misc changes to SOS by Philipp Meyer:
authorwenzelm
Thu, 06 Aug 2009 19:51:59 +0200
changeset 32332 bc5cec7b2be6
parent 32331 e60684ecaf3d
child 32333 d4cb904cc63c
misc changes to SOS by Philipp Meyer: CSDP_EXE as central setting; separate component src/HOL/Library/Sum_Of_Squares; misc tuning and rearrangement of neos_csdp_client; more robust treatment of shell paths; debugging depends on local flag; removed unused parts;
etc/components
etc/settings
lib/scripts/neos/NeosCSDPClient.py
lib/scripts/neos/config.py
src/HOL/IsaMakefile
src/HOL/Library/Sum_Of_Squares.thy
src/HOL/Library/Sum_Of_Squares/etc/settings
src/HOL/Library/Sum_Of_Squares/neos_csdp_client
src/HOL/Library/Sum_Of_Squares/sos_wrapper.ML
src/HOL/Library/Sum_Of_Squares/sum_of_squares.ML
src/HOL/Library/sos_wrapper.ML
src/HOL/Library/sum_of_squares.ML
--- a/etc/components	Wed Aug 05 17:10:10 2009 +0200
+++ b/etc/components	Thu Aug 06 19:51:59 2009 +0200
@@ -12,4 +12,5 @@
 src/Sequents
 #misc components
 src/HOL/Tools/ATP_Manager
+src/HOL/Library/Sum_Of_Squares
 
--- a/etc/settings	Wed Aug 05 17:10:10 2009 +0200
+++ b/etc/settings	Thu Aug 06 19:51:59 2009 +0200
@@ -222,7 +222,6 @@
 #JEDIT_JAVA_OPTIONS="-server -Xms128m -Xmx512m"
 JEDIT_OPTIONS="-reuseview -noserver -nobackground"
 
-
 ###
 ### External reasoning tools
 ###
@@ -274,6 +273,9 @@
 # Jerusat 1.3 (SAT Solver, cf. Isabelle/src/HOL/Tools/sat_solver.ML)
 #JERUSAT_HOME=/usr/local/bin
 
+# CSDP (SDP Solver, cf. Isabelle/src/HOL/Library/Sum_of_Squares/sos_wrapper.ML)
+#CSDP_EXE=csdp
+
 # For configuring HOL/Matrix/cplex
 # LP_SOLVER is the default solver. It can be changed during runtime via Cplex.set_solver.
 # First option: use the commercial cplex solver
--- a/lib/scripts/neos/NeosCSDPClient.py	Wed Aug 05 17:10:10 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,56 +0,0 @@
-#!/usr/bin/env python
-import sys
-import xmlrpclib
-import time
-import re
-
-from config import Variables
-
-if len(sys.argv) < 3 or len(sys.argv) > 3:
-  sys.stderr.write("Usage: NeosCSDPClient <input_filename> <output_filename>\n")
-  sys.exit(1)
-
-neos=xmlrpclib.Server("http://%s:%d" % (Variables.NEOS_HOST, Variables.NEOS_PORT))
-
-xmlfile = open(sys.argv[1],"r")
-xml_pre = "<document>\n<category>sdp</category>\n<solver>csdp</solver>\n<inputMethod>SPARSE_SDPA</inputMethod>\n<dat><![CDATA["
-xml_post = "]]></dat>\n</document>\n"
-xml = xml_pre
-buffer = 1
-while buffer:
-  buffer = xmlfile.read()
-  xml += buffer
-xmlfile.close()
-xml += xml_post
-
-(jobNumber,password) = neos.submitJob(xml)
-
-if jobNumber == 0:
-  sys.stdout.write("error submitting job: %s" % password)
-  sys.exit(-1)
-else:
-  sys.stdout.write("jobNumber = %d\tpassword = %s\n" % (jobNumber,password))
-
-offset=0
-status="Waiting"
-while status == "Running" or status=="Waiting":
-  time.sleep(1)
-  (msg,offset) = neos.getIntermediateResults(jobNumber,password,offset)
-  sys.stdout.write(msg.data)
-  status = neos.getJobStatus(jobNumber, password)
-
-msg = neos.getFinalResults(jobNumber, password).data
-result = msg.split("Solution:")
-
-sys.stdout.write(result[0])
-if len(result) > 1:
-  plain_msg = result[1].strip()
-  if plain_msg != "":
-    output = open(sys.argv[2],"w")
-    output.write(plain_msg)
-    output.close()
-    sys.exit(0)
-
-sys.exit(2)
-
-
--- a/lib/scripts/neos/config.py	Wed Aug 05 17:10:10 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,3 +0,0 @@
-class Variables:
-  NEOS_HOST="neos.mcs.anl.gov"
-  NEOS_PORT=3332
--- a/src/HOL/IsaMakefile	Wed Aug 05 17:10:10 2009 +0200
+++ b/src/HOL/IsaMakefile	Thu Aug 06 19:51:59 2009 +0200
@@ -316,49 +316,45 @@
 
 HOL-Library: HOL $(LOG)/HOL-Library.gz
 
-
 $(LOG)/HOL-Library.gz: $(OUT)/HOL Library/SetsAndFunctions.thy		\
-  Library/Abstract_Rat.thy \
-  Library/BigO.thy Library/ContNotDenum.thy Library/Efficient_Nat.thy	\
-  Library/Euclidean_Space.thy Library/Sum_Of_Squares.thy Library/positivstellensatz.ML	\
-  Library/Fset.thy  Library/Convex_Euclidean_Space.thy \
-  Library/sum_of_squares.ML Library/Glbs.thy Library/normarith.ML \
-  Library/Executable_Set.thy Library/Infinite_Set.thy			\
-  Library/FuncSet.thy Library/Permutations.thy Library/Determinants.thy\
-  Library/Bit.thy Library/Topology_Euclidean_Space.thy \
-  Library/Finite_Cartesian_Product.thy \
-  Library/FrechetDeriv.thy Library/Fraction_Field.thy\
-  Library/Fundamental_Theorem_Algebra.thy \
-  Library/Inner_Product.thy Library/Kleene_Algebra.thy Library/Lattice_Syntax.thy \
-  Library/Legacy_GCD.thy \
-  Library/Library.thy Library/List_Prefix.thy Library/List_Set.thy Library/State_Monad.thy	\
-  Library/Nat_Int_Bij.thy Library/Multiset.thy Library/Permutation.thy	\
-  Library/Primes.thy Library/Pocklington.thy Library/Quotient.thy	\
-  Library/Quicksort.thy Library/Nat_Infinity.thy Library/Word.thy	\
-  Library/README.html Library/Continuity.thy Library/Order_Relation.thy \
-  Library/Nested_Environment.thy Library/Ramsey.thy Library/Zorn.thy	\
-  Library/Library/ROOT.ML Library/Library/document/root.tex		\
-  Library/Library/document/root.bib Library/While_Combinator.thy	\
-  Library/Product_ord.thy Library/Char_nat.thy Library/Char_ord.thy	\
-  Library/Option_ord.thy Library/Sublist_Order.thy			\
-  Library/List_lexord.thy Library/Commutative_Ring.thy			\
-  Library/comm_ring.ML Library/Coinductive_List.thy			\
-  Library/AssocList.thy	Library/Formal_Power_Series.thy	\
-  Library/Binomial.thy Library/Eval_Witness.thy				\
-  Library/Code_Char.thy				\
+  Library/Abstract_Rat.thy Library/BigO.thy Library/ContNotDenum.thy	\
+  Library/Efficient_Nat.thy Library/Euclidean_Space.thy			\
+  Library/Sum_Of_Squares.thy Library/Sum_Of_Squares/sos_wrapper.ML	\
+  Library/Sum_Of_Squares/sum_of_squares.ML Library/Fset.thy		\
+  Library/Convex_Euclidean_Space.thy Library/Glbs.thy			\
+  Library/normarith.ML Library/Executable_Set.thy			\
+  Library/Infinite_Set.thy Library/FuncSet.thy				\
+  Library/Permutations.thy Library/Determinants.thy Library/Bit.thy	\
+  Library/Topology_Euclidean_Space.thy					\
+  Library/Finite_Cartesian_Product.thy Library/FrechetDeriv.thy		\
+  Library/Fraction_Field.thy Library/Fundamental_Theorem_Algebra.thy	\
+  Library/Inner_Product.thy Library/Kleene_Algebra.thy			\
+  Library/Lattice_Syntax.thy Library/Legacy_GCD.thy			\
+  Library/Library.thy Library/List_Prefix.thy Library/List_Set.thy	\
+  Library/State_Monad.thy Library/Nat_Int_Bij.thy Library/Multiset.thy	\
+  Library/Permutation.thy Library/Primes.thy Library/Pocklington.thy	\
+  Library/Quotient.thy Library/Quicksort.thy Library/Nat_Infinity.thy	\
+  Library/Word.thy Library/README.html Library/Continuity.thy		\
+  Library/Order_Relation.thy Library/Nested_Environment.thy		\
+  Library/Ramsey.thy Library/Zorn.thy Library/Library/ROOT.ML		\
+  Library/Library/document/root.tex Library/Library/document/root.bib	\
+  Library/While_Combinator.thy Library/Product_ord.thy			\
+  Library/Char_nat.thy Library/Char_ord.thy Library/Option_ord.thy	\
+  Library/Sublist_Order.thy Library/List_lexord.thy			\
+  Library/Commutative_Ring.thy Library/comm_ring.ML			\
+  Library/Coinductive_List.thy Library/AssocList.thy			\
+  Library/Formal_Power_Series.thy Library/Binomial.thy			\
+  Library/Eval_Witness.thy Library/Code_Char.thy			\
   Library/Code_Char_chr.thy Library/Code_Integer.thy			\
   Library/Mapping.thy Library/Numeral_Type.thy Library/Reflection.thy	\
   Library/Boolean_Algebra.thy Library/Countable.thy			\
   Library/Diagonalize.thy Library/RBT.thy Library/Univ_Poly.thy		\
-  Library/Poly_Deriv.thy \
-  Library/Polynomial.thy \
-  Library/Preorder.thy \
-  Library/Product_plus.thy \
-  Library/Product_Vector.thy \
-  Library/Tree.thy \
-  Library/Enum.thy Library/Float.thy $(SRC)/Tools/float.ML $(SRC)/HOL/Tools/float_arith.ML \
-  Library/reify_data.ML Library/reflection.ML \
-  Library/LaTeXsugar.thy Library/OptionalSugar.thy
+  Library/Poly_Deriv.thy Library/Polynomial.thy Library/Preorder.thy	\
+  Library/Product_plus.thy Library/Product_Vector.thy Library/Tree.thy	\
+  Library/Enum.thy Library/Float.thy $(SRC)/Tools/float.ML		\
+  $(SRC)/HOL/Tools/float_arith.ML Library/positivstellensatz.ML		\
+  Library/reify_data.ML Library/reflection.ML Library/LaTeXsugar.thy	\
+  Library/OptionalSugar.thy
 	@cd Library; $(ISABELLE_TOOL) usedir $(OUT)/HOL Library
 
 
--- a/src/HOL/Library/Sum_Of_Squares.thy	Wed Aug 05 17:10:10 2009 +0200
+++ b/src/HOL/Library/Sum_Of_Squares.thy	Thu Aug 06 19:51:59 2009 +0200
@@ -2,9 +2,9 @@
    Author:     Amine Chaieb, University of Cambridge
 
 In order to use the method sos, call it with (sos remote_csdp) to use the remote solver
-or install CSDP (https://projects.coin-or.org/Csdp/), put the executable csdp on your path,
-and call it with (sos csdp). By default, sos calls remote_csdp. This can take of the order
-of a minute for one sos call, because sos calls CSDP repeatedly.
+or install CSDP (https://projects.coin-or.org/Csdp/), set the Isabelle environment
+variable CSDP_EXE and call it with (sos csdp). By default, sos calls remote_csdp.
+This can take of the order of a minute for one sos call, because sos calls CSDP repeatedly.
 If you install CSDP locally, sos calls typically takes only a few seconds.
 
 *)
@@ -13,11 +13,19 @@
           multiplication and ordering using semidefinite programming*}
 
 theory Sum_Of_Squares
-  imports Complex_Main (* "~~/src/HOL/Decision_Procs/Dense_Linear_Order" *)
-  uses "positivstellensatz.ML" "sum_of_squares.ML" "sos_wrapper.ML"
-  begin
+imports Complex_Main (* "~~/src/HOL/Decision_Procs/Dense_Linear_Order" *)
+uses
+  ("positivstellensatz.ML")
+  ("Sum_Of_Squares/sum_of_squares.ML")
+  ("Sum_Of_Squares/sos_wrapper.ML")
+begin
 
 (* setup sos tactic *)
+
+use "positivstellensatz.ML"
+use "Sum_Of_Squares/sum_of_squares.ML"
+use "Sum_Of_Squares/sos_wrapper.ML"
+
 setup SosWrapper.setup
 
 text{* Tests -- commented since they work only when csdp is installed  or take too long with remote csdps *}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Sum_Of_Squares/etc/settings	Thu Aug 06 19:51:59 2009 +0200
@@ -0,0 +1,1 @@
+ISABELLE_SUM_OF_SQUARES="$COMPONENT"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Sum_Of_Squares/neos_csdp_client	Thu Aug 06 19:51:59 2009 +0200
@@ -0,0 +1,65 @@
+#!/usr/bin/env python
+import sys
+import xmlrpclib
+import time
+import re
+
+# Neos server config
+NEOS_HOST="neos.mcs.anl.gov"
+NEOS_PORT=3332
+
+if len(sys.argv) < 3 or len(sys.argv) > 3:
+  sys.stderr.write("Usage: NeosCSDPClient <input_filename> <output_filename>\n")
+  sys.exit(1)
+
+neos=xmlrpclib.Server("http://%s:%d" % (NEOS_HOST, NEOS_PORT))
+
+inputfile = open(sys.argv[1],"r")
+xml_pre = "<document>\n<category>sdp</category>\n<solver>csdp</solver>\n<inputMethod>SPARSE_SDPA</inputMethod>\n<dat><![CDATA["
+xml_post = "]]></dat>\n</document>\n"
+xml = xml_pre
+buffer = 1
+while buffer:
+  buffer = inputfile.read()
+  xml += buffer
+inputfile.close()
+xml += xml_post
+
+(jobNumber,password) = neos.submitJob(xml)
+
+if jobNumber == 0:
+  sys.stdout.write("error submitting job: %s" % password)
+  sys.exit(20)
+else:
+  sys.stdout.write("jobNumber = %d\tpassword = %s\n" % (jobNumber,password))
+
+offset=0
+messages = ""
+status="Waiting"
+while status == "Running" or status=="Waiting":
+  time.sleep(1)
+  (msg,offset) = neos.getIntermediateResults(jobNumber,password,offset)
+  messages += msg.data
+  sys.stdout.write(msg.data)
+  status = neos.getJobStatus(jobNumber, password)
+
+msg = neos.getFinalResults(jobNumber, password).data
+sys.stdout.write("---------- Begin CSDP Output -------------\n");
+sys.stdout.write(msg)
+
+# extract solution
+result = msg.split("Solution:")
+if len(result) > 1:
+  output = open(sys.argv[2],"w")
+  output.write(result[1].strip())
+  output.close()
+
+# extract return code
+p = re.compile(r"^Error: Command exited with non-zero status (\d+)$", re.MULTILINE)
+m = p.search(messages)
+if m:
+  sys.exit(int(m.group(1)))
+else:
+  sys.exit(0)
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Sum_Of_Squares/sos_wrapper.ML	Thu Aug 06 19:51:59 2009 +0200
@@ -0,0 +1,140 @@
+(* Title:      sos_wrapper.ML
+   Author:     Philipp Meyer, TU Muenchen
+
+Added functionality for sums of squares, e.g. calling a remote prover
+*)
+
+signature SOS_WRAPPER =
+sig
+
+  datatype prover_result = Success | Failure | Error
+
+  val setup: theory -> theory
+  val destdir: string ref
+end
+
+structure SosWrapper : SOS_WRAPPER=
+struct
+
+datatype prover_result = Success | Failure | Error
+fun str_of_result Success = "Success"
+  | str_of_result Failure = "Failure"
+  | str_of_result Error = "Error"
+
+(*** output control ***)
+
+fun debug s = if ! Sos.debugging then Output.writeln s else ()
+val write = Output.priority
+
+(*** calling provers ***)
+
+val destdir = ref ""
+
+fun filename dir name =
+  let
+    val probfile = Path.basic (name ^ serial_string ())
+    val dir_path = Path.explode dir
+  in
+    if dir = "" then
+      File.tmp_path probfile
+    else
+      if File.exists dir_path then
+        Path.append dir_path probfile
+      else
+        error ("No such directory: " ^ dir)
+  end
+
+fun run_solver name cmd find_failure input =
+  let
+    val _ = write ("Calling solver: " ^ name)
+
+    (* create input file *)
+    val dir = ! destdir
+    val input_file = filename dir "sos_in" 
+    val _ = File.write input_file input
+
+    (* call solver *)
+    val output_file = filename dir "sos_out"
+    val (output, rv) = system_out (
+      if File.exists cmd then space_implode " "
