The factorial function, "fact", now has type "nat => 'a"
authorpaulson <lp15@cam.ac.uk>
Mon, 16 Mar 2015 15:30:00 +0000
changeset 59730 b7c394c7a619
parent 59669 de7792ea4090
child 59731 7fccaeec22f0
The factorial function, "fact", now has type "nat => 'a"
NEWS
src/HOL/Binomial.thy
src/HOL/Decision_Procs/Approximation.thy
src/HOL/Library/Formal_Power_Series.thy
src/HOL/Library/Permutations.thy
src/HOL/MacLaurin.thy
src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy
src/HOL/NSA/HTranscendental.thy
src/HOL/NSA/NSComplex.thy
src/HOL/Number_Theory/Primes.thy
src/HOL/Number_Theory/Residues.thy
src/HOL/Probability/Distributions.thy
src/HOL/Probability/Probability_Mass_Function.thy
src/HOL/Proofs/Extraction/Euclid.thy
src/HOL/Proofs/Extraction/Util.thy
src/HOL/Taylor.thy
src/HOL/Transcendental.thy
src/HOL/ex/Birthday_Paradox.thy
--- a/NEWS	Tue Mar 10 16:12:35 2015 +0000
+++ b/NEWS	Mon Mar 16 15:30:00 2015 +0000
@@ -80,6 +80,12 @@
   type, so in particular on "real" and "complex" uniformly.
   Minor INCOMPATIBILITY: type constraints may be needed.
 
+* The factorial function, "fact", now has type "nat => 'a" (of a sort that admits
+  numeric types including nat, int, real and complex. INCOMPATIBILITY:
+  an expression such as "fact 3 = 6" may require a type constraint, and the combination
+  "real (fact k)" is likely to be unsatisfactory. If a type conversion is still necessary,
+  then use "of_nat (fact k)".
+
 * removed functions "natfloor" and "natceiling",
   use "nat o floor" and "nat o ceiling" instead.
   A few of the lemmas have been retained and adapted: in their names
--- a/src/HOL/Binomial.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Binomial.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -11,182 +11,99 @@
 imports Main
 begin
 
-class fact =
-  fixes fact :: "'a \<Rightarrow> 'a"
+subsection {* Factorial *}
+
+fun fact :: "nat \<Rightarrow> ('a::{semiring_char_0,semiring_no_zero_divisors})"
+  where "fact 0 = 1" | "fact (Suc n) = of_nat (Suc n) * fact n"
 
-instantiation nat :: fact
-begin
+lemmas fact_Suc = fact.simps(2)
+
+lemma fact_1 [simp]: "fact 1 = 1"
+  by simp
+
+lemma fact_Suc_0 [simp]: "fact (Suc 0) = Suc 0"
+  by simp
 
-fun
-  fact_nat :: "nat \<Rightarrow> nat"
-where
-  fact_0_nat: "fact_nat 0 = Suc 0"
-| fact_Suc: "fact_nat (Suc x) = Suc x * fact x"
+lemma of_nat_fact [simp]: "of_nat (fact n) = fact n"
+  by (induct n) (auto simp add: algebra_simps of_nat_mult)
+ 
+lemma fact_reduce: "n > 0 \<Longrightarrow> fact n = of_nat n * fact (n - 1)"
+  by (cases n) auto
 
-instance ..
+lemma fact_nonzero [simp]: "fact n \<noteq> 0"
+  apply (induct n)
+  apply auto
+  using of_nat_eq_0_iff by fastforce
+
+lemma fact_mono_nat: "m \<le> n \<Longrightarrow> fact m \<le> (fact n :: nat)"
+  by (induct n) (auto simp: le_Suc_eq)
 
-end
-
-(* definitions for the integers *)
-
-instantiation int :: fact
-
+context
+  fixes XXX :: "'a :: {semiring_char_0,linordered_semidom,semiring_no_zero_divisors}"
 begin
+  
+  lemma fact_mono: "m \<le> n \<Longrightarrow> fact m \<le> (fact n :: 'a)"
+    by (metis of_nat_fact of_nat_le_iff fact_mono_nat)
+  
+  lemma fact_ge_1 [simp]: "fact n \<ge> (1 :: 'a)"
+    by (metis le0 fact.simps(1) fact_mono)
+  
+  lemma fact_gt_zero [simp]: "fact n > (0 :: 'a)"
+    using fact_ge_1 less_le_trans zero_less_one by blast
+  
+  lemma fact_ge_zero [simp]: "fact n \<ge> (0 :: 'a)"
+    by (simp add: less_imp_le)
 
-definition
-  fact_int :: "int \<Rightarrow> int"
-where
-  "fact_int x = (if x >= 0 then int (fact (nat x)) else 0)"
-
-instance proof qed
+  lemma fact_not_neg [simp]: "~ (fact n < (0 :: 'a))"
+    by (simp add: not_less_iff_gr_or_eq)
+    
+  lemma fact_le_power:
+      "fact n \<le> (of_nat (n^n) ::'a)"
+  proof (induct n)
+    case (Suc n)
+    then have *: "fact n \<le> (of_nat (Suc n ^ n) ::'a)"
+      by (rule order_trans) (simp add: power_mono)
+    have "fact (Suc n) = (of_nat (Suc n) * fact n ::'a)"
+      by (simp add: algebra_simps)
+    also have "... \<le> (of_nat (Suc n) * of_nat (Suc n ^ n) ::'a)"
+      by (simp add: "*" ordered_comm_semiring_class.comm_mult_left_mono)
+    also have "... \<le> (of_nat (Suc n ^ Suc n) ::'a)"
+      by (metis of_nat_mult order_refl power_Suc)
+    finally show ?case .
+  qed simp
 
 end
 
-
-subsection {* Set up Transfer *}
-
-lemma transfer_nat_int_factorial:
-  "(x::int) >= 0 \<Longrightarrow> fact (nat x) = nat (fact x)"
-  unfolding fact_int_def
-  by auto
-
-
-lemma transfer_nat_int_factorial_closure:
-  "x >= (0::int) \<Longrightarrow> fact x >= 0"
-  by (auto simp add: fact_int_def)
-
-declare transfer_morphism_nat_int[transfer add return:
-    transfer_nat_int_factorial transfer_nat_int_factorial_closure]
-
-lemma transfer_int_nat_factorial:
-  "fact (int x) = int (fact x)"
-  unfolding fact_int_def by auto
-
-lemma transfer_int_nat_factorial_closure:
-  "is_nat x \<Longrightarrow> fact x >= 0"
-  by (auto simp add: fact_int_def)
-
-declare transfer_morphism_int_nat[transfer add return:
-    transfer_int_nat_factorial transfer_int_nat_factorial_closure]
-
-
-subsection {* Factorial *}
-
-lemma fact_0_int [simp]: "fact (0::int) = 1"
-  by (simp add: fact_int_def)
+text{*Note that @{term "fact 0 = fact 1"}*}
+lemma fact_less_mono_nat: "\<lbrakk>0 < m; m < n\<rbrakk> \<Longrightarrow> fact m < (fact n :: nat)"
+  by (induct n) (auto simp: less_Suc_eq)
 
-lemma fact_1_nat [simp]: "fact (1::nat) = 1"
-  by simp
-
-lemma fact_Suc_0_nat [simp]: "fact (Suc 0) = Suc 0"
-  by simp
-
-lemma fact_1_int [simp]: "fact (1::int) = 1"
-  by (simp add: fact_int_def)
-
-lemma fact_plus_one_nat: "fact ((n::nat) + 1) = (n + 1) * fact n"
-  by simp
-
-lemma fact_plus_one_int:
-  assumes "n >= 0"
-  shows "fact ((n::int) + 1) = (n + 1) * fact n"
-  using assms unfolding fact_int_def
-  by (simp add: nat_add_distrib algebra_simps int_mult)
+lemma fact_less_mono:
+  fixes XXX :: "'a :: {semiring_char_0,linordered_semidom,semiring_no_zero_divisors}"
+  shows "\<lbrakk>0 < m; m < n\<rbrakk> \<Longrightarrow> fact m < (fact n :: 'a)"
+  by (metis of_nat_fact of_nat_less_iff fact_less_mono_nat)
 
-lemma fact_reduce_nat: "(n::nat) > 0 \<Longrightarrow> fact n = n * fact (n - 1)"
-  apply (subgoal_tac "n = Suc (n - 1)")
-  apply (erule ssubst)
-  apply (subst fact_Suc)
-  apply simp_all
-  done
-
-lemma fact_reduce_int: "(n::int) > 0 \<Longrightarrow> fact n = n * fact (n - 1)"
-  apply (subgoal_tac "n = (n - 1) + 1")
-  apply (erule ssubst)
-  apply (subst fact_plus_one_int)
-  apply simp_all
-  done
-
-lemma fact_nonzero_nat [simp]: "fact (n::nat) \<noteq> 0"
-  apply (induct n)
-  apply (auto simp add: fact_plus_one_nat)
-  done
+lemma fact_ge_Suc_0_nat [simp]: "fact n \<ge> Suc 0"
+  by (metis One_nat_def fact_ge_1)
 
-lemma fact_nonzero_int [simp]: "n >= 0 \<Longrightarrow> fact (n::int) ~= 0"
-  by (simp add: fact_int_def)
-
-lemma fact_gt_zero_nat [simp]: "fact (n :: nat) > 0"
-  by (insert fact_nonzero_nat [of n], arith)
-
-lemma fact_gt_zero_int [simp]: "n >= 0 \<Longrightarrow> fact (n :: int) > 0"
-  by (auto simp add: fact_int_def)
-
-lemma fact_ge_one_nat [simp]: "fact (n :: nat) >= 1"
-  by (insert fact_nonzero_nat [of n], arith)
-
-lemma fact_ge_Suc_0_nat [simp]: "fact (n :: nat) >= Suc 0"
-  by (insert fact_nonzero_nat [of n], arith)
+lemma dvd_fact: 
+  shows "1 \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> m dvd fact n"
+  by (induct n) (auto simp: dvdI le_Suc_eq)
 
-lemma fact_ge_one_int [simp]: "n >= 0 \<Longrightarrow> fact (n :: int) >= 1"
-  apply (auto simp add: fact_int_def)
-  apply (subgoal_tac "1 = int 1")
-  apply (erule ssubst)
-  apply (subst zle_int)
-  apply auto
-  done
-
-lemma dvd_fact_nat [rule_format]: "1 <= m \<longrightarrow> m <= n \<longrightarrow> m dvd fact (n::nat)"
-  apply (induct n)
-  apply force
-  apply (auto simp only: fact_Suc)
-  apply (subgoal_tac "m = Suc n")
-  apply (erule ssubst)
-  apply (rule dvd_triv_left)
-  apply auto
-  done
+lemma fact_altdef_nat: "fact n = \<Prod>{1..n}"
+  by (induct n) (auto simp: atLeastAtMostSuc_conv)
 
-lemma dvd_fact_int [rule_format]: "1 <= m \<longrightarrow> m <= n \<longrightarrow> m dvd fact (n::int)"
-  apply (case_tac "1 <= n")
-  apply (induct n rule: int_ge_induct)
-  apply (auto simp add: fact_plus_one_int)
-  apply (subgoal_tac "m = i + 1")
-  apply auto
-  done
-
-lemma interval_plus_one_nat: "(i::nat) <= j + 1 \<Longrightarrow>
-  {i..j+1} = {i..j} Un {j+1}"
-  by auto
-
-lemma interval_Suc: "i <= Suc j \<Longrightarrow> {i..Suc j} = {i..j} Un {Suc j}"
-  by auto
-
-lemma interval_plus_one_int: "(i::int) <= j + 1 \<Longrightarrow> {i..j+1} = {i..j} Un {j+1}"
-  by auto
+lemma fact_altdef: "fact n = setprod of_nat {1..n}"
+  by (induct n) (auto simp: atLeastAtMostSuc_conv)
 
-lemma fact_altdef_nat: "fact (n::nat) = (PROD i:{1..n}. i)"
-  apply (induct n)
-  apply force
-  apply (subst fact_Suc)
-  apply (subst interval_Suc)
-  apply auto
-done
+lemma fact_dvd: "n \<le> m \<Longrightarrow> fact n dvd (fact m :: 'a :: {semiring_div,linordered_semidom})"
+  by (induct m) (auto simp: le_Suc_eq)
 
-lemma fact_altdef_int: "n >= 0 \<Longrightarrow> fact (n::int) = (PROD i:{1..n}. i)"
-  apply (induct n rule: int_ge_induct)
-  apply force
-  apply (subst fact_plus_one_int, assumption)
-  apply (subst interval_plus_one_int)
-  apply auto
-done
-
-lemma fact_dvd: "n \<le> m \<Longrightarrow> fact n dvd fact (m::nat)"
-  by (auto simp add: fact_altdef_nat intro!: setprod_dvd_setprod_subset)
-
-lemma fact_mod: "m \<le> (n::nat) \<Longrightarrow> fact n mod fact m = 0"
-  by (auto simp add: dvd_imp_mod_0 fact_dvd)
+lemma fact_mod: "m \<le> n \<Longrightarrow> fact n mod (fact m :: 'a :: {semiring_div,linordered_semidom}) = 0"
+  by (auto simp add: fact_dvd)
 
 lemma fact_div_fact:
-  assumes "m \<ge> (n :: nat)"
+  assumes "m \<ge> n"
   shows "(fact m) div (fact n) = \<Prod>{n + 1..m}"
 proof -
   obtain d where "d = m - n" by auto
@@ -202,107 +119,17 @@
     also from Suc.hyps have "... = Suc (n + d') * \<Prod>{n + 1..n + d'}"
       unfolding div_mult1_eq[of _ "fact (n + d')"] by (simp add: fact_mod)
     also have "... = \<Prod>{n + 1..n + Suc d'}"
-      by (simp add: atLeastAtMostSuc_conv setprod.insert)
+      by (simp add: atLeastAtMostSuc_conv)
     finally show ?case .
   qed
   from this `m = n + d` show ?thesis by simp
 qed
 
-lemma fact_mono_nat: "(m::nat) \<le> n \<Longrightarrow> fact m \<le> fact n"
-apply (drule le_imp_less_or_eq)
-apply (auto dest!: less_imp_Suc_add)
-apply (induct_tac k, auto)
-done
-
-lemma fact_neg_int [simp]: "m < (0::int) \<Longrightarrow> fact m = 0"
-  unfolding fact_int_def by auto
-
-lemma fact_ge_zero_int [simp]: "fact m >= (0::int)"
-  apply (case_tac "m >= 0")
-  apply auto
-  apply (frule fact_gt_zero_int)
-  apply arith
-done
-
-lemma fact_mono_int_aux [rule_format]: "k >= (0::int) \<Longrightarrow>
-    fact (m + k) >= fact m"
-  apply (case_tac "m < 0")
-  apply auto
-  apply (induct k rule: int_ge_induct)
-  apply auto
-  apply (subst add.assoc [symmetric])
-  apply (subst fact_plus_one_int)
-  apply auto
-  apply (erule order_trans)
-  apply (subst mult_le_cancel_right1)
-  apply (subgoal_tac "fact (m + i) >= 0")
-  apply arith
-  apply auto
-done
-
-lemma fact_mono_int: "(m::int) <= n \<Longrightarrow> fact m <= fact n"
-  apply (insert fact_mono_int_aux [of "n - m" "m"])
-  apply auto
-done
-
-text{*Note that @{term "fact 0 = fact 1"}*}
-lemma fact_less_mono_nat: "[| (0::nat) < m; m < n |] ==> fact m < fact n"
-apply (drule_tac m = m in less_imp_Suc_add, auto)
-apply (induct_tac k, auto)
-done
-
-lemma fact_less_mono_int_aux: "k >= 0 \<Longrightarrow> (0::int) < m \<Longrightarrow>
-    fact m < fact ((m + 1) + k)"
-  apply (induct k rule: int_ge_induct)
-  apply (simp add: fact_plus_one_int)
-  apply (subst (2) fact_reduce_int)
-  apply (auto simp add: ac_simps)
-  apply (erule order_less_le_trans)
-  apply auto
-  done
-
-lemma fact_less_mono_int: "(0::int) < m \<Longrightarrow> m < n \<Longrightarrow> fact m < fact n"
-  apply (insert fact_less_mono_int_aux [of "n - (m + 1)" "m"])
-  apply auto
-done
-
-lemma fact_num_eq_if_nat: "fact (m::nat) =
-  (if m=0 then 1 else m * fact (m - 1))"
+lemma fact_num_eq_if: 
+    "fact m = (if m=0 then 1 else of_nat m * fact (m - 1))"
 by (cases m) auto
 
