tuned theorem order
authorhaftmann
Mon, 26 May 2008 17:55:34 +0200
changeset 26993 b952df8d505b
parent 26992 4508f20818af
child 26994 197af793312c
tuned theorem order
src/HOL/Library/Product_ord.thy
--- a/src/HOL/Library/Product_ord.thy	Sat May 24 23:52:35 2008 +0200
+++ b/src/HOL/Library/Product_ord.thy	Mon May 26 17:55:34 2008 +0200
@@ -22,16 +22,16 @@
 
 end
 
+lemma [code, code func del]:
+  "(x1, y1) \<le> (x2, y2) \<longleftrightarrow> x1 < x2 \<or> x1 = x2 \<and> y1 \<le> y2"
+  "(x1, y1) < (x2, y2) \<longleftrightarrow> x1 < x2 \<or> x1 = x2 \<and> y1 < y2"
+  unfolding prod_le_def prod_less_def by simp_all
+
 lemma [code func]:
   "(x1\<Colon>'a\<Colon>{ord, eq}, y1) \<le> (x2, y2) \<longleftrightarrow> x1 < x2 \<or> x1 = x2 \<and> y1 \<le> y2"
   "(x1\<Colon>'a\<Colon>{ord, eq}, y1) < (x2, y2) \<longleftrightarrow> x1 < x2 \<or> x1 = x2 \<and> y1 < y2"
   unfolding prod_le_def prod_less_def by simp_all
 
-lemma [code]:
-  "(x1, y1) \<le> (x2, y2) \<longleftrightarrow> x1 < x2 \<or> x1 = x2 \<and> y1 \<le> y2"
-  "(x1, y1) < (x2, y2) \<longleftrightarrow> x1 < x2 \<or> x1 = x2 \<and> y1 < y2"
-  unfolding prod_le_def prod_less_def by simp_all
-
 instance * :: (order, order) order
   by default (auto simp: prod_le_def prod_less_def intro: order_less_trans)