+        [File.shell_path cmd, File.platform_path input_file, File.platform_path output_file]
+      else error ("Bad executable: " ^ File.shell_path cmd))
+ 
+    (* read and analysize output *)
+    val (res, res_msg) = find_failure rv
+    val result = if File.exists output_file then File.read output_file else ""
+
+    (* remove temporary files *)
+    val _ = if dir = "" then
+        (File.rm input_file ; if File.exists output_file then File.rm output_file else ())
+        else ()
+
+    val _ = debug ("Solver output:\n" ^ output)
+
+    val _ = write (str_of_result res ^ ": " ^ res_msg)
+  in
+    case res of
+      Success => result
+    | Failure => raise Sos.Failure res_msg
+    | Error => error ("Prover failed: " ^ res_msg)
+  end
+
+(*** various provers ***)
+
+(* local csdp client *)
+
+fun find_csdp_failure rv =
+  case rv of
+    0 => (Success, "SDP solved")
+  | 1 => (Failure, "SDP is primal infeasible")
+  | 2 => (Failure, "SDP is dual infeasible")
+  | 3 => (Success, "SDP solved with reduced accuracy")
+  | 4 => (Failure, "Maximum iterations reached")
+  | 5 => (Failure, "Stuck at edge of primal feasibility")
+  | 6 => (Failure, "Stuck at edge of dual infeasibility")
+  | 7 => (Failure, "Lack of progress")
+  | 8 => (Failure, "X, Z, or O was singular")
+  | 9 => (Failure, "Detected NaN or Inf values")
+  | _ => (Error, "return code is " ^ string_of_int rv)
+
+val csdp = ("$CSDP_EXE", find_csdp_failure)
+
+(* remote neos server *)
+
+fun find_neos_failure rv =
+  case rv of
+    20 => (Error, "error submitting job")
+  | 21 => (Error, "no solution")
+  |  _ => find_csdp_failure rv
+
+val neos_csdp = ("$ISABELLE_SUM_OF_SQUARES/neos_csdp_client", find_neos_failure)
+
+(* save provers in table *)
+
+val provers =
+     Symtab.make [("remote_csdp", neos_csdp),("csdp", csdp)]
+
+fun get_prover name =
+  case Symtab.lookup provers name of
+    SOME prover => prover
+  | NONE => error ("unknown prover: " ^ name)
+
+fun call_solver name =
+  let
+    val (cmd, find_failure) = get_prover name
+  in
+    run_solver name (Path.explode cmd) find_failure
+  end
+
+(* setup tactic *)
+
+val def_solver = "remote_csdp"
+
+fun sos_solver name = (SIMPLE_METHOD' o (Sos.sos_tac (call_solver name))) 
+
+val sos_method = Scan.optional (Scan.lift OuterParse.xname) def_solver >> sos_solver
+
+val setup = Method.setup @{binding sos} sos_method
+  "Prove universal problems over the reals using sums of squares"
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Sum_Of_Squares/sum_of_squares.ML	Thu Aug 06 19:51:59 2009 +0200
@@ -0,0 +1,1512 @@
+(* Title:      sum_of_squares.ML
+   Authors:    Amine Chaieb, University of Cambridge
+               Philipp Meyer, TU Muenchen
+
+A tactic for proving nonlinear inequalities
+*)
+
+signature SOS =
+sig
+
+  val sos_tac : (string -> string) -> Proof.context -> int -> Tactical.tactic
+
+  val debugging : bool ref;
+  
+  exception Failure of string;
+end
+
+structure Sos : SOS = 
+struct
+
+val rat_0 = Rat.zero;
+val rat_1 = Rat.one;
+val rat_2 = Rat.two;
+val rat_10 = Rat.rat_of_int 10;
+val rat_1_2 = rat_1 // rat_2;
+val max = curry IntInf.max;
+val min = curry IntInf.min;
+
+val denominator_rat = Rat.quotient_of_rat #> snd #> Rat.rat_of_int;
+val numerator_rat = Rat.quotient_of_rat #> fst #> Rat.rat_of_int;
+fun int_of_rat a = 
+    case Rat.quotient_of_rat a of (i,1) => i | _ => error "int_of_rat: not an int";
+fun lcm_rat x y = Rat.rat_of_int (Integer.lcm (int_of_rat x) (int_of_rat y));
+
+fun rat_pow r i = 
+ let fun pow r i = 
+   if i = 0 then rat_1 else 
+   let val d = pow r (i div 2)
+   in d */ d */ (if i mod 2 = 0 then rat_1 else r)
+   end
+ in if i < 0 then pow (Rat.inv r) (~ i) else pow r i end;
+
+fun round_rat r = 
+ let val (a,b) = Rat.quotient_of_rat (Rat.abs r)
+     val d = a div b
+     val s = if r </ rat_0 then (Rat.neg o Rat.rat_of_int) else Rat.rat_of_int
+     val x2 = 2 * (a - (b * d))
+ in s (if x2 >= b then d + 1 else d) end
+
+val abs_rat = Rat.abs;
+val pow2 = rat_pow rat_2;
+val pow10 = rat_pow rat_10;
+
+val debugging = ref false;
+
+exception Sanity;
+
+exception Unsolvable;
+
+exception Failure of string;
+
+(* Turn a rational into a decimal string with d sig digits.                  *)
+
+local
+fun normalize y =
+  if abs_rat y </ (rat_1 // rat_10) then normalize (rat_10 */ y) - 1
+  else if abs_rat y >=/ rat_1 then normalize (y // rat_10) + 1
+  else 0 
+ in
+fun decimalize d x =
+  if x =/ rat_0 then "0.0" else
+  let 
+   val y = Rat.abs x
+   val e = normalize y
+   val z = pow10(~ e) */ y +/ rat_1
+   val k = int_of_rat (round_rat(pow10 d */ z))
+  in (if x </ rat_0 then "-0." else "0.") ^
+     implode(tl(explode(string_of_int k))) ^
+     (if e = 0 then "" else "e"^string_of_int e)
+  end
+end;
+
+(* Iterations over numbers, and lists indexed by numbers.                    *)
+
+fun itern k l f a =
+  case l of
+    [] => a
+  | h::t => itern (k + 1) t f (f h k a);
+
+fun iter (m,n) f a =
+  if n < m then a
+  else iter (m+1,n) f (f m a);
+
+(* The main types.                                                           *)
+
+fun strict_ord ord (x,y) = case ord (x,y) of LESS => LESS | _ => GREATER
+
+structure Intpairfunc = FuncFun(type key = int*int val ord = prod_ord int_ord int_ord);
+
+type vector = int* Rat.rat Intfunc.T;
+
+type matrix = (int*int)*(Rat.rat Intpairfunc.T);
+
+type monomial = int Ctermfunc.T;
+
+val cterm_ord = (fn (s,t) => TermOrd.fast_term_ord(term_of s, term_of t))
+ fun monomial_ord (m1,m2) = list_ord (prod_ord cterm_ord int_ord) (Ctermfunc.graph m1, Ctermfunc.graph m2)
+structure Monomialfunc = FuncFun(type key = monomial val ord = monomial_ord)
+
+type poly = Rat.rat Monomialfunc.T;
+
+ fun iszero (k,r) = r =/ rat_0;
+
+fun fold_rev2 f l1 l2 b =
+  case (l1,l2) of
+    ([],[]) => b
+  | (h1::t1,h2::t2) => f h1 h2 (fold_rev2 f t1 t2 b)
+  | _ => error "fold_rev2";
+ 
+(* Vectors. Conventionally indexed 1..n.                                     *)
+
+fun vector_0 n = (n,Intfunc.undefined):vector;
+
+fun dim (v:vector) = fst v;
+
+fun vector_const c n =
+  if c =/ rat_0 then vector_0 n
+  else (n,fold_rev (fn k => Intfunc.update (k,c)) (1 upto n) Intfunc.undefined) :vector;
+
+val vector_1 = vector_const rat_1;
+
+fun vector_cmul c (v:vector) =
+ let val n = dim v 
+ in if c =/ rat_0 then vector_0 n
+    else (n,Intfunc.mapf (fn x => c */ x) (snd v))
+ end;
+
+fun vector_neg (v:vector) = (fst v,Intfunc.mapf Rat.neg (snd v)) :vector;
+
+fun vector_add (v1:vector) (v2:vector) =
+ let val m = dim v1  
+     val n = dim v2 
+ in if m <> n then error "vector_add: incompatible dimensions"
+    else (n,Intfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd v1) (snd v2)) :vector 
+ end;
+
+fun vector_sub v1 v2 = vector_add v1 (vector_neg v2);
+
+fun vector_dot (v1:vector) (v2:vector) =
+ let val m = dim v1 
+     val n = dim v2 
+ in if m <> n then error "vector_dot: incompatible dimensions" 
+    else Intfunc.fold (fn (i,x) => fn a => x +/ a) 
+        (Intfunc.combine (curry op */) (fn x => x =/ rat_0) (snd v1) (snd v2)) rat_0
+ end;
+
+fun vector_of_list l =
+ let val n = length l 
+ in (n,fold_rev2 (curry Intfunc.update) (1 upto n) l Intfunc.undefined) :vector
+ end;
+
+(* Matrices; again rows and columns indexed from 1.                          *)
+
+fun matrix_0 (m,n) = ((m,n),Intpairfunc.undefined):matrix;
+
+fun dimensions (m:matrix) = fst m;
+
+fun matrix_const c (mn as (m,n)) =
+  if m <> n then error "matrix_const: needs to be square"
+  else if c =/ rat_0 then matrix_0 mn
+  else (mn,fold_rev (fn k => Intpairfunc.update ((k,k), c)) (1 upto n) Intpairfunc.undefined) :matrix;;
+
+val matrix_1 = matrix_const rat_1;
+
+fun matrix_cmul c (m:matrix) =
+ let val (i,j) = dimensions m 
+ in if c =/ rat_0 then matrix_0 (i,j)
+    else ((i,j),Intpairfunc.mapf (fn x => c */ x) (snd m))
+ end;
+
+fun matrix_neg (m:matrix) = 
+  (dimensions m, Intpairfunc.mapf Rat.neg (snd m)) :matrix;
+
+fun matrix_add (m1:matrix) (m2:matrix) =
+ let val d1 = dimensions m1 
+     val d2 = dimensions m2 
+ in if d1 <> d2 
+     then error "matrix_add: incompatible dimensions"
+    else (d1,Intpairfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd m1) (snd m2)) :matrix
+ end;;
+
+fun matrix_sub m1 m2 = matrix_add m1 (matrix_neg m2);
+
+fun row k (m:matrix) =
+ let val (i,j) = dimensions m 
+ in (j,
+   Intpairfunc.fold (fn ((i,j), c) => fn a => if i = k then Intfunc.update (j,c) a else a) (snd m) Intfunc.undefined ) : vector
+ end;
+
+fun column k (m:matrix) =
+  let val (i,j) = dimensions m 
+  in (i,
+   Intpairfunc.fold (fn ((i,j), c) => fn a => if j = k then Intfunc.update (i,c) a else a) (snd m)  Intfunc.undefined)
+   : vector
+ end;
+
+fun transp (m:matrix) =
+  let val (i,j) = dimensions m 
+  in
+  ((j,i),Intpairfunc.fold (fn ((i,j), c) => fn a => Intpairfunc.update ((j,i), c) a) (snd m) Intpairfunc.undefined) :matrix
+ end;
+
+fun diagonal (v:vector) =
+ let val n = dim v 
+ in ((n,n),Intfunc.fold (fn (i, c) => fn a => Intpairfunc.update ((i,i), c) a) (snd v) Intpairfunc.undefined) : matrix
+ end;
+
+fun matrix_of_list l =
+ let val m = length l 
+ in if m = 0 then matrix_0 (0,0) else
+   let val n = length (hd l) 
+   in ((m,n),itern 1 l (fn v => fn i => itern 1 v (fn c => fn j => Intpairfunc.update ((i,j), c))) Intpairfunc.undefined)
+   end
+ end;
+
+(* Monomials.                                                                *)
+
+fun monomial_eval assig (m:monomial) =
+  Ctermfunc.fold (fn (x, k) => fn a => a */ rat_pow (Ctermfunc.apply assig x) k)
+        m rat_1;
+val monomial_1 = (Ctermfunc.undefined:monomial);
+
+fun monomial_var x = Ctermfunc.onefunc (x, 1) :monomial;
+
+val (monomial_mul:monomial->monomial->monomial) =
+  Ctermfunc.combine (curry op +) (K false);
+
+fun monomial_pow (m:monomial) k =
+  if k = 0 then monomial_1
+  else Ctermfunc.mapf (fn x => k * x) m;
+
+fun monomial_divides (m1:monomial) (m2:monomial) =
+  Ctermfunc.fold (fn (x, k) => fn a => Ctermfunc.tryapplyd m2 x 0 >= k andalso a) m1 true;;
+
+fun monomial_div (m1:monomial) (m2:monomial) =
+ let val m = Ctermfunc.combine (curry op +) 
+   (fn x => x = 0) m1 (Ctermfunc.mapf (fn x => ~ x) m2) 
+ in if Ctermfunc.fold (fn (x, k) => fn a => k >= 0 andalso a) m true then m
+  else error "monomial_div: non-divisible"
+ end;
+
+fun monomial_degree x (m:monomial) = 
+  Ctermfunc.tryapplyd m x 0;;
+
+fun monomial_lcm (m1:monomial) (m2:monomial) =
+  fold_rev (fn x => Ctermfunc.update (x, max (monomial_degree x m1) (monomial_degree x m2)))
+          (gen_union (is_equal o  cterm_ord) (Ctermfunc.dom m1, Ctermfunc.dom m2)) (Ctermfunc.undefined :monomial);
+
+fun monomial_multidegree (m:monomial) = 
+ Ctermfunc.fold (fn (x, k) => fn a => k + a) m 0;;
+
+fun monomial_variables m = Ctermfunc.dom m;;
+
+(* Polynomials.                                                              *)
+
+fun eval assig (p:poly) =
+  Monomialfunc.fold (fn (m, c) => fn a => a +/ c */ monomial_eval assig m) p rat_0;
+
+val poly_0 = (Monomialfunc.undefined:poly);
+
+fun poly_isconst (p:poly) = 
+  Monomialfunc.fold (fn (m, c) => fn a => Ctermfunc.is_undefined m andalso a) p true;
+
+fun poly_var x = Monomialfunc.onefunc (monomial_var x,rat_1) :poly;
+
+fun poly_const c =
+  if c =/ rat_0 then poly_0 else Monomialfunc.onefunc(monomial_1, c);
+
+fun poly_cmul c (p:poly) =
+  if c =/ rat_0 then poly_0
+  else Monomialfunc.mapf (fn x => c */ x) p;
+
+fun poly_neg (p:poly) = (Monomialfunc.mapf Rat.neg p :poly);;
+
+fun poly_add (p1:poly) (p2:poly) =
+  (Monomialfunc.combine (curry op +/) (fn x => x =/ rat_0) p1 p2 :poly);
+
+fun poly_sub p1 p2 = poly_add p1 (poly_neg p2);
+
+fun poly_cmmul (c,m) (p:poly) =
+ if c =/ rat_0 then poly_0
+ else if Ctermfunc.is_undefined m 
+      then Monomialfunc.mapf (fn d => c */ d) p
+      else Monomialfunc.fold (fn (m', d) => fn a => (Monomialfunc.update (monomial_mul m m', c */ d) a)) p poly_0;
+
+fun poly_mul (p1:poly) (p2:poly) =
+  Monomialfunc.fold (fn (m, c) => fn a => poly_add (poly_cmmul (c,m) p2) a) p1 poly_0;
+
+fun poly_div (p1:poly) (p2:poly) =
+ if not(poly_isconst p2) 
+ then error "poly_div: non-constant" else
+ let val c = eval Ctermfunc.undefined p2 
+ in if c =/ rat_0 then error "poly_div: division by zero"
+    else poly_cmul (Rat.inv c) p1
+ end;
+
+fun poly_square p = poly_mul p p;
+
+fun poly_pow p k =
+ if k = 0 then poly_const rat_1
+ else if k = 1 then p
+ else let val q = poly_square(poly_pow p (k div 2)) in
+      if k mod 2 = 1 then poly_mul p q else q end;
+
+fun poly_exp p1 p2 =
+  if not(poly_isconst p2) 
+  then error "poly_exp: not a constant" 
+  else poly_pow p1 (int_of_rat (eval Ctermfunc.undefined p2));
+
+fun degree x (p:poly) = 
+ Monomialfunc.fold (fn (m,c) => fn a => max (monomial_degree x m) a) p 0;
+
+fun multidegree (p:poly) =
+  Monomialfunc.fold (fn (m, c) => fn a => max (monomial_multidegree m) a) p 0;
+
+fun poly_variables (p:poly) =
+  sort cterm_ord (Monomialfunc.fold_rev (fn (m, c) => curry (gen_union (is_equal o  cterm_ord)) (monomial_variables m)) p []);;
+
+(* Order monomials for human presentation.                                   *)
+
+fun cterm_ord (t,t') = TermOrd.fast_term_ord (term_of t, term_of t');
+
+val humanorder_varpow = prod_ord cterm_ord (rev_order o int_ord);
+
+local
+ fun ord (l1,l2) = case (l1,l2) of
+  (_,[]) => LESS 
+ | ([],_) => GREATER
+ | (h1::t1,h2::t2) => 
+   (case humanorder_varpow (h1, h2) of 
+     LESS => LESS
+   | EQUAL => ord (t1,t2)
+   | GREATER => GREATER)
+in fun humanorder_monomial m1 m2 = 