-lemma fact_add_num_eq_if_nat:
-  "fact ((m::nat) + n) = (if m + n = 0 then 1 else (m + n) * fact (m + n - 1))"
-by (cases "m + n") auto
-
-lemma fact_add_num_eq_if2_nat:
-  "fact ((m::nat) + n) =
-    (if m = 0 then fact n else (m + n) * fact ((m - 1) + n))"
-by (cases m) auto
-
-lemma fact_le_power: "fact n \<le> n^n"
-proof (induct n)
-  case (Suc n)
-  then have "fact n \<le> Suc n ^ n" by (rule le_trans) (simp add: power_mono)
-  then show ?case by (simp add: add_le_mono)
-qed simp
-
-subsection {* @{term fact} and @{term of_nat} *}
-
-lemma of_nat_fact_not_zero [simp]: "of_nat (fact n) \<noteq> (0::'a::semiring_char_0)"
-by auto
-
-lemma of_nat_fact_gt_zero [simp]: "(0::'a::{linordered_semidom}) < of_nat(fact n)" by auto
-
-lemma of_nat_fact_ge_zero [simp]: "(0::'a::linordered_semidom) \<le> of_nat(fact n)"
-by simp
-
-lemma inv_of_nat_fact_gt_zero [simp]: "(0::'a::linordered_field) < inverse (of_nat (fact n))"
-by (auto simp add: positive_imp_inverse_positive)
-
-lemma inv_of_nat_fact_ge_zero [simp]: "(0::'a::linordered_field) \<le> inverse (of_nat (fact n))"
-by (auto intro: order_less_imp_le)
-
-lemma fact_eq_rev_setprod_nat: "fact (k::nat) = (\<Prod>i<k. k - i)"
+lemma fact_eq_rev_setprod_nat: "fact k = (\<Prod>i<k. k - i)"
   unfolding fact_altdef_nat
   by (rule setprod.reindex_bij_witness[where i="\<lambda>i. k - i" and j="\<lambda>i. k - i"]) auto
 
@@ -317,7 +144,7 @@
 
 lemma fact_numeral:  --{*Evaluation for specific numerals*}
   "fact (numeral k) = (numeral k) * (fact (pred_numeral k))"
-  by (simp add: numeral_eq_Suc)
+  by (metis fact.simps(2) numeral_eq_Suc of_nat_numeral)
 
 
 text {* This development is based on the work of Andy Gordon and
@@ -532,10 +359,11 @@
 
 lemma binomial_fact:
   assumes kn: "k \<le> n"
-  shows "(of_nat (n choose k) :: 'a::{field,ring_char_0}) =
-    of_nat (fact n) / (of_nat (fact k) * of_nat (fact (n - k)))"
+  shows "(of_nat (n choose k) :: 'a::field_char_0) =
+         (fact n) / (fact k * fact(n - k))"
   using binomial_fact_lemma[OF kn]
-  by (simp add: field_simps of_nat_mult [symmetric])
+  apply (simp add: field_simps)
+  by (metis mult.commute of_nat_fact of_nat_mult)
 
 lemma choose_row_sum: "(\<Sum>k=0..n. n choose k) = 2^n"
   using binomial [of 1 "1" n]
@@ -626,8 +454,8 @@
     done
 qed
 
-lemma pochhammer_fact: "of_nat (fact n) = pochhammer 1 n"
-  unfolding fact_altdef_nat
+lemma pochhammer_fact: "fact n = pochhammer 1 n"
+  unfolding fact_altdef
   apply (cases n)
    apply (simp_all add: of_nat_setprod pochhammer_Suc_setprod)
   apply (rule setprod.reindex_cong [where l = Suc])
@@ -711,7 +539,7 @@
   by simp
 
 lemma pochhammer_same: "pochhammer (- of_nat n) n =
-    ((- 1) ^ n :: 'a::comm_ring_1) * of_nat (fact n)"
+    ((- 1) ^ n :: 'a::{semiring_char_0,comm_ring_1,semiring_no_zero_divisors}) * (fact n)"
   unfolding pochhammer_minus[OF le_refl[of n]]
   by (simp add: of_nat_diff pochhammer_fact)
 
@@ -720,7 +548,7 @@
 
 definition gbinomial :: "'a::field_char_0 \<Rightarrow> nat \<Rightarrow> 'a" (infixl "gchoose" 65)
   where "a gchoose n =
-    (if n = 0 then 1 else (setprod (\<lambda>i. a - of_nat i) {0 .. n - 1}) / of_nat (fact n))"
+    (if n = 0 then 1 else (setprod (\<lambda>i. a - of_nat i) {0 .. n - 1}) / (fact n))"
 
 lemma gbinomial_0 [simp]: "a gchoose 0 = 1" "0 gchoose (Suc n) = 0"
   apply (simp_all add: gbinomial_def)
@@ -729,7 +557,7 @@
   apply simp
   done
 
-lemma gbinomial_pochhammer: "a gchoose n = (- 1) ^ n * pochhammer (- a) n / of_nat (fact n)"
+lemma gbinomial_pochhammer: "a gchoose n = (- 1) ^ n * pochhammer (- a) n / (fact n)"
 proof (cases "n = 0")
   case True
   then show ?thesis by simp
@@ -743,7 +571,8 @@
       eq setprod.distrib[symmetric])
 qed
 
-lemma binomial_gbinomial: "of_nat (n choose k) = of_nat n gchoose k"
+lemma binomial_gbinomial: 
+    "of_nat (n choose k) = (of_nat n gchoose k :: 'a::field_char_0)"
 proof -
   { assume kn: "k > n"
     then have ?thesis
@@ -769,10 +598,10 @@
     have ?thesis using kn
       apply (simp add: binomial_fact[OF kn, where ?'a = 'a]
         gbinomial_pochhammer field_simps pochhammer_Suc_setprod)
-      apply (simp add: pochhammer_Suc_setprod fact_altdef_nat h
+      apply (simp add: pochhammer_Suc_setprod fact_altdef h 
         of_nat_setprod setprod.distrib[symmetric] eq' del: One_nat_def power_Suc)
       unfolding setprod.union_disjoint[OF th0, unfolded eq3, of "of_nat:: nat \<Rightarrow> 'a"] eq[unfolded h]
-      unfolding mult.assoc[symmetric]
+      unfolding mult.assoc
       unfolding setprod.distrib[symmetric]
       apply simp
       apply (intro setprod.reindex_bij_witness[where i="op - n" and j="op - n"])
@@ -791,40 +620,46 @@
   by (simp add: gbinomial_def)
 
 lemma gbinomial_mult_1:
-  "a * (a gchoose n) =
+  fixes a :: "'a :: field_char_0"
+  shows "a * (a gchoose n) =
     of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))"  (is "?l = ?r")
 proof -
-  have "?r = ((- 1) ^n * pochhammer (- a) n / of_nat (fact n)) * (of_nat n - (- a + of_nat n))"
+  have "?r = ((- 1) ^n * pochhammer (- a) n / (fact n)) * (of_nat n - (- a + of_nat n))"
     unfolding gbinomial_pochhammer
-      pochhammer_Suc fact_Suc of_nat_mult right_diff_distrib power_Suc
-    by (simp add:  field_simps del: of_nat_Suc)
+      pochhammer_Suc of_nat_mult right_diff_distrib power_Suc
+    apply (simp del: of_nat_Suc fact.simps)
+    apply (auto simp add: field_simps simp del: of_nat_Suc)
+    done
   also have "\<dots> = ?l" unfolding gbinomial_pochhammer
     by (simp add: field_simps)
   finally show ?thesis ..
 qed
 
 lemma gbinomial_mult_1':
-    "(a gchoose n) * a = of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))"
+  fixes a :: "'a :: field_char_0"
+  shows "(a gchoose n) * a = of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))"
   by (simp add: mult.commute gbinomial_mult_1)
 
 lemma gbinomial_Suc:
-    "a gchoose (Suc k) = (setprod (\<lambda>i. a - of_nat i) {0 .. k}) / of_nat (fact (Suc k))"
+    "a gchoose (Suc k) = (setprod (\<lambda>i. a - of_nat i) {0 .. k}) / (fact (Suc k))"
   by (simp add: gbinomial_def)
 
 lemma gbinomial_mult_fact:
-  "(of_nat (fact (Suc k)) :: 'a) * ((a::'a::field_char_0) gchoose (Suc k)) =
+  fixes a :: "'a::field_char_0"
+  shows
+   "fact (Suc k) * (a gchoose (Suc k)) =
     (setprod (\<lambda>i. a - of_nat i) {0 .. k})"
-  by (simp_all add: gbinomial_Suc field_simps del: fact_Suc)
+  by (simp_all add: gbinomial_Suc field_simps del: fact.simps)
 
 lemma gbinomial_mult_fact':
-  "((a::'a::field_char_0) gchoose (Suc k)) * (of_nat (fact (Suc k)) :: 'a) =
-    (setprod (\<lambda>i. a - of_nat i) {0 .. k})"
+  fixes a :: "'a::field_char_0"
+  shows "(a gchoose (Suc k)) * fact (Suc k) = (setprod (\<lambda>i. a - of_nat i) {0 .. k})"
   using gbinomial_mult_fact[of k a]
   by (subst mult.commute)
 
-
 lemma gbinomial_Suc_Suc:
-  "((a::'a::field_char_0) + 1) gchoose (Suc k) = a gchoose k + (a gchoose (Suc k))"
+  fixes a :: "'a :: field_char_0"
+  shows "(a + 1) gchoose (Suc k) = a gchoose k + (a gchoose (Suc k))"
 proof (cases k)
   case 0
   then show ?thesis by simp
@@ -835,31 +670,42 @@
       using Suc
       apply auto
     done
-  have "of_nat (fact (Suc k)) * (a gchoose k + (a gchoose (Suc k))) =
-    ((a gchoose Suc h) * of_nat (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0\<Colon>nat..Suc h}. a - of_nat i)"
-    apply (simp add: Suc field_simps del: fact_Suc)
+  have "fact (Suc k) * (a gchoose k + (a gchoose (Suc k))) =
+        (a gchoose Suc h) * (fact (Suc (Suc h))) +
+        (a gchoose Suc (Suc h)) * (fact (Suc (Suc h)))"
+    by (simp add: Suc field_simps del: fact.simps)
+  also have "... = (a gchoose Suc h) * of_nat (Suc (Suc h) * fact (Suc h)) + 
+                   (\<Prod>i = 0..Suc h. a - of_nat i)"
+    by (metis fact.simps(2) gbinomial_mult_fact' of_nat_fact of_nat_id)
+  also have "... = (fact (Suc h) * (a gchoose Suc h)) * of_nat (Suc (Suc h)) + 
+                   (\<Prod>i = 0..Suc h. a - of_nat i)"
+    by (simp only: fact.simps(2) mult.commute mult.left_commute of_nat_fact of_nat_id of_nat_mult)
+  also have "... =  of_nat (Suc (Suc h)) * (\<Prod>i = 0..h. a - of_nat i) + 
+                    (\<Prod>i = 0..Suc h. a - of_nat i)"
+    by (metis gbinomial_mult_fact mult.commute)
+  also have "... = (\<Prod>i = 0..Suc h. a - of_nat i) +
+                   (of_nat h * (\<Prod>i = 0..h. a - of_nat i) + 2 * (\<Prod>i = 0..h. a - of_nat i))"
+    by (simp add: field_simps)
+  also have "... = 
+    ((a gchoose Suc h) * (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0\<Colon>nat..Suc h}. a - of_nat i)"
     unfolding gbinomial_mult_fact'
-    apply (subst fact_Suc)
-    unfolding of_nat_mult
-    apply (subst mult.commute)
-    unfolding mult.assoc
-    unfolding gbinomial_mult_fact
-    apply (simp add: field_simps)
-    done
+    by (simp add: comm_semiring_class.distrib field_simps Suc)
   also have "\<dots> = (\<Prod>i\<in>{0..h}. a - of_nat i) * (a + 1)"
     unfolding gbinomial_mult_fact' setprod_nat_ivl_Suc
     by (simp add: field_simps Suc)
   also have "\<dots> = (\<Prod>i\<in>{0..k}. (a + 1) - of_nat i)"
     using eq0
     by (simp add: Suc setprod_nat_ivl_1_Suc)
-  also have "\<dots> = of_nat (fact (Suc k)) * ((a + 1) gchoose (Suc k))"
+  also have "\<dots> = (fact (Suc k)) * ((a + 1) gchoose (Suc k))"
     unfolding gbinomial_mult_fact ..
-  finally show ?thesis by (simp del: fact_Suc)
+  finally show ?thesis
+    by (metis fact_nonzero mult_cancel_left) 
 qed
 
 lemma gbinomial_reduce_nat:
-  "0 < k \<Longrightarrow> (a::'a::field_char_0) gchoose k = (a - 1) gchoose (k - 1) + ((a - 1) gchoose k)"
-by (metis Suc_pred' diff_add_cancel gbinomial_Suc_Suc)
+  fixes a :: "'a :: field_char_0"
+  shows "0 < k \<Longrightarrow> a gchoose k = (a - 1) gchoose (k - 1) + ((a - 1) gchoose k)"
+  by (metis Suc_pred' diff_add_cancel gbinomial_Suc_Suc)
 
 
 lemma binomial_symmetric:
@@ -947,19 +793,16 @@
     n choose k = fact n div (fact k * fact (n - k))"
  by (subst binomial_fact_lemma [symmetric]) auto
 
-lemma choose_dvd_nat: "(k::nat) \<le> n \<Longrightarrow> fact k * fact (n - k) dvd fact n"
-by (metis binomial_fact_lemma dvd_def)
-
-lemma choose_dvd_int:
-  assumes "(0::int) <= k" and "k <= n"
-  shows "fact k * fact (n - k) dvd fact n"
-  apply (subst tsub_eq [symmetric], rule assms)
-  apply (rule choose_dvd_nat [transferred])
-  using assms apply auto
+lemma choose_dvd: "k \<le> n \<Longrightarrow> fact k * fact (n - k) dvd (fact n :: 'a :: {semiring_div,linordered_semidom})"
+  unfolding dvd_def
+  apply (rule exI [where x="of_nat (n choose k)"])
+  using binomial_fact_lemma [of k n, THEN arg_cong [where f = of_nat and 'b='a]]
+  apply (auto simp: of_nat_mult)
   done
 
-lemma fact_fact_dvd_fact: fixes k::nat shows "fact k * fact n dvd fact (n + k)"
-by (metis add.commute add_diff_cancel_left' choose_dvd_nat le_add2)
+lemma fact_fact_dvd_fact: 
+    "fact k * fact n dvd (fact (k+n) :: 'a :: {semiring_div,linordered_semidom})"
+by (metis add.commute add_diff_cancel_left' choose_dvd le_add2)
 
 lemma choose_mult_lemma:
      "((m+r+k) choose (m+k)) * ((m+k) choose k) = ((m+r+k) choose k) * ((m+r) choose m)"
@@ -969,18 +812,17 @@
     by (simp add: assms binomial_altdef_nat)
   also have "... = fact (m+r+k) div (fact r * (fact k * fact m))"
     apply (subst div_mult_div_if_dvd)
-    apply (auto simp: fact_fact_dvd_fact)
+    apply (auto simp: algebra_simps fact_fact_dvd_fact)
     apply (metis add.assoc add.commute fact_fact_dvd_fact)
     done
   also have "... = (fact (m+r+k) * fact (m+r)) div (fact r * (fact k * fact m) * fact (m+r))"
     apply (subst div_mult_div_if_dvd [symmetric])
-    apply (auto simp: fact_fact_dvd_fact)
-    apply (metis dvd_trans dvd.dual_order.refl fact_fact_dvd_fact mult_dvd_mono mult.left_commute)
+    apply (auto simp add: algebra_simps)
+    apply (metis fact_fact_dvd_fact dvd.order.trans nat_mult_dvd_cancel_disj)
     done
   also have "... = (fact (m+r+k) div (fact k * fact (m+r)) * (fact (m+r) div (fact r * fact m)))"
     apply (subst div_mult_div_if_dvd)
-    apply (auto simp: fact_fact_dvd_fact)
-    apply(metis mult.left_commute)
+    apply (auto simp: fact_fact_dvd_fact algebra_simps)
     done
   finally show ?thesis
     by (simp add: binomial_altdef_nat mult.commute)
@@ -1009,7 +851,7 @@
   apply auto
   apply (case_tac "k = Suc n")
   apply auto
-  apply (metis Suc_le_eq fact_nat.cases le_Suc_eq le_eq_less_or_eq)
+  apply (metis Suc_le_eq fact.cases le_Suc_eq le_eq_less_or_eq)
   done
 
 lemma card_UNION:
--- a/src/HOL/Decision_Procs/Approximation.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Decision_Procs/Approximation.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -905,11 +905,11 @@
       float_round_up prec (x * (ub_sin_cos_aux prec n (i + 2) (k * i * (i + 1)) x)))"
 
 lemma cos_aux:
-  shows "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> (\<Sum> i=0..<n. (- 1) ^ i * (1/real (fact (2 * i))) * x ^(2 * i))" (is "?lb")
-  and "(\<Sum> i=0..<n. (- 1) ^ i * (1/real (fact (2 * i))) * x^(2 * i)) \<le> (ub_sin_cos_aux prec n 1 1 (x * x))" (is "?ub")
+  shows "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> (\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i))) * x ^(2 * i))" (is "?lb")
+  and "(\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i))) * x^(2 * i)) \<le> (ub_sin_cos_aux prec n 1 1 (x * x))" (is "?ub")
 proof -
   have "0 \<le> real (x * x)" by auto
-  let "?f n" = "fact (2 * n)"
+  let "?f n" = "fact (2 * n) :: nat"
 
   { fix n
     have F: "\<And>m. ((\<lambda>i. i + 2) ^^ n) m = m + 2 * n" by (induct n) auto
@@ -935,15 +935,15 @@
   hence "0 < x" and "0 < real x" using `0 \<le> real x` by auto
   have "0 < x * x" using `0 < x` by simp
 
