show ?thesis by (simp add: Inf_fold_inf fold_set inf_commute)
-qed
-
-lemma (in complete_lattice) Inf_set_foldr [code_unfold]:
-  "Inf (set xs) = foldr inf xs top"
-  by (simp add: Inf_set_fold ac_simps foldr_fold fun_eq_iff)
-
-lemma (in complete_lattice) Sup_set_fold:
-  "Sup (set xs) = fold sup xs bot"
-proof -
-  interpret comp_fun_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (fact comp_fun_idem_sup)
-  show ?thesis by (simp add: Sup_fold_sup fold_set sup_commute)
-qed
-
-lemma (in complete_lattice) Sup_set_foldr [code_unfold]:
-  "Sup (set xs) = foldr sup xs bot"
-  by (simp add: Sup_set_fold ac_simps foldr_fold fun_eq_iff)
-
-lemma (in complete_lattice) INFI_set_fold:
-  "INFI (set xs) f = fold (inf \<circ> f) xs top"
-  unfolding INF_def set_map [symmetric] Inf_set_fold fold_map ..
-
-lemma (in complete_lattice) SUPR_set_fold:
-  "SUPR (set xs) f = fold (sup \<circ> f) xs bot"
-  unfolding SUP_def set_map [symmetric] Sup_set_fold fold_map ..
-
-
-text {* @{text nth_map} *}
-
-definition nth_map :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
-  "nth_map n f xs = (if n < length xs then
-       take n xs @ [f (xs ! n)] @ drop (Suc n) xs
-     else xs)"
-
-lemma nth_map_id:
-  "n \<ge> length xs \<Longrightarrow> nth_map n f xs = xs"
-  by (simp add: nth_map_def)
-
-lemma nth_map_unfold:
-  "n < length xs \<Longrightarrow> nth_map n f xs = take n xs @ [f (xs ! n)] @ drop (Suc n) xs"
-  by (simp add: nth_map_def)
-
-lemma nth_map_Nil [simp]:
-  "nth_map n f [] = []"
-  by (simp add: nth_map_def)
-
-lemma nth_map_zero [simp]:
-  "nth_map 0 f (x # xs) = f x # xs"
-  by (simp add: nth_map_def)
-
-lemma nth_map_Suc [simp]:
-  "nth_map (Suc n) f (x # xs) = x # nth_map n f xs"
-  by (simp add: nth_map_def)
-
-
-text {* monad operation *}
-
-definition bind :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" where
-  "bind xs f = concat (map f xs)"
-
-lemma bind_simps [simp]:
-  "bind [] f = []"
-  "bind (x # xs) f = f x @ bind xs f"
-  by (simp_all add: bind_def)
-
-end
--- a/src/HOL/Library/More_Set.thy	Mon Dec 26 22:17:10 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,284 +0,0 @@
-
-(* Author: Florian Haftmann, TU Muenchen *)
-
-header {* Relating (finite) sets and lists *}
-
-theory More_Set
-imports Main More_List
-begin
-
-lemma comp_fun_idem_remove:
-  "comp_fun_idem Set.remove"
-proof -
-  have rem: "Set.remove = (\<lambda>x A. A - {x})" by (simp add: fun_eq_iff remove_def)
-  show ?thesis by (simp only: comp_fun_idem_remove rem)
-qed
-
-lemma minus_fold_remove:
-  assumes "finite A"
-  shows "B - A = Finite_Set.fold Set.remove B A"
-proof -
-  have rem: "Set.remove = (\<lambda>x A. A - {x})" by (simp add: fun_eq_iff remove_def)
-  show ?thesis by (simp only: rem assms minus_fold_remove)
-qed
-
-lemma bounded_Collect_code [code_unfold_post]:
-  "{x \<in> A. P x} = Set.project P A"
-  by (simp add: project_def)
-
-
-subsection {* Basic set operations *}
-
-lemma is_empty_set:
-  "Set.is_empty (set xs) \<longleftrightarrow> List.null xs"
-  by (simp add: Set.is_empty_def null_def)
-
-lemma empty_set:
-  "{} = set []"
-  by simp
-
-lemma insert_set_compl:
-  "insert x (- set xs) = - set (removeAll x xs)"
-  by auto
-
-lemma remove_set_compl:
-  "Set.remove x (- set xs) = - set (List.insert x xs)"
-  by (auto simp add: remove_def List.insert_def)
-
-lemma image_set:
-  "image f (set xs) = set (map f xs)"
-  by simp
-
-lemma project_set:
-  "Set.project P (set xs) = set (filter P xs)"
-  by (auto simp add: project_def)
-
-
-subsection {* Functorial set operations *}
-
-lemma union_set:
-  "set xs \<union> A = fold Set.insert xs A"
-proof -
-  interpret comp_fun_idem Set.insert
-    by (fact comp_fun_idem_insert)
-  show ?thesis by (simp add: union_fold_insert fold_set)
-qed
-
-lemma union_set_foldr:
-  "set xs \<union> A = foldr Set.insert xs A"