+ ord (sort humanorder_varpow (Ctermfunc.graph m1),
+  sort humanorder_varpow (Ctermfunc.graph m2))
+end;
+
+fun fold1 f l =  case l of
+   []     => error "fold1"
+ | [x]    => x
+ | (h::t) => f h (fold1 f t);
+
+(* Conversions to strings.                                                   *)
+
+fun string_of_vector min_size max_size (v:vector) =
+ let val n_raw = dim v 
+ in if n_raw = 0 then "[]" else
+  let 
+   val n = max min_size (min n_raw max_size) 
+   val xs = map (Rat.string_of_rat o (fn i => Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) 
+  in "[" ^ fold1 (fn s => fn t => s ^ ", " ^ t) xs ^
+  (if n_raw > max_size then ", ...]" else "]")
+  end
+ end;
+
+fun string_of_matrix max_size (m:matrix) =
+ let 
+  val (i_raw,j_raw) = dimensions m
+  val i = min max_size i_raw 
+  val j = min max_size j_raw
+  val rstr = map (fn k => string_of_vector j j (row k m)) (1 upto i) 
+ in "["^ fold1 (fn s => fn t => s^";\n "^t) rstr ^
+  (if j > max_size then "\n ...]" else "]")
+ end;
+
+fun string_of_term t = 
+ case t of
+   a$b => "("^(string_of_term a)^" "^(string_of_term b)^")"
+ | Abs x => 
+    let val (xn, b) = Term.dest_abs x
+    in "(\\"^xn^"."^(string_of_term b)^")"
+    end
+ | Const(s,_) => s
+ | Free (s,_) => s
+ | Var((s,_),_) => s
+ | _ => error "string_of_term";
+
+val string_of_cterm = string_of_term o term_of;
+
+fun string_of_varpow x k =
+  if k = 1 then string_of_cterm x 
+  else string_of_cterm x^"^"^string_of_int k;
+
+fun string_of_monomial m =
+ if Ctermfunc.is_undefined m then "1" else
+ let val vps = fold_rev (fn (x,k) => fn a => string_of_varpow x k :: a)
+  (sort humanorder_varpow (Ctermfunc.graph m)) [] 
+ in fold1 (fn s => fn t => s^"*"^t) vps
+ end;
+
+fun string_of_cmonomial (c,m) =
+ if Ctermfunc.is_undefined m then Rat.string_of_rat c
+ else if c =/ rat_1 then string_of_monomial m
+ else Rat.string_of_rat c ^ "*" ^ string_of_monomial m;;
+
+fun string_of_poly (p:poly) =
+ if Monomialfunc.is_undefined p then "<<0>>" else
+ let 
+  val cms = sort (fn ((m1,_),(m2,_)) => humanorder_monomial m1  m2) (Monomialfunc.graph p)
+  val s = fold (fn (m,c) => fn a =>
+             if c </ rat_0 then a ^ " - " ^ string_of_cmonomial(Rat.neg c,m)
+             else a ^ " + " ^ string_of_cmonomial(c,m))
+          cms ""
+  val s1 = String.substring (s, 0, 3)
+  val s2 = String.substring (s, 3, String.size s - 3) 
+ in "<<" ^(if s1 = " + " then s2 else "-"^s2)^">>"
+ end;
+
+(* Conversion from HOL term.                                                 *)
+
+local
+ val neg_tm = @{cterm "uminus :: real => _"}
+ val add_tm = @{cterm "op + :: real => _"}
+ val sub_tm = @{cterm "op - :: real => _"}
+ val mul_tm = @{cterm "op * :: real => _"}
+ val inv_tm = @{cterm "inverse :: real => _"}
+ val div_tm = @{cterm "op / :: real => _"}
+ val pow_tm = @{cterm "op ^ :: real => _"}
+ val zero_tm = @{cterm "0:: real"}
+ val is_numeral = can (HOLogic.dest_number o term_of)
+ fun is_comb t = case t of _$_ => true | _ => false
+ fun poly_of_term tm =
+  if tm aconvc zero_tm then poly_0
+  else if RealArith.is_ratconst tm 
+       then poly_const(RealArith.dest_ratconst tm)
+  else 
+  (let val (lop,r) = Thm.dest_comb tm
+   in if lop aconvc neg_tm then poly_neg(poly_of_term r)
+      else if lop aconvc inv_tm then
+       let val p = poly_of_term r 
+       in if poly_isconst p 
+          then poly_const(Rat.inv (eval Ctermfunc.undefined p))
+          else error "poly_of_term: inverse of non-constant polyomial"
+       end
+   else (let val (opr,l) = Thm.dest_comb lop
+         in 
+          if opr aconvc pow_tm andalso is_numeral r 
+          then poly_pow (poly_of_term l) ((snd o HOLogic.dest_number o term_of) r)
+          else if opr aconvc add_tm 
+           then poly_add (poly_of_term l) (poly_of_term r)
+          else if opr aconvc sub_tm 
+           then poly_sub (poly_of_term l) (poly_of_term r)
+          else if opr aconvc mul_tm 
+           then poly_mul (poly_of_term l) (poly_of_term r)
+          else if opr aconvc div_tm 
+           then let 
+                  val p = poly_of_term l 
+                  val q = poly_of_term r 
+                in if poly_isconst q then poly_cmul (Rat.inv (eval Ctermfunc.undefined q)) p
+                   else error "poly_of_term: division by non-constant polynomial"
+                end
+          else poly_var tm
+ 
+         end
+         handle CTERM ("dest_comb",_) => poly_var tm)
+   end
+   handle CTERM ("dest_comb",_) => poly_var tm)
+in
+val poly_of_term = fn tm =>
+ if type_of (term_of tm) = @{typ real} then poly_of_term tm
+ else error "poly_of_term: term does not have real type"
+end;
+
+(* String of vector (just a list of space-separated numbers).                *)
+
+fun sdpa_of_vector (v:vector) =
+ let 
+  val n = dim v
+  val strs = map (decimalize 20 o (fn i => Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) 
+ in fold1 (fn x => fn y => x ^ " " ^ y) strs ^ "\n"
+ end;
+
+fun increasing f ord (x,y) = ord (f x, f y);
+fun triple_int_ord ((a,b,c),(a',b',c')) = 
+ prod_ord int_ord (prod_ord int_ord int_ord) 
+    ((a,(b,c)),(a',(b',c')));
+structure Inttriplefunc = FuncFun(type key = int*int*int val ord = triple_int_ord);
+
+(* String for block diagonal matrix numbered k.                              *)
+
+fun sdpa_of_blockdiagonal k m =
+ let 
+  val pfx = string_of_int k ^" "
+  val ents =
+    Inttriplefunc.fold (fn ((b,i,j), c) => fn a => if i > j then a else ((b,i,j),c)::a) m []
+  val entss = sort (increasing fst triple_int_ord ) ents
+ in  fold_rev (fn ((b,i,j),c) => fn a =>
+     pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
+     " " ^ decimalize 20 c ^ "\n" ^ a) entss ""
+ end;
+
+(* String for a matrix numbered k, in SDPA sparse format.                    *)
+
+fun sdpa_of_matrix k (m:matrix) =
+ let 
+  val pfx = string_of_int k ^ " 1 "
+  val ms = Intpairfunc.fold (fn ((i,j), c) => fn  a => if i > j then a else ((i,j),c)::a) (snd m) [] 
+  val mss = sort (increasing fst (prod_ord int_ord int_ord)) ms 
+ in fold_rev (fn ((i,j),c) => fn a =>
+     pfx ^ string_of_int i ^ " " ^ string_of_int j ^
+     " " ^ decimalize 20 c ^ "\n" ^ a) mss ""
+ end;;
+
+(* ------------------------------------------------------------------------- *)
+(* String in SDPA sparse format for standard SDP problem:                    *)
+(*                                                                           *)
+(*    X = v_1 * [M_1] + ... + v_m * [M_m] - [M_0] must be PSD                *)
+(*    Minimize obj_1 * v_1 + ... obj_m * v_m                                 *)
+(* ------------------------------------------------------------------------- *)
+
+fun sdpa_of_problem obj mats =
+ let 
+  val m = length mats - 1
+  val (n,_) = dimensions (hd mats) 
+ in
+  string_of_int m ^ "\n" ^
+  "1\n" ^
+  string_of_int n ^ "\n" ^
+  sdpa_of_vector obj ^
+  fold_rev2 (fn k => fn m => fn a => sdpa_of_matrix (k - 1) m ^ a) (1 upto length mats) mats ""
+ end;
+
+fun index_char str chr pos =
+  if pos >= String.size str then ~1
+  else if String.sub(str,pos) = chr then pos
+  else index_char str chr (pos + 1);
+fun rat_of_quotient (a,b) = if b = 0 then rat_0 else Rat.rat_of_quotient (a,b);
+fun rat_of_string s = 
+ let val n = index_char s #"/" 0 in
+  if n = ~1 then s |> IntInf.fromString |> valOf |> Rat.rat_of_int
+  else 
+   let val SOME numer = IntInf.fromString(String.substring(s,0,n))
+       val SOME den = IntInf.fromString (String.substring(s,n+1,String.size s - n - 1))
+   in rat_of_quotient(numer, den)
+   end
+ end;
+
+fun isspace x = x = " " ;
+fun isnum x = x mem_string ["0","1","2","3","4","5","6","7","8","9"]
+
+(* More parser basics.                                                       *)
+
+local
+ open Scan
+in 
+ val word = this_string
+ fun token s =
+  repeat ($$ " ") |-- word s --| repeat ($$ " ")
+ val numeral = one isnum
+ val decimalint = bulk numeral >> (rat_of_string o implode)
+ val decimalfrac = bulk numeral
+    >> (fn s => rat_of_string(implode s) // pow10 (length s))
+ val decimalsig =
+    decimalint -- option (Scan.$$ "." |-- decimalfrac)
+    >> (fn (h,NONE) => h | (h,SOME x) => h +/ x)
+ fun signed prs =
+       $$ "-" |-- prs >> Rat.neg 
+    || $$ "+" |-- prs
+    || prs;
+
+fun emptyin def xs = if null xs then (def,xs) else Scan.fail xs
+
+ val exponent = ($$ "e" || $$ "E") |-- signed decimalint;
+
+ val decimal = signed decimalsig -- (emptyin rat_0|| exponent)
+    >> (fn (h, x) => h */ pow10 (int_of_rat x));
+end;
+
+ fun mkparser p s =
+  let val (x,rst) = p (explode s) 
+  in if null rst then x 
+     else error "mkparser: unparsed input"
+  end;;
+
+(* Parse back csdp output.                                                      *)
+
+ fun ignore inp = ((),[])
+ fun csdpoutput inp =  ((decimal -- Scan.bulk (Scan.$$ " " |-- Scan.option decimal) >> (fn (h,to) => map_filter I ((SOME h)::to))) --| ignore >> vector_of_list) inp
+ val parse_csdpoutput = mkparser csdpoutput
+
+(* Run prover on a problem in linear form.                       *)
+
+fun run_problem prover obj mats =
+  parse_csdpoutput (prover (sdpa_of_problem obj mats))
+
+(* Try some apparently sensible scaling first. Note that this is purely to   *)
+(* get a cleaner translation to floating-point, and doesn't affect any of    *)
+(* the results, in principle. In practice it seems a lot better when there   *)
+(* are extreme numbers in the original problem.                              *)
+
+  (* Version for (int*int) keys *)
+local
+  fun max_rat x y = if x </ y then y else x
+  fun common_denominator fld amat acc =
+      fld (fn (m,c) => fn a => lcm_rat (denominator_rat c) a) amat acc
+  fun maximal_element fld amat acc =
+    fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc 
+fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x
+                     in Real.fromLargeInt a / Real.fromLargeInt b end;
+in
+
+fun pi_scale_then solver (obj:vector)  mats =
+ let 
+  val cd1 = fold_rev (common_denominator Intpairfunc.fold) mats (rat_1)
+  val cd2 = common_denominator Intfunc.fold (snd obj)  (rat_1) 
+  val mats' = map (Intpairfunc.mapf (fn x => cd1 */ x)) mats
+  val obj' = vector_cmul cd2 obj
+  val max1 = fold_rev (maximal_element Intpairfunc.fold) mats' (rat_0)
+  val max2 = maximal_element Intfunc.fold (snd obj') (rat_0) 
+  val scal1 = pow2 (20 - trunc(Math.ln (float_of_rat max1) / Math.ln 2.0))
+  val scal2 = pow2 (20 - trunc(Math.ln (float_of_rat max2) / Math.ln 2.0)) 
+  val mats'' = map (Intpairfunc.mapf (fn x => x */ scal1)) mats'
+  val obj'' = vector_cmul scal2 obj' 
+ in solver obj'' mats''
+  end
+end;
+
+(* Try some apparently sensible scaling first. Note that this is purely to   *)
+(* get a cleaner translation to floating-point, and doesn't affect any of    *)
+(* the results, in principle. In practice it seems a lot better when there   *)
+(* are extreme numbers in the original problem.                              *)
+
+  (* Version for (int*int*int) keys *)
+local
+  fun max_rat x y = if x </ y then y else x
+  fun common_denominator fld amat acc =
+      fld (fn (m,c) => fn a => lcm_rat (denominator_rat c) a) amat acc
+  fun maximal_element fld amat acc =
+    fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc 
+fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x
+                     in Real.fromLargeInt a / Real.fromLargeInt b end;
+fun int_of_float x = (trunc x handle Overflow => 0 | Domain => 0)
+in
+
+fun tri_scale_then solver (obj:vector)  mats =
+ let 
+  val cd1 = fold_rev (common_denominator Inttriplefunc.fold) mats (rat_1)
+  val cd2 = common_denominator Intfunc.fold (snd obj)  (rat_1) 
+  val mats' = map (Inttriplefunc.mapf (fn x => cd1 */ x)) mats
+  val obj' = vector_cmul cd2 obj
+  val max1 = fold_rev (maximal_element Inttriplefunc.fold) mats' (rat_0)
+  val max2 = maximal_element Intfunc.fold (snd obj') (rat_0) 
+  val scal1 = pow2 (20 - int_of_float(Math.ln (float_of_rat max1) / Math.ln 2.0))
+  val scal2 = pow2 (20 - int_of_float(Math.ln (float_of_rat max2) / Math.ln 2.0)) 
+  val mats'' = map (Inttriplefunc.mapf (fn x => x */ scal1)) mats'
+  val obj'' = vector_cmul scal2 obj' 
+ in solver obj'' mats''
+  end
+end;
+
+(* Round a vector to "nice" rationals.                                       *)
+
+fun nice_rational n x = round_rat (n */ x) // n;;
+fun nice_vector n ((d,v) : vector) = 
+ (d, Intfunc.fold (fn (i,c) => fn a => 
+   let val y = nice_rational n c 
+   in if c =/ rat_0 then a 
+      else Intfunc.update (i,y) a end) v Intfunc.undefined):vector
+
+fun dest_ord f x = is_equal (f x);
+
+(* Stuff for "equations" ((int*int*int)->num functions).                         *)
+
+fun tri_equation_cmul c eq =
+  if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (fn d => c */ d) eq;
+
+fun tri_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2;
+
+fun tri_equation_eval assig eq =
+ let fun value v = Inttriplefunc.apply assig v 
+ in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0
+ end;
+
+(* Eliminate among linear equations: return unconstrained variables and      *)
+(* assignments for the others in terms of them. We give one pseudo-variable  *)
+(* "one" that's used for a constant term.                                    *)
+
+local
+  fun extract_first p l = case l of  (* FIXME : use find_first instead *)
+   [] => error "extract_first"
+ | h::t => if p h then (h,t) else
+          let val (k,s) = extract_first p t in (k,h::s) end
+fun eliminate vars dun eqs = case vars of 