-  { fix x n have "(\<Sum> i=0..<n. (- 1) ^ i * (1/real (fact (2 * i))) * x ^ (2 * i))
-    = (\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/(real (fact i)) else 0) * x ^ i)" (is "?sum = ?ifsum")
+  { fix x n have "(\<Sum> i=0..<n. (-1::real) ^ i * (1/(fact (2 * i))) * x ^ (2 * i))
+    = (\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/((fact i)) else 0) * x ^ i)" (is "?sum = ?ifsum")
   proof -
     have "?sum = ?sum + (\<Sum> j = 0 ..< n. 0)" by auto
     also have "\<dots> =
-      (\<Sum> j = 0 ..< n. (- 1) ^ ((2 * j) div 2) / (real (fact (2 * j))) * x ^(2 * j)) + (\<Sum> j = 0 ..< n. 0)" by auto
-    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. if even i then (- 1) ^ (i div 2) / (real (fact i)) * x ^ i else 0)"
+      (\<Sum> j = 0 ..< n. (- 1) ^ ((2 * j) div 2) / ((fact (2 * j))) * x ^(2 * j)) + (\<Sum> j = 0 ..< n. 0)" by auto
+    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. if even i then (- 1) ^ (i div 2) / ((fact i)) * x ^ i else 0)"
       unfolding sum_split_even_odd atLeast0LessThan ..
-    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. (if even i then (- 1) ^ (i div 2) / (real (fact i)) else 0) * x ^ i)"
+    also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. (if even i then (- 1) ^ (i div 2) / ((fact i)) else 0) * x ^ i)"
       by (rule setsum.cong) auto
     finally show ?thesis by assumption
   qed } note morph_to_if_power = this
@@ -952,8 +952,8 @@
   { fix n :: nat assume "0 < n"
     hence "0 < 2 * n" by auto
     obtain t where "0 < t" and "t < real x" and
-      cos_eq: "cos x = (\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/(real (fact i)) else 0) * (real x) ^ i)
-      + (cos (t + 1/2 * (2 * n) * pi) / real (fact (2*n))) * (real x)^(2*n)"
+      cos_eq: "cos x = (\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/((fact i)) else 0) * (real x) ^ i)
+      + (cos (t + 1/2 * (2 * n) * pi) / (fact (2*n))) * (real x)^(2*n)"
       (is "_ = ?SUM + ?rest / ?fact * ?pow")
       using Maclaurin_cos_expansion2[OF `0 < real x` `0 < 2 * n`]
       unfolding cos_coeff_def atLeast0LessThan by auto
@@ -1020,22 +1020,22 @@
 qed
 
 lemma sin_aux: assumes "0 \<le> real x"
-  shows "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le> (\<Sum> i=0..<n. (- 1) ^ i * (1/real (fact (2 * i + 1))) * x^(2 * i + 1))" (is "?lb")
-  and "(\<Sum> i=0..<n. (- 1) ^ i * (1/real (fact (2 * i + 1))) * x^(2 * i + 1)) \<le> (x * ub_sin_cos_aux prec n 2 1 (x * x))" (is "?ub")
+  shows "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le> (\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i + 1))) * x^(2 * i + 1))" (is "?lb")
+  and "(\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i + 1))) * x^(2 * i + 1)) \<le> (x * ub_sin_cos_aux prec n 2 1 (x * x))" (is "?ub")
 proof -
   have "0 \<le> real (x * x)" by auto
-  let "?f n" = "fact (2 * n + 1)"
+  let "?f n" = "fact (2 * n + 1) :: nat"
 
   { fix n
     have F: "\<And>m. ((\<lambda>i. i + 2) ^^ n) m = m + 2 * n" by (induct n) auto
     have "?f (Suc n) = ?f n * ((\<lambda>i. i + 2) ^^ n) 2 * (((\<lambda>i. i + 2) ^^ n) 2 + 1)"
-      unfolding F by auto } note f_eq = this
-
+      unfolding F by auto } 
+  note f_eq = this
   from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0,
     OF `0 \<le> real (x * x)` f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps]
   show "?lb" and "?ub" using `0 \<le> real x`
     unfolding power_add power_one_right mult.assoc[symmetric] setsum_left_distrib[symmetric]
-    unfolding mult.commute[where 'a=real]
+    unfolding mult.commute[where 'a=real] real_fact_nat
     by (auto intro!: mult_left_mono simp add: power_mult power2_eq_square[of "real x"])
 qed
 
@@ -1046,14 +1046,15 @@
   hence "0 < x" and "0 < real x" using `0 \<le> real x` by auto
   have "0 < x * x" using `0 < x` by simp
 
-  { fix x n have "(\<Sum> j = 0 ..< n. (- 1) ^ (((2 * j + 1) - Suc 0) div 2) / (real (fact (2 * j + 1))) * x ^(2 * j + 1))
-    = (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/(real (fact i))) * x ^ i)" (is "?SUM = _")
+  { fix x::real and n 
+    have "(\<Sum>j = 0 ..< n. (- 1) ^ (((2 * j + 1) - Suc 0) div 2) / ((fact (2 * j + 1))) * x ^(2 * j + 1))
+    = (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * x ^ i)" (is "?SUM = _")
     proof -
       have pow: "!!i. x ^ (2 * i + 1) = x * x ^ (2 * i)" by auto
       have "?SUM = (\<Sum> j = 0 ..< n. 0) + ?SUM" by auto
-      also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / (real (fact i)) * x ^ i)"
+      also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / ((fact i)) * x ^ i)"
         unfolding sum_split_even_odd atLeast0LessThan ..
-      also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. (if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / (real (fact i))) * x ^ i)"
+      also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. (if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / ((fact i))) * x ^ i)"
         by (rule setsum.cong) auto
       finally show ?thesis by assumption
     qed } note setsum_morph = this
@@ -1061,8 +1062,8 @@
   { fix n :: nat assume "0 < n"
     hence "0 < 2 * n + 1" by auto
     obtain t where "0 < t" and "t < real x" and
-      sin_eq: "sin x = (\<Sum> i = 0 ..< 2 * n + 1. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/(real (fact i))) * (real x) ^ i)
-      + (sin (t + 1/2 * (2 * n + 1) * pi) / real (fact (2*n + 1))) * (real x)^(2*n + 1)"
+      sin_eq: "sin x = (\<Sum> i = 0 ..< 2 * n + 1. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real x) ^ i)
+      + (sin (t + 1/2 * (2 * n + 1) * pi) / (fact (2*n + 1))) * (real x)^(2*n + 1)"
       (is "_ = ?SUM + ?rest / ?fact * ?pow")
       using Maclaurin_sin_expansion3[OF `0 < 2 * n + 1` `0 < real x`]
       unfolding sin_coeff_def atLeast0LessThan by auto
@@ -1079,7 +1080,7 @@
     {
       assume "even n"
       have "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le>
-            (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/(real (fact i))) * (real x) ^ i)"
+            (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real x) ^ i)"
         using sin_aux[OF `0 \<le> real x`] unfolding setsum_morph[symmetric] by auto
       also have "\<dots> \<le> ?SUM" by auto
       also have "\<dots> \<le> sin x"
@@ -1100,7 +1101,7 @@
           by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le)
         thus ?thesis unfolding sin_eq by auto
       qed
-      also have "\<dots> \<le> (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/(real (fact i))) * (real x) ^ i)"
+      also have "\<dots> \<le> (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real x) ^ i)"
          by auto
       also have "\<dots> \<le> (x * ub_sin_cos_aux prec n 2 1 (x * x))"
         using sin_aux[OF `0 \<le> real x`] unfolding setsum_morph[symmetric] by auto
@@ -1534,18 +1535,19 @@
 proof -
   { fix n
     have F: "\<And> m. ((\<lambda>i. i + 1) ^^ n) m = n + m" by (induct n, auto)
-    have "fact (Suc n) = fact n * ((\<lambda>i. i + 1) ^^ n) 1" unfolding F by auto } note f_eq = this
+    have "fact (Suc n) = fact n * ((\<lambda>i::nat. i + 1) ^^ n) 1" unfolding F by auto 
+  } note f_eq = this
 
   note bounds = horner_bounds_nonpos[where f="fact" and lb="lb_exp_horner prec" and ub="ub_exp_horner prec" and j'=0 and s=1,
     OF assms f_eq lb_exp_horner.simps ub_exp_horner.simps]
 
-  { have "lb_exp_horner prec (get_even n) 1 1 x \<le> (\<Sum>j = 0..<get_even n. 1 / real (fact j) * real x ^ j)"
+  { have "lb_exp_horner prec (get_even n) 1 1 x \<le> (\<Sum>j = 0..<get_even n. 1 / (fact j) * real x ^ j)"
       using bounds(1) by auto
     also have "\<dots> \<le> exp x"
     proof -
-      obtain t where "\<bar>t\<bar> \<le> \<bar>real x\<bar>" and "exp x = (\<Sum>m = 0..<get_even n. real x ^ m / real (fact m)) + exp t / real (fact (get_even n)) * (real x) ^ (get_even n)"
+      obtain t where "\<bar>t\<bar> \<le> \<bar>real x\<bar>" and "exp x = (\<Sum>m = 0..<get_even n. real x ^ m / (fact m)) + exp t / (fact (get_even n)) * (real x) ^ (get_even n)"
         using Maclaurin_exp_le unfolding atLeast0LessThan by blast
-      moreover have "0 \<le> exp t / real (fact (get_even n)) * (real x) ^ (get_even n)"
+      moreover have "0 \<le> exp t / (fact (get_even n)) * (real x) ^ (get_even n)"
         by (auto simp: zero_le_even_power)
       ultimately show ?thesis using get_odd exp_gt_zero by auto
     qed
@@ -1562,11 +1564,11 @@
       show ?thesis by (rule less_imp_le, auto simp add: power_less_zero_eq `real x < 0`)
     qed
 
-    obtain t where "\<bar>t\<bar> \<le> \<bar>real x\<bar>" and "exp x = (\<Sum>m = 0..<get_odd n. (real x) ^ m / real (fact m)) + exp t / real (fact (get_odd n)) * (real x) ^ (get_odd n)"
+    obtain t where "\<bar>t\<bar> \<le> \<bar>real x\<bar>" and "exp x = (\<Sum>m = 0..<get_odd n. (real x) ^ m / (fact m)) + exp t / (fact (get_odd n)) * (real x) ^ (get_odd n)"
       using Maclaurin_exp_le unfolding atLeast0LessThan by blast
-    moreover have "exp t / real (fact (get_odd n)) * (real x) ^ (get_odd n) \<le> 0"
+    moreover have "exp t / (fact (get_odd n)) * (real x) ^ (get_odd n) \<le> 0"
       by (auto intro!: mult_nonneg_nonpos divide_nonpos_pos simp add: x_less_zero)
-    ultimately have "exp x \<le> (\<Sum>j = 0..<get_odd n. 1 / real (fact j) * real x ^ j)"
+    ultimately have "exp x \<le> (\<Sum>j = 0..<get_odd n. 1 / (fact j) * real x ^ j)"
       using get_odd exp_gt_zero by auto
     also have "\<dots> \<le> ub_exp_horner prec (get_odd n) 1 1 x"
       using bounds(2) by auto
@@ -3229,16 +3231,9 @@
   qed
 qed
 
-lemma setprod_fact: "\<Prod> {1..<1 + k} = fact (k :: nat)"
-proof (induct k)
-  case 0
-  show ?case by simp
-next
-  case (Suc k)
-  have "{ 1 ..< Suc (Suc k) } = insert (Suc k) { 1 ..< Suc k }" by auto
-  hence "\<Prod> { 1 ..< Suc (Suc k) } = (Suc k) * \<Prod> { 1 ..< Suc k }" by auto
-  thus ?case using Suc by auto
-qed
+lemma setprod_fact: "real (\<Prod> {1..<1 + k}) = fact (k :: nat)"
+  using fact_altdef_nat Suc_eq_plus1_left atLeastLessThanSuc_atLeastAtMost real_fact_nat 
+  by presburger
 
 lemma approx_tse:
   assumes "bounded_by xs vs"
@@ -3258,10 +3253,11 @@
   obtain n
     where DERIV: "\<forall> m z. m < n \<and> real lx \<le> z \<and> z \<le> real ux \<longrightarrow> DERIV (F m) z :> F (Suc m) z"
     and hyp: "\<And> (t::real). t \<in> {lx .. ux} \<Longrightarrow>
-           (\<Sum> j = 0..<n. inverse (real (fact j)) * F j c * (xs!x - c)^j) +
-             inverse (real (fact n)) * F n t * (xs!x - c)^n
+           (\<Sum> j = 0..<n. inverse(fact j) * F j c * (xs!x - c)^j) +
+             inverse ((fact n)) * F n t * (xs!x - c)^n
              \<in> {l .. u}" (is "\<And> t. _ \<Longrightarrow> ?taylor t \<in> _")
-    unfolding F_def atLeastAtMost_iff[symmetric] setprod_fact by blast
+    unfolding F_def atLeastAtMost_iff[symmetric] setprod_fact
+    by blast
 
   have bnd_xs: "xs ! x \<in> { lx .. ux }"
     using `bounded_by xs vs`[THEN bounded_byE, OF `x < length vs`] bnd_x by auto
@@ -3284,8 +3280,8 @@
       from Taylor.taylor[OF zero_less_Suc, of F, OF F0 DERIV[unfolded Suc] this False]
       obtain t::real where t_bnd: "if xs ! x < c then xs ! x < t \<and> t < c else c < t \<and> t < xs ! x"
         and fl_eq: "interpret_floatarith f (xs[x := xs ! x]) =
-           (\<Sum>m = 0..<Suc n'. F m c / real (fact m) * (xs ! x - c) ^ m) +
-           F (Suc n') t / real (fact (Suc n')) * (xs ! x - c) ^ Suc n'"
+           (\<Sum>m = 0..<Suc n'. F m c / (fact m) * (xs ! x - c) ^ m) +
+           F (Suc n') t / (fact (Suc n')) * (xs ! x - c) ^ Suc n'"
         unfolding atLeast0LessThan by blast
 
       from t_bnd bnd_xs bnd_c have *: "t \<in> {lx .. ux}"
--- a/src/HOL/Library/Formal_Power_Series.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Library/Formal_Power_Series.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -8,6 +8,7 @@
 imports Complex_Main
 begin
 
+lemmas fact_Suc = fact.simps(2)
 
 subsection {* The type of formal power series*}
 
@@ -2866,7 +2867,7 @@
     fix n
     have "?l$n = ?r $ n"
       apply (auto simp add: E_def field_simps power_Suc[symmetric]
-        simp del: fact_Suc of_nat_Suc power_Suc)
+        simp del: fact.simps of_nat_Suc power_Suc)
       apply (simp add: of_nat_mult field_simps)
       done
   }
@@ -2882,11 +2883,11 @@
     by (simp add: fps_deriv_def fps_eq_iff field_simps del: of_nat_Suc)
   {
     fix n
-    have "a$n = a$0 * c ^ n/ (of_nat (fact n))"
+    have "a$n = a$0 * c ^ n/ (fact n)"
       apply (induct n)
       apply simp
       unfolding th
-      using fact_gt_zero_nat
+      using fact_gt_zero
       apply (simp add: field_simps del: of_nat_Suc fact_Suc)
       apply (drule sym)
       apply (simp add: field_simps of_nat_mult)
@@ -2985,33 +2986,6 @@
   apply (simp add: cond_value_iff cond_application_beta setsum.delta' cong del: if_weak_cong)
   done
 
-text{* The generalized binomial theorem as a  consequence of @{thm E_add_mult} *}
-
-lemma gbinomial_theorem:
-  "((a::'a::{field_char_0,field_inverse_zero})+b) ^ n =
-    (\<Sum>k=0..n. of_nat (n choose k) * a^k * b^(n-k))"
-proof -
-  from E_add_mult[of a b]
-  have "(E (a + b)) $ n = (E a * E b)$n" by simp
-  then have "(a + b) ^ n =
-    (\<Sum>i::nat = 0::nat..n. a ^ i * b ^ (n - i)  * (of_nat (fact n) / of_nat (fact i * fact (n - i))))"
-    by (simp add: field_simps fps_mult_nth of_nat_mult[symmetric] setsum_right_distrib)
-  then show ?thesis
-    apply simp
-    apply (rule setsum.cong)
-    apply simp_all
-    apply (frule binomial_fact[where ?'a = 'a, symmetric])
-    apply (simp add: field_simps of_nat_mult)
-    done
-qed
-
-text{* And the nat-form -- also available from Binomial.thy *}
-lemma binomial_theorem: "(a+b) ^ n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
-  using gbinomial_theorem[of "of_nat a" "of_nat b" n]
-  unfolding of_nat_add[symmetric] of_nat_power[symmetric] of_nat_mult[symmetric]
-    of_nat_setsum[symmetric]
-  by simp
-
 
 subsubsection{* Logarithmic series *}
 
@@ -3290,7 +3264,7 @@
           unfolding m1nk
           unfolding m h pochhammer_Suc_setprod
           apply (simp add: field_simps del: fact_Suc)
-          unfolding fact_altdef_nat id_def
+          unfolding fact_altdef id_def
           unfolding of_nat_setprod
           unfolding setprod.distrib[symmetric]
           apply auto
@@ -3823,7 +3797,7 @@
         THEN spec, of "\<lambda>x. x < e"]
       have "eventually (\<lambda>i. inverse (2 ^ i) < e) sequentially"
         apply safe
-        apply (auto simp: eventually_nhds)
+        apply (auto simp: eventually_nhds) --{*slow*}
         done
       then obtain i where "inverse (2 ^ i) < e" by (auto simp: eventually_sequentially)
       have "eventually (\<lambda>x. M i \<le> x) sequentially" by (auto simp: eventually_sequentially)
--- a/src/HOL/Library/Permutations.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Library/Permutations.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -190,7 +190,7 @@
     from insert.hyps Fs have pFs: "card ?pF = fact (n - 1)"
       using `finite F` by auto
     then have "finite ?pF"
-      using fact_gt_zero_nat by (auto intro: card_ge_0_finite)
+      by (auto intro: card_ge_0_finite)
     then have pF'f: "finite ?pF'"
       using H0 `finite F`
       apply (simp only: Collect_split Collect_mem_eq)
@@ -258,7 +258,7 @@
 lemma finite_permutations:
   assumes fS: "finite S"
   shows "finite {p. p permutes S}"
-  using card_permutations[OF refl fS] fact_gt_zero_nat
+  using card_permutations[OF refl fS] 
   by (auto intro: card_ge_0_finite)
 