-proof -
-  have "\<And>x y :: 'a. insert y \<circ> insert x = insert x \<circ> insert y"
-    by auto
-  then show ?thesis by (simp add: union_set foldr_fold)
-qed
-
-lemma minus_set:
-  "A - set xs = fold Set.remove xs A"
-proof -
-  interpret comp_fun_idem Set.remove
-    by (fact comp_fun_idem_remove)
-  show ?thesis
-    by (simp add: minus_fold_remove [of _ A] fold_set)
-qed
-
-lemma minus_set_foldr:
-  "A - set xs = foldr Set.remove xs A"
-proof -
-  have "\<And>x y :: 'a. Set.remove y \<circ> Set.remove x = Set.remove x \<circ> Set.remove y"
-    by (auto simp add: remove_def)
-  then show ?thesis by (simp add: minus_set foldr_fold)
-qed
-
-
-subsection {* Derived set operations *}
-
-lemma member:
-  "a \<in> A \<longleftrightarrow> (\<exists>x\<in>A. a = x)"
-  by simp
-
-lemma subset_eq:
-  "A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. x \<in> B)"
-  by (fact subset_eq)
-
-lemma subset:
-  "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A"
-  by (fact less_le_not_le)
-
-lemma set_eq:
-  "A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
-  by (fact eq_iff)
-
-lemma inter:
-  "A \<inter> B = Set.project (\<lambda>x. x \<in> A) B"
-  by (auto simp add: project_def)
-
-
-subsection {* Theorems on relations *}
-
-lemma product_code:
-  "Product_Type.product (set xs) (set ys) = set [(x, y). x \<leftarrow> xs, y \<leftarrow> ys]"
-  by (auto simp add: Product_Type.product_def)
-
-lemma Id_on_set:
-  "Id_on (set xs) = set [(x, x). x \<leftarrow> xs]"
-  by (auto simp add: Id_on_def)
-
-lemma trancl_set_ntrancl: "trancl (set xs) = ntrancl (card (set xs) - 1) (set xs)"
-  by (simp add: finite_trancl_ntranl)
-
-lemma set_rel_comp:
-  "set xys O set yzs = set ([(fst xy, snd yz). xy \<leftarrow> xys, yz \<leftarrow> yzs, snd xy = fst yz])"
-  by (auto simp add: Bex_def)
-
-lemma wf_set:
-  "wf (set xs) = acyclic (set xs)"
-  by (simp add: wf_iff_acyclic_if_finite)
-
-
-subsection {* Code generator setup *}
-
-definition coset :: "'a list \<Rightarrow> 'a set" where
-  [simp]: "coset xs = - set xs"
-
-code_datatype set coset
-
-
-subsection {* Basic operations *}
-
-lemma [code]:
-  "x \<in> set xs \<longleftrightarrow> List.member xs x"
-  "x \<in> coset xs \<longleftrightarrow> \<not> List.member xs x"
-  by (simp_all add: member_def)
-
-lemma [code_unfold]:
-  "A = {} \<longleftrightarrow> Set.is_empty A"
-  by (simp add: Set.is_empty_def)
-
-declare empty_set [code]
-
-declare is_empty_set [code]
-
-lemma UNIV_coset [code]:
-  "UNIV = coset []"
-  by simp
-
-lemma insert_code [code]:
-  "insert x (set xs) = set (List.insert x xs)"
-  "insert x (coset xs) = coset (removeAll x xs)"
-  by simp_all
-
-lemma remove_code [code]:
-  "Set.remove x (set xs) = set (removeAll x xs)"
-  "Set.remove x (coset xs) = coset (List.insert x xs)"
-  by (simp_all add: remove_def Compl_insert)
-
-declare image_set [code]
-
-declare project_set [code]
-
-lemma Ball_set [code]:
-  "Ball (set xs) P \<longleftrightarrow> list_all P xs"
-  by (simp add: list_all_iff)
-
-lemma Bex_set [code]:
-  "Bex (set xs) P \<longleftrightarrow> list_ex P xs"
-  by (simp add: list_ex_iff)
-
-lemma card_set [code]:
-  "card (set xs) = length (remdups xs)"
-proof -
-  have "card (set (remdups xs)) = length (remdups xs)"
-    by (rule distinct_card) simp
-  then show ?thesis by simp
-qed
-
-
-subsection {* Derived operations *}
-
-declare subset_eq [code]
-
-declare subset [code]
-
-
-subsection {* Functorial operations *}
-
-lemma inter_code [code]:
-  "A \<inter> set xs = set (List.filter (\<lambda>x. x \<in> A) xs)"
-  "A \<inter> coset xs = foldr Set.remove xs A"
-  by (simp add: inter project_def) (simp add: Diff_eq [symmetric] minus_set_foldr)
-
-lemma subtract_code [code]:
-  "A - set xs = foldr Set.remove xs A"
-  "A - coset xs = set (List.filter (\<lambda>x. x \<in> A) xs)"