+  [] => if forall Inttriplefunc.is_undefined eqs then dun
+        else raise Unsolvable
+ | v::vs =>
+  ((let 
+    val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs 
+    val a = Inttriplefunc.apply eq v
+    val eq' = tri_equation_cmul ((Rat.neg rat_1) // a) (Inttriplefunc.undefine v eq)
+    fun elim e =
+     let val b = Inttriplefunc.tryapplyd e v rat_0 
+     in if b =/ rat_0 then e else
+        tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq)
+     end
+   in eliminate vs (Inttriplefunc.update (v,eq') (Inttriplefunc.mapf elim dun)) (map elim oeqs)
+   end)
+  handle Failure _ => eliminate vs dun eqs)
+in
+fun tri_eliminate_equations one vars eqs =
+ let 
+  val assig = eliminate vars Inttriplefunc.undefined eqs
+  val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
+  in (distinct (dest_ord triple_int_ord) vs, assig)
+  end
+end;
+
+(* Eliminate all variables, in an essentially arbitrary order.               *)
+
+fun tri_eliminate_all_equations one =
+ let 
+  fun choose_variable eq =
+   let val (v,_) = Inttriplefunc.choose eq 
+   in if is_equal (triple_int_ord(v,one)) then
+      let val eq' = Inttriplefunc.undefine v eq 
+      in if Inttriplefunc.is_undefined eq' then error "choose_variable" 
+         else fst (Inttriplefunc.choose eq')
+      end
+    else v 
+   end
+  fun eliminate dun eqs = case eqs of 
+    [] => dun
+  | eq::oeqs =>
+    if Inttriplefunc.is_undefined eq then eliminate dun oeqs else
+    let val v = choose_variable eq
+        val a = Inttriplefunc.apply eq v
+        val eq' = tri_equation_cmul ((Rat.rat_of_int ~1) // a) 
+                   (Inttriplefunc.undefine v eq)
+        fun elim e =
+         let val b = Inttriplefunc.tryapplyd e v rat_0 
+         in if b =/ rat_0 then e 
+            else tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq)
+         end
+    in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.mapf elim dun)) 
+                 (map elim oeqs) 
+    end
+in fn eqs =>
+ let 
+  val assig = eliminate Inttriplefunc.undefined eqs
+  val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
+ in (distinct (dest_ord triple_int_ord) vs,assig)
+ end
+end;
+ 
+(* Solve equations by assigning arbitrary numbers.                           *)
+
+fun tri_solve_equations one eqs =
+ let 
+  val (vars,assigs) = tri_eliminate_all_equations one eqs
+  val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars 
+            (Inttriplefunc.onefunc(one, Rat.rat_of_int ~1))
+  val ass =
+    Inttriplefunc.combine (curry op +/) (K false) 
+    (Inttriplefunc.mapf (tri_equation_eval vfn) assigs) vfn 
+ in if forall (fn e => tri_equation_eval ass e =/ rat_0) eqs
+    then Inttriplefunc.undefine one ass else raise Sanity
+ end;
+
+(* Multiply equation-parametrized poly by regular poly and add accumulator.  *)
+
+fun tri_epoly_pmul p q acc =
+ Monomialfunc.fold (fn (m1, c) => fn a =>
+  Monomialfunc.fold (fn (m2,e) => fn b =>
+   let val m =  monomial_mul m1 m2
+       val es = Monomialfunc.tryapplyd b m Inttriplefunc.undefined 
+   in Monomialfunc.update (m,tri_equation_add (tri_equation_cmul c e) es) b 
+   end) q a) p acc ;
+
+(* Usual operations on equation-parametrized poly.                           *)
+
+fun tri_epoly_cmul c l =
+  if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (tri_equation_cmul c) l;;
+
+val tri_epoly_neg = tri_epoly_cmul (Rat.rat_of_int ~1);
+
+val tri_epoly_add = Inttriplefunc.combine tri_equation_add Inttriplefunc.is_undefined;
+
+fun tri_epoly_sub p q = tri_epoly_add p (tri_epoly_neg q);;
+
+(* Stuff for "equations" ((int*int)->num functions).                         *)
+
+fun pi_equation_cmul c eq =
+  if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (fn d => c */ d) eq;
+
+fun pi_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2;
+
+fun pi_equation_eval assig eq =
+ let fun value v = Inttriplefunc.apply assig v 
+ in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0
+ end;
+
+(* Eliminate among linear equations: return unconstrained variables and      *)
+(* assignments for the others in terms of them. We give one pseudo-variable  *)
+(* "one" that's used for a constant term.                                    *)
+
+local
+fun extract_first p l = case l of 
+   [] => error "extract_first"
+ | h::t => if p h then (h,t) else
+          let val (k,s) = extract_first p t in (k,h::s) end
+fun eliminate vars dun eqs = case vars of 
+  [] => if forall Inttriplefunc.is_undefined eqs then dun
+        else raise Unsolvable
+ | v::vs =>
+   let 
+    val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs 
+    val a = Inttriplefunc.apply eq v
+    val eq' = pi_equation_cmul ((Rat.neg rat_1) // a) (Inttriplefunc.undefine v eq)
+    fun elim e =
+     let val b = Inttriplefunc.tryapplyd e v rat_0 
+     in if b =/ rat_0 then e else
+        pi_equation_add e (pi_equation_cmul (Rat.neg b // a) eq)
+     end
+   in eliminate vs (Inttriplefunc.update (v,eq') (Inttriplefunc.mapf elim dun)) (map elim oeqs)
+   end
+  handle Failure _ => eliminate vs dun eqs
+in
+fun pi_eliminate_equations one vars eqs =
+ let 
+  val assig = eliminate vars Inttriplefunc.undefined eqs
+  val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
+  in (distinct (dest_ord triple_int_ord) vs, assig)
+  end
+end;
+
+(* Eliminate all variables, in an essentially arbitrary order.               *)
+
+fun pi_eliminate_all_equations one =
+ let 
+  fun choose_variable eq =
+   let val (v,_) = Inttriplefunc.choose eq 
+   in if is_equal (triple_int_ord(v,one)) then
+      let val eq' = Inttriplefunc.undefine v eq 
+      in if Inttriplefunc.is_undefined eq' then error "choose_variable" 
+         else fst (Inttriplefunc.choose eq')
+      end
+    else v 
+   end
+  fun eliminate dun eqs = case eqs of 
+    [] => dun
+  | eq::oeqs =>
+    if Inttriplefunc.is_undefined eq then eliminate dun oeqs else
+    let val v = choose_variable eq
+        val a = Inttriplefunc.apply eq v
+        val eq' = pi_equation_cmul ((Rat.rat_of_int ~1) // a) 
+                   (Inttriplefunc.undefine v eq)
+        fun elim e =
+         let val b = Inttriplefunc.tryapplyd e v rat_0 
+         in if b =/ rat_0 then e 
+            else pi_equation_add e (pi_equation_cmul (Rat.neg b // a) eq)
+         end
+    in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.mapf elim dun)) 
+                 (map elim oeqs) 
+    end
+in fn eqs =>
+ let 
+  val assig = eliminate Inttriplefunc.undefined eqs
+  val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
+ in (distinct (dest_ord triple_int_ord) vs,assig)
+ end
+end;
+ 
+(* Solve equations by assigning arbitrary numbers.                           *)
+
+fun pi_solve_equations one eqs =
+ let 
+  val (vars,assigs) = pi_eliminate_all_equations one eqs
+  val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars 
+            (Inttriplefunc.onefunc(one, Rat.rat_of_int ~1))
+  val ass =
+    Inttriplefunc.combine (curry op +/) (K false) 
+    (Inttriplefunc.mapf (pi_equation_eval vfn) assigs) vfn 
+ in if forall (fn e => pi_equation_eval ass e =/ rat_0) eqs
+    then Inttriplefunc.undefine one ass else raise Sanity
+ end;
+
+(* Multiply equation-parametrized poly by regular poly and add accumulator.  *)
+
+fun pi_epoly_pmul p q acc =
+ Monomialfunc.fold (fn (m1, c) => fn a =>
+  Monomialfunc.fold (fn (m2,e) => fn b =>
+   let val m =  monomial_mul m1 m2
+       val es = Monomialfunc.tryapplyd b m Inttriplefunc.undefined 
+   in Monomialfunc.update (m,pi_equation_add (pi_equation_cmul c e) es) b 
+   end) q a) p acc ;
+
+(* Usual operations on equation-parametrized poly.                           *)
+
+fun pi_epoly_cmul c l =
+  if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (pi_equation_cmul c) l;;
+
+val pi_epoly_neg = pi_epoly_cmul (Rat.rat_of_int ~1);
+
+val pi_epoly_add = Inttriplefunc.combine pi_equation_add Inttriplefunc.is_undefined;
+
+fun pi_epoly_sub p q = pi_epoly_add p (pi_epoly_neg q);;
+
+fun allpairs f l1 l2 =  fold_rev (fn x => (curry (op @)) (map (f x) l2)) l1 [];
+
+(* Hence produce the "relevant" monomials: those whose squares lie in the    *)
+(* Newton polytope of the monomials in the input. (This is enough according  *)
+(* to Reznik: "Extremal PSD forms with few terms", Duke Math. Journal,       *)
+(* vol 45, pp. 363--374, 1978.                                               *)
+(*                                                                           *)
+(* These are ordered in sort of decreasing degree. In particular the         *)
+(* constant monomial is last; this gives an order in diagonalization of the  *)
+(* quadratic form that will tend to display constants.                       *)
+
+(* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form.  *)
+
+local
+fun diagonalize n i m =
+ if Intpairfunc.is_undefined (snd m) then [] 
+ else
+  let val a11 = Intpairfunc.tryapplyd (snd m) (i,i) rat_0 
+  in if a11 </ rat_0 then raise Failure "diagonalize: not PSD"
+    else if a11 =/ rat_0 then
+          if Intfunc.is_undefined (snd (row i m)) then diagonalize n (i + 1) m
+          else raise Failure "diagonalize: not PSD ___ "
+    else
+     let 
+      val v = row i m
+      val v' = (fst v, Intfunc.fold (fn (i, c) => fn a => 
+       let val y = c // a11 
+       in if y = rat_0 then a else Intfunc.update (i,y) a 
+       end)  (snd v) Intfunc.undefined)
+      fun upt0 x y a = if y = rat_0 then a else Intpairfunc.update (x,y) a
+      val m' =
+      ((n,n),
+      iter (i+1,n) (fn j =>
+          iter (i+1,n) (fn k =>
+              (upt0 (j,k) (Intpairfunc.tryapplyd (snd m) (j,k) rat_0 -/ Intfunc.tryapplyd (snd v) j rat_0 */ Intfunc.tryapplyd (snd v') k rat_0))))
+          Intpairfunc.undefined)
+     in (a11,v')::diagonalize n (i + 1) m' 
+     end
+  end
+in
+fun diag m =
+ let 
+   val nn = dimensions m 
+   val n = fst nn 
+ in if snd nn <> n then error "diagonalize: non-square matrix" 
+    else diagonalize n 1 m
+ end
+end;
+
+fun gcd_rat a b = Rat.rat_of_int (Integer.gcd (int_of_rat a) (int_of_rat b));
+
+(* Adjust a diagonalization to collect rationals at the start.               *)
+  (* FIXME : Potentially polymorphic keys, but here only: integers!! *)
+local
+ fun upd0 x y a = if y =/ rat_0 then a else Intfunc.update(x,y) a;
+ fun mapa f (d,v) = 
+  (d, Intfunc.fold (fn (i,c) => fn a => upd0 i (f c) a) v Intfunc.undefined)
+ fun adj (c,l) =
+ let val a = 
+  Intfunc.fold (fn (i,c) => fn a => lcm_rat a (denominator_rat c)) 
+    (snd l) rat_1 //
+  Intfunc.fold (fn (i,c) => fn a => gcd_rat a (numerator_rat c)) 
+    (snd l) rat_0
+  in ((c // (a */ a)),mapa (fn x => a */ x) l)
+  end
+in
+fun deration d = if null d then (rat_0,d) else
+ let val d' = map adj d
+     val a = fold (lcm_rat o denominator_rat o fst) d' rat_1 //
+          fold (gcd_rat o numerator_rat o fst) d' rat_0 
+ in ((rat_1 // a),map (fn (c,l) => (a */ c,l)) d')
+ end
+end;
+ 
+(* Enumeration of monomials with given multidegree bound.                    *)
+
+fun enumerate_monomials d vars = 
+ if d < 0 then []
+ else if d = 0 then [Ctermfunc.undefined]
+ else if null vars then [monomial_1] else
+ let val alts =
+  map (fn k => let val oths = enumerate_monomials (d - k) (tl vars) 
+               in map (fn ks => if k = 0 then ks else Ctermfunc.update (hd vars, k) ks) oths end) (0 upto d) 
+ in fold1 (curry op @) alts
+ end;
+
+(* Enumerate products of distinct input polys with degree <= d.              *)
+(* We ignore any constant input polynomials.                                 *)
+(* Give the output polynomial and a record of how it was derived.            *)
+
+local
+ open RealArith
+in
+fun enumerate_products d pols =
+if d = 0 then [(poly_const rat_1,Rational_lt rat_1)] 
+else if d < 0 then [] else
+case pols of 
+   [] => [(poly_const rat_1,Rational_lt rat_1)]
+ | (p,b)::ps => 
+    let val e = multidegree p 
+    in if e = 0 then enumerate_products d ps else
+       enumerate_products d ps @
+       map (fn (q,c) => (poly_mul p q,Product(b,c)))
+         (enumerate_products (d - e) ps)
+    end
+end;
+
+(* Convert regular polynomial. Note that we treat (0,0,0) as -1.             *)
+
+fun epoly_of_poly p =
+  Monomialfunc.fold (fn (m,c) => fn a => Monomialfunc.update (m, Inttriplefunc.onefunc ((0,0,0), Rat.neg c)) a) p Monomialfunc.undefined;
+
+(* String for block diagonal matrix numbered k.                              *)
+
+fun sdpa_of_blockdiagonal k m =
+ let 
+  val pfx = string_of_int k ^" "
+  val ents =
+    Inttriplefunc.fold 
+      (fn ((b,i,j),c) => fn a => if i > j then a else ((b,i,j),c)::a) 
+      m [] 
+  val entss = sort (increasing fst triple_int_ord) ents 
+ in fold_rev (fn ((b,i,j),c) => fn a =>
+     pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
+     " " ^ decimalize 20 c ^ "\n" ^ a) entss ""
+ end;
+
+(* SDPA for problem using block diagonal (i.e. multiple SDPs)                *)
+
+fun sdpa_of_blockproblem nblocks blocksizes obj mats =
+ let val m = length mats - 1 
+ in
+  string_of_int m ^ "\n" ^
+  string_of_int nblocks ^ "\n" ^
+  (fold1 (fn s => fn t => s^" "^t) (map string_of_int blocksizes)) ^
+  "\n" ^
+  sdpa_of_vector obj ^
+  fold_rev2 (fn k => fn m => fn a => sdpa_of_blockdiagonal (k - 1) m ^ a)
+    (1 upto length mats) mats ""
+ end;
+
+(* Run prover on a problem in block diagonal form.                       *)
+
+fun run_blockproblem prover nblocks blocksizes obj mats=
+  parse_csdpoutput (prover (sdpa_of_blockproblem nblocks blocksizes obj mats))
+