 
@@ -280,26 +280,6 @@
     by simp
 qed
 
-lemma setsum_permute:
-  assumes "p permutes S"
-  shows "setsum f S = setsum (f \<circ> p) S"
-  using assms by (fact setsum.permute)
-
-lemma setsum_permute_natseg:
-  assumes pS: "p permutes {m .. n}"
-  shows "setsum f {m .. n} = setsum (f \<circ> p) {m .. n}"
-  using setsum_permute [OF pS, of f ] pS by blast
-
-lemma setprod_permute:
-  assumes "p permutes S"
-  shows "setprod f S = setprod (f \<circ> p) S"
-  using assms by (fact setprod.permute)
-
-lemma setprod_permute_natseg:
-  assumes pS: "p permutes {m .. n}"
-  shows "setprod f {m .. n} = setprod (f \<circ> p) {m .. n}"
-  using setprod_permute [OF pS, of f ] pS by blast
-
 
 subsection {* Various combinations of transpositions with 2, 1 and 0 common elements *}
 
--- a/src/HOL/MacLaurin.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/MacLaurin.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -17,47 +17,52 @@
 
 lemma Maclaurin_lemma:
     "0 < h ==>
-     \<exists>B. f h = (\<Sum>m<n. (j m / real (fact m)) * (h^m)) +
-               (B * ((h^n) / real(fact n)))"
-by (rule exI[where x = "(f h - (\<Sum>m<n. (j m / real (fact m)) * h^m)) * real(fact n) / (h^n)"]) simp
+     \<exists>B::real. f h = (\<Sum>m<n. (j m / (fact m)) * (h^m)) +
+               (B * ((h^n) /(fact n)))"
+by (rule exI[where x = "(f h - (\<Sum>m<n. (j m / (fact m)) * h^m)) * (fact n) / (h^n)"]) simp
 
 lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))"
 by arith
 
 lemma fact_diff_Suc [rule_format]:
   "n < Suc m ==> fact (Suc m - n) = (Suc m - n) * fact (m - n)"
-  by (subst fact_reduce_nat, auto)
+  by (subst fact_reduce, auto)
 
 lemma Maclaurin_lemma2:
   fixes B
   assumes DERIV : "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
-    and INIT : "n = Suc k"
-  defines "difg \<equiv> (\<lambda>m t. diff m t - ((\<Sum>p<n - m. diff (m + p) 0 / real (fact p) * t ^ p) +
-    B * (t ^ (n - m) / real (fact (n - m)))))" (is "difg \<equiv> (\<lambda>m t. diff m t - ?difg m t)")
+      and INIT : "n = Suc k"
+  defines "difg \<equiv> 
+      (\<lambda>m t::real. diff m t - 
+         ((\<Sum>p<n - m. diff (m + p) 0 / (fact p) * t ^ p) + B * (t ^ (n - m) / (fact (n - m)))))" 
+        (is "difg \<equiv> (\<lambda>m t. diff m t - ?difg m t)")
   shows "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (difg m) t :> difg (Suc m) t"
 proof (rule allI impI)+
-  fix m t assume INIT2: "m < n & 0 \<le> t & t \<le> h"
+  fix m and t::real
+  assume INIT2: "m < n & 0 \<le> t & t \<le> h"
   have "DERIV (difg m) t :> diff (Suc m) t -
-    ((\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / real (fact x)) +
-     real (n - m) * t ^ (n - Suc m) * B / real (fact (n - m)))" unfolding difg_def
+    ((\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / (fact x)) +
+     real (n - m) * t ^ (n - Suc m) * B / (fact (n - m)))" 
+    unfolding difg_def
     by (auto intro!: derivative_eq_intros DERIV[rule_format, OF INIT2]
              simp: real_of_nat_def[symmetric])
   moreover
   from INIT2 have intvl: "{..<n - m} = insert 0 (Suc ` {..<n - Suc m})" and "0 < n - m"
     unfolding atLeast0LessThan[symmetric] by auto
-  have "(\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / real (fact x)) =
-      (\<Sum>x<n - Suc m. real (Suc x) * t ^ x * diff (Suc m + x) 0 / real (fact (Suc x)))"
+  have "(\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / (fact x)) =
+      (\<Sum>x<n - Suc m. real (Suc x) * t ^ x * diff (Suc m + x) 0 / (fact (Suc x)))"
     unfolding intvl atLeast0LessThan by (subst setsum.insert) (auto simp: setsum.reindex)
   moreover
-  have fact_neq_0: "\<And>x::nat. real (fact x) + real x * real (fact x) \<noteq> 0"
-    by (metis fact_gt_zero_nat not_add_less1 real_of_nat_add real_of_nat_mult real_of_nat_zero_iff)
-  have "\<And>x. real (Suc x) * t ^ x * diff (Suc m + x) 0 / real (fact (Suc x)) =
-      diff (Suc m + x) 0 * t^x / real (fact x)"
-    by (auto simp: field_simps real_of_nat_Suc fact_neq_0 intro!: nonzero_divide_eq_eq[THEN iffD2])
+  have fact_neq_0: "\<And>x. (fact x) + real x * (fact x) \<noteq> 0"
+    by (metis add_pos_pos fact_gt_zero less_add_same_cancel1 less_add_same_cancel2 less_numeral_extra(3) mult_less_0_iff not_real_of_nat_less_zero)
+  have "\<And>x. (Suc x) * t ^ x * diff (Suc m + x) 0 / (fact (Suc x)) =
+            diff (Suc m + x) 0 * t^x / (fact x)"
+    by (rule nonzero_divide_eq_eq[THEN iffD2]) auto
   moreover
-  have "real (n - m) * t ^ (n - Suc m) * B / real (fact (n - m)) =
-      B * (t ^ (n - Suc m) / real (fact (n - Suc m)))"
-    using `0 < n - m` by (simp add: fact_reduce_nat)
+  have "(n - m) * t ^ (n - Suc m) * B / (fact (n - m)) =
+        B * (t ^ (n - Suc m) / (fact (n - Suc m)))"
+    using `0 < n - m`
+    by (simp add: divide_simps fact_reduce)
   ultimately show "DERIV (difg m) t :> difg (Suc m) t"
     unfolding difg_def by simp
 qed
@@ -69,29 +74,27 @@
   assumes diff_Suc:
     "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t"
   shows
-    "\<exists>t. 0 < t & t < h &
+    "\<exists>t::real. 0 < t & t < h &
               f h =
-              setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {..<n} +
-              (diff n t / real (fact n)) * h ^ n"
+              setsum (%m. (diff m 0 / (fact m)) * h ^ m) {..<n} +
+              (diff n t / (fact n)) * h ^ n"
 proof -
   from n obtain m where m: "n = Suc m"
     by (cases n) (simp add: n)
 
   obtain B where f_h: "f h =
-        (\<Sum>m<n. diff m (0\<Colon>real) / real (fact m) * h ^ m) +
-        B * (h ^ n / real (fact n))"
+        (\<Sum>m<n. diff m (0\<Colon>real) / (fact m) * h ^ m) + B * (h ^ n / (fact n))"
     using Maclaurin_lemma [OF h] ..
 
   def g \<equiv> "(\<lambda>t. f t -
-    (setsum (\<lambda>m. (diff m 0 / real(fact m)) * t^m) {..<n}
-      + (B * (t^n / real(fact n)))))"
+    (setsum (\<lambda>m. (diff m 0 / (fact m)) * t^m) {..<n} + (B * (t^n / (fact n)))))"
 
   have g2: "g 0 = 0 & g h = 0"
     by (simp add: m f_h g_def lessThan_Suc_eq_insert_0 image_iff diff_0 setsum.reindex)
 
   def difg \<equiv> "(%m t. diff m t -
-    (setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {..<n-m}
-      + (B * ((t ^ (n - m)) / real (fact (n - m))))))"
+    (setsum (%p. (diff (m + p) 0 / (fact p)) * (t ^ p)) {..<n-m}
+      + (B * ((t ^ (n - m)) / (fact (n - m))))))"
 
   have difg_0: "difg 0 = g"
     unfolding difg_def g_def by (simp add: diff_0)
@@ -146,7 +149,6 @@
     thus ?case
       using `t < h` by auto
   qed
-
   then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0" by fast
 
   hence "difg (Suc m) t = 0"
@@ -156,30 +158,28 @@
   proof (intro exI conjI)
     show "0 < t" by fact
     show "t < h" by fact
-    show "f h =
-      (\<Sum>m<n. diff m 0 / real (fact m) * h ^ m) +
-      diff n t / real (fact n) * h ^ n"
+    show "f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / (fact n) * h ^ n"
       using `difg (Suc m) t = 0`
-      by (simp add: m f_h difg_def del: fact_Suc)
+      by (simp add: m f_h difg_def)
   qed
 qed
 
 lemma Maclaurin_objl:
   "0 < h & n>0 & diff 0 = f &
   (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
-   --> (\<exists>t. 0 < t & t < h &
-            f h = (\<Sum>m<n. diff m 0 / real (fact m) * h ^ m) +
-                  diff n t / real (fact n) * h ^ n)"
+   --> (\<exists>t::real. 0 < t & t < h &
+            f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) +
+                  diff n t / (fact n) * h ^ n)"
 by (blast intro: Maclaurin)
 
 
 lemma Maclaurin2:
   assumes INIT1: "0 < h " and INIT2: "diff 0 = f"
-  and DERIV: "\<forall>m t.
+  and DERIV: "\<forall>m t::real.
   m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t"
   shows "\<exists>t. 0 < t \<and> t \<le> h \<and> f h =
-  (\<Sum>m<n. diff m 0 / real (fact m) * h ^ m) +
-  diff n t / real (fact n) * h ^ n"
+  (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) +
+  diff n t / (fact n) * h ^ n"
 proof (cases "n")
   case 0 with INIT1 INIT2 show ?thesis by fastforce
 next
@@ -187,28 +187,28 @@
   hence "n > 0" by simp
   from INIT1 this INIT2 DERIV have "\<exists>t>0. t < h \<and>
     f h =
-    (\<Sum>m<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n"
+    (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / (fact n) * h ^ n"
     by (rule Maclaurin)
   thus ?thesis by fastforce
 qed
 
 lemma Maclaurin2_objl:
      "0 < h & diff 0 = f &
-       (\<forall>m t.
-          m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
-    --> (\<exists>t. 0 < t &
+       (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
+    --> (\<exists>t::real. 0 < t &
               t \<le> h &
               f h =
-              (\<Sum>m<n. diff m 0 / real (fact m) * h ^ m) +
-              diff n t / real (fact n) * h ^ n)"
+              (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) +
+              diff n t / (fact n) * h ^ n)"
 by (blast intro: Maclaurin2)
 
 lemma Maclaurin_minus:
+  fixes h::real
   assumes "h < 0" "0 < n" "diff 0 = f"
   and DERIV: "\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t"
   shows "\<exists>t. h < t & t < 0 &
-         f h = (\<Sum>m<n. diff m 0 / real (fact m) * h ^ m) +
-         diff n t / real (fact n) * h ^ n"
+         f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) +
+         diff n t / (fact n) * h ^ n"
 proof -
   txt "Transform @{text ABL'} into @{text derivative_intros} format."
   note DERIV' = DERIV_chain'[OF _ DERIV[rule_format], THEN DERIV_cong]
@@ -216,33 +216,35 @@
   have "\<exists>t>0. t < - h \<and>
     f (- (- h)) =
     (\<Sum>m<n.
-    (- 1) ^ m * diff m (- 0) / real (fact m) * (- h) ^ m) +
-    (- 1) ^ n * diff n (- t) / real (fact n) * (- h) ^ n"
+    (- 1) ^ m * diff m (- 0) / (fact m) * (- h) ^ m) +
+    (- 1) ^ n * diff n (- t) / (fact n) * (- h) ^ n"
     by (intro Maclaurin) (auto intro!: derivative_eq_intros DERIV')
   then guess t ..
   moreover
-  have "(- 1) ^ n * diff n (- t) * (- h) ^ n / real (fact n) = diff n (- t) * h ^ n / real (fact n)"
+  have "(- 1) ^ n * diff n (- t) * (- h) ^ n / (fact n) = diff n (- t) * h ^ n / (fact n)"
     by (auto simp add: power_mult_distrib[symmetric])
   moreover
-  have "(SUM m<n. (- 1) ^ m * diff m 0 * (- h) ^ m / real (fact m)) = (SUM m<n. diff m 0 * h ^ m / real (fact m))"
+  have "(SUM m<n. (- 1) ^ m * diff m 0 * (- h) ^ m / (fact m)) = (SUM m<n. diff m 0 * h ^ m / (fact m))"
     by (auto intro: setsum.cong simp add: power_mult_distrib[symmetric])
   ultimately have " h < - t \<and>
     - t < 0 \<and>
     f h =
-    (\<Sum>m<n. diff m 0 / real (fact m) * h ^ m) + diff n (- t) / real (fact n) * h ^ n"
+    (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n (- t) / (fact n) * h ^ n"
     by auto
   thus ?thesis ..
 qed
 
 lemma Maclaurin_minus_objl:
+  fixes h::real
+  shows
      "(h < 0 & n > 0 & diff 0 = f &
        (\<forall>m t.
           m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t))
     --> (\<exists>t. h < t &
               t < 0 &
               f h =
-              (\<Sum>m<n. diff m 0 / real (fact m) * h ^ m) +
-              diff n t / real (fact n) * h ^ n)"
+              (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) +
+              diff n t / (fact n) * h ^ n)"
 by (blast intro: Maclaurin_minus)
 
 
@@ -250,20 +252,19 @@
 
 (* not good for PVS sin_approx, cos_approx *)
 