-  by (auto simp add: minus_set_foldr)
-
-lemma union_code [code]:
-  "set xs \<union> A = foldr insert xs A"
-  "coset xs \<union> A = coset (List.filter (\<lambda>x. x \<notin> A) xs)"
-  by (auto simp add: union_set_foldr)
-
-definition Inf :: "'a::complete_lattice set \<Rightarrow> 'a" where
-  [simp]: "Inf = Complete_Lattices.Inf"
-
-hide_const (open) Inf
-
-lemma [code_unfold_post]:
-  "Inf = More_Set.Inf"
-  by simp
-
-definition Sup :: "'a::complete_lattice set \<Rightarrow> 'a" where
-  [simp]: "Sup = Complete_Lattices.Sup"
-
-hide_const (open) Sup
-
-lemma [code_unfold_post]:
-  "Sup = More_Set.Sup"
-  by simp
-
-lemma Inf_code [code]:
-  "More_Set.Inf (set xs) = foldr inf xs top"
-  "More_Set.Inf (coset []) = bot"
-  by (simp_all add: Inf_set_foldr)
-
-lemma Sup_sup [code]:
-  "More_Set.Sup (set xs) = foldr sup xs bot"
-  "More_Set.Sup (coset []) = top"
-  by (simp_all add: Sup_set_foldr)
-
-lemma INF_code [code]:
-  "INFI (set xs) f = foldr (inf \<circ> f) xs top"
-  by (simp add: INF_def Inf_set_foldr image_set foldr_map del: set_map)
-
-lemma SUP_sup [code]:
-  "SUPR (set xs) f = foldr (sup \<circ> f) xs bot"
-  by (simp add: SUP_def Sup_set_foldr image_set foldr_map del: set_map)
-
-hide_const (open) coset
-
-
-subsection {* Operations on relations *}
-
-text {* Initially contributed by Tjark Weber. *}
-
-declare Domain_fst [code]
-
-declare Range_snd [code]
-
-declare trans_join [code]
-
-declare irrefl_distinct [code]
-
-declare trancl_set_ntrancl [code]
-
-declare acyclic_irrefl [code]
-
-declare product_code [code]
-
-declare Id_on_set [code]
-
-declare set_rel_comp [code]
-
-declare wf_set [code]
-
-end
-
--- a/src/HOL/Library/RBT_Impl.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/Library/RBT_Impl.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -6,7 +6,7 @@
 header {* Implementation of Red-Black Trees *}
 
 theory RBT_Impl
-imports Main More_List
+imports Main
 begin
 
 text {*
--- a/src/HOL/Main.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/Main.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -1,7 +1,7 @@
 header {* Main HOL *}
 
 theory Main
-imports Plain Predicate_Compile Nitpick
+imports Plain Predicate_Compile Nitpick More_Set
 begin
 
 text {*
--- a/src/HOL/MicroJava/BV/BVExample.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/MicroJava/BV/BVExample.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -9,7 +9,6 @@
   "../JVM/JVMListExample"
   BVSpecTypeSafe
   JVM
-  "~~/src/HOL/Library/More_Set"
 begin
 
 text {*
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/More_List.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -0,0 +1,295 @@
+(* Author:  Florian Haftmann, TU Muenchen *)
+
+header {* Operations on lists beyond the standard List theory *}
+
+theory More_List
+imports List
+begin
+
+hide_const (open) Finite_Set.fold
+
+text {* Repairing code generator setup *}
+
+declare (in lattice) Inf_fin_set_fold [code_unfold del]
+declare (in lattice) Sup_fin_set_fold [code_unfold del]
+declare (in linorder) Min_fin_set_fold [code_unfold del]
+declare (in linorder) Max_fin_set_fold [code_unfold del]
+declare (in complete_lattice) Inf_set_fold [code_unfold del]
+declare (in complete_lattice) Sup_set_fold [code_unfold del]
+
+
+text {* Fold combinator with canonical argument order *}
+
+primrec fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
+    "fold f [] = id"
+  | "fold f (x # xs) = fold f xs \<circ> f x"
+
+lemma foldl_fold:
+  "foldl f s xs = fold (\<lambda>x s. f s x) xs s"
+  by (induct xs arbitrary: s) simp_all
+
+lemma foldr_fold_rev:
+  "foldr f xs = fold f (rev xs)"
+  by (simp add: foldr_foldl foldl_fold fun_eq_iff)
+
+lemma fold_rev_conv [code_unfold]:
+  "fold f (rev xs) = foldr f xs"
+  by (simp add: foldr_fold_rev)
+  
+lemma fold_cong [fundef_cong]:
+  "a = b \<Longrightarrow> xs = ys \<Longrightarrow> (\<And>x. x \<in> set xs \<Longrightarrow> f x = g x)
+    \<Longrightarrow> fold f xs a = fold g ys b"
+  by (induct ys arbitrary: a b xs) simp_all
+
+lemma fold_id:
+  assumes "\<And>x. x \<in> set xs \<Longrightarrow> f x = id"
+  shows "fold f xs = id"
+  using assms by (induct xs) simp_all
+
+lemma fold_commute:
+  assumes "\<And>x. x \<in> set xs \<Longrightarrow> h \<circ> g x = f x \<circ> h"
+  shows "h \<circ> fold g xs = fold f xs \<circ> h"
+  using assms by (induct xs) (simp_all add: fun_eq_iff)
+
+lemma fold_commute_apply:
+  assumes "\<And>x. x \<in> set xs \<Longrightarrow> h \<circ> g x = f x \<circ> h"
+  shows "h (fold g xs s) = fold f xs (h s)"
+proof -
+  from assms have "h \<circ> fold g xs = fold f xs \<circ> h" by (rule fold_commute)
+  then show ?thesis by (simp add: fun_eq_iff)
+qed
+
+lemma fold_invariant: 
+  assumes "\<And>x. x \<in> set xs \<Longrightarrow> Q x" and "P s"
+    and "\<And>x s. Q x \<Longrightarrow> P s \<Longrightarrow> P (f x s)"
+  shows "P (fold f xs s)"
+  using assms by (induct xs arbitrary: s) simp_all
+
+lemma fold_weak_invariant:
+  assumes "P s"
+    and "\<And>s x. x \<in> set xs \<Longrightarrow> P s \<Longrightarrow> P (f x s)"
+  shows "P (fold f xs s)"
+  using assms by (induct xs arbitrary: s) simp_all
+
+lemma fold_append [simp]:
+  "fold f (xs @ ys) = fold f ys \<circ> fold f xs"
+  by (induct xs) simp_all
+
+lemma fold_map [code_unfold]:
+  "fold g (map f xs) = fold (g o f) xs"
+  by (induct xs) simp_all
+
+lemma fold_remove1_split:
+  assumes f: "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f x \<circ> f y = f y \<circ> f x"
+    and x: "x \<in> set xs"
+  shows "fold f xs = fold f (remove1 x xs) \<circ> f x"
+  using assms by (induct xs) (auto simp add: o_assoc [symmetric])
+
+lemma fold_rev:
+  assumes "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f y \<circ> f x = f x \<circ> f y"
+  shows "fold f (rev xs) = fold f xs"
+using assms by (induct xs) (simp_all add: fold_commute_apply fun_eq_iff)
+
+lemma foldr_fold:
+  assumes "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f y \<circ> f x = f x \<circ> f y"
+  shows "foldr f xs = fold f xs"
+  using assms unfolding foldr_fold_rev by (rule fold_rev)
+
+lemma fold_Cons_rev:
+  "fold Cons xs = append (rev xs)"
+  by (induct xs) simp_all
+
+lemma rev_conv_fold [code]:
+  "rev xs = fold Cons xs []"
+  by (simp add: fold_Cons_rev)
+
+lemma fold_append_concat_rev:
+  "fold append xss = append (concat (rev xss))"
+  by (induct xss) simp_all
+
+lemma concat_conv_foldr [code]:
+  "concat xss = foldr append xss []"
+  by (simp add: fold_append_concat_rev foldr_fold_rev)
+
+lemma fold_plus_listsum_rev:
+  "fold plus xs = plus (listsum (rev xs))"
+  by (induct xs) (simp_all add: add.assoc)
+
+lemma (in monoid_add) listsum_conv_fold [code]:
+  "listsum xs = fold (\<lambda>x y. y + x) xs 0"
+  by (auto simp add: listsum_foldl foldl_fold fun_eq_iff)
+
+lemma (in linorder) sort_key_conv_fold:
+  assumes "inj_on f (set xs)"
+  shows "sort_key f xs = fold (insort_key f) xs []"
+proof -
+  have "fold (insort_key f) (rev xs) = fold (insort_key f) xs"
+  proof (rule fold_rev, rule ext)
+    fix zs
+    fix x y
+    assume "x \<in> set xs" "y \<in> set xs"
+    with assms have *: "f y = f x \<Longrightarrow> y = x" by (auto dest: inj_onD)
+    have **: "x = y \<longleftrightarrow> y = x" by auto
+    show "(insort_key f y \<circ> insort_key f x) zs = (insort_key f x \<circ> insort_key f y) zs"
+      by (induct zs) (auto intro: * simp add: **)
+  qed
+  then show ?thesis by (simp add: sort_key_def foldr_fold_rev)
+qed
+
+lemma (in linorder) sort_conv_fold:
+  "sort xs = fold insort xs []"
+  by (rule sort_key_conv_fold) simp
+
+
+text {* @{const Finite_Set.fold} and @{const fold} *}
+
+lemma (in comp_fun_commute) fold_set_fold_remdups:
+  "Finite_Set.fold f y (set xs) = fold f (remdups xs) y"
+  by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm insert_absorb)
+
+lemma (in comp_fun_idem) fold_set_fold:
+  "Finite_Set.fold f y (set xs) = fold f xs y"
+  by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm)
+
+lemma (in ab_semigroup_idem_mult) fold1_set_fold:
+  assumes "xs \<noteq> []"
+  shows "Finite_Set.fold1 times (set xs) = fold times (tl xs) (hd xs)"
+proof -
+  interpret comp_fun_idem times by (fact comp_fun_idem)
+  from assms obtain y ys where xs: "xs = y # ys"
+    by (cases xs) auto
+  show ?thesis
+  proof (cases "set ys = {}")
+    case True with xs show ?thesis by simp
+  next
+    case False
+    then have "fold1 times (insert y (set ys)) = Finite_Set.fold times y (set ys)"
+      by (simp only: finite_set fold1_eq_fold_idem)
+    with xs show ?thesis by (simp add: fold_set_fold mult_commute)
+  qed
+qed
+
+lemma (in lattice) Inf_fin_set_fold:
+  "Inf_fin (set (x # xs)) = fold inf xs x"
+proof -
+  interpret ab_semigroup_idem_mult "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (fact ab_semigroup_idem_mult_inf)
+  show ?thesis
+    by (simp add: Inf_fin_def fold1_set_fold del: set.simps)
+qed
+
+lemma (in lattice) Inf_fin_set_foldr [code_unfold]:
+  "Inf_fin (set (x # xs)) = foldr inf xs x"
+  by (simp add: Inf_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
+
+lemma (in lattice) Sup_fin_set_fold:
+  "Sup_fin (set (x # xs)) = fold sup xs x"
+proof -
+  interpret ab_semigroup_idem_mult "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (fact ab_semigroup_idem_mult_sup)
+  show ?thesis
+    by (simp add: Sup_fin_def fold1_set_fold del: set.simps)
+qed
+
+lemma (in lattice) Sup_fin_set_foldr [code_unfold]:
+  "Sup_fin (set (x # xs)) = foldr sup xs x"
+  by (simp add: Sup_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
+
+lemma (in linorder) Min_fin_set_fold:
+  "Min (set (x # xs)) = fold min xs x"
+proof -
+  interpret ab_semigroup_idem_mult "min :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (fact ab_semigroup_idem_mult_min)
+  show ?thesis
+    by (simp add: Min_def fold1_set_fold del: set.simps)
+qed
+
+lemma (in linorder) Min_fin_set_foldr [code_unfold]:
+  "Min (set (x # xs)) = foldr min xs x"
+  by (simp add: Min_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
+
+lemma (in linorder) Max_fin_set_fold:
+  "Max (set (x # xs)) = fold max xs x"
+proof -
+  interpret ab_semigroup_idem_mult "max :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (fact ab_semigroup_idem_mult_max)
+  show ?thesis
+    by (simp add: Max_def fold1_set_fold del: set.simps)
+qed
+
+lemma (in linorder) Max_fin_set_foldr [code_unfold]:
+  "Max (set (x # xs)) = foldr max xs x"
+  by (simp add: Max_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
+
+lemma (in complete_lattice) Inf_set_fold:
+  "Inf (set xs) = fold inf xs top"
+proof -
+  interpret comp_fun_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (fact comp_fun_idem_inf)
+  show ?thesis by (simp add: Inf_fold_inf fold_set_fold inf_commute)
+qed
+
+lemma (in complete_lattice) Inf_set_foldr [code_unfold]:
+  "Inf (set xs) = foldr inf xs top"
+  by (simp add: Inf_set_fold ac_simps foldr_fold fun_eq_iff)
+
+lemma (in complete_lattice) Sup_set_fold:
+  "Sup (set xs) = fold sup xs bot"
+proof -
+  interpret comp_fun_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (fact comp_fun_idem_sup)
+  show ?thesis by (simp add: Sup_fold_sup fold_set sup_commute)
+qed
+
+lemma (in complete_lattice) Sup_set_foldr [code_unfold]:
+  "Sup (set xs) = foldr sup xs bot"
+  by (simp add: Sup_set_fold ac_simps foldr_fold fun_eq_iff)
+
+lemma (in complete_lattice) INFI_set_fold:
+  "INFI (set xs) f = fold (inf \<circ> f) xs top"
+  unfolding INF_def set_map [symmetric] Inf_set_fold fold_map ..