+(* 3D versions of matrix operations to consider blocks separately.           *)
+
+val bmatrix_add = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0);
+fun bmatrix_cmul c bm =
+  if c =/ rat_0 then Inttriplefunc.undefined
+  else Inttriplefunc.mapf (fn x => c */ x) bm;
+
+val bmatrix_neg = bmatrix_cmul (Rat.rat_of_int ~1);
+fun bmatrix_sub m1 m2 = bmatrix_add m1 (bmatrix_neg m2);;
+
+(* Smash a block matrix into components.                                     *)
+
+fun blocks blocksizes bm =
+ map (fn (bs,b0) =>
+      let val m = Inttriplefunc.fold
+          (fn ((b,i,j),c) => fn a => if b = b0 then Intpairfunc.update ((i,j),c) a else a) bm Intpairfunc.undefined
+          val d = Intpairfunc.fold (fn ((i,j),c) => fn a => max a (max i j)) m 0 
+      in (((bs,bs),m):matrix) end)
+ (blocksizes ~~ (1 upto length blocksizes));;
+
+(* FIXME : Get rid of this !!!*)
+local
+  fun tryfind_with msg f [] = raise Failure msg
+    | tryfind_with msg f (x::xs) = (f x handle Failure s => tryfind_with s f xs);
+in 
+  fun tryfind f = tryfind_with "tryfind" f
+end
+
+(*
+fun tryfind f [] = error "tryfind"
+  | tryfind f (x::xs) = (f x handle ERROR _ => tryfind f xs);
+*)
+
+(* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *)
+
+ 
+local
+ open RealArith
+in
+fun real_positivnullstellensatz_general prover linf d eqs leqs pol =
+let 
+ val vars = fold_rev (curry (gen_union (op aconvc)) o poly_variables) 
+              (pol::eqs @ map fst leqs) []
+ val monoid = if linf then 
+      (poly_const rat_1,Rational_lt rat_1)::
+      (filter (fn (p,c) => multidegree p <= d) leqs)
+    else enumerate_products d leqs
+ val nblocks = length monoid
+ fun mk_idmultiplier k p =
+  let 
+   val e = d - multidegree p
+   val mons = enumerate_monomials e vars
+   val nons = mons ~~ (1 upto length mons) 
+  in (mons,
+      fold_rev (fn (m,n) => Monomialfunc.update(m,Inttriplefunc.onefunc((~k,~n,n),rat_1))) nons Monomialfunc.undefined)
+  end
+
+ fun mk_sqmultiplier k (p,c) =
+  let 
+   val e = (d - multidegree p) div 2
+   val mons = enumerate_monomials e vars
+   val nons = mons ~~ (1 upto length mons) 
+  in (mons, 
+      fold_rev (fn (m1,n1) =>
+       fold_rev (fn (m2,n2) => fn  a =>
+        let val m = monomial_mul m1 m2 
+        in if n1 > n2 then a else
+          let val c = if n1 = n2 then rat_1 else rat_2
+              val e = Monomialfunc.tryapplyd a m Inttriplefunc.undefined 
+          in Monomialfunc.update(m, tri_equation_add (Inttriplefunc.onefunc((k,n1,n2), c)) e) a
+          end
+        end)  nons)
+       nons Monomialfunc.undefined)
+  end
+
+  val (sqmonlist,sqs) = split_list (map2 mk_sqmultiplier (1 upto length monoid) monoid)
+  val (idmonlist,ids) =  split_list(map2 mk_idmultiplier (1 upto length eqs) eqs)
+  val blocksizes = map length sqmonlist
+  val bigsum =
+    fold_rev2 (fn p => fn q => fn a => tri_epoly_pmul p q a) eqs ids
+            (fold_rev2 (fn (p,c) => fn s => fn a => tri_epoly_pmul p s a) monoid sqs
+                     (epoly_of_poly(poly_neg pol)))
+  val eqns = Monomialfunc.fold (fn (m,e) => fn a => e::a) bigsum []
+  val (pvs,assig) = tri_eliminate_all_equations (0,0,0) eqns
+  val qvars = (0,0,0)::pvs
+  val allassig = fold_rev (fn v => Inttriplefunc.update(v,(Inttriplefunc.onefunc(v,rat_1)))) pvs assig
+  fun mk_matrix v =
+    Inttriplefunc.fold (fn ((b,i,j), ass) => fn m => 
+        if b < 0 then m else
+         let val c = Inttriplefunc.tryapplyd ass v rat_0
+         in if c = rat_0 then m else
+            Inttriplefunc.update ((b,j,i), c) (Inttriplefunc.update ((b,i,j), c) m)
+         end)
+          allassig Inttriplefunc.undefined
+  val diagents = Inttriplefunc.fold
+    (fn ((b,i,j), e) => fn a => if b > 0 andalso i = j then tri_equation_add e a else a)
+    allassig Inttriplefunc.undefined
+
+  val mats = map mk_matrix qvars
+  val obj = (length pvs,
+            itern 1 pvs (fn v => fn i => Intfunc.updatep iszero (i,Inttriplefunc.tryapplyd diagents v rat_0))
+                        Intfunc.undefined)
+  val raw_vec = if null pvs then vector_0 0
+                else tri_scale_then (run_blockproblem prover nblocks blocksizes) obj mats
+  fun int_element (d,v) i = Intfunc.tryapplyd v i rat_0
+  fun cterm_element (d,v) i = Ctermfunc.tryapplyd v i rat_0
+
+  fun find_rounding d =
+   let 
+    val _ = if !debugging 
+          then writeln ("Trying rounding with limit "^Rat.string_of_rat d ^ "\n") 
+          else ()
+    val vec = nice_vector d raw_vec
+    val blockmat = iter (1,dim vec)
+     (fn i => fn a => bmatrix_add (bmatrix_cmul (int_element vec i) (nth mats i)) a)
+     (bmatrix_neg (nth mats 0))
+    val allmats = blocks blocksizes blockmat 
+   in (vec,map diag allmats)
+   end
+  val (vec,ratdias) =
+    if null pvs then find_rounding rat_1
+    else tryfind find_rounding (map Rat.rat_of_int (1 upto 31) @
+                                map pow2 (5 upto 66))
+  val newassigs =
+    fold_rev (fn k => Inttriplefunc.update (nth pvs (k - 1), int_element vec k))
+           (1 upto dim vec) (Inttriplefunc.onefunc ((0,0,0), Rat.rat_of_int ~1))
+  val finalassigs =
+    Inttriplefunc.fold (fn (v,e) => fn a => Inttriplefunc.update(v, tri_equation_eval newassigs e) a) allassig newassigs
+  fun poly_of_epoly p =
+    Monomialfunc.fold (fn (v,e) => fn a => Monomialfunc.updatep iszero (v,tri_equation_eval finalassigs e) a)
+          p Monomialfunc.undefined
+  fun  mk_sos mons =
+   let fun mk_sq (c,m) =
+    (c,fold_rev (fn k=> fn a => Monomialfunc.updatep iszero (nth mons (k - 1), int_element m k) a)
+                 (1 upto length mons) Monomialfunc.undefined)
+   in map mk_sq
+   end
+  val sqs = map2 mk_sos sqmonlist ratdias
+  val cfs = map poly_of_epoly ids
+  val msq = filter (fn (a,b) => not (null b)) (map2 pair monoid sqs)
+  fun eval_sq sqs = fold_rev (fn (c,q) => poly_add (poly_cmul c (poly_mul q q))) sqs poly_0
+  val sanity =
+    fold_rev (fn ((p,c),s) => poly_add (poly_mul p (eval_sq s))) msq
+           (fold_rev2 (fn p => fn q => poly_add (poly_mul p q)) cfs eqs
+                    (poly_neg pol))
+
+in if not(Monomialfunc.is_undefined sanity) then raise Sanity else
+  (cfs,map (fn (a,b) => (snd a,b)) msq)
+ end
+
+
+end;
+
+(* Iterative deepening.                                                      *)
+
+fun deepen f n = 
+  (writeln ("Searching with depth limit " ^ string_of_int n) ; (f n handle Failure s => (writeln ("failed with message: " ^ s) ; deepen f (n+1))))
+
+(* The ordering so we can create canonical HOL polynomials.                  *)
+
+fun dest_monomial mon = sort (increasing fst cterm_ord) (Ctermfunc.graph mon);
+
+fun monomial_order (m1,m2) =
+ if Ctermfunc.is_undefined m2 then LESS 
+ else if Ctermfunc.is_undefined m1 then GREATER 
+ else
+  let val mon1 = dest_monomial m1 
+      val mon2 = dest_monomial m2
+      val deg1 = fold (curry op + o snd) mon1 0
+      val deg2 = fold (curry op + o snd) mon2 0 
+  in if deg1 < deg2 then GREATER else if deg1 > deg2 then LESS
+     else list_ord (prod_ord cterm_ord int_ord) (mon1,mon2)
+  end;
+
+fun dest_poly p =
+  map (fn (m,c) => (c,dest_monomial m))
+      (sort (prod_ord monomial_order (K EQUAL)) (Monomialfunc.graph p));
+
+(* Map back polynomials and their composites to HOL.                         *)
+
+local
+ open Thm Numeral RealArith
+in
+
+fun cterm_of_varpow x k = if k = 1 then x else capply (capply @{cterm "op ^ :: real => _"} x) 
+  (mk_cnumber @{ctyp nat} k)
+
+fun cterm_of_monomial m = 
+ if Ctermfunc.is_undefined m then @{cterm "1::real"} 
+ else 
+  let 
+   val m' = dest_monomial m
+   val vps = fold_rev (fn (x,k) => cons (cterm_of_varpow x k)) m' [] 
+  in fold1 (fn s => fn t => capply (capply @{cterm "op * :: real => _"} s) t) vps
+  end
+
+fun cterm_of_cmonomial (m,c) = if Ctermfunc.is_undefined m then cterm_of_rat c
+    else if c = Rat.one then cterm_of_monomial m
+    else capply (capply @{cterm "op *::real => _"} (cterm_of_rat c)) (cterm_of_monomial m);
+
+fun cterm_of_poly p = 
+ if Monomialfunc.is_undefined p then @{cterm "0::real"} 
+ else
+  let 
+   val cms = map cterm_of_cmonomial
+     (sort (prod_ord monomial_order (K EQUAL)) (Monomialfunc.graph p))
+  in fold1 (fn t1 => fn t2 => capply(capply @{cterm "op + :: real => _"} t1) t2) cms
+  end;
+
+fun cterm_of_sqterm (c,p) = Product(Rational_lt c,Square(cterm_of_poly p));
+
+fun cterm_of_sos (pr,sqs) = if null sqs then pr
+  else Product(pr,fold1 (fn a => fn b => Sum(a,b)) (map cterm_of_sqterm sqs));
+
+end
+
+(* Interface to HOL.                                                         *)
+local
+  open Thm Conv RealArith
+  val concl = dest_arg o cprop_of
+  fun simple_cterm_ord t u = TermOrd.fast_term_ord (term_of t, term_of u) = LESS
+in
+  (* FIXME: Replace tryfind by get_first !! *)
+fun real_nonlinear_prover prover ctxt =
+ let 
+  val {add,mul,neg,pow,sub,main} =  Normalizer.semiring_normalizers_ord_wrapper ctxt
+      (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) 
+     simple_cterm_ord
+  val (real_poly_add_conv,real_poly_mul_conv,real_poly_neg_conv,
+       real_poly_pow_conv,real_poly_sub_conv,real_poly_conv) = (add,mul,neg,pow,sub,main)
+  fun mainf  translator (eqs,les,lts) = 
+  let 
+   val eq0 = map (poly_of_term o dest_arg1 o concl) eqs
+   val le0 = map (poly_of_term o dest_arg o concl) les
+   val lt0 = map (poly_of_term o dest_arg o concl) lts
+   val eqp0 = map (fn (t,i) => (t,Axiom_eq i)) (eq0 ~~ (0 upto (length eq0 - 1)))
+   val lep0 = map (fn (t,i) => (t,Axiom_le i)) (le0 ~~ (0 upto (length le0 - 1)))
+   val ltp0 = map (fn (t,i) => (t,Axiom_lt i)) (lt0 ~~ (0 upto (length lt0 - 1)))
+   val (keq,eq) = List.partition (fn (p,_) => multidegree p = 0) eqp0
+   val (klep,lep) = List.partition (fn (p,_) => multidegree p = 0) lep0
+   val (kltp,ltp) = List.partition (fn (p,_) => multidegree p = 0) ltp0
+   fun trivial_axiom (p,ax) =
+    case ax of
+       Axiom_eq n => if eval Ctermfunc.undefined p <>/ Rat.zero then nth eqs n 
+                     else raise Failure "trivial_axiom: Not a trivial axiom"
+     | Axiom_le n => if eval Ctermfunc.undefined p </ Rat.zero then nth les n 
+                     else raise Failure "trivial_axiom: Not a trivial axiom"
+     | Axiom_lt n => if eval Ctermfunc.undefined p <=/ Rat.zero then nth lts n 
+                     else raise Failure "trivial_axiom: Not a trivial axiom"
+     | _ => error "trivial_axiom: Not a trivial axiom"
+   in 
+  ((let val th = tryfind trivial_axiom (keq @ klep @ kltp)
+   in fconv_rule (arg_conv (arg1_conv real_poly_conv) then_conv field_comp_conv) th end)
+   handle Failure _ => (
+    let 
+     val pol = fold_rev poly_mul (map fst ltp) (poly_const Rat.one)
+     val leq = lep @ ltp
+     fun tryall d =
+      let val e = multidegree pol
+          val k = if e = 0 then 0 else d div e
+          val eq' = map fst eq 
+      in tryfind (fn i => (d,i,real_positivnullstellensatz_general prover false d eq' leq
+                            (poly_neg(poly_pow pol i))))
+              (0 upto k)
+      end
+    val (d,i,(cert_ideal,cert_cone)) = deepen tryall 0
+    val proofs_ideal =
+      map2 (fn q => fn (p,ax) => Eqmul(cterm_of_poly q,ax)) cert_ideal eq
+    val proofs_cone = map cterm_of_sos cert_cone
+    val proof_ne = if null ltp then Rational_lt Rat.one else
+      let val p = fold1 (fn s => fn t => Product(s,t)) (map snd ltp) 
+      in  funpow i (fn q => Product(p,q)) (Rational_lt Rat.one)
+      end
+    val proof = fold1 (fn s => fn t => Sum(s,t))
+                           (proof_ne :: proofs_ideal @ proofs_cone) 
+    in writeln "Translating proof certificate to HOL";
+       translator (eqs,les,lts) proof
+    end))
+   end
+ in mainf end
+end
+
+fun C f x y = f y x;
+  (* FIXME : This is very bad!!!*)
+fun subst_conv eqs t = 
+ let 
+  val t' = fold (Thm.cabs o Thm.lhs_of) eqs t
+ in Conv.fconv_rule (Thm.beta_conversion true) (fold (C combination) eqs (reflexive t'))
+ end
+
+(* A wrapper that tries to substitute away variables first.                  *)
+
+local
+ open Thm Conv RealArith
+  fun simple_cterm_ord t u = TermOrd.fast_term_ord (term_of t, term_of u) = LESS
+ val concl = dest_arg o cprop_of
+ val shuffle1 = 
+   fconv_rule (rewr_conv @{lemma "(a + x == y) == (x == y - (a::real))" by (atomize (full)) (simp add: ring_simps) })
+ val shuffle2 =
+    fconv_rule (rewr_conv @{lemma "(x + a == y) ==  (x == y - (a::real))" by (atomize (full)) (simp add: ring_simps)})
+ fun substitutable_monomial fvs tm = case term_of tm of
+    Free(_,@{typ real}) => if not (member (op aconvc) fvs tm) then (Rat.one,tm) 
+                           else raise Failure "substitutable_monomial"
+  | @{term "op * :: real => _"}$c$(t as Free _ ) => 
+     if is_ratconst (dest_arg1 tm) andalso not (member (op aconvc) fvs (dest_arg tm))
+         then (dest_ratconst (dest_arg1 tm),dest_arg tm) else raise Failure "substitutable_monomial"
+  | @{term "op + :: real => _"}$s$t => 
+       (substitutable_monomial (add_cterm_frees (dest_arg tm) fvs) (dest_arg1 tm)
+        handle Failure _ => substitutable_monomial (add_cterm_frees (dest_arg1 tm) fvs) (dest_arg tm))
+  | _ => raise Failure "substitutable_monomial"
+
+  fun isolate_variable v th = 
+   let val w = dest_arg1 (cprop_of th)
+   in if v aconvc w then th
+      else case term_of w of
+           @{term "op + :: real => _"}$s$t => 
+              if dest_arg1 w aconvc v then shuffle2 th 
+              else isolate_variable v (shuffle1 th)
+          | _ => error "isolate variable : This should not happen?"