-lemma Maclaurin_bi_le_lemma [rule_format]:
-  "n>0 \<longrightarrow>
+lemma Maclaurin_bi_le_lemma:
+  "n>0 \<Longrightarrow>
    diff 0 0 =
-   (\<Sum>m<n. diff m 0 * 0 ^ m / real (fact m)) +
-   diff n 0 * 0 ^ n / real (fact n)"
+   (\<Sum>m<n. diff m 0 * 0 ^ m / (fact m)) + diff n 0 * 0 ^ n / (fact n :: real)"
 by (induct "n") auto
 
 lemma Maclaurin_bi_le:
    assumes "diff 0 = f"
-   and DERIV : "\<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t"
+   and DERIV : "\<forall>m t::real. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t"
    shows "\<exists>t. abs t \<le> abs x &
               f x =
-              (\<Sum>m<n. diff m 0 / real (fact m) * x ^ m) +
-     diff n t / real (fact n) * x ^ n" (is "\<exists>t. _ \<and> f x = ?f x t")
+              (\<Sum>m<n. diff m 0 / (fact m) * x ^ m) +
+     diff n t / (fact n) * x ^ n" (is "\<exists>t. _ \<and> f x = ?f x t")
 proof cases
   assume "n = 0" with `diff 0 = f` show ?thesis by force
 next
@@ -291,11 +292,12 @@
 qed
 
 lemma Maclaurin_all_lt:
+  fixes x::real
   assumes INIT1: "diff 0 = f" and INIT2: "0 < n" and INIT3: "x \<noteq> 0"
   and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x"
   shows "\<exists>t. 0 < abs t & abs t < abs x & f x =
-    (\<Sum>m<n. (diff m 0 / real (fact m)) * x ^ m) +
-                (diff n t / real (fact n)) * x ^ n" (is "\<exists>t. _ \<and> _ \<and> f x = ?f x t")
+    (\<Sum>m<n. (diff m 0 / (fact m)) * x ^ m) +
+                (diff n t / (fact n)) * x ^ n" (is "\<exists>t. _ \<and> _ \<and> f x = ?f x t")
 proof (cases rule: linorder_cases)
   assume "x = 0" with INIT3 show "?thesis"..
 next
@@ -314,28 +316,30 @@
 
 
 lemma Maclaurin_all_lt_objl:
+  fixes x::real
+  shows
      "diff 0 = f &
       (\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) &
       x ~= 0 & n > 0
       --> (\<exists>t. 0 < abs t & abs t < abs x &
-               f x = (\<Sum>m<n. (diff m 0 / real (fact m)) * x ^ m) +
-                     (diff n t / real (fact n)) * x ^ n)"
+               f x = (\<Sum>m<n. (diff m 0 / (fact m)) * x ^ m) +
+                     (diff n t / (fact n)) * x ^ n)"
 by (blast intro: Maclaurin_all_lt)
 
 lemma Maclaurin_zero [rule_format]:
      "x = (0::real)
       ==> n \<noteq> 0 -->
-          (\<Sum>m<n. (diff m (0::real) / real (fact m)) * x ^ m) =
+          (\<Sum>m<n. (diff m (0::real) / (fact m)) * x ^ m) =
           diff 0 0"
 by (induct n, auto)
 
 
 lemma Maclaurin_all_le:
   assumes INIT: "diff 0 = f"
-  and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x"
+  and DERIV: "\<forall>m x::real. DERIV (diff m) x :> diff (Suc m) x"
   shows "\<exists>t. abs t \<le> abs x & f x =
-    (\<Sum>m<n. (diff m 0 / real (fact m)) * x ^ m) +
-    (diff n t / real (fact n)) * x ^ n" (is "\<exists>t. _ \<and> f x = ?f x t")
+    (\<Sum>m<n. (diff m 0 / (fact m)) * x ^ m) +
+    (diff n t / (fact n)) * x ^ n" (is "\<exists>t. _ \<and> f x = ?f x t")
 proof cases
   assume "n = 0" with INIT show ?thesis by force
   next
@@ -343,7 +347,7 @@
   show ?thesis
   proof cases
     assume "x = 0"
-    with `n \<noteq> 0` have "(\<Sum>m<n. diff m 0 / real (fact m) * x ^ m) = diff 0 0"
+    with `n \<noteq> 0` have "(\<Sum>m<n. diff m 0 / (fact m) * x ^ m) = diff 0 0"
       by (intro Maclaurin_zero) auto
     with INIT `x = 0` `n \<noteq> 0` have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" by force
     thus ?thesis ..
@@ -357,28 +361,32 @@
   qed
 qed
 
-lemma Maclaurin_all_le_objl: "diff 0 = f &
+lemma Maclaurin_all_le_objl:
+  "diff 0 = f &
       (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x)
-      --> (\<exists>t. abs t \<le> abs x &
-              f x = (\<Sum>m<n. (diff m 0 / real (fact m)) * x ^ m) +
-                    (diff n t / real (fact n)) * x ^ n)"
+      --> (\<exists>t::real. abs t \<le> abs x &
+              f x = (\<Sum>m<n. (diff m 0 / (fact m)) * x ^ m) +
+                    (diff n t / (fact n)) * x ^ n)"
 by (blast intro: Maclaurin_all_le)
 
 
 subsection{*Version for Exponential Function*}
 
-lemma Maclaurin_exp_lt: "[| x ~= 0; n > 0 |]
+lemma Maclaurin_exp_lt:
+  fixes x::real
+  shows
+  "[| x ~= 0; n > 0 |]
       ==> (\<exists>t. 0 < abs t &
                 abs t < abs x &
-                exp x = (\<Sum>m<n. (x ^ m) / real (fact m)) +
-                        (exp t / real (fact n)) * x ^ n)"
+                exp x = (\<Sum>m<n. (x ^ m) / (fact m)) +
+                        (exp t / (fact n)) * x ^ n)"
 by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto)
 
 
 lemma Maclaurin_exp_le:
-     "\<exists>t. abs t \<le> abs x &
-            exp x = (\<Sum>m<n. (x ^ m) / real (fact m)) +
-                       (exp t / real (fact n)) * x ^ n"
+     "\<exists>t::real. abs t \<le> abs x &
+            exp x = (\<Sum>m<n. (x ^ m) / (fact m)) +
+                       (exp t / (fact n)) * x ^ n"
 by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto)
 
 
@@ -412,7 +420,7 @@
      "\<exists>t. abs t \<le> abs x &
        sin x =
        (\<Sum>m<n. sin_coeff m * x ^ m)
-      + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+      + ((sin(t + 1/2 * real (n) *pi) / (fact n)) * x ^ n)"
 apply (cut_tac f = sin and n = n and x = x
         and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl)
 apply safe
@@ -431,7 +439,7 @@
 lemma Maclaurin_sin_expansion:
      "\<exists>t. sin x =
        (\<Sum>m<n. sin_coeff m * x ^ m)
-      + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+      + ((sin(t + 1/2 * real (n) *pi) / (fact n)) * x ^ n)"
 apply (insert Maclaurin_sin_expansion2 [of x n])
 apply (blast intro: elim:)
 done
@@ -441,7 +449,7 @@
        \<exists>t. 0 < t & t < x &
        sin x =
        (\<Sum>m<n. sin_coeff m * x ^ m)
-      + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)"
+      + ((sin(t + 1/2 * real(n) *pi) / (fact n)) * x ^ n)"
 apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl)
 apply safe
 apply simp
@@ -458,7 +466,7 @@
        \<exists>t. 0 < t & t \<le> x &
        sin x =
        (\<Sum>m<n. sin_coeff m * x ^ m)
-      + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+      + ((sin(t + 1/2 * real (n) *pi) / (fact n)) * x ^ n)"
 apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl)
 apply safe
 apply simp
@@ -482,10 +490,10 @@
 by (simp only: cos_add sin_add real_of_nat_Suc distrib_right add_divide_distrib, auto)
 
 lemma Maclaurin_cos_expansion:
-     "\<exists>t. abs t \<le> abs x &
+     "\<exists>t::real. abs t \<le> abs x &
        cos x =
        (\<Sum>m<n. cos_coeff m * x ^ m)
-      + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+      + ((cos(t + 1/2 * real (n) *pi) / (fact n)) * x ^ n)"
 apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl)
 apply safe
 apply (simp (no_asm))
@@ -505,7 +513,7 @@
        \<exists>t. 0 < t & t < x &
        cos x =
        (\<Sum>m<n. cos_coeff m * x ^ m)
-      + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+      + ((cos(t + 1/2 * real (n) *pi) / (fact n)) * x ^ n)"
 apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl)
 apply safe
 apply simp
@@ -521,7 +529,7 @@
        \<exists>t. x < t & t < 0 &
        cos x =
        (\<Sum>m<n. cos_coeff m * x ^ m)
-      + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+      + ((cos(t + 1/2 * real (n) *pi) / (fact n)) * x ^ n)"
 apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl)
 apply safe
 apply simp
@@ -542,7 +550,7 @@
 
 lemma Maclaurin_sin_bound:
   "abs(sin x - (\<Sum>m<n. sin_coeff m * x ^ m))
-  \<le> inverse(real (fact n)) * \<bar>x\<bar> ^ n"
+  \<le> inverse((fact n)) * \<bar>x\<bar> ^ n"
 proof -
   have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y"
     by (rule_tac mult_right_mono,simp_all)
@@ -557,8 +565,8 @@
     done
   from Maclaurin_all_le [OF diff_0 DERIV_diff]
   obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>" and
-    t2: "sin x = (\<Sum>m<n. ?diff m 0 / real (fact m) * x ^ m) +
-      ?diff n t / real (fact n) * x ^ n" by fast
+    t2: "sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) +
+      ?diff n t / (fact n) * x ^ n" by fast
   have diff_m_0:
     "\<And>m. ?diff m 0 = (if even m then 0
          else (- 1) ^ ((m - Suc 0) div 2))"
--- a/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -8,6 +8,10 @@
 imports  "~~/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space"
 begin
 
+
+lemma cmod_fact [simp]: "cmod (fact n) = fact n"
+  by (metis norm_of_nat of_nat_fact)
+
 subsection{*General lemmas*}
 
 lemma has_derivative_mult_right:
@@ -26,7 +30,7 @@
 
 lemma fact_cancel:
   fixes c :: "'a::real_field"
-  shows "of_nat (Suc n) * c / of_nat (fact (Suc n)) = c / of_nat (fact n)"
+  shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)"
   by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps)
 
 lemma linear_times:
@@ -985,7 +989,7 @@
       and B: "\<And>x. x \<in> s \<Longrightarrow> cmod (f (Suc n) x) \<le> B"
       and w: "w \<in> s"
       and z: "z \<in> s"
-    shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / of_nat (fact i)))
+    shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i)))
           \<le> B * cmod(z - w)^(Suc n) / fact n"
 proof -
   have wzs: "closed_segment w z \<subseteq> s" using assms
@@ -994,48 +998,46 @@
     assume "u \<in> closed_segment w z"
     then have "u \<in> s"
       by (metis wzs subsetD)
-    have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / of_nat (fact i) +
-                      f (Suc i) u * (z-u)^i / of_nat (fact i)) = 
-              f (Suc n) u * (z-u) ^ n / of_nat (fact n)"
+    have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) +
+                      f (Suc i) u * (z-u)^i / (fact i)) = 
+              f (Suc n) u * (z-u) ^ n / (fact n)"
     proof (induction n)
       case 0 show ?case by simp
     next
       case (Suc n)
-      have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / of_nat (fact i) +
-                             f (Suc i) u * (z-u) ^ i / of_nat (fact i)) =  
-           f (Suc n) u * (z-u) ^ n / of_nat (fact n) +
-           f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / of_nat (fact (Suc n)) -
-           f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / of_nat (fact (Suc n))"
+      have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) +
+                             f (Suc i) u * (z-u) ^ i / (fact i)) =  
+           f (Suc n) u * (z-u) ^ n / (fact n) +
+           f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) -
+           f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))"
         using Suc by simp
-      also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / of_nat (fact (Suc n))"
+      also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))"
       proof -
-        have "of_nat(fact(Suc n)) *
-             (f(Suc n) u *(z-u) ^ n / of_nat(fact n) +
-               f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / of_nat(fact(Suc n)) -
-               f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / of_nat(fact(Suc n))) =
-            (of_nat(fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / of_nat(fact n) +
-            (of_nat(fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / of_nat(fact(Suc n))) -
-            (of_nat(fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / of_nat(fact(Suc n))"
-          by (simp add: algebra_simps del: fact_Suc)
-        also have "... =
-                   (of_nat (fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / of_nat (fact n) +
-                   (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
-                   (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
-          by (simp del: fact_Suc)
-        also have "... = 
-                   (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
-                   (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
-                   (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
-          by (simp only: fact_Suc of_nat_mult ac_simps) simp
+        have "(fact(Suc n)) *
+             (f(Suc n) u *(z-u) ^ n / (fact n) +
+               f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) -
+               f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) =
+            ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) +
+            ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) -
+            ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))"
+          by (simp add: algebra_simps del: fact.simps)
+        also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) +
+                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
+                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
+          by (simp del: fact.simps)
+        also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
+                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
+                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
+          by (simp only: fact.simps of_nat_mult ac_simps) simp
         also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)"
           by (simp add: algebra_simps)
         finally show ?thesis
-        by (simp add: mult_left_cancel [where c = "of_nat (fact (Suc n))", THEN iffD1] del: fact_Suc)
+        by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact.simps)
       qed
       finally show ?case .
     qed
-    then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / of_nat (fact i))) 
-                has_field_derivative f (Suc n) u * (z-u) ^ n / of_nat (fact n))
+    then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / (fact i))) 
+                has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n))
                (at u within s)"
       apply (intro derivative_eq_intros)
       apply (blast intro: assms `u \<in> s`)
@@ -1055,22 +1057,22 @@
       by (metis norm_ge_zero zero_le_power mult_right_mono  B [OF us])
     finally have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> B * cmod (z - w) ^ n" .
   } note cmod_bound = this
-  have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / of_nat (fact i)) = (\<Sum>i\<le>n. (f i z / of_nat (fact i)) * 0 ^ i)"
+  have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)) = (\<Sum>i\<le>n. (f i z / (fact i)) * 0 ^ i)"
     by simp
-  also have "\<dots> = f 0 z / of_nat (fact 0)"
+  also have "\<dots> = f 0 z / (fact 0)"
     by (subst setsum_zero_power) simp
-  finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / of_nat (fact i))) 
-            \<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / of_nat (fact i)) -
-                    (\<Sum>i\<le>n. f i z * (z - z) ^ i / of_nat (fact i)))"
+  finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i))) 
+                \<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)) -
+                        (\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)))"
     by (simp add: norm_minus_commute)
-  also have "... \<le> B * cmod (z - w) ^ n / real_of_nat (fact n) * cmod (w - z)"
+  also have "... \<le> B * cmod (z - w) ^ n / (fact n) * cmod (w - z)"
     apply (rule complex_differentiable_bound 
-      [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / of_nat(fact n)"
+      [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / (fact n)"
          and s = "closed_segment w z", OF convex_segment])
     apply (auto simp: ends_in_segment real_of_nat_def DERIV_subset [OF sum_deriv wzs]
                   norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
     done
-  also have "...  \<le> B * cmod (z - w) ^ Suc n / real (fact n)"
+  also have "...  \<le> B * cmod (z - w) ^ Suc n / (fact n)"
     by (simp add: algebra_simps norm_minus_commute real_of_nat_def)
   finally show ?thesis .
 qed
@@ -1102,40 +1104,40 @@
   assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)"
     shows "\<exists>u. u \<in> closed_segment w z \<and>
             Re (f 0 z) =
-            Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / of_nat (fact i)) +
-                (f (Suc n) u * (z-u)^n / of_nat (fact n)) * (z - w))"
+            Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / (fact i)) +
+                (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))"
 proof -
   { fix u
     assume u: "u \<in> closed_segment w z"
     have "(\<Sum>i = 0..n.
                (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) /
-               of_nat (fact i)) =
+               (fact i)) =
           f (Suc 0) u -
              (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
-             of_nat (fact (Suc n)) +
+             (fact (Suc n)) +
              (\<Sum>i = 0..n.
                  (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) /
-                 of_nat (fact (Suc i)))"
+                 (fact (Suc i)))"
        by (subst setsum_Suc_reindex) simp
     also have "... = f (Suc 0) u -
              (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
-             of_nat (fact (Suc n)) +
+             (fact (Suc n)) +
              (\<Sum>i = 0..n.
-                 f (Suc (Suc i)) u * ((z-u) ^ Suc i) / of_nat (fact (Suc i))  - 
-                 f (Suc i) u * (z-u) ^ i / of_nat (fact i))"
+                 f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i))  - 
+                 f (Suc i) u * (z-u) ^ i / (fact i))"
       by (simp only: diff_divide_distrib fact_cancel ac_simps)
     also have "... = f (Suc 0) u -
              (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) /
-             of_nat (fact (Suc n)) +
-             f (Suc (Suc n)) u * (z-u) ^ Suc n / of_nat (fact (Suc n)) - f (Suc 0) u"
+             (fact (Suc n)) +
+             f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u"
       by (subst setsum_Suc_diff) auto
-    also have "... = f (Suc n) u * (z-u) ^ n / of_nat (fact n)"
+    also have "... = f (Suc n) u * (z-u) ^ n / (fact n)"
       by (simp only: algebra_simps diff_divide_distrib fact_cancel)
     finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i 
-                             - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / of_nat (fact i)) =
-                  f (Suc n) u * (z - u) ^ n / of_nat (fact n)" .
-    then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / of_nat (fact i)) has_field_derivative
-                f (Suc n) u * (z - u) ^ n / of_nat (fact n))  (at u)"
+                             - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) =
+                  f (Suc n) u * (z - u) ^ n / (fact n)" .
+    then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative
+                f (Suc n) u * (z - u) ^ n / (fact n))  (at u)"
       apply (intro derivative_eq_intros)+
       apply (force intro: u assms)
       apply (rule refl)+
@@ -1143,8 +1145,8 @@
       done
   }
   then show ?thesis
-    apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / of_nat (fact i)"
-               "\<lambda>u. (f (Suc n) u * (z-u)^n / of_nat (fact n))"])
+    apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / (fact i)"
+               "\<lambda>u. (f (Suc n) u * (z-u)^n / (fact n))"])
     apply (auto simp add: intro: open_closed_segment)
     done
 qed
--- a/src/HOL/NSA/HTranscendental.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/NSA/HTranscendental.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -14,7 +14,7 @@
 definition
   exphr :: "real => hypreal" where
     --{*define exponential function using standard part *}
-  "exphr x =  st(sumhr (0, whn, %n. inverse(real (fact n)) * (x ^ n)))"
+  "exphr x =  st(sumhr (0, whn, %n. inverse (fact n) * (x ^ n)))"
 
 definition
   sinhr :: "real => hypreal" where
@@ -213,7 +213,7 @@
 done
 
 lemma HFinite_exp [simp]:
-     "sumhr (0, whn, %n. inverse (real (fact n)) * x ^ n) \<in> HFinite"
+     "sumhr (0, whn, %n. inverse (fact n) * x ^ n) \<in> HFinite"
 unfolding sumhr_app
 apply (simp only: star_zero_def starfun2_star_of atLeast0LessThan)
 apply (rule NSBseqD2)
--- a/src/HOL/NSA/NSComplex.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/NSA/NSComplex.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -654,5 +654,4 @@
       "hIm(numeral v :: hcomplex) = 0"
 by transfer (rule complex_Im_numeral)
 