+
+lemma (in complete_lattice) SUPR_set_fold:
+  "SUPR (set xs) f = fold (sup \<circ> f) xs bot"
+  unfolding SUP_def set_map [symmetric] Sup_set_fold fold_map ..
+
+
+text {* @{text nth_map} *}
+
+definition nth_map :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
+  "nth_map n f xs = (if n < length xs then
+       take n xs @ [f (xs ! n)] @ drop (Suc n) xs
+     else xs)"
+
+lemma nth_map_id:
+  "n \<ge> length xs \<Longrightarrow> nth_map n f xs = xs"
+  by (simp add: nth_map_def)
+
+lemma nth_map_unfold:
+  "n < length xs \<Longrightarrow> nth_map n f xs = take n xs @ [f (xs ! n)] @ drop (Suc n) xs"
+  by (simp add: nth_map_def)
+
+lemma nth_map_Nil [simp]:
+  "nth_map n f [] = []"
+  by (simp add: nth_map_def)
+
+lemma nth_map_zero [simp]:
+  "nth_map 0 f (x # xs) = f x # xs"
+  by (simp add: nth_map_def)
+
+lemma nth_map_Suc [simp]:
+  "nth_map (Suc n) f (x # xs) = x # nth_map n f xs"
+  by (simp add: nth_map_def)
+
+
+text {* monad operation *}
+
+definition bind :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" where
+  "bind xs f = concat (map f xs)"
+
+lemma bind_simps [simp]:
+  "bind [] f = []"
+  "bind (x # xs) f = f x @ bind xs f"
+  by (simp_all add: bind_def)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/More_Set.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -0,0 +1,284 @@
+
+(* Author: Florian Haftmann, TU Muenchen *)
+
+header {* Relating (finite) sets and lists *}
+
+theory More_Set
+imports More_List
+begin
+
+lemma comp_fun_idem_remove:
+  "comp_fun_idem Set.remove"
+proof -
+  have rem: "Set.remove = (\<lambda>x A. A - {x})" by (simp add: fun_eq_iff remove_def)
+  show ?thesis by (simp only: comp_fun_idem_remove rem)
+qed
+
+lemma minus_fold_remove:
+  assumes "finite A"
+  shows "B - A = Finite_Set.fold Set.remove B A"
+proof -
+  have rem: "Set.remove = (\<lambda>x A. A - {x})" by (simp add: fun_eq_iff remove_def)
+  show ?thesis by (simp only: rem assms minus_fold_remove)
+qed
+
+lemma bounded_Collect_code [code_unfold_post]:
+  "{x \<in> A. P x} = Set.project P A"
+  by (simp add: project_def)
+
+
+subsection {* Basic set operations *}
+
+lemma is_empty_set:
+  "Set.is_empty (set xs) \<longleftrightarrow> List.null xs"
+  by (simp add: Set.is_empty_def null_def)
+
+lemma empty_set:
+  "{} = set []"
+  by simp
+
+lemma insert_set_compl:
+  "insert x (- set xs) = - set (removeAll x xs)"
+  by auto
+
+lemma remove_set_compl:
+  "Set.remove x (- set xs) = - set (List.insert x xs)"
+  by (auto simp add: remove_def List.insert_def)
+
+lemma image_set:
+  "image f (set xs) = set (map f xs)"
+  by simp
+
+lemma project_set:
+  "Set.project P (set xs) = set (filter P xs)"
+  by (auto simp add: project_def)
+
+
+subsection {* Functorial set operations *}
+
+lemma union_set:
+  "set xs \<union> A = fold Set.insert xs A"
+proof -
+  interpret comp_fun_idem Set.insert
+    by (fact comp_fun_idem_insert)
+  show ?thesis by (simp add: union_fold_insert fold_set_fold)
+qed
+
+lemma union_set_foldr:
+  "set xs \<union> A = foldr Set.insert xs A"
+proof -
+  have "\<And>x y :: 'a. insert y \<circ> insert x = insert x \<circ> insert y"
+    by auto
+  then show ?thesis by (simp add: union_set foldr_fold)
+qed
+
+lemma minus_set:
+  "A - set xs = fold Set.remove xs A"
+proof -
+  interpret comp_fun_idem Set.remove
+    by (fact comp_fun_idem_remove)
+  show ?thesis