+   end 
+in
+
+fun real_nonlinear_subst_prover prover ctxt =
+ let 
+  val {add,mul,neg,pow,sub,main} =  Normalizer.semiring_normalizers_ord_wrapper ctxt
+      (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) 
+     simple_cterm_ord
+
+  val (real_poly_add_conv,real_poly_mul_conv,real_poly_neg_conv,
+       real_poly_pow_conv,real_poly_sub_conv,real_poly_conv) = (add,mul,neg,pow,sub,main)
+
+  fun make_substitution th =
+   let 
+    val (c,v) = substitutable_monomial [] (dest_arg1(concl th))
+    val th1 = Drule.arg_cong_rule (capply @{cterm "op * :: real => _"} (cterm_of_rat (Rat.inv c))) (mk_meta_eq th)
+    val th2 = fconv_rule (binop_conv real_poly_mul_conv) th1
+   in fconv_rule (arg_conv real_poly_conv) (isolate_variable v th2)
+   end
+   fun oprconv cv ct = 
+    let val g = Thm.dest_fun2 ct
+    in if g aconvc @{cterm "op <= :: real => _"} 
+         orelse g aconvc @{cterm "op < :: real => _"} 
+       then arg_conv cv ct else arg1_conv cv ct
+    end
+  fun mainf translator =
+   let 
+    fun substfirst(eqs,les,lts) =
+      ((let 
+           val eth = tryfind make_substitution eqs
+           val modify = fconv_rule (arg_conv (oprconv(subst_conv [eth] then_conv real_poly_conv)))
+       in  substfirst
+             (filter_out (fn t => (Thm.dest_arg1 o Thm.dest_arg o cprop_of) t 
+                                   aconvc @{cterm "0::real"}) (map modify eqs),
+                                   map modify les,map modify lts)
+       end)
+       handle Failure  _ => real_nonlinear_prover prover ctxt translator (rev eqs, rev les, rev lts))
+    in substfirst
+   end
+
+
+ in mainf
+ end
+
+(* Overall function. *)
+
+fun real_sos prover ctxt t = gen_prover_real_arith ctxt (real_nonlinear_subst_prover prover ctxt) t;
+end;
+
+(* A tactic *)
+fun strip_all ct = 
+ case term_of ct of 
+  Const("all",_) $ Abs (xn,xT,p) => 
+   let val (a,(v,t')) = (apsnd (Thm.dest_abs (SOME xn)) o Thm.dest_comb) ct
+   in apfst (cons v) (strip_all t')
+   end
+| _ => ([],ct)
+
+fun core_sos_conv prover ctxt t = Drule.arg_cong_rule @{cterm Trueprop} (real_sos prover ctxt (Thm.dest_arg t) RS @{thm Eq_TrueI})
+
+val known_sos_constants = 
+  [@{term "op ==>"}, @{term "Trueprop"}, 
+   @{term "op -->"}, @{term "op &"}, @{term "op |"}, 
+   @{term "Not"}, @{term "op = :: bool => _"}, 
+   @{term "All :: (real => _) => _"}, @{term "Ex :: (real => _) => _"}, 
+   @{term "op = :: real => _"}, @{term "op < :: real => _"}, 
+   @{term "op <= :: real => _"}, 
+   @{term "op + :: real => _"}, @{term "op - :: real => _"}, 
+   @{term "op * :: real => _"}, @{term "uminus :: real => _"}, 
+   @{term "op / :: real => _"}, @{term "inverse :: real => _"},
+   @{term "op ^ :: real => _"}, @{term "abs :: real => _"}, 
+   @{term "min :: real => _"}, @{term "max :: real => _"},
+   @{term "0::real"}, @{term "1::real"}, @{term "number_of :: int => real"},
+   @{term "number_of :: int => nat"},
+   @{term "Int.Bit0"}, @{term "Int.Bit1"}, 
+   @{term "Int.Pls"}, @{term "Int.Min"}];
+
+fun check_sos kcts ct = 
+ let
+  val t = term_of ct
+  val _ = if not (null (Term.add_tfrees t []) 
+                  andalso null (Term.add_tvars t [])) 
+          then error "SOS: not sos. Additional type varables" else ()
+  val fs = Term.add_frees t []
+  val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) fs 
+          then error "SOS: not sos. Variables with type not real" else ()
+  val vs = Term.add_vars t []
+  val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) fs 
+          then error "SOS: not sos. Variables with type not real" else ()
+  val ukcs = subtract (fn (t,p) => Const p aconv t) kcts (Term.add_consts t [])
+  val _ = if  null ukcs then () 
+              else error ("SOSO: Unknown constants in Subgoal:" ^ commas (map fst ukcs))
+in () end
+
+fun core_sos_tac prover ctxt = CSUBGOAL (fn (ct, i) => 
+  let val _ = check_sos known_sos_constants ct
+      val (avs, p) = strip_all ct
+      val th = standard (fold_rev forall_intr avs (real_sos prover ctxt (Thm.dest_arg p)))
+  in rtac th i end);
+
+fun default_SOME f NONE v = SOME v
+  | default_SOME f (SOME v) _ = SOME v;
+
+fun lift_SOME f NONE a = f a
+  | lift_SOME f (SOME a) _ = SOME a;
+
+
+local
+ val is_numeral = can (HOLogic.dest_number o term_of)
+in
+fun get_denom b ct = case term_of ct of
+  @{term "op / :: real => _"} $ _ $ _ => 
+     if is_numeral (Thm.dest_arg ct) then get_denom b (Thm.dest_arg1 ct)
+     else default_SOME (get_denom b) (get_denom b (Thm.dest_arg ct))   (Thm.dest_arg ct, b)
+ | @{term "op < :: real => _"} $ _ $ _ => lift_SOME (get_denom true) (get_denom true (Thm.dest_arg ct)) (Thm.dest_arg1 ct)
+ | @{term "op <= :: real => _"} $ _ $ _ => lift_SOME (get_denom true) (get_denom true (Thm.dest_arg ct)) (Thm.dest_arg1 ct)
+ | _ $ _ => lift_SOME (get_denom b) (get_denom b (Thm.dest_fun ct)) (Thm.dest_arg ct)
+ | _ => NONE
+end;
+
+fun elim_one_denom_tac ctxt = 
+CSUBGOAL (fn (P,i) => 
+ case get_denom false P of 
+   NONE => no_tac
+ | SOME (d,ord) => 
+     let 
+      val ss = simpset_of ctxt addsimps @{thms field_simps} 
+               addsimps [@{thm nonzero_power_divide}, @{thm power_divide}]
+      val th = instantiate' [] [SOME d, SOME (Thm.dest_arg P)] 
+         (if ord then @{lemma "(d=0 --> P) & (d>0 --> P) & (d<(0::real) --> P) ==> P" by auto}
+          else @{lemma "(d=0 --> P) & (d ~= (0::real) --> P) ==> P" by blast})
+     in (rtac th i THEN Simplifier.asm_full_simp_tac ss i) end);
+
+fun elim_denom_tac ctxt i = REPEAT (elim_one_denom_tac ctxt i);
+
+fun sos_tac prover ctxt = ObjectLogic.full_atomize_tac THEN' elim_denom_tac ctxt THEN' core_sos_tac prover ctxt
+
+
+end;
--- a/src/HOL/Library/sos_wrapper.ML	Wed Aug 05 17:10:10 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,158 +0,0 @@
-(* Title:      sos_wrapper.ML
-   Author:     Philipp Meyer, TU Muenchen
-
-Added functionality for sums of squares, e.g. calling a remote prover
-*)
-
-signature SOS_WRAPPER =
-sig
-
-  datatype prover_result = Success | PartialSuccess | Failure | Error
-  type prover = string * (int -> string -> prover_result * string)
-
-  val setup: theory -> theory
-end
-
-structure SosWrapper : SOS_WRAPPER=
-struct
-
-datatype prover_result = Success | PartialSuccess | Failure | Error
-type prover =
-  string *                           (* command name *)
-  (int -> string ->prover_result * string)   (* function to find failure from return value and output *)
-
-
-(*** output control ***)
-
-fun debug s = Output.debug (fn () => s)
-val answer = Output.priority
-val write = Output.writeln
-
-(*** calling provers ***)
-
-val destdir = ref ""
-
-fun filename dir name =
-  let
-    val probfile = Path.basic (name ^ serial_string ())
-  in
-    if dir = "" then
-      File.tmp_path probfile
-    else
-      if File.exists (Path.explode dir) then
-        Path.append  (Path.explode dir) probfile
-      else
-        error ("No such directory: " ^ dir)
-  end
-
-fun is_success Success = true
-  | is_success PartialSuccess = true
-  | is_success _ = false
-fun str_of_status Success = "Success"
-  | str_of_status PartialSuccess = "Partial Success"
-  | str_of_status Failure= "Failure"
-  | str_of_status Error= "Error"
-
-fun run_solver name (cmd, find_failure) input =
-  let
-    val _ = answer ("Calling solver: " ^ name)
-
-    (* create input file *)
-    val dir = ! destdir
-    val input_file = filename dir "sos_in" 
-    val _ = File.write input_file input
-
-    val _ = debug "Solver input:"
-    val _ = debug input
-
-    (* call solver *)
-    val output_file = filename dir "sos_out"
-    val (output, rv) = system_out (cmd ^ " " ^ (Path.implode input_file) ^
-                         " " ^ (Path.implode output_file))
- 
-    (* read and analysize output *)
-    val (res, res_msg) = find_failure rv output
-    val result = if is_success res then File.read output_file else ""
-
-    (* remove temporary files *)
-    val _ = if dir = "" then (File.rm input_file ; if File.exists output_file then File.rm output_file else ()) else ()
-
-    val _ = debug "Solver output:"
-    val _ = debug output
-    val _ = debug "Solver result:"
-    val _ = debug result
-
-    val _ = answer (str_of_status res ^ ": " ^ res_msg)
-
-  in
-    if is_success res then
-      result
-    else
-      error ("Prover failed: " ^ res_msg)
-  end
-
-(*** various provers ***)
-
-(* local csdp client *)
-
-fun find_csdp_run_failure rv _ =
-  case rv of
-    0 => (Success, "SDP solved")
-  | 1 => (Failure, "SDP is primal infeasible")
-  | 2 => (Failure, "SDP is dual infeasible")
-  | 3 => (PartialSuccess, "SDP solved with reduced accuracy")
-  | _ => (Failure, "return code is " ^ string_of_int rv)
-
-val csdp = ("csdp", find_csdp_run_failure)
-
-(* remote neos server *)
-
-fun find_neos_failure rv output =
-  if rv = 2 then (Failure, "no solution") else
-  if rv <> 0 then (Error, "return code is " ^ string_of_int rv) else
-  let
-    fun find_success str =
-      if String.isPrefix "Success: " str then
-        SOME (Success, unprefix "Success: " str)
-      else if String.isPrefix "Partial Success: " str then
-        SOME (PartialSuccess, unprefix "Partial Success: " str)
-      else if String.isPrefix "Failure: " str then
-        SOME (Failure, unprefix "Failure: " str)
-      else
-        NONE 
-    val exit_line = get_first find_success (split_lines output)
-  in
-    case exit_line of
-      SOME (status, msg) =>
-        if String.isPrefix "SDP solved" msg then
-          (status, msg)
-        else (Failure, msg)
-    | NONE => (Failure, "no success")
-  end
-
-val neos_csdp = ("$ISABELLE_HOME/lib/scripts/neos/NeosCSDPClient.py", find_neos_failure)
-
-(* save provers in table *)
-
-val provers =
-     Symtab.make [("remote_csdp", neos_csdp),("csdp", csdp)]
-
-fun get_prover name =
-  case Symtab.lookup provers name of
-    SOME prover => prover
-  | NONE => error ("unknown prover: " ^ name)
-
-fun call_solver name =
-    run_solver name (get_prover name)
-
-(* setup tactic *)
-
-val def_solver = "remote_csdp"
-
-fun sos_solver name = (SIMPLE_METHOD' o (Sos.sos_tac (call_solver name))) 
-
-val sos_method = Scan.optional (Scan.lift OuterParse.xname) def_solver >> sos_solver
-
-val setup = Method.setup @{binding sos} sos_method "Prove universal problems over the reals using sums of squares"
-
-end
--- a/src/HOL/Library/sum_of_squares.ML	Wed Aug 05 17:10:10 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1754 +0,0 @@
-(* Title:      sum_of_squares.ML
-   Authors:    Amine Chaieb, University of Cambridge
-               Philipp Meyer, TU Muenchen
-
-A tactic for proving nonlinear inequalities
-*)
-
-signature SOS =
-sig
-
-  val sos_tac : (string -> string) -> Proof.context -> int -> Tactical.tactic
-
-end
-
-structure Sos : SOS = 
-struct
-
-
-val rat_0 = Rat.zero;
-val rat_1 = Rat.one;
-val rat_2 = Rat.two;
-val rat_10 = Rat.rat_of_int 10;
-val rat_1_2 = rat_1 // rat_2;
-val max = curry IntInf.max;
-val min = curry IntInf.min;
-
-val denominator_rat = Rat.quotient_of_rat #> snd #> Rat.rat_of_int;
-val numerator_rat = Rat.quotient_of_rat #> fst #> Rat.rat_of_int;
-fun int_of_rat a = 
-    case Rat.quotient_of_rat a of (i,1) => i | _ => error "int_of_rat: not an int";
-fun lcm_rat x y = Rat.rat_of_int (Integer.lcm (int_of_rat x) (int_of_rat y));
-
-fun rat_pow r i = 
- let fun pow r i = 
-   if i = 0 then rat_1 else 
-   let val d = pow r (i div 2)
-   in d */ d */ (if i mod 2 = 0 then rat_1 else r)
-   end
- in if i < 0 then pow (Rat.inv r) (~ i) else pow r i end;
-
-fun round_rat r = 
- let val (a,b) = Rat.quotient_of_rat (Rat.abs r)
-     val d = a div b
-     val s = if r </ rat_0 then (Rat.neg o Rat.rat_of_int) else Rat.rat_of_int
-     val x2 = 2 * (a - (b * d))
- in s (if x2 >= b then d + 1 else d) end
-
-val abs_rat = Rat.abs;
-val pow2 = rat_pow rat_2;
-val pow10 = rat_pow rat_10;
-
-val debugging = ref false;
-
-exception Sanity;
-
-exception Unsolvable;
-
-(* Turn a rational into a decimal string with d sig digits.                  *)
-
-local
-fun normalize y =
-  if abs_rat y </ (rat_1 // rat_10) then normalize (rat_10 */ y) - 1
-  else if abs_rat y >=/ rat_1 then normalize (y // rat_10) + 1
-  else 0 
- in
-fun decimalize d x =
-  if x =/ rat_0 then "0.0" else
-  let 
-   val y = Rat.abs x
-   val e = normalize y
-   val z = pow10(~ e) */ y +/ rat_1
-   val k = int_of_rat (round_rat(pow10 d */ z))
-  in (if x </ rat_0 then "-0." else "0.") ^
-     implode(tl(explode(string_of_int k))) ^
-     (if e = 0 then "" else "e"^string_of_int e)
-  end
-end;
-
-(* Iterations over numbers, and lists indexed by numbers.                    *)
-
-fun itern k l f a =
-  case l of
-    [] => a
-  | h::t => itern (k + 1) t f (f h k a);
-
-fun iter (m,n) f a =
-  if n < m then a
-  else iter (m+1,n) f (f m a);
-
-(* The main types.                                                           *)
-
-fun strict_ord ord (x,y) = case ord (x,y) of LESS => LESS | _ => GREATER
-
-structure Intpairfunc = FuncFun(type key = int*int val ord = prod_ord int_ord int_ord);
-
-type vector = int* Rat.rat Intfunc.T;
-
-type matrix = (int*int)*(Rat.rat Intpairfunc.T);
-
-type monomial = int Ctermfunc.T;
-
-val cterm_ord = (fn (s,t) => TermOrd.fast_term_ord(term_of s, term_of t))
- fun monomial_ord (m1,m2) = list_ord (prod_ord cterm_ord int_ord) (Ctermfunc.graph m1, Ctermfunc.graph m2)
-structure Monomialfunc = FuncFun(type key = monomial val ord = monomial_ord)
-
-type poly = Rat.rat Monomialfunc.T;
-
- fun iszero (k,r) = r =/ rat_0;
-
-fun fold_rev2 f l1 l2 b =
-  case (l1,l2) of
-    ([],[]) => b
-  | (h1::t1,h2::t2) => f h1 h2 (fold_rev2 f t1 t2 b)
-  | _ => error "fold_rev2";
- 
-(* Vectors. Conventionally indexed 1..n.                                     *)
-
-fun vector_0 n = (n,Intfunc.undefined):vector;
-
-fun dim (v:vector) = fst v;
-
-fun vector_const c n =
-  if c =/ rat_0 then vector_0 n
-  else (n,fold_rev (fn k => Intfunc.update (k,c)) (1 upto n) Intfunc.undefined) :vector;
-
-val vector_1 = vector_const rat_1;
-
-fun vector_cmul c (v:vector) =
- let val n = dim v 
- in if c =/ rat_0 then vector_0 n
-    else (n,Intfunc.mapf (fn x => c */ x) (snd v))
- end;
-
-fun vector_neg (v:vector) = (fst v,Intfunc.mapf Rat.neg (snd v)) :vector;
-
-fun vector_add (v1:vector) (v2:vector) =
- let val m = dim v1  
-     val n = dim v2 
- in if m <> n then error "vector_add: incompatible dimensions"
-    else (n,Intfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd v1) (snd v2)) :vector 
- end;
-
-fun vector_sub v1 v2 = vector_add v1 (vector_neg v2);
-
-fun vector_dot (v1:vector) (v2:vector) =
- let val m = dim v1 
-     val n = dim v2 
- in if m <> n then error "vector_dot: incompatible dimensions" 
-    else Intfunc.fold (fn (i,x) => fn a => x +/ a) 
-        (Intfunc.combine (curry op */) (fn x => x =/ rat_0) (snd v1) (snd v2)) rat_0
- end;
-
-fun vector_of_list l =
- let val n = length l 
- in (n,fold_rev2 (curry Intfunc.update) (1 upto n) l Intfunc.undefined) :vector
- end;
-
-(* Matrices; again rows and columns indexed from 1.                          *)
-
-fun matrix_0 (m,n) = ((m,n),Intpairfunc.undefined):matrix;
-
-fun dimensions (m:matrix) = fst m;
-
-fun matrix_const c (mn as (m,n)) =
-  if m <> n then error "matrix_const: needs to be square"
-  else if c =/ rat_0 then matrix_0 mn
-  else (mn,fold_rev (fn k => Intpairfunc.update ((k,k), c)) (1 upto n) Intpairfunc.undefined) :matrix;;
-
-val matrix_1 = matrix_const rat_1;
-
-fun matrix_cmul c (m:matrix) =
- let val (i,j) = dimensions m 
- in if c =/ rat_0 then matrix_0 (i,j)
-    else ((i,j),Intpairfunc.mapf (fn x => c */ x) (snd m))
- end;
-
-fun matrix_neg (m:matrix) = 
-  (dimensions m, Intpairfunc.mapf Rat.neg (snd m)) :matrix;
-
-fun matrix_add (m1:matrix) (m2:matrix) =
- let val d1 = dimensions m1 
-     val d2 = dimensions m2 
- in if d1 <> d2 
-     then error "matrix_add: incompatible dimensions"
-    else (d1,Intpairfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd m1) (snd m2)) :matrix
- end;;
-
-fun matrix_sub m1 m2 = matrix_add m1 (matrix_neg m2);
-
-fun row k (m:matrix) =
