--- a/src/HOLCF/HOLCF.thy Mon May 23 23:01:27 2005 +0200
+++ b/src/HOLCF/HOLCF.thy Mon May 23 23:24:38 2005 +0200
@@ -9,11 +9,4 @@
imports Sprod Ssum Up Lift Discrete One Tr Domain
begin
-text {*
- Remove continuity lemmas from simp set, so continuity subgoals
- are handled by the @{text cont_proc} simplifier procedure.
-*}
-declare cont_lemmas1 [simp del]
-declare cont_lemmas_ext [simp del]
-
end
--- a/src/HOLCF/Lift.thy Mon May 23 23:01:27 2005 +0200
+++ b/src/HOLCF/Lift.thy Mon May 23 23:24:38 2005 +0200
@@ -293,11 +293,6 @@
\medskip Extension of @{text cont_tac} and installation of simplifier.
*}
-lemma cont2cont_CF1L_rev2: "(!!y. cont (%x. c1 x y)) ==> cont c1"
- apply (rule cont2cont_CF1L_rev)
- apply simp
- done
-
lemmas cont_lemmas_ext [simp] =
cont_flift1_arg cont_flift2_arg
cont_flift1_arg_and_not_arg cont2cont_CF1L_rev2
@@ -316,28 +311,6 @@
end;
*}
-text {*
- New continuity simproc by Brian Huffman.
- Given the term @{term "cont f"}, the procedure tries to
- construct the theorem @{prop "cont f == True"}. If this
- theorem cannot be completely solved by the introduction
- rules, then the procedure returns a conditional rewrite
- rule with the unsolved subgoals as premises.
-*}
-
-ML_setup {*
-local fun solve_cont sg _ t = let
- val tr = instantiate' [] [SOME (cterm_of sg t)] Eq_TrueI
- val tac = REPEAT_ALL_NEW cont_tac 1
- in Option.map fst (Seq.pull (tac tr))
- end;
-
-in val cont_proc = Simplifier.simproc (Theory.sign_of (the_context ()))
- "continuity" ["cont f"] solve_cont;
-end;
-Addsimprocs [cont_proc];
-*}
-
subsection {* flift1, flift2 *}