--- a/src/HOL/IMP/Live_True.thy Fri Nov 23 22:16:52 2012 +0100
+++ b/src/HOL/IMP/Live_True.thy Fri Nov 23 23:07:58 2012 +0100
@@ -125,13 +125,6 @@
lemma cfinite[simp]: "finite(vars(c::com))"
by (induction c) auto
-text{* Some code generation magic: executing @{const lfp} *}
-
-(* FIXME mv into Library *)
-lemma lfp_while:
- assumes "mono f" and "!!X. X \<subseteq> C \<Longrightarrow> f X \<subseteq> C" and "finite C"
- shows "lfp f = while (\<lambda>A. f A \<noteq> A) f {}"
-unfolding while_def using assms by (rule lfp_the_while_option) blast
text{* Make @{const L} executable by replacing @{const lfp} with the @{const
while} combinator from theory @{theory While_Combinator}. The @{const while}
@@ -161,10 +154,11 @@
in while (\<lambda>A. f A \<noteq> A) f {})"
by(simp add: L_While del: L.simps(5))
-text{* Replace the equation for L WHILE by the executable @{thm[source] L_While_set}: *}
+text{* Replace the equation for @{text "L (WHILE \<dots>)"} by the executable @{thm[source] L_While_set}: *}
lemmas [code] = L.simps(1-4) L_While_set
text{* Sorry, this syntax is odd. *}
+text{* A test: *}
lemma "(let b = Less (N 0) (V ''y''); c = ''y'' ::= V ''x''; ''x'' ::= V ''z''
in L (WHILE b DO c) {''y''}) = {''x'', ''y'', ''z''}"
by eval
--- a/src/HOL/Library/While_Combinator.thy Fri Nov 23 22:16:52 2012 +0100
+++ b/src/HOL/Library/While_Combinator.thy Fri Nov 23 23:07:58 2012 +0100
@@ -169,4 +169,9 @@
show ?thesis by auto
qed
+lemma lfp_while:
+ assumes "mono f" and "!!X. X \<subseteq> C \<Longrightarrow> f X \<subseteq> C" and "finite C"
+ shows "lfp f = while (\<lambda>A. f A \<noteq> A) f {}"
+unfolding while_def using assms by (rule lfp_the_while_option) blast
+
end