- let val (i,j) = dimensions m 
- in (j,
-   Intpairfunc.fold (fn ((i,j), c) => fn a => if i = k then Intfunc.update (j,c) a else a) (snd m) Intfunc.undefined ) : vector
- end;
-
-fun column k (m:matrix) =
-  let val (i,j) = dimensions m 
-  in (i,
-   Intpairfunc.fold (fn ((i,j), c) => fn a => if j = k then Intfunc.update (i,c) a else a) (snd m)  Intfunc.undefined)
-   : vector
- end;
-
-fun transp (m:matrix) =
-  let val (i,j) = dimensions m 
-  in
-  ((j,i),Intpairfunc.fold (fn ((i,j), c) => fn a => Intpairfunc.update ((j,i), c) a) (snd m) Intpairfunc.undefined) :matrix
- end;
-
-fun diagonal (v:vector) =
- let val n = dim v 
- in ((n,n),Intfunc.fold (fn (i, c) => fn a => Intpairfunc.update ((i,i), c) a) (snd v) Intpairfunc.undefined) : matrix
- end;
-
-fun matrix_of_list l =
- let val m = length l 
- in if m = 0 then matrix_0 (0,0) else
-   let val n = length (hd l) 
-   in ((m,n),itern 1 l (fn v => fn i => itern 1 v (fn c => fn j => Intpairfunc.update ((i,j), c))) Intpairfunc.undefined)
-   end
- end;
-
-(* Monomials.                                                                *)
-
-fun monomial_eval assig (m:monomial) =
-  Ctermfunc.fold (fn (x, k) => fn a => a */ rat_pow (Ctermfunc.apply assig x) k)
-        m rat_1;
-val monomial_1 = (Ctermfunc.undefined:monomial);
-
-fun monomial_var x = Ctermfunc.onefunc (x, 1) :monomial;
-
-val (monomial_mul:monomial->monomial->monomial) =
-  Ctermfunc.combine (curry op +) (K false);
-
-fun monomial_pow (m:monomial) k =
-  if k = 0 then monomial_1
-  else Ctermfunc.mapf (fn x => k * x) m;
-
-fun monomial_divides (m1:monomial) (m2:monomial) =
-  Ctermfunc.fold (fn (x, k) => fn a => Ctermfunc.tryapplyd m2 x 0 >= k andalso a) m1 true;;
-
-fun monomial_div (m1:monomial) (m2:monomial) =
- let val m = Ctermfunc.combine (curry op +) 
-   (fn x => x = 0) m1 (Ctermfunc.mapf (fn x => ~ x) m2) 
- in if Ctermfunc.fold (fn (x, k) => fn a => k >= 0 andalso a) m true then m
-  else error "monomial_div: non-divisible"
- end;
-
-fun monomial_degree x (m:monomial) = 
-  Ctermfunc.tryapplyd m x 0;;
-
-fun monomial_lcm (m1:monomial) (m2:monomial) =
-  fold_rev (fn x => Ctermfunc.update (x, max (monomial_degree x m1) (monomial_degree x m2)))
-          (gen_union (is_equal o  cterm_ord) (Ctermfunc.dom m1, Ctermfunc.dom m2)) (Ctermfunc.undefined :monomial);
-
-fun monomial_multidegree (m:monomial) = 
- Ctermfunc.fold (fn (x, k) => fn a => k + a) m 0;;
-
-fun monomial_variables m = Ctermfunc.dom m;;
-
-(* Polynomials.                                                              *)
-
-fun eval assig (p:poly) =
-  Monomialfunc.fold (fn (m, c) => fn a => a +/ c */ monomial_eval assig m) p rat_0;
-
-val poly_0 = (Monomialfunc.undefined:poly);
-
-fun poly_isconst (p:poly) = 
-  Monomialfunc.fold (fn (m, c) => fn a => Ctermfunc.is_undefined m andalso a) p true;
-
-fun poly_var x = Monomialfunc.onefunc (monomial_var x,rat_1) :poly;
-
-fun poly_const c =
-  if c =/ rat_0 then poly_0 else Monomialfunc.onefunc(monomial_1, c);
-
-fun poly_cmul c (p:poly) =
-  if c =/ rat_0 then poly_0
-  else Monomialfunc.mapf (fn x => c */ x) p;
-
-fun poly_neg (p:poly) = (Monomialfunc.mapf Rat.neg p :poly);;
-
-fun poly_add (p1:poly) (p2:poly) =
-  (Monomialfunc.combine (curry op +/) (fn x => x =/ rat_0) p1 p2 :poly);
-
-fun poly_sub p1 p2 = poly_add p1 (poly_neg p2);
-
-fun poly_cmmul (c,m) (p:poly) =
- if c =/ rat_0 then poly_0
- else if Ctermfunc.is_undefined m 
-      then Monomialfunc.mapf (fn d => c */ d) p
-      else Monomialfunc.fold (fn (m', d) => fn a => (Monomialfunc.update (monomial_mul m m', c */ d) a)) p poly_0;
-
-fun poly_mul (p1:poly) (p2:poly) =
-  Monomialfunc.fold (fn (m, c) => fn a => poly_add (poly_cmmul (c,m) p2) a) p1 poly_0;
-
-fun poly_div (p1:poly) (p2:poly) =
- if not(poly_isconst p2) 
- then error "poly_div: non-constant" else
- let val c = eval Ctermfunc.undefined p2 
- in if c =/ rat_0 then error "poly_div: division by zero"
-    else poly_cmul (Rat.inv c) p1
- end;
-
-fun poly_square p = poly_mul p p;
-
-fun poly_pow p k =
- if k = 0 then poly_const rat_1
- else if k = 1 then p
- else let val q = poly_square(poly_pow p (k div 2)) in
-      if k mod 2 = 1 then poly_mul p q else q end;
-
-fun poly_exp p1 p2 =
-  if not(poly_isconst p2) 
-  then error "poly_exp: not a constant" 
-  else poly_pow p1 (int_of_rat (eval Ctermfunc.undefined p2));
-
-fun degree x (p:poly) = 
- Monomialfunc.fold (fn (m,c) => fn a => max (monomial_degree x m) a) p 0;
-
-fun multidegree (p:poly) =
-  Monomialfunc.fold (fn (m, c) => fn a => max (monomial_multidegree m) a) p 0;
-
-fun poly_variables (p:poly) =
-  sort cterm_ord (Monomialfunc.fold_rev (fn (m, c) => curry (gen_union (is_equal o  cterm_ord)) (monomial_variables m)) p []);;
-
-(* Order monomials for human presentation.                                   *)
-
-fun cterm_ord (t,t') = TermOrd.fast_term_ord (term_of t, term_of t');
-
-val humanorder_varpow = prod_ord cterm_ord (rev_order o int_ord);
-
-local
- fun ord (l1,l2) = case (l1,l2) of
-  (_,[]) => LESS 
- | ([],_) => GREATER
- | (h1::t1,h2::t2) => 
-   (case humanorder_varpow (h1, h2) of 
-     LESS => LESS
-   | EQUAL => ord (t1,t2)
-   | GREATER => GREATER)
-in fun humanorder_monomial m1 m2 = 
- ord (sort humanorder_varpow (Ctermfunc.graph m1),
-  sort humanorder_varpow (Ctermfunc.graph m2))
-end;
-
-fun fold1 f l =  case l of
-   []     => error "fold1"
- | [x]    => x
- | (h::t) => f h (fold1 f t);
-
-(* Conversions to strings.                                                   *)
-
-fun string_of_vector min_size max_size (v:vector) =
- let val n_raw = dim v 
- in if n_raw = 0 then "[]" else
-  let 
-   val n = max min_size (min n_raw max_size) 
-   val xs = map (Rat.string_of_rat o (fn i => Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) 
-  in "[" ^ fold1 (fn s => fn t => s ^ ", " ^ t) xs ^
-  (if n_raw > max_size then ", ...]" else "]")
-  end
- end;
-
-fun string_of_matrix max_size (m:matrix) =
- let 
-  val (i_raw,j_raw) = dimensions m
-  val i = min max_size i_raw 
-  val j = min max_size j_raw
-  val rstr = map (fn k => string_of_vector j j (row k m)) (1 upto i) 
- in "["^ fold1 (fn s => fn t => s^";\n "^t) rstr ^
-  (if j > max_size then "\n ...]" else "]")
- end;
-
-fun string_of_term t = 
- case t of
-   a$b => "("^(string_of_term a)^" "^(string_of_term b)^")"
- | Abs x => 
-    let val (xn, b) = Term.dest_abs x
-    in "(\\"^xn^"."^(string_of_term b)^")"
-    end
- | Const(s,_) => s
- | Free (s,_) => s
- | Var((s,_),_) => s
- | _ => error "string_of_term";
-
-val string_of_cterm = string_of_term o term_of;
-
-fun string_of_varpow x k =
-  if k = 1 then string_of_cterm x 
-  else string_of_cterm x^"^"^string_of_int k;
-
-fun string_of_monomial m =
- if Ctermfunc.is_undefined m then "1" else
- let val vps = fold_rev (fn (x,k) => fn a => string_of_varpow x k :: a)
-  (sort humanorder_varpow (Ctermfunc.graph m)) [] 
- in fold1 (fn s => fn t => s^"*"^t) vps
- end;
-
-fun string_of_cmonomial (c,m) =
- if Ctermfunc.is_undefined m then Rat.string_of_rat c
- else if c =/ rat_1 then string_of_monomial m
- else Rat.string_of_rat c ^ "*" ^ string_of_monomial m;;
-
-fun string_of_poly (p:poly) =
- if Monomialfunc.is_undefined p then "<<0>>" else
- let 
-  val cms = sort (fn ((m1,_),(m2,_)) => humanorder_monomial m1  m2) (Monomialfunc.graph p)
-  val s = fold (fn (m,c) => fn a =>
-             if c </ rat_0 then a ^ " - " ^ string_of_cmonomial(Rat.neg c,m)
-             else a ^ " + " ^ string_of_cmonomial(c,m))
-          cms ""
-  val s1 = String.substring (s, 0, 3)
-  val s2 = String.substring (s, 3, String.size s - 3) 
- in "<<" ^(if s1 = " + " then s2 else "-"^s2)^">>"
- end;
-
-(* Conversion from HOL term.                                                 *)
-
-local
- val neg_tm = @{cterm "uminus :: real => _"}
- val add_tm = @{cterm "op + :: real => _"}
- val sub_tm = @{cterm "op - :: real => _"}
- val mul_tm = @{cterm "op * :: real => _"}
- val inv_tm = @{cterm "inverse :: real => _"}
- val div_tm = @{cterm "op / :: real => _"}
- val pow_tm = @{cterm "op ^ :: real => _"}
- val zero_tm = @{cterm "0:: real"}
- val is_numeral = can (HOLogic.dest_number o term_of)
- fun is_comb t = case t of _$_ => true | _ => false
- fun poly_of_term tm =
-  if tm aconvc zero_tm then poly_0
-  else if RealArith.is_ratconst tm 
-       then poly_const(RealArith.dest_ratconst tm)
-  else 
-  (let val (lop,r) = Thm.dest_comb tm
-   in if lop aconvc neg_tm then poly_neg(poly_of_term r)
-      else if lop aconvc inv_tm then
-       let val p = poly_of_term r 
-       in if poly_isconst p 
-          then poly_const(Rat.inv (eval Ctermfunc.undefined p))
-          else error "poly_of_term: inverse of non-constant polyomial"
-       end
-   else (let val (opr,l) = Thm.dest_comb lop
-         in 
-          if opr aconvc pow_tm andalso is_numeral r 
-          then poly_pow (poly_of_term l) ((snd o HOLogic.dest_number o term_of) r)
-          else if opr aconvc add_tm 
-           then poly_add (poly_of_term l) (poly_of_term r)
-          else if opr aconvc sub_tm 
-           then poly_sub (poly_of_term l) (poly_of_term r)
-          else if opr aconvc mul_tm 
-           then poly_mul (poly_of_term l) (poly_of_term r)
-          else if opr aconvc div_tm 
-           then let 
-                  val p = poly_of_term l 
-                  val q = poly_of_term r 
-                in if poly_isconst q then poly_cmul (Rat.inv (eval Ctermfunc.undefined q)) p
-                   else error "poly_of_term: division by non-constant polynomial"
-                end
-          else poly_var tm
- 
-         end
-         handle CTERM ("dest_comb",_) => poly_var tm)
-   end
-   handle CTERM ("dest_comb",_) => poly_var tm)
-in
-val poly_of_term = fn tm =>
- if type_of (term_of tm) = @{typ real} then poly_of_term tm
- else error "poly_of_term: term does not have real type"
-end;
-
-(* String of vector (just a list of space-separated numbers).                *)
-
-fun sdpa_of_vector (v:vector) =
- let 
-  val n = dim v
-  val strs = map (decimalize 20 o (fn i => Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) 
- in fold1 (fn x => fn y => x ^ " " ^ y) strs ^ "\n"
- end;
-
-fun increasing f ord (x,y) = ord (f x, f y);
-fun triple_int_ord ((a,b,c),(a',b',c')) = 
- prod_ord int_ord (prod_ord int_ord int_ord) 
-    ((a,(b,c)),(a',(b',c')));
-structure Inttriplefunc = FuncFun(type key = int*int*int val ord = triple_int_ord);
-
-(* String for block diagonal matrix numbered k.                              *)
-
-fun sdpa_of_blockdiagonal k m =
- let 
-  val pfx = string_of_int k ^" "
-  val ents =
-    Inttriplefunc.fold (fn ((b,i,j), c) => fn a => if i > j then a else ((b,i,j),c)::a) m []
-  val entss = sort (increasing fst triple_int_ord ) ents
- in  fold_rev (fn ((b,i,j),c) => fn a =>
-     pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
-     " " ^ decimalize 20 c ^ "\n" ^ a) entss ""
- end;
-
-(* String for a matrix numbered k, in SDPA sparse format.                    *)
-
-fun sdpa_of_matrix k (m:matrix) =
- let 
-  val pfx = string_of_int k ^ " 1 "
-  val ms = Intpairfunc.fold (fn ((i,j), c) => fn  a => if i > j then a else ((i,j),c)::a) (snd m) [] 
-  val mss = sort (increasing fst (prod_ord int_ord int_ord)) ms 
- in fold_rev (fn ((i,j),c) => fn a =>
-     pfx ^ string_of_int i ^ " " ^ string_of_int j ^
-     " " ^ decimalize 20 c ^ "\n" ^ a) mss ""
- end;;
-
-(* ------------------------------------------------------------------------- *)
-(* String in SDPA sparse format for standard SDP problem:                    *)
-(*                                                                           *)
-(*    X = v_1 * [M_1] + ... + v_m * [M_m] - [M_0] must be PSD                *)
-(*    Minimize obj_1 * v_1 + ... obj_m * v_m                                 *)
-(* ------------------------------------------------------------------------- *)
-
-fun sdpa_of_problem obj mats =
- let 
-  val m = length mats - 1
-  val (n,_) = dimensions (hd mats) 
- in
-  string_of_int m ^ "\n" ^
-  "1\n" ^
-  string_of_int n ^ "\n" ^
-  sdpa_of_vector obj ^
-  fold_rev2 (fn k => fn m => fn a => sdpa_of_matrix (k - 1) m ^ a) (1 upto length mats) mats ""
- end;
-
-fun index_char str chr pos =
-  if pos >= String.size str then ~1
-  else if String.sub(str,pos) = chr then pos
-  else index_char str chr (pos + 1);
-fun rat_of_quotient (a,b) = if b = 0 then rat_0 else Rat.rat_of_quotient (a,b);
-fun rat_of_string s = 
- let val n = index_char s #"/" 0 in
-  if n = ~1 then s |> IntInf.fromString |> valOf |> Rat.rat_of_int
-  else 
-   let val SOME numer = IntInf.fromString(String.substring(s,0,n))
-       val SOME den = IntInf.fromString (String.substring(s,n+1,String.size s - n - 1))
-   in rat_of_quotient(numer, den)
-   end
- end;
-
-fun isspace x = x = " " ;
-fun isnum x = x mem_string ["0","1","2","3","4","5","6","7","8","9"]
-
-(* More parser basics.                                                       *)
-
-local
- open Scan
-in 
- val word = this_string
- fun token s =
-  repeat ($$ " ") |-- word s --| repeat ($$ " ")
- val numeral = one isnum
- val decimalint = bulk numeral >> (rat_of_string o implode)
- val decimalfrac = bulk numeral
-    >> (fn s => rat_of_string(implode s) // pow10 (length s))
- val decimalsig =
-    decimalint -- option (Scan.$$ "." |-- decimalfrac)
-    >> (fn (h,NONE) => h | (h,SOME x) => h +/ x)
- fun signed prs =
-       $$ "-" |-- prs >> Rat.neg 
-    || $$ "+" |-- prs
-    || prs;
-
-fun emptyin def xs = if null xs then (def,xs) else Scan.fail xs
-
- val exponent = ($$ "e" || $$ "E") |-- signed decimalint;
-
- val decimal = signed decimalsig -- (emptyin rat_0|| exponent)
-    >> (fn (h, x) => h */ pow10 (int_of_rat x));
-end;
-
- fun mkparser p s =
-  let val (x,rst) = p (explode s) 
-  in if null rst then x 
-     else error "mkparser: unparsed input"
-  end;;
-val parse_decimal = mkparser decimal;
-
-fun fix err prs = 
-  prs || (fn x=> error err);
-
-fun listof prs sep err =
-  prs -- Scan.bulk (sep |-- fix err prs) >> uncurry cons;
-
-(* Parse back a vector.                                                      *)
-
- val vector = 
-    token "{" |-- listof decimal (token ",") "decimal" --| token "}"
-               >> vector_of_list 
- val parse_vector = mkparser vector
- fun skipupto dscr prs inp =
-   (dscr |-- prs 
-    || Scan.one (K true) |-- skipupto dscr prs) inp 
- fun ignore inp = ((),[])
- fun sdpaoutput inp =  skipupto (word "xVec" -- token "=")
-             (vector --| ignore) inp
- fun csdpoutput inp =  ((decimal -- Scan.bulk (Scan.$$ " " |-- Scan.option decimal) >> (fn (h,to) => map_filter I ((SOME h)::to))) --| ignore >> vector_of_list) inp
- val parse_sdpaoutput = mkparser sdpaoutput
- val parse_csdpoutput = mkparser csdpoutput
-
-(* Run prover on a problem in linear form.                       *)
-
-fun run_problem prover obj mats =
-  parse_csdpoutput (prover (sdpa_of_problem obj mats))
-
-(*
-UNUSED
-
-(* Also parse the SDPA output to test success (CSDP yields a return code).   *)
-
-local
- val prs = 
-  skipupto (word "phase.value" -- token "=")
-   (Scan.option (Scan.$$ "p") -- Scan.option (Scan.$$ "d") 
-    -- (word "OPT" || word "FEAS")) 
-in
- fun sdpa_run_succeeded s = 
-  (prs (explode s); true) handle _ => false
-end;
-
-(* The default parameters. Unfortunately this goes to a fixed file.          *)
-
-val sdpa_default_parameters =
-"100     unsigned int maxIteration; \n1.0E-7  double 0.0 < epsilonStar;\n1.0E2   double 0.0 < lambdaStar;\n2.0     double 1.0 < omegaStar;\n-1.0E5  double lowerBound;\n1.0E5   double upperBound;\n0.1     double 0.0 <= betaStar <  1.0;\n0.2     double 0.0 <= betaBar  <  1.0, betaStar <= betaBar;\n0.9     double 0.0 < gammaStar  <  1.0;\n1.0E-7  double 0.0 < epsilonDash;\n";;
-
-(* These were suggested by Makoto Yamashita for problems where we are        *)
-(* right at the edge of the semidefinite cone, as sometimes happens.         *)
-
-val sdpa_alt_parameters =