-(* TODO: add neg_numeral rules above *)
 end
--- a/src/HOL/Number_Theory/Primes.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Number_Theory/Primes.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -226,7 +226,7 @@
 
 lemma next_prime_bound: "\<exists>p. prime p \<and> n < p \<and> p <= fact n + 1"
 proof-
-  have f1: "fact n + 1 \<noteq> 1" using fact_ge_one_nat [of n] by arith
+  have f1: "fact n + 1 \<noteq> (1::nat)" using fact_ge_1 [of n, where 'a=nat] by arith
   from prime_factor_nat [OF f1]
   obtain p where "prime p" and "p dvd fact n + 1" by auto
   then have "p \<le> fact n + 1" apply (intro dvd_imp_le) apply auto done
@@ -234,7 +234,7 @@
     from `prime p` have "p \<ge> 1"
       by (cases p, simp_all)
     with `p <= n` have "p dvd fact n"
-      by (intro dvd_fact_nat)
+      by (intro dvd_fact)
     with `p dvd fact n + 1` have "p dvd fact n + 1 - fact n"
       by (rule dvd_diff_nat)
     then have "p dvd 1" by simp
--- a/src/HOL/Number_Theory/Residues.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Number_Theory/Residues.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -384,7 +384,7 @@
 
 lemma (in residues_prime) wilson_theorem1:
   assumes a: "p > 2"
-  shows "[fact (p - 1) = - 1] (mod p)"
+  shows "[fact (p - 1) = (-1::int)] (mod p)"
 proof -
   let ?InversePairs = "{ {x, inv x} | x. x : Units R - {\<one>, \<ominus> \<one>}}"
   have UR: "Units R = {\<one>, \<ominus> \<one>} Un (Union ?InversePairs)"
@@ -430,9 +430,9 @@
     apply (subst res_prime_units_eq)
     apply (simp add: int_setprod zmod_int setprod_int_eq)
     done
-  finally have "fact (p - 1) mod p = \<ominus> \<one>".
-  then show ?thesis
-    by (metis Divides.transfer_int_nat_functions(2) cong_int_def res_neg_eq res_one_eq)
+  finally have "fact (p - 1) mod p = (\<ominus> \<one> :: int)".
+  then show ?thesis  
+    by (metis of_nat_fact Divides.transfer_int_nat_functions(2) cong_int_def res_neg_eq res_one_eq)
 qed
 
 lemma wilson_theorem:
--- a/src/HOL/Probability/Distributions.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Probability/Distributions.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -83,7 +83,9 @@
       (\<integral>\<^sup>+x. ereal (x^k * exp (-x)) * indicator {0 .. a} x * (inverse (fact k)) \<partial>lborel)"
     by (intro nn_integral_multc[symmetric]) auto
   also have "\<dots> = (\<integral>\<^sup>+x. ereal (?f k x) * indicator {0 .. a} x \<partial>lborel)"
-    by (intro nn_integral_cong) (simp add: field_simps)
+    apply (intro nn_integral_cong)
+    apply (simp add: field_simps)
+    by (metis (no_types) divide_inverse mult.commute mult.left_commute mult.left_neutral times_ereal.simps(1))
   also have "\<dots> = ereal (?F k a - ?F k 0)"
   proof (rule nn_integral_FTC_Icc)
     fix x assume "x \<in> {0..a}"
@@ -93,13 +95,13 @@
     next
       case (Suc k)
       have "DERIV (\<lambda>x. ?F k x - (x^Suc k * exp (-x)) / fact (Suc k)) x :>
-        ?f k x - ((real (Suc k) - x) * x ^ k * exp (- x)) / real (fact (Suc k))"
+        ?f k x - ((real (Suc k) - x) * x ^ k * exp (- x)) / (fact (Suc k))"
         by (intro DERIV_diff Suc)
            (auto intro!: derivative_eq_intros simp del: fact_Suc power_Suc
                  simp add: field_simps power_Suc[symmetric] real_of_nat_def[symmetric])
       also have "(\<lambda>x. ?F k x - (x^Suc k * exp (-x)) / fact (Suc k)) = ?F (Suc k)"
         by simp
-      also have "?f k x - ((real (Suc k) - x) * x ^ k * exp (- x)) / real (fact (Suc k)) = ?f (Suc k) x"
+      also have "?f k x - ((real (Suc k) - x) * x ^ k * exp (- x)) / (fact (Suc k)) = ?f (Suc k) x"
         by (auto simp: field_simps simp del: fact_Suc)
            (simp_all add: real_of_nat_Suc field_simps)
       finally show ?case .
@@ -122,7 +124,8 @@
     apply (metis nat_ceiling_le_eq)
     done
 
-  have "((\<lambda>x. (1 - (\<Sum>n\<le>k. (x ^ n / exp x) / real (fact n))) * fact k) ---> (1 - (\<Sum>n\<le>k. 0 / real (fact n))) * fact k) at_top"
+  have "((\<lambda>x::real. (1 - (\<Sum>n\<le>k. (x ^ n / exp x) / (fact n))) * fact k) --->
+        (1 - (\<Sum>n\<le>k. 0 / (fact n))) * fact k) at_top"
     by (intro tendsto_intros tendsto_power_div_exp_0) simp
   then show "?X ----> fact k"
     by (subst nn_intergal_power_times_exp_Icc)
@@ -514,7 +517,7 @@
       by (auto dest!: prob_space.emeasure_space_1 simp: emeasure_density)
   
     let ?I = "(integral\<^sup>N lborel (\<lambda>y. ereal ((1 - y)^ k\<^sub>1 * y^k\<^sub>2 * indicator {0..1} y)))"
-    let ?C = "real (fact (Suc (k\<^sub>1 + k\<^sub>2))) / (real (fact k\<^sub>1) * real (fact k\<^sub>2))"
+    let ?C = "(fact (Suc (k\<^sub>1 + k\<^sub>2))) / ((fact k\<^sub>1) * (fact k\<^sub>2))"
     let ?s = "Suc k\<^sub>1 + Suc k\<^sub>2 - 1"
     let ?L = "(\<lambda>x. \<integral>\<^sup>+y. ereal (erlang_density k\<^sub>1 l (x- y) * erlang_density k\<^sub>2 l y * indicator {0..x} y) \<partial>lborel)"
 
@@ -919,10 +922,12 @@
 lemma
   fixes k :: nat
   shows gaussian_moment_even_pos:
-    "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R (exp (-x\<^sup>2)*x^(2 * k)))
-       ((sqrt pi / 2) * (fact (2 * k) / (2 ^ (2 * k) * fact k)))" (is "?even")
+    "has_bochner_integral lborel (\<lambda>x::real. indicator {0..} x *\<^sub>R (exp (-x\<^sup>2)*x^(2 * k)))
+       ((sqrt pi / 2) * (fact (2 * k) / (2 ^ (2 * k) * fact k)))" 
+       (is "?even")
     and gaussian_moment_odd_pos:
-      "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R (exp (-x\<^sup>2)*x^(2 * k + 1))) (fact k / 2)" (is "?odd")
+      "has_bochner_integral lborel (\<lambda>x::real. indicator {0..} x *\<^sub>R (exp (-x\<^sup>2)*x^(2 * k + 1))) (fact k / 2)" 
+      (is "?odd")
 proof -
   let ?M = "\<lambda>k x. exp (- x\<^sup>2) * x^k :: real"
 
@@ -997,9 +1002,11 @@
   proof (induct k)
     case (Suc k)
     note step[OF this]
-    also have "(real (2 * k + 1) / 2 * (sqrt pi / 2 * (real (fact (2 * k)) / real (2 ^ (2 * k) * fact k)))) =
-      sqrt pi / 2 * (real (fact (2 * Suc k)) / real (2 ^ (2 * Suc k) * fact (Suc k)))"
-      by (simp add: field_simps real_of_nat_Suc divide_simps del: fact_Suc) (simp add: field_simps)
+    also have "(real (2 * k + 1) / 2 * (sqrt pi / 2 * ((fact (2 * k)) / ((2::real)^(2*k) * fact k)))) =
+      sqrt pi / 2 * ((fact (2 * Suc k)) / ((2::real)^(2 * Suc k) * fact (Suc k)))"
+      apply (simp add: field_simps del: fact_Suc)
+      apply (simp add: real_of_nat_def of_nat_mult field_simps)
+      done
     finally show ?case
       by simp
   qed (insert gaussian_moment_0, simp)
@@ -1008,7 +1015,7 @@
   proof (induct k)
     case (Suc k)
     note step[OF this]
-    also have "(real (2 * k + 1 + 1) / 2 * (real (fact k) / 2)) = real (fact (Suc k)) / 2"
+    also have "(real (2 * k + 1 + 1) / (2::real) * ((fact k) / 2)) = (fact (Suc k)) / 2"
       by (simp add: field_simps real_of_nat_Suc divide_simps del: fact_Suc) (simp add: field_simps)
     finally show ?case
       by simp
@@ -1036,7 +1043,7 @@
     by (auto simp: fun_eq_iff field_simps real_sqrt_power[symmetric] real_sqrt_mult
                    real_sqrt_divide power_mult eq)
   also have "((sqrt pi * (fact (2 * k) / (2 ^ (2 * k) * fact k))) * ((2*\<sigma>\<^sup>2)^k / sqrt (2 * pi * \<sigma>\<^sup>2))) = 
-    (inverse (sqrt 2 * \<sigma>) * (real (fact (2 * k))) / ((2/\<sigma>\<^sup>2) ^ k * real (fact k)))"
+    (inverse (sqrt 2 * \<sigma>) * ((fact (2 * k))) / ((2/\<sigma>\<^sup>2) ^ k * (fact k)))"
     by (auto simp: fun_eq_iff power_mult field_simps real_sqrt_power[symmetric] real_sqrt_mult
                    power2_eq_square)
   finally show ?thesis
@@ -1047,10 +1054,10 @@
 lemma normal_moment_abs_odd:
   "has_bochner_integral lborel (\<lambda>x. normal_density \<mu> \<sigma> x * \<bar>x - \<mu>\<bar>^(2 * k + 1)) (2^k * \<sigma>^(2 * k + 1) * fact k * sqrt (2 / pi))"
 proof -
-  have "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R (exp (-x\<^sup>2)*\<bar>x\<bar>^(2 * k + 1))) (fact k / 2)"
+  have "has_bochner_integral lborel (\<lambda>x::real. indicator {0..} x *\<^sub>R (exp (-x\<^sup>2)*\<bar>x\<bar>^(2 * k + 1))) (fact k / 2)"
     by (rule has_bochner_integral_cong[THEN iffD1, OF _ _ _ gaussian_moment_odd_pos[of k]]) auto
   from has_bochner_integral_even_function[OF this]
-  have "has_bochner_integral lborel (\<lambda>x. exp (-x\<^sup>2)*\<bar>x\<bar>^(2 * k + 1)) (fact k)"
+  have "has_bochner_integral lborel (\<lambda>x::real. exp (-x\<^sup>2)*\<bar>x\<bar>^(2 * k + 1)) (fact k)"
     by simp
   then have "has_bochner_integral lborel (\<lambda>x. (exp (-x\<^sup>2)*\<bar>x\<bar>^(2 * k + 1)) * (2^k * \<sigma>^(2 * k + 1) / sqrt (pi * \<sigma>\<^sup>2)))
       (fact k * (2^k * \<sigma>^(2 * k + 1) / sqrt (pi * \<sigma>\<^sup>2)))"
@@ -1059,7 +1066,7 @@
     (\<lambda>x. exp (- (((sqrt 2 * \<sigma>) * x)\<^sup>2 / (2 * \<sigma>\<^sup>2))) * \<bar>sqrt 2 * \<sigma> * x\<bar> ^ (2 * k + 1) / sqrt (2 * pi * \<sigma>\<^sup>2))"
     by (simp add: field_simps abs_mult real_sqrt_power[symmetric] power_mult real_sqrt_mult)
   also have "(fact k * (2^k * \<sigma>^(2 * k + 1) / sqrt (pi * \<sigma>\<^sup>2))) = 
-    (inverse (sqrt 2) * inverse \<sigma> * (2 ^ k * (\<sigma> * \<sigma> ^ (2 * k)) * real (fact k) * sqrt (2 / pi)))"
+    (inverse (sqrt 2) * inverse \<sigma> * (2 ^ k * (\<sigma> * \<sigma> ^ (2 * k)) * (fact k) * sqrt (2 / pi)))"
     by (auto simp: fun_eq_iff power_mult field_simps real_sqrt_power[symmetric] real_sqrt_divide
                    real_sqrt_mult)
   finally show ?thesis
--- a/src/HOL/Probability/Probability_Mass_Function.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Probability/Probability_Mass_Function.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -1321,9 +1321,7 @@
 begin
 
 lift_definition poisson_pmf :: "nat pmf" is "\<lambda>k. rate ^ k / fact k * exp (-rate)"
-proof
-  (* Proof by Manuel Eberl *)
-
+proof  (* by Manuel Eberl *)
   have summable: "summable (\<lambda>x::nat. rate ^ x / fact x)" using summable_exp
     by (simp add: field_simps divide_inverse [symmetric])
   have "(\<integral>\<^sup>+(x::nat). rate ^ x / fact x * exp (-rate) \<partial>count_space UNIV) =
@@ -1332,10 +1330,10 @@
   also from rate_pos have "(\<integral>\<^sup>+(x::nat). rate ^ x / fact x \<partial>count_space UNIV) = (\<Sum>x. rate ^ x / fact x)"
     by (simp_all add: nn_integral_count_space_nat suminf_ereal summable suminf_ereal_finite)
   also have "... = exp rate" unfolding exp_def
-    by (simp add: field_simps divide_inverse [symmetric] transfer_int_nat_factorial)
+    by (simp add: field_simps divide_inverse [symmetric])
   also have "ereal (exp (-rate)) * ereal (exp rate) = 1"
     by (simp add: mult_exp_exp)
-  finally show "(\<integral>\<^sup>+ x. ereal (rate ^ x / real (fact x) * exp (- rate)) \<partial>count_space UNIV) = 1" .
+  finally show "(\<integral>\<^sup>+ x. ereal (rate ^ x / (fact x) * exp (- rate)) \<partial>count_space UNIV) = 1" .
 qed (simp add: rate_pos[THEN less_imp_le])
 
 lemma pmf_poisson[simp]: "pmf poisson_pmf k = rate ^ k / fact k * exp (-rate)"
--- a/src/HOL/Proofs/Extraction/Euclid.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Proofs/Extraction/Euclid.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -210,8 +210,8 @@
 
 lemma Euclid: "\<exists>p::nat. prime p \<and> n < p"
 proof -
-  let ?k = "fact n + 1"
-  have "1 < fact n + 1" by simp
+  let ?k = "fact n + (1::nat)"
+  have "1 < ?k" by simp
   then obtain p where prime: "prime p" and dvd: "p dvd ?k" using prime_factor_exists by iprover
   have "n < p"
   proof -
--- a/src/HOL/Proofs/Extraction/Util.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Proofs/Extraction/Util.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -5,7 +5,7 @@
 section {* Auxiliary lemmas used in program extraction examples *}
 
 theory Util
-imports Old_Datatype
+imports "~~/src/HOL/Library/Old_Datatype"
 begin
 
 text {*
--- a/src/HOL/Taylor.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Taylor.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -17,8 +17,8 @@
   assumes INIT: "n>0" "diff 0 = f"
   and DERIV: "(\<forall> m t. m < n & a \<le> t & t \<le> b \<longrightarrow> DERIV (diff m) t :> (diff (Suc m) t))"
   and INTERV: "a \<le> c" "c < b" 
-  shows "\<exists> t. c < t & t < b & 
-    f b = (\<Sum>m<n. (diff m c / real (fact m)) * (b - c)^m) + (diff n t / real (fact n)) * (b - c)^n"
+  shows "\<exists>t::real. c < t & t < b & 
+    f b = (\<Sum>m<n. (diff m c / (fact m)) * (b - c)^m) + (diff n t / (fact n)) * (b - c)^n"
 proof -
   from INTERV have "0 < b-c" by arith
   moreover 
@@ -35,31 +35,24 @@
       by (rule DERIV_chain2)
     thus "DERIV (%x. diff m (x + c)) t :> diff (Suc m) (t + c)" by simp
   qed
-  ultimately 
-  have EX:"EX t>0. t < b - c & 
-    f (b - c + c) = (SUM m<n. diff m (0 + c) / real (fact m) * (b - c) ^ m) +
-      diff n (t + c) / real (fact n) * (b - c) ^ n" 
-    by (rule Maclaurin)
-  show ?thesis
-  proof -
-    from EX obtain x where 
-      X: "0 < x & x < b - c & 
-        f (b - c + c) = (\<Sum>m<n. diff m (0 + c) / real (fact m) * (b - c) ^ m) +
-          diff n (x + c) / real (fact n) * (b - c) ^ n" ..
-    let ?H = "x + c"
-    from X have "c<?H & ?H<b \<and> f b = (\<Sum>m<n. diff m c / real (fact m) * (b - c) ^ m) +
-      diff n ?H / real (fact n) * (b - c) ^ n"
-      by fastforce
-    thus ?thesis by fastforce
-  qed
+  ultimately obtain x where 
+        "0 < x & x < b - c & 
+        f (b - c + c) = (\<Sum>m<n. diff m (0 + c) / (fact m) * (b - c) ^ m) +
+          diff n (x + c) / (fact n) * (b - c) ^ n"
+     by (rule Maclaurin [THEN exE])
+  then have "c<x+c & x+c<b \<and> f b = (\<Sum>m<n. diff m c / (fact m) * (b - c) ^ m) +
+    diff n (x+c) / (fact n) * (b - c) ^ n"
+    by fastforce
+  thus ?thesis by fastforce
 qed
 