+    by (simp add: minus_fold_remove [of _ A] fold_set_fold)
+qed
+
+lemma minus_set_foldr:
+  "A - set xs = foldr Set.remove xs A"
+proof -
+  have "\<And>x y :: 'a. Set.remove y \<circ> Set.remove x = Set.remove x \<circ> Set.remove y"
+    by (auto simp add: remove_def)
+  then show ?thesis by (simp add: minus_set foldr_fold)
+qed
+
+
+subsection {* Derived set operations *}
+
+lemma member:
+  "a \<in> A \<longleftrightarrow> (\<exists>x\<in>A. a = x)"
+  by simp
+
+lemma subset_eq:
+  "A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. x \<in> B)"
+  by (fact subset_eq)
+
+lemma subset:
+  "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A"
+  by (fact less_le_not_le)
+
+lemma set_eq:
+  "A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
+  by (fact eq_iff)
+
+lemma inter:
+  "A \<inter> B = Set.project (\<lambda>x. x \<in> A) B"
+  by (auto simp add: project_def)
+
+
+subsection {* Theorems on relations *}
+
+lemma product_code:
+  "Product_Type.product (set xs) (set ys) = set [(x, y). x \<leftarrow> xs, y \<leftarrow> ys]"
+  by (auto simp add: Product_Type.product_def)
+
+lemma Id_on_set:
+  "Id_on (set xs) = set [(x, x). x \<leftarrow> xs]"
+  by (auto simp add: Id_on_def)
+
+lemma trancl_set_ntrancl: "trancl (set xs) = ntrancl (card (set xs) - 1) (set xs)"
+  by (simp add: finite_trancl_ntranl)
+
+lemma set_rel_comp:
+  "set xys O set yzs = set ([(fst xy, snd yz). xy \<leftarrow> xys, yz \<leftarrow> yzs, snd xy = fst yz])"
+  by (auto simp add: Bex_def)
+
+lemma wf_set:
+  "wf (set xs) = acyclic (set xs)"
+  by (simp add: wf_iff_acyclic_if_finite)
+
+
+subsection {* Code generator setup *}
+
+definition coset :: "'a list \<Rightarrow> 'a set" where
+  [simp]: "coset xs = - set xs"
+
+code_datatype set coset
+
+
+subsection {* Basic operations *}
+
+lemma [code]:
+  "x \<in> set xs \<longleftrightarrow> List.member xs x"
+  "x \<in> coset xs \<longleftrightarrow> \<not> List.member xs x"
+  by (simp_all add: member_def)
+
+lemma [code_unfold]:
+  "A = {} \<longleftrightarrow> Set.is_empty A"
+  by (simp add: Set.is_empty_def)
+
+declare empty_set [code]
+
+declare is_empty_set [code]
+
+lemma UNIV_coset [code]:
+  "UNIV = coset []"
+  by simp
+
+lemma insert_code [code]:
+  "insert x (set xs) = set (List.insert x xs)"
+  "insert x (coset xs) = coset (removeAll x xs)"
+  by simp_all
+
+lemma remove_code [code]:
+  "Set.remove x (set xs) = set (removeAll x xs)"
+  "Set.remove x (coset xs) = coset (List.insert x xs)"
+  by (simp_all add: remove_def Compl_insert)
+
+declare image_set [code]
+
+declare project_set [code]
+
+lemma Ball_set [code]:
+  "Ball (set xs) P \<longleftrightarrow> list_all P xs"
+  by (simp add: list_all_iff)
+
+lemma Bex_set [code]:
+  "Bex (set xs) P \<longleftrightarrow> list_ex P xs"
+  by (simp add: list_ex_iff)
+
+lemma card_set [code]:
+  "card (set xs) = length (remdups xs)"
+proof -
+  have "card (set (remdups xs)) = length (remdups xs)"
+    by (rule distinct_card) simp
+  then show ?thesis by simp
+qed
+
+
+subsection {* Derived operations *}
+
+declare subset_eq [code]
+
+declare subset [code]
+
+
+subsection {* Functorial operations *}
+
+lemma inter_code [code]:
+  "A \<inter> set xs = set (List.filter (\<lambda>x. x \<in> A) xs)"
+  "A \<inter> coset xs = foldr Set.remove xs A"
+  by (simp add: inter project_def) (simp add: Diff_eq [symmetric] minus_set_foldr)
+
+lemma subtract_code [code]:
+  "A - set xs = foldr Set.remove xs A"
+  "A - coset xs = set (List.filter (\<lambda>x. x \<in> A) xs)"
+  by (auto simp add: minus_set_foldr)
+
+lemma union_code [code]:
+  "set xs \<union> A = foldr insert xs A"
+  "coset xs \<union> A = coset (List.filter (\<lambda>x. x \<notin> A) xs)"
+  by (auto simp add: union_set_foldr)
+
+definition Inf :: "'a::complete_lattice set \<Rightarrow> 'a" where
+  [simp]: "Inf = Complete_Lattices.Inf"
+
+hide_const (open) Inf
+
+lemma [code_unfold_post]:
+  "Inf = More_Set.Inf"
+  by simp
+
+definition Sup :: "'a::complete_lattice set \<Rightarrow> 'a" where
+  [simp]: "Sup = Complete_Lattices.Sup"
+
+hide_const (open) Sup
+
+lemma [code_unfold_post]:
+  "Sup = More_Set.Sup"
+  by simp
+
+lemma Inf_code [code]:
+  "More_Set.Inf (set xs) = foldr inf xs top"
+  "More_Set.Inf (coset []) = bot"
+  by (simp_all add: Inf_set_foldr)
+
+lemma Sup_sup [code]:
+  "More_Set.Sup (set xs) = foldr sup xs bot"
+  "More_Set.Sup (coset []) = top"
+  by (simp_all add: Sup_set_foldr)
+
+lemma INF_code [code]:
+  "INFI (set xs) f = foldr (inf \<circ> f) xs top"
+  by (simp add: INF_def Inf_set_foldr image_set foldr_map del: set_map)
+
+lemma SUP_sup [code]:
+  "SUPR (set xs) f = foldr (sup \<circ> f) xs bot"
+  by (simp add: SUP_def Sup_set_foldr image_set foldr_map del: set_map)
+
+hide_const (open) coset
+
+
+subsection {* Operations on relations *}
+
+text {* Initially contributed by Tjark Weber. *}
+
+declare Domain_fst [code]
+
+declare Range_snd [code]
+
+declare trans_join [code]
+
+declare irrefl_distinct [code]
+
+declare trancl_set_ntrancl [code]
+
+declare acyclic_irrefl [code]
+
+declare product_code [code]
+
+declare Id_on_set [code]
+
+declare set_rel_comp [code]
+
+declare wf_set [code]
+
+end
+
--- a/src/HOL/Quotient_Examples/DList.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/Quotient_Examples/DList.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -8,7 +8,7 @@
 header {* Lists with distinct elements *}
 
 theory DList
-imports "~~/src/HOL/Library/Quotient_List" "~~/src/HOL/Library/More_List"
+imports "~~/src/HOL/Library/Quotient_List"
 begin
 
 text {* Some facts about lists *}
--- a/src/HOL/Quotient_Examples/FSet.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/Quotient_Examples/FSet.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -6,7 +6,7 @@
 *)
 
 theory FSet
-imports "~~/src/HOL/Library/Quotient_List" "~~/src/HOL/Library/More_List"
+imports "~~/src/HOL/Library/Quotient_List"
 begin
 
 text {* 
--- a/src/HOL/Quotient_Examples/Quotient_Cset.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/Quotient_Examples/Quotient_Cset.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -5,7 +5,7 @@
 header {* A variant of theory Cset from Library, defined as a quotient *}
 
 theory Quotient_Cset
-imports "~~/src/HOL/Library/More_Set" "~~/src/HOL/Library/More_List" "~~/src/HOL/Library/Quotient_Syntax"
+imports Main "~~/src/HOL/Library/Quotient_Syntax"
 begin
 
 subsection {* Lifting *}
--- a/src/HOL/ex/Quickcheck_Examples.thy	Mon Dec 26 22:17:10 2011 +0100
+++ b/src/HOL/ex/Quickcheck_Examples.thy	Mon Dec 26 22:17:10 2011 +0100
@@ -6,7 +6,7 @@
 header {* Examples for the 'quickcheck' command *}
 
 theory Quickcheck_Examples
-imports Complex_Main "~~/src/HOL/Library/Dlist" "~~/src/HOL/Library/More_Set"
+imports Complex_Main "~~/src/HOL/Library/Dlist"
 begin
 
 text {*