-"1000    unsigned int maxIteration;\n1.0E-7  double 0.0 < epsilonStar;\n1.0E4   double 0.0 < lambdaStar;\n2.0     double 1.0 < omegaStar;\n-1.0E5  double lowerBound;\n1.0E5   double upperBound;\n0.1     double 0.0 <= betaStar <  1.0;\n0.2     double 0.0 <= betaBar  <  1.0, betaStar <= betaBar;\n0.9     double 0.0 < gammaStar  <  1.0;\n1.0E-7  double 0.0 < epsilonDash;\n";;
-
-val sdpa_params = sdpa_alt_parameters;;
-
-(* CSDP parameters; so far I'm sticking with the defaults.                   *)
-
-val csdp_default_parameters =
-"axtol=1.0e-8\natytol=1.0e-8\nobjtol=1.0e-8\npinftol=1.0e8\ndinftol=1.0e8\nmaxiter=100\nminstepfrac=0.9\nmaxstepfrac=0.97\nminstepp=1.0e-8\nminstepd=1.0e-8\nusexzgap=1\ntweakgap=0\naffine=0\nprintlevel=1\n";;
-
-val csdp_params = csdp_default_parameters;;
-
-fun tmp_file pre suf =
- let val i = string_of_int (round (random()))
-   val name = Path.append (Path.variable "ISABELLE_TMP") (Path.explode (pre ^ i ^ suf))
- in 
-   if File.exists name then tmp_file pre suf 
-   else name 
- end;
-
-(* Now call SDPA on a problem and parse back the output.                     *)
-
-fun run_sdpa dbg obj mats =
- let 
-  val input_file = tmp_file "sos" ".dat-s"
-  val output_file = tmp_file "sos" ".out"
-  val params_file = tmp_file "param" ".sdpa" 
-  val current_dir = File.pwd()
-  val _ = File.write input_file 
-                         (sdpa_of_problem "" obj mats)
-  val _ = File.write params_file sdpa_params
-  val _ = File.cd (Path.variable "ISABELLE_TMP")
-  val _ = File.system_command ("sdpa "^ (Path.implode input_file) ^ " " ^ 
-                               (Path.implode output_file) ^
-                               (if dbg then "" else "> /dev/null"))
-  val opr = File.read output_file 
- in if not(sdpa_run_succeeded opr) then error "sdpa: call failed" 
-    else
-      let val res = parse_sdpaoutput opr 
-      in ((if dbg then ()
-           else (File.rm input_file; File.rm output_file ; File.cd current_dir));
-          res)
-      end
- end;
-
-fun sdpa obj mats = run_sdpa (!debugging) obj mats;
-
-(* The same thing with CSDP.                                                 *)
-
-fun run_csdp dbg obj mats =
- let 
-  val input_file = tmp_file "sos" ".dat-s"
-  val output_file = tmp_file "sos" ".out"
-  val params_file = tmp_file "param" ".csdp"
-  val current_dir = File.pwd()
-  val _ = File.write input_file (sdpa_of_problem "" obj mats)
-  val _ = File.write params_file csdp_params
-  val _ = File.cd (Path.variable "ISABELLE_TMP")
-  val rv = system ("csdp "^(Path.implode input_file) ^ " " 
-                   ^ (Path.implode output_file) ^
-                   (if dbg then "" else "> /dev/null"))
-  val  opr = File.read output_file 
-  val res = parse_csdpoutput opr 
- in
-    ((if dbg then ()
-      else (File.rm input_file; File.rm output_file ; File.cd current_dir));
-     (rv,res))
- end;
-
-fun csdp obj mats =
- let 
-  val (rv,res) = run_csdp (!debugging) obj mats 
- in
-   ((if rv = 1 orelse rv = 2 then error "csdp: Problem is infeasible"
-    else if rv = 3 then writeln "csdp warning: Reduced accuracy"
-    else if rv <> 0 then error ("csdp: error "^string_of_int rv)
-    else ());
-   res)
- end;
-
-*)
-
-(* Try some apparently sensible scaling first. Note that this is purely to   *)
-(* get a cleaner translation to floating-point, and doesn't affect any of    *)
-(* the results, in principle. In practice it seems a lot better when there   *)
-(* are extreme numbers in the original problem.                              *)
-
-  (* Version for (int*int) keys *)
-local
-  fun max_rat x y = if x </ y then y else x
-  fun common_denominator fld amat acc =
-      fld (fn (m,c) => fn a => lcm_rat (denominator_rat c) a) amat acc
-  fun maximal_element fld amat acc =
-    fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc 
-fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x
-                     in Real.fromLargeInt a / Real.fromLargeInt b end;
-in
-
-fun pi_scale_then solver (obj:vector)  mats =
- let 
-  val cd1 = fold_rev (common_denominator Intpairfunc.fold) mats (rat_1)
-  val cd2 = common_denominator Intfunc.fold (snd obj)  (rat_1) 
-  val mats' = map (Intpairfunc.mapf (fn x => cd1 */ x)) mats
-  val obj' = vector_cmul cd2 obj
-  val max1 = fold_rev (maximal_element Intpairfunc.fold) mats' (rat_0)
-  val max2 = maximal_element Intfunc.fold (snd obj') (rat_0) 
-  val scal1 = pow2 (20 - trunc(Math.ln (float_of_rat max1) / Math.ln 2.0))
-  val scal2 = pow2 (20 - trunc(Math.ln (float_of_rat max2) / Math.ln 2.0)) 
-  val mats'' = map (Intpairfunc.mapf (fn x => x */ scal1)) mats'
-  val obj'' = vector_cmul scal2 obj' 
- in solver obj'' mats''
-  end
-end;
-
-(* Try some apparently sensible scaling first. Note that this is purely to   *)
-(* get a cleaner translation to floating-point, and doesn't affect any of    *)
-(* the results, in principle. In practice it seems a lot better when there   *)
-(* are extreme numbers in the original problem.                              *)
-
-  (* Version for (int*int*int) keys *)
-local
-  fun max_rat x y = if x </ y then y else x
-  fun common_denominator fld amat acc =
-      fld (fn (m,c) => fn a => lcm_rat (denominator_rat c) a) amat acc
-  fun maximal_element fld amat acc =
-    fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc 
-fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x
-                     in Real.fromLargeInt a / Real.fromLargeInt b end;
-fun int_of_float x = (trunc x handle Overflow => 0 | Domain => 0)
-in
-
-fun tri_scale_then solver (obj:vector)  mats =
- let 
-  val cd1 = fold_rev (common_denominator Inttriplefunc.fold) mats (rat_1)
-  val cd2 = common_denominator Intfunc.fold (snd obj)  (rat_1) 
-  val mats' = map (Inttriplefunc.mapf (fn x => cd1 */ x)) mats
-  val obj' = vector_cmul cd2 obj
-  val max1 = fold_rev (maximal_element Inttriplefunc.fold) mats' (rat_0)
-  val max2 = maximal_element Intfunc.fold (snd obj') (rat_0) 
-  val scal1 = pow2 (20 - int_of_float(Math.ln (float_of_rat max1) / Math.ln 2.0))
-  val scal2 = pow2 (20 - int_of_float(Math.ln (float_of_rat max2) / Math.ln 2.0)) 
-  val mats'' = map (Inttriplefunc.mapf (fn x => x */ scal1)) mats'
-  val obj'' = vector_cmul scal2 obj' 
- in solver obj'' mats''
-  end
-end;
-
-(* Round a vector to "nice" rationals.                                       *)
-
-fun nice_rational n x = round_rat (n */ x) // n;;
-fun nice_vector n ((d,v) : vector) = 
- (d, Intfunc.fold (fn (i,c) => fn a => 
-   let val y = nice_rational n c 
-   in if c =/ rat_0 then a 
-      else Intfunc.update (i,y) a end) v Intfunc.undefined):vector
-
-(*
-UNUSED
-
-(* Reduce linear program to SDP (diagonal matrices) and test with CSDP. This *)
-(* one tests A [-1;x1;..;xn] >= 0 (i.e. left column is negated constants).   *)
-
-fun linear_program_basic a =
- let 
-  val (m,n) = dimensions a
-  val mats =  map (fn j => diagonal (column j a)) (1 upto n)
-  val obj = vector_const rat_1 m 
-  val (rv,res) = run_csdp false obj mats 
- in if rv = 1 orelse rv = 2 then false
-    else if rv = 0 then true
-    else error "linear_program: An error occurred in the SDP solver"
- end;
-
-(* Alternative interface testing A x >= b for matrix A, vector b.            *)
-
-fun linear_program a b =
- let val (m,n) = dimensions a 
- in if dim b <> m then error "linear_program: incompatible dimensions" 
-    else
-    let 
-     val mats = diagonal b :: map (fn j => diagonal (column j a)) (1 upto n)
-     val obj = vector_const rat_1 m 
-     val (rv,res) = run_csdp false obj mats 
-    in if rv = 1 orelse rv = 2 then false
-       else if rv = 0 then true
-       else error "linear_program: An error occurred in the SDP solver"
-    end
- end;
-
-(* Test whether a point is in the convex hull of others. Rather than use     *)
-(* computational geometry, express as linear inequalities and call CSDP.     *)
-(* This is a bit lazy of me, but it's easy and not such a bottleneck so far. *)
-
-fun in_convex_hull pts pt =
- let 
-  val pts1 = (1::pt) :: map (fn x => 1::x) pts 
-  val pts2 = map (fn p => map (fn x => ~x) p @ p) pts1
-  val n = length pts + 1
-  val v = 2 * (length pt + 1)
-  val m = v + n - 1 
-  val mat = ((m,n),
-  itern 1 pts2 (fn pts => fn j => itern 1 pts 
-               (fn x => fn i => Intpairfunc.update ((i,j), Rat.rat_of_int x)))
-  (iter (1,n) (fn i => Intpairfunc.update((v + i,i+1), rat_1)) 
-      Intpairfunc.undefined))
- in linear_program_basic mat
- end;
-
-(* Filter down a set of points to a minimal set with the same convex hull.   *)
-
-local
- fun augment1 (m::ms) = if in_convex_hull ms m then ms else ms@[m]
- fun augment m ms = funpow 3 augment1 (m::ms)
-in
-fun minimal_convex_hull mons =
- let val mons' = fold_rev augment (tl mons) [hd mons] 
- in funpow (length mons') augment1 mons'
- end
-end;
-
-*)
-
-fun dest_ord f x = is_equal (f x);
-
-
-
-(* Stuff for "equations" ((int*int*int)->num functions).                         *)
-
-fun tri_equation_cmul c eq =
-  if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (fn d => c */ d) eq;
-
-fun tri_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2;
-
-fun tri_equation_eval assig eq =
- let fun value v = Inttriplefunc.apply assig v 
- in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0
- end;
-
-(* Eliminate among linear equations: return unconstrained variables and      *)
-(* assignments for the others in terms of them. We give one pseudo-variable  *)
-(* "one" that's used for a constant term.                                    *)
-
-local
-  fun extract_first p l = case l of  (* FIXME : use find_first instead *)
-   [] => error "extract_first"
- | h::t => if p h then (h,t) else
-          let val (k,s) = extract_first p t in (k,h::s) end
-fun eliminate vars dun eqs = case vars of 
-  [] => if forall Inttriplefunc.is_undefined eqs then dun
-        else raise Unsolvable
- | v::vs =>
-  ((let 
-    val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs 
-    val a = Inttriplefunc.apply eq v
-    val eq' = tri_equation_cmul ((Rat.neg rat_1) // a) (Inttriplefunc.undefine v eq)
-    fun elim e =
-     let val b = Inttriplefunc.tryapplyd e v rat_0 
-     in if b =/ rat_0 then e else
-        tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq)
-     end
-   in eliminate vs (Inttriplefunc.update (v,eq') (Inttriplefunc.mapf elim dun)) (map elim oeqs)
-   end)
-  handle ERROR _ => eliminate vs dun eqs)
-in
-fun tri_eliminate_equations one vars eqs =
- let 
-  val assig = eliminate vars Inttriplefunc.undefined eqs
-  val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
-  in (distinct (dest_ord triple_int_ord) vs, assig)
-  end
-end;
-
-(* Eliminate all variables, in an essentially arbitrary order.               *)
-
-fun tri_eliminate_all_equations one =
- let 
-  fun choose_variable eq =
-   let val (v,_) = Inttriplefunc.choose eq 
-   in if is_equal (triple_int_ord(v,one)) then
-      let val eq' = Inttriplefunc.undefine v eq 
-      in if Inttriplefunc.is_undefined eq' then error "choose_variable" 
-         else fst (Inttriplefunc.choose eq')
-      end
-    else v 
-   end
-  fun eliminate dun eqs = case eqs of 
-    [] => dun
-  | eq::oeqs =>
-    if Inttriplefunc.is_undefined eq then eliminate dun oeqs else
-    let val v = choose_variable eq
-        val a = Inttriplefunc.apply eq v
-        val eq' = tri_equation_cmul ((Rat.rat_of_int ~1) // a) 
-                   (Inttriplefunc.undefine v eq)
-        fun elim e =
-         let val b = Inttriplefunc.tryapplyd e v rat_0 
-         in if b =/ rat_0 then e 
-            else tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq)
-         end
-    in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.mapf elim dun)) 
-                 (map elim oeqs) 
-    end
-in fn eqs =>
- let 
-  val assig = eliminate Inttriplefunc.undefined eqs
-  val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
- in (distinct (dest_ord triple_int_ord) vs,assig)
- end
-end;
- 
-(* Solve equations by assigning arbitrary numbers.                           *)
-
-fun tri_solve_equations one eqs =
- let 
-  val (vars,assigs) = tri_eliminate_all_equations one eqs
-  val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars 
-            (Inttriplefunc.onefunc(one, Rat.rat_of_int ~1))
-  val ass =
-    Inttriplefunc.combine (curry op +/) (K false) 
-    (Inttriplefunc.mapf (tri_equation_eval vfn) assigs) vfn 
- in if forall (fn e => tri_equation_eval ass e =/ rat_0) eqs
-    then Inttriplefunc.undefine one ass else raise Sanity
- end;
-
-(* Multiply equation-parametrized poly by regular poly and add accumulator.  *)
-
-fun tri_epoly_pmul p q acc =
- Monomialfunc.fold (fn (m1, c) => fn a =>
-  Monomialfunc.fold (fn (m2,e) => fn b =>
-   let val m =  monomial_mul m1 m2
-       val es = Monomialfunc.tryapplyd b m Inttriplefunc.undefined 
-   in Monomialfunc.update (m,tri_equation_add (tri_equation_cmul c e) es) b 
-   end) q a) p acc ;
-
-(* Usual operations on equation-parametrized poly.                           *)
-
-fun tri_epoly_cmul c l =
-  if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (tri_equation_cmul c) l;;
-
-val tri_epoly_neg = tri_epoly_cmul (Rat.rat_of_int ~1);
-
-val tri_epoly_add = Inttriplefunc.combine tri_equation_add Inttriplefunc.is_undefined;
-
-fun tri_epoly_sub p q = tri_epoly_add p (tri_epoly_neg q);;
-
-(* Stuff for "equations" ((int*int)->num functions).                         *)
-
-fun pi_equation_cmul c eq =
-  if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (fn d => c */ d) eq;
-
-fun pi_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2;
-
-fun pi_equation_eval assig eq =
- let fun value v = Inttriplefunc.apply assig v 
- in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0
- end;
-
-(* Eliminate among linear equations: return unconstrained variables and      *)
-(* assignments for the others in terms of them. We give one pseudo-variable  *)
-(* "one" that's used for a constant term.                                    *)
-
-local
-fun extract_first p l = case l of 
-   [] => error "extract_first"
- | h::t => if p h then (h,t) else
-          let val (k,s) = extract_first p t in (k,h::s) end
-fun eliminate vars dun eqs = case vars of 
-  [] => if forall Inttriplefunc.is_undefined eqs then dun
-        else raise Unsolvable
- | v::vs =>
-   let 
-    val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs 
-    val a = Inttriplefunc.apply eq v
-    val eq' = pi_equation_cmul ((Rat.neg rat_1) // a) (Inttriplefunc.undefine v eq)
-    fun elim e =
-     let val b = Inttriplefunc.tryapplyd e v rat_0 
-     in if b =/ rat_0 then e else
-        pi_equation_add e (pi_equation_cmul (Rat.neg b // a) eq)
-     end
-   in eliminate vs (Inttriplefunc.update (v,eq') (Inttriplefunc.mapf elim dun)) (map elim oeqs)
-   end
-  handle ERROR _ => eliminate vs dun eqs
-in
-fun pi_eliminate_equations one vars eqs =
- let 
-  val assig = eliminate vars Inttriplefunc.undefined eqs
-  val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
-  in (distinct (dest_ord triple_int_ord) vs, assig)
-  end
-end;
-
-(* Eliminate all variables, in an essentially arbitrary order.               *)
-
-fun pi_eliminate_all_equations one =
- let 
-  fun choose_variable eq =
-   let val (v,_) = Inttriplefunc.choose eq 
-   in if is_equal (triple_int_ord(v,one)) then
-      let val eq' = Inttriplefunc.undefine v eq 
-      in if Inttriplefunc.is_undefined eq' then error "choose_variable" 
-         else fst (Inttriplefunc.choose eq')
-      end
-    else v 
-   end
-  fun eliminate dun eqs = case eqs of 
-    [] => dun
-  | eq::oeqs =>
-    if Inttriplefunc.is_undefined eq then eliminate dun oeqs else
-    let val v = choose_variable eq
-        val a = Inttriplefunc.apply eq v
-        val eq' = pi_equation_cmul ((Rat.rat_of_int ~1) // a) 
-                   (Inttriplefunc.undefine v eq)
-        fun elim e =
-         let val b = Inttriplefunc.tryapplyd e v rat_0 
-         in if b =/ rat_0 then e 
-            else pi_equation_add e (pi_equation_cmul (Rat.neg b // a) eq)
-         end
-    in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.mapf elim dun)) 
-                 (map elim oeqs) 
-    end
-in fn eqs =>
- let 
-  val assig = eliminate Inttriplefunc.undefined eqs
-  