 lemma taylor_down:
+  fixes a::real
   assumes INIT: "n>0" "diff 0 = f"
   and DERIV: "(\<forall> m t. m < n & a \<le> t & t \<le> b \<longrightarrow> DERIV (diff m) t :> (diff (Suc m) t))"
   and INTERV: "a < c" "c \<le> b"
   shows "\<exists> t. a < t & t < c & 
-    f a = (\<Sum>m<n. (diff m c / real (fact m)) * (a - c)^m) + (diff n t / real (fact n)) * (a - c)^n" 
+    f a = (\<Sum>m<n. (diff m c / (fact m)) * (a - c)^m) + (diff n t / (fact n)) * (a - c)^n" 
 proof -
   from INTERV have "a-c < 0" by arith
   moreover 
@@ -75,30 +68,24 @@
     ultimately have "DERIV (%x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1+0)" by (rule DERIV_chain2)
     thus "DERIV (%x. diff m (x + c)) t :> diff (Suc m) (t + c)" by simp
   qed
-  ultimately 
-  have EX: "EX t>a - c. t < 0 &
-    f (a - c + c) = (SUM m<n. diff m (0 + c) / real (fact m) * (a - c) ^ m) +
-      diff n (t + c) / real (fact n) * (a - c) ^ n" 
-    by (rule Maclaurin_minus)
-  show ?thesis
-  proof -
-    from EX obtain x where X: "a - c < x & x < 0 &
-      f (a - c + c) = (SUM m<n. diff m (0 + c) / real (fact m) * (a - c) ^ m) +
-        diff n (x + c) / real (fact n) * (a - c) ^ n" ..
-    let ?H = "x + c"
-    from X have "a<?H & ?H<c \<and> f a = (\<Sum>m<n. diff m c / real (fact m) * (a - c) ^ m) +
-      diff n ?H / real (fact n) * (a - c) ^ n"
-      by fastforce
-    thus ?thesis by fastforce
-  qed
+  ultimately obtain x where 
+         "a - c < x & x < 0 &
+      f (a - c + c) = (SUM m<n. diff m (0 + c) / (fact m) * (a - c) ^ m) +
+        diff n (x + c) / (fact n) * (a - c) ^ n"
+     by (rule Maclaurin_minus [THEN exE])
+  then have "a<x+c & x+c<c \<and> f a = (\<Sum>m<n. diff m c / (fact m) * (a - c) ^ m) +
+      diff n (x+c) / (fact n) * (a - c) ^ n"
+    by fastforce
+  thus ?thesis by fastforce
 qed
 
 lemma taylor:
+  fixes a::real
   assumes INIT: "n>0" "diff 0 = f"
   and DERIV: "(\<forall> m t. m < n & a \<le> t & t \<le> b \<longrightarrow> DERIV (diff m) t :> (diff (Suc m) t))"
   and INTERV: "a \<le> c " "c \<le> b" "a \<le> x" "x \<le> b" "x \<noteq> c" 
   shows "\<exists> t. (if x<c then (x < t & t < c) else (c < t & t < x)) &
-    f x = (\<Sum>m<n. (diff m c / real (fact m)) * (x - c)^m) + (diff n t / real (fact n)) * (x - c)^n" 
+    f x = (\<Sum>m<n. (diff m c / (fact m)) * (x - c)^m) + (diff n t / (fact n)) * (x - c)^n" 
 proof (cases "x<c")
   case True
   note INIT
@@ -107,8 +94,8 @@
     by fastforce
   moreover note True
   moreover from INTERV have "c \<le> b" by simp
-  ultimately have EX: "\<exists>t>x. t < c \<and> f x =
-    (\<Sum>m<n. diff m c / real (fact m) * (x - c) ^ m) + diff n t / real (fact n) * (x - c) ^ n"
+  ultimately have "\<exists>t>x. t < c \<and> f x =
+    (\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n"
     by (rule taylor_down)
   with True show ?thesis by simp
 next
@@ -119,8 +106,8 @@
     by fastforce
   moreover from INTERV have "a \<le> c" by arith
   moreover from False and INTERV have "c < x" by arith
-  ultimately have EX: "\<exists>t>c. t < x \<and> f x =
-    (\<Sum>m<n. diff m c / real (fact m) * (x - c) ^ m) + diff n t / real (fact n) * (x - c) ^ n" 
+  ultimately have "\<exists>t>c. t < x \<and> f x =
+    (\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n" 
     by (rule taylor_up)
   with False show ?thesis by simp
 qed
--- a/src/HOL/Transcendental.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/Transcendental.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -10,6 +10,12 @@
 imports Binomial Series Deriv NthRoot
 begin
 
+lemma of_real_fact [simp]: "of_real (fact n) = fact n"
+  by (metis of_nat_fact of_real_of_nat_eq)
+
+lemma real_fact_nat [simp]: "real (fact n :: nat) = fact n"
+  by (simp add: real_of_nat_def)
+
 lemma root_test_convergence:
   fixes f :: "nat \<Rightarrow> 'a::banach"
   assumes f: "(\<lambda>n. root n (norm (f n))) ----> x" -- "could be weakened to lim sup"
@@ -54,13 +60,13 @@
       (x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))"
 proof (induct n)
   case (Suc n)
-  have "x ^ Suc (Suc n) - y ^ Suc (Suc n) = x * (x * x ^ n) - y * (y * y ^ n)"
+  have "x ^ Suc (Suc n) - y ^ Suc (Suc n) = x * (x * x^n) - y * (y * y ^ n)"
     by simp
-  also have "... = y * (x ^ (Suc n) - y ^ (Suc n)) + (x - y) * (x * x ^ n)"
+  also have "... = y * (x ^ (Suc n) - y ^ (Suc n)) + (x - y) * (x * x^n)"
     by (simp add: algebra_simps)
-  also have "... = y * ((x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x ^ n)"
+  also have "... = y * ((x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)"
     by (simp only: Suc)
-  also have "... = (x - y) * (y * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x ^ n)"
+  also have "... = (x - y) * (y * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)"
     by (simp only: mult.left_commute)
   also have "... = (x - y) * (\<Sum>p<Suc (Suc n). x ^ p * y ^ (Suc n - p))"
     by (simp add: field_simps Suc_diff_le setsum_left_distrib setsum_right_distrib)
@@ -100,40 +106,40 @@
 
 lemma powser_insidea:
   fixes x z :: "'a::real_normed_div_algebra"
-  assumes 1: "summable (\<lambda>n. f n * x ^ n)"
+  assumes 1: "summable (\<lambda>n. f n * x^n)"
     and 2: "norm z < norm x"
   shows "summable (\<lambda>n. norm (f n * z ^ n))"
 proof -
   from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
-  from 1 have "(\<lambda>n. f n * x ^ n) ----> 0"
+  from 1 have "(\<lambda>n. f n * x^n) ----> 0"
     by (rule summable_LIMSEQ_zero)
-  hence "convergent (\<lambda>n. f n * x ^ n)"
+  hence "convergent (\<lambda>n. f n * x^n)"
     by (rule convergentI)
-  hence "Cauchy (\<lambda>n. f n * x ^ n)"
+  hence "Cauchy (\<lambda>n. f n * x^n)"
     by (rule convergent_Cauchy)
-  hence "Bseq (\<lambda>n. f n * x ^ n)"
+  hence "Bseq (\<lambda>n. f n * x^n)"
     by (rule Cauchy_Bseq)
-  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x ^ n) \<le> K"
+  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x^n) \<le> K"
     by (simp add: Bseq_def, safe)
   have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le>
-                   K * norm (z ^ n) * inverse (norm (x ^ n))"
+                   K * norm (z ^ n) * inverse (norm (x^n))"
   proof (intro exI allI impI)
     fix n::nat
     assume "0 \<le> n"
-    have "norm (norm (f n * z ^ n)) * norm (x ^ n) =
-          norm (f n * x ^ n) * norm (z ^ n)"
+    have "norm (norm (f n * z ^ n)) * norm (x^n) =
+          norm (f n * x^n) * norm (z ^ n)"
       by (simp add: norm_mult abs_mult)
     also have "\<dots> \<le> K * norm (z ^ n)"
       by (simp only: mult_right_mono 4 norm_ge_zero)
-    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x ^ n)) * norm (x ^ n))"
+    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x^n)) * norm (x^n))"
       by (simp add: x_neq_0)
-    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x ^ n)) * norm (x ^ n)"
+    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x^n)) * norm (x^n)"
       by (simp only: mult.assoc)
     finally show "norm (norm (f n * z ^ n)) \<le>
-                  K * norm (z ^ n) * inverse (norm (x ^ n))"
+                  K * norm (z ^ n) * inverse (norm (x^n))"
       by (simp add: mult_le_cancel_right x_neq_0)
   qed
-  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
+  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
   proof -
     from 2 have "norm (norm (z * inverse x)) < 1"
       using x_neq_0
@@ -142,7 +148,7 @@
       by (rule summable_geometric)
     hence "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
       by (rule summable_mult)
-    thus "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
+    thus "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
       using x_neq_0
       by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
                     power_inverse norm_power mult.assoc)
@@ -154,7 +160,7 @@
 lemma powser_inside:
   fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
   shows
-    "summable (\<lambda>n. f n * (x ^ n)) \<Longrightarrow> norm z < norm x \<Longrightarrow>
+    "summable (\<lambda>n. f n * (x^n)) \<Longrightarrow> norm z < norm x \<Longrightarrow>
       summable (\<lambda>n. f n * (z ^ n))"
   by (rule powser_insidea [THEN summable_norm_cancel])
 
@@ -581,7 +587,7 @@
   fixes x :: "'a::{real_normed_field,banach}"
   assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
     and 2: "norm x < norm K"
-  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h
+  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h
              - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
 proof -
   from dense [OF 2]
@@ -629,7 +635,7 @@
     hence "norm x + norm h < r" by simp
     with norm_triangle_ineq have xh: "norm (x + h) < r"
       by (rule order_le_less_trans)
-    show "norm (c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))
+    show "norm (c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))
           \<le> norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
       apply (simp only: norm_mult mult.assoc)
       apply (rule mult_left_mono [OF _ norm_ge_zero])
@@ -645,11 +651,11 @@
       and 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
       and 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
       and 4: "norm x < norm K"
-  shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)"
+  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. (diffs c) n * x^n)"
   unfolding DERIV_def
 proof (rule LIM_zero_cancel)
-  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h
-            - suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0"
+  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x^n)) / h
+            - suminf (\<lambda>n. diffs c n * x^n)) -- 0 --> 0"
   proof (rule LIM_equal2)
     show "0 < norm K - norm x" using 4 by (simp add: less_diff_eq)
   next
@@ -658,18 +664,18 @@
     hence "norm x + norm h < norm K" by simp
     hence 5: "norm (x + h) < norm K"
       by (rule norm_triangle_ineq [THEN order_le_less_trans])
-    have "summable (\<lambda>n. c n * x ^ n)"
+    have "summable (\<lambda>n. c n * x^n)"
       and "summable (\<lambda>n. c n * (x + h) ^ n)"
-      and "summable (\<lambda>n. diffs c n * x ^ n)"
+      and "summable (\<lambda>n. diffs c n * x^n)"
       using 1 2 4 5 by (auto elim: powser_inside)
-    then have "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h - (\<Sum>n. diffs c n * x ^ n) =
-          (\<Sum>n. (c n * (x + h) ^ n - c n * x ^ n) / h - of_nat n * c n * x ^ (n - Suc 0))"
+    then have "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
+          (\<Sum>n. (c n * (x + h) ^ n - c n * x^n) / h - of_nat n * c n * x ^ (n - Suc 0))"
       by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
-    then show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h - (\<Sum>n. diffs c n * x ^ n) =
-          (\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))"
+    then show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
+          (\<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))"
       by (simp add: algebra_simps)
   next
-    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
+    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
       by (rule termdiffs_aux [OF 3 4])
   qed
 qed
@@ -889,7 +895,7 @@
           fix n
           have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)"
             by (rule mult_left_mono) auto
-          show "norm (f n * x ^ n) \<le> norm (f n * real (Suc n) * x ^ n)"
+          show "norm (f n * x^n) \<le> norm (f n * real (Suc n) * x^n)"
             unfolding real_norm_def abs_mult
             by (rule mult_right_mono) (auto simp add: le[unfolded mult_1_right])
         qed (rule powser_insidea[OF converges[OF `R' \<in> {-R <..< R}`] `norm x < norm R'`])
@@ -925,14 +931,14 @@
 subsection {* Exponential Function *}
 
 definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
-  where "exp = (\<lambda>x. \<Sum>n. x ^ n /\<^sub>R real (fact n))"
+  where "exp = (\<lambda>x. \<Sum>n. x^n /\<^sub>R fact n)"
 
 lemma summable_exp_generic:
   fixes x :: "'a::{real_normed_algebra_1,banach}"
-  defines S_def: "S \<equiv> \<lambda>n. x ^ n /\<^sub>R real (fact n)"
+  defines S_def: "S \<equiv> \<lambda>n. x^n /\<^sub>R fact n"
   shows "summable S"
 proof -
-  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R real (Suc n)"
+  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R (Suc n)"
     unfolding S_def by (simp del: mult_Suc)
   obtain r :: real where r0: "0 < r" and r1: "r < 1"
     using dense [OF zero_less_one] by fast
@@ -959,26 +965,29 @@
 
 lemma summable_norm_exp:
   fixes x :: "'a::{real_normed_algebra_1,banach}"
-  shows "summable (\<lambda>n. norm (x ^ n /\<^sub>R real (fact n)))"
+  shows "summable (\<lambda>n. norm (x^n /\<^sub>R fact n))"
 proof (rule summable_norm_comparison_test [OF exI, rule_format])
-  show "summable (\<lambda>n. norm x ^ n /\<^sub>R real (fact n))"
+  show "summable (\<lambda>n. norm x^n /\<^sub>R fact n)"
     by (rule summable_exp_generic)
   fix n
-  show "norm (x ^ n /\<^sub>R real (fact n)) \<le> norm x ^ n /\<^sub>R real (fact n)"
+  show "norm (x^n /\<^sub>R fact n) \<le> norm x^n /\<^sub>R fact n"
     by (simp add: norm_power_ineq)
 qed
 
-lemma summable_exp: "summable (\<lambda>n. inverse (real (fact n)) * x ^ n)"
-  using summable_exp_generic [where x=x] by simp
-
-lemma exp_converges: "(\<lambda>n. x ^ n /\<^sub>R real (fact n)) sums exp x"
+lemma summable_exp: 
+  fixes x :: "'a::{real_normed_field,banach}"
+  shows "summable (\<lambda>n. inverse (fact n) * x^n)"
+  using summable_exp_generic [where x=x]
+  by (simp add: scaleR_conv_of_real nonzero_of_real_inverse)
+
+lemma exp_converges: "(\<lambda>n. x^n /\<^sub>R fact n) sums exp x"
   unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
 
-
 lemma exp_fdiffs:
-      "diffs (\<lambda>n. inverse(real (fact n))) = (\<lambda>n. inverse(real (fact n)))"
-  by (simp add: diffs_def mult.assoc [symmetric] real_of_nat_def of_nat_mult
-        del: mult_Suc of_nat_Suc)
+  fixes XXX :: "'a::{real_normed_field,banach}"
+  shows "diffs (\<lambda>n. inverse (fact n)) = (\<lambda>n. inverse (fact n :: 'a))"
+  by (simp add: diffs_def mult_ac nonzero_inverse_mult_distrib nonzero_of_real_inverse
+           del: mult_Suc of_nat_Suc)
 
 lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
   by (simp add: diffs_def)
@@ -997,7 +1006,7 @@
 lemma norm_exp: "norm (exp x) \<le> exp (norm x)"
 proof -
   from summable_norm[OF summable_norm_exp, of x]
-  have "norm (exp x) \<le> (\<Sum>n. inverse (real (fact n)) * norm (x ^ n))"
+  have "norm (exp x) \<le> (\<Sum>n. inverse (fact n) * norm (x^n))"
     by (simp add: exp_def)
   also have "\<dots> \<le> exp (norm x)"
     using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
@@ -1047,7 +1056,7 @@
 
 lemma exp_series_add_commuting:
   fixes x y :: "'a::{real_normed_algebra_1, banach}"
-  defines S_def: "S \<equiv> \<lambda>x n. x ^ n /\<^sub>R real (fact n)"
+  defines S_def: "S \<equiv> \<lambda>x n. x^n /\<^sub>R fact n"
   assumes comm: "x * y = y * x"
   shows "S (x + y) n = (\<Sum>i\<le>n. S x i * S y (n - i))"
 proof (induct n)
@@ -1182,9 +1191,9 @@
 using order_le_imp_less_or_eq [OF assms]
 proof
   assume "0 < x"
-  have "1+x \<le> (\<Sum>n<2. inverse (real (fact n)) * x ^ n)"
+  have "1+x \<le> (\<Sum>n<2. inverse (fact n) * x^n)"
     by (auto simp add: numeral_2_eq_2)
-  also have "... \<le> (\<Sum>n. inverse (real (fact n)) * x ^ n)"
+  also have "... \<le> (\<Sum>n. inverse (fact n) * x^n)"
     apply (rule setsum_le_suminf [OF summable_exp])
     using `0 < x`
     apply (auto  simp add:  zero_le_mult_iff)
@@ -1297,7 +1306,7 @@
 lemma ln_div: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x / y) = ln x - ln y"
   by (rule ln_unique) (simp add: exp_diff)
 
-lemma ln_realpow: "0 < x \<Longrightarrow> ln (x ^ n) = real n * ln x"
+lemma ln_realpow: "0 < x \<Longrightarrow> ln (x^n) = real n * ln x"
   by (rule ln_unique) (simp add: exp_real_of_nat_mult)
 
 lemma ln_less_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
@@ -1424,7 +1433,7 @@
       fix x :: real
       assume "x \<in> {- 1<..<1}"
       hence "norm (-x) < 1" by auto
-      show "summable (\<lambda>n. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x ^ n)"
+      show "summable (\<lambda>n. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x^n)"
         unfolding One_nat_def
         by (auto simp add: power_mult_distrib[symmetric] summable_geometric[OF `norm (-x) < 1`])
     qed
@@ -1439,12 +1448,14 @@
   thus ?thesis by auto
 qed
 
-lemma exp_first_two_terms: "exp x = 1 + x + (\<Sum> n. inverse(fact (n+2)) * (x ^ (n+2)))"
+lemma exp_first_two_terms:
+  fixes x :: "'a::{real_normed_field,banach}"
+  shows "exp x = 1 + x + (\<Sum> n. inverse(fact (n+2)) * (x ^ (n+2)))"
 proof -
-  have "exp x = suminf (\<lambda>n. inverse(fact n) * (x ^ n))"
-    by (simp add: exp_def)
+  have "exp x = suminf (\<lambda>n. inverse(fact n) * (x^n))"
+    by (simp add: exp_def scaleR_conv_of_real nonzero_of_real_inverse)
   also from summable_exp have "... = (\<Sum> n. inverse(fact(n+2)) * (x ^ (n+2))) +
-    (\<Sum> n::nat<2. inverse(fact n) * (x ^ n))" (is "_ = _ + ?a")
+    (\<Sum> n::nat<2. inverse(fact n) * (x^n))" (is "_ = _ + ?a")
     by (rule suminf_split_initial_segment)
   also have "?a = 1 + x"
     by (simp add: numeral_2_eq_2)
@@ -1458,21 +1469,22 @@
   assume b: "x <= 1"
   {
     fix n :: nat
-    have "2 * 2 ^ n \<le> fact (n + 2)"
+    have "(2::nat) * 2 ^ n \<le> fact (n + 2)"
       by (induct n) simp_all
-    hence "real ((2::nat) * 2 ^ n) \<le> real (fact (n + 2))"
+    hence "real ((2::nat) * 2 ^ n) \<le> real_of_nat (fact (n + 2))"
       by (simp only: real_of_nat_le_iff)
-    hence "2 * 2 ^ n \<le> real (fact (n + 2))"
-      by simp
-    hence "inverse (fact (n + 2)) \<le> inverse (2 * 2 ^ n)"
+    hence "((2::real) * 2 ^ n) \<le> fact (n + 2)"
+      unfolding of_nat_fact real_of_nat_def
+      by (simp add: of_nat_mult of_nat_power)
+    hence "inverse (fact (n + 2)) \<le> inverse ((2::real) * 2 ^ n)"
       by (rule le_imp_inverse_le) simp
-    hence "inverse (fact (n + 2)) \<le> 1/2 * (1/2)^n"
+    hence "inverse (fact (n + 2)) \<le> 1/(2::real) * (1/2)^n"
       by (simp add: power_inverse)
     hence "inverse (fact (n + 2)) * (x^n * x\<^sup>2) \<le> 1/2 * (1/2)^n * (1 * x\<^sup>2)"
       by (rule mult_mono)
         (rule mult_mono, simp_all add: power_le_one a b)
     hence "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<^sup>2/2) * ((1/2)^n)"
-      unfolding power_add by (simp add: ac_simps del: fact_Suc) }
+      unfolding power_add by (simp add: ac_simps del: fact.simps) }
   note aux1 = this
   have "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1 / 2)))"
     by (intro sums_mult geometric_sums, simp)
@@ -2140,7 +2152,7 @@
 lemma log_powr: "log b (x powr y) = y * log b x"
   by (simp add: log_def ln_powr)
 
-lemma log_nat_power: "0 < x \<Longrightarrow> log b (x ^ n) = real n * log b x"
+lemma log_nat_power: "0 < x \<Longrightarrow> log b (x^n) = real n * log b x"
   by (simp add: log_powr powr_realpow [symmetric])
 
 lemma log_base_change: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log b x = log a x / log a b"
@@ -2342,10 +2354,10 @@
 subsection {* Sine and Cosine *}
 
 definition sin_coeff :: "nat \<Rightarrow> real" where
-  "sin_coeff = (\<lambda>n. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / real (fact n))"
+  "sin_coeff = (\<lambda>n. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / (fact n))"
 
 definition cos_coeff :: "nat \<Rightarrow> real" where
-  "cos_coeff = (\<lambda>n. if even n then ((- 1) ^ (n div 2)) / real (fact n) else 0)"
+  "cos_coeff = (\<lambda>n. if even n then ((- 1) ^ (n div 2)) / (fact n) else 0)"
 
 definition sin :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
   where "sin = (\<lambda>x. \<Sum>n. sin_coeff n *\<^sub>R x^n)"
@@ -2377,7 +2389,7 @@
 
 lemma summable_norm_cos:
   fixes x :: "'a::{real_normed_algebra_1,banach}"
-  shows "summable (\<lambda>n. norm (cos_coeff n *\<^sub>R x ^ n))"
+  shows "summable (\<lambda>n. norm (cos_coeff n *\<^sub>R x^n))"
   unfolding cos_coeff_def
   apply (rule summable_comparison_test [OF _ summable_norm_exp [where x=x]])
   apply (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
@@ -2398,7 +2410,7 @@
   have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R  x^n)) = (\<lambda>n. sin_coeff n *\<^sub>R  (of_real x)^n)"
   proof
     fix n
-    show "of_real (sin_coeff n *\<^sub>R  x ^ n) = sin_coeff n *\<^sub>R of_real x ^ n"
+    show "of_real (sin_coeff n *\<^sub>R  x^n) = sin_coeff n *\<^sub>R of_real x^n"
       by (simp add: scaleR_conv_of_real)
   qed
   also have "... sums (sin (of_real x))"
@@ -2416,7 +2428,7 @@
   have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R  x^n)) = (\<lambda>n. cos_coeff n *\<^sub>R  (of_real x)^n)"
   proof
     fix n
-    show "of_real (cos_coeff n *\<^sub>R  x ^ n) = cos_coeff n *\<^sub>R of_real x ^ n"
+    show "of_real (cos_coeff n *\<^sub>R  x^n) = cos_coeff n *\<^sub>R of_real x^n"
       by (simp add: scaleR_conv_of_real)
   qed
   also have "... sums (cos (of_real x))"
@@ -2549,7 +2561,7 @@
   fixes x :: "'a::{real_normed_field,banach}"
   shows "(\<lambda>p. \<Sum>n\<le>p.
           if even p \<and> even n
-          then ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
+          then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
          sums (cos x * cos y)"
 proof -
   { fix n p::nat
@@ -2557,12 +2569,12 @@
     then have *: "even n \<Longrightarrow> even p \<Longrightarrow> (-1) ^ (n div 2) * (-1) ^ ((p - n) div 2) = (-1 :: real) ^ (p div 2)"
       by (metis div_add power_add le_add_diff_inverse odd_add)
     have "(cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)) =
-          (if even p \<and> even n then ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
+          (if even p \<and> even n then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
     using `n\<le>p`
       by (auto simp: * algebra_simps cos_coeff_def binomial_fact real_of_nat_def)
   }
   then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> even n
-                  then ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
+                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
              (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
     by simp
   also have "... = (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n *\<^sub>R x^n) * (cos_coeff (p - n) *\<^sub>R y^(p-n)))"
@@ -2578,7 +2590,7 @@
   fixes x :: "'a::{real_normed_field,banach}"
   shows "(\<lambda>p. \<Sum>n\<le>p.
           if even p \<and> odd n
-               then - ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
+               then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
          sums (sin x * sin y)"
 proof -
   { fix n p::nat
@@ -2596,12 +2608,12 @@
     } then
     have "(sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)) =
           (if even p \<and> odd n
-          then -((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
+          then -((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
     using `n\<le>p`
       by (auto simp:  algebra_simps sin_coeff_def binomial_fact real_of_nat_def)
   }
   then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> odd n
-               then - ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
+               then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
              (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
     by simp
   also have "... = (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n *\<^sub>R x^n) * (sin_coeff (p - n) *\<^sub>R y^(p-n)))"
@@ -2616,31 +2628,31 @@
   fixes x :: "'a::{real_normed_field,banach}"
   shows
   "(\<lambda>p. \<Sum>n\<le>p. if even p
-               then ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n)
+               then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
                else 0)
         sums cos (x + y)"
 proof -
   { fix p::nat
     have "(\<Sum>n\<le>p. if even p
-                  then ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n)
+                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
                   else 0) =
           (if even p
-                  then \<Sum>n\<le>p. ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n)
+                  then \<Sum>n\<le>p. ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
                   else 0)"
       by simp
     also have "... = (if even p
-                  then of_real ((-1) ^ (p div 2) / of_nat (fact p)) * (\<Sum>n\<le>p. (p choose n) *\<^sub>R (x^n) * y^(p-n))
+                  then of_real ((-1) ^ (p div 2) / (fact p)) * (\<Sum>n\<le>p. (p choose n) *\<^sub>R (x^n) * y^(p-n))
                   else 0)"
       by (auto simp: setsum_right_distrib field_simps scaleR_conv_of_real nonzero_of_real_divide)
     also have "... = cos_coeff p *\<^sub>R ((x + y) ^ p)"
       by (simp add: cos_coeff_def binomial_ring [of x y]  scaleR_conv_of_real real_of_nat_def atLeast0AtMost)
     finally have "(\<Sum>n\<le>p. if even p
-                  then ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n)
+                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
                   else 0) = cos_coeff p *\<^sub>R ((x + y) ^ p)" .
   }
   then have "(\<lambda>p. \<Sum>n\<le>p.
                if even p
-               then ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n)
+               then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
                else 0)
         = (\<lambda>p. cos_coeff p *\<^sub>R ((x+y)^p))"
         by simp
@@ -2656,15 +2668,15 @@
   { fix n p::nat
     assume "n\<le>p"
     then have "(if even p \<and> even n
-               then ((- 1) ^ (p div 2) * int (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) -
+               then ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) -
           (if even p \<and> odd n
-               then - ((- 1) ^ (p div 2) * int (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
+               then - ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
           = (if even p
-               then ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
+               then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
       by simp
   }
   then have "(\<lambda>p. \<Sum>n\<le>p. (if even p
-               then ((-1) ^ (p div 2) * (p choose n) / of_nat (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0))
+               then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0))
         sums (cos x * cos y - sin x * sin y)"
     using sums_diff [OF cos_x_cos_y [of x y] sin_x_sin_y [of x y]]
     by (simp add: setsum_subtractf [symmetric])
@@ -2701,7 +2713,6 @@
 by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel]
               suminf_minus sums_iff equation_minus_iff)
 
-
 lemma sin_cos_squared_add [simp]:
   fixes x :: "'a::{real_normed_field,banach}"
   shows "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1"
@@ -2787,7 +2798,7 @@
 
 lemma sin_paired:
   fixes x :: real
-  shows "(\<lambda>n. (- 1) ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) sums  sin x"
+  shows "(\<lambda>n. (- 1) ^ n / (fact (2 * n + 1)) * x ^ (2 * n + 1)) sums  sin x"
 proof -
   have "(\<lambda>n. \<Sum>k = n*2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
     apply (rule sums_group)
@@ -2801,7 +2812,7 @@
   assumes "0 < x" and "x < 2"
   shows "0 < sin x"
 proof -
-  let ?f = "\<lambda>n. \<Sum>k = n*2..<n*2+2. (- 1) ^ k / real (fact (2*k+1)) * x^(2*k+1)"
+  let ?f = "\<lambda>n::nat. \<Sum>k = n*2..<n*2+2. (- 1) ^ k / (fact (2*k+1)) * x^(2*k+1)"
   have pos: "\<forall>n. 0 < ?f n"
   proof
     fix n :: nat
@@ -2812,9 +2823,8 @@
     hence "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
       by (intro mult_strict_right_mono zero_less_power `0 < x`)
     thus "0 < ?f n"
-      by (simp del: mult_Suc,
-        simp add: less_divide_eq field_simps del: mult_Suc)
-  qed
+      by (simp add: real_of_nat_def divide_simps mult_ac del: mult_Suc)
+qed
   have sums: "?f sums sin x"
     by (rule sin_paired [THEN sums_group], simp)
   show "0 < sin x"
@@ -2830,7 +2840,7 @@
 
 lemma cos_paired:
   fixes x :: real
-  shows "(\<lambda>n. (- 1) ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x"
+  shows "(\<lambda>n. (- 1) ^ n / (fact (2 * n)) * x ^ (2 * n)) sums cos x"
 proof -
   have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
     apply (rule sums_group)
@@ -2860,29 +2870,28 @@
 lemma cos_two_less_zero [simp]:
   "cos 2 < (0::real)"
 proof -
-  note fact_Suc [simp del]
-  from cos_paired
-  have "(\<lambda>n. - ((- 1) ^ n / real (fact (2 * n)) * 2 ^ (2 * n))) sums - cos 2"
-    by (rule sums_minus)
-  then have *: "(\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n)))) sums - cos 2"
+  note fact.simps(2) [simp del]
+  from sums_minus [OF cos_paired]
+  have *: "(\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / fact (2 * n))) sums - cos (2::real)"
     by simp
-  then have **: "summable (\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
+  then have **: "summable (\<lambda>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
     by (rule sums_summable)
-  have "0 < (\<Sum>n<Suc (Suc (Suc 0)). - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
-    by (simp add: fact_num_eq_if_nat realpow_num_eq_if)
-  moreover have "(\<Sum>n<Suc (Suc (Suc 0)). - ((- 1) ^ n  * 2 ^ (2 * n) / real (fact (2 * n))))
-    < (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
+  have "0 < (\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
+    by (simp add: fact_num_eq_if realpow_num_eq_if)
+  moreover have "(\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n  * 2 ^ (2 * n) / (fact (2 * n))))
+    < (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
   proof -
     { fix d
-      have "4 * real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))
-       < real (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))) *
-           fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))"
-        by (simp only: real_of_nat_mult) (auto intro!: mult_strict_mono fact_less_mono_nat)
-      then have "4 * real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))
-        < real (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))))"
-        by (simp only: fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"])
-      then have "4 * inverse (real (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))))
-        < inverse (real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))"
+      have "(4::real) * (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))
+            < (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))) *
+              fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))"
+        unfolding real_of_nat_mult
+        by (rule mult_strict_mono) (simp_all add: fact_less_mono)
+      then have "(4::real) * (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))
+        <  (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))))"
+        by (simp only: fact.simps(2) [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"] real_of_nat_def of_nat_mult of_nat_fact)
+      then have "(4::real) * inverse (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))))
+        < inverse (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))"
         by (simp add: inverse_eq_divide less_divide_eq)
     }
     note *** = this
@@ -2890,9 +2899,9 @@
     from ** show ?thesis by (rule sumr_pos_lt_pair)
       (simp add: divide_inverse mult.assoc [symmetric] ***)
   qed
-  ultimately have "0 < (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
+  ultimately have "0 < (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
     by (rule order_less_trans)
-  moreover from * have "- cos 2 = (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
+  moreover from * have "- cos 2 = (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
     by (rule sums_unique)
   ultimately have "(0::real) < - cos 2" by simp
   then show ?thesis by simp
--- a/src/HOL/ex/Birthday_Paradox.thy	Tue Mar 10 16:12:35 2015 +0000
+++ b/src/HOL/ex/Birthday_Paradox.thy	Mon Mar 16 15:30:00 2015 +0000
@@ -51,7 +51,7 @@
     using insert unfolding div_mult1_eq[of "card T" "fact (card T - 1)"]
     by (simp add: fact_mod)
   also have "... = fact (card T) div fact (card T - card (insert x S))"
-    using insert by (simp add: fact_reduce_nat[of "card T"])
+    using insert by (simp add: fact_reduce[of "card T"])
   finally show ?case .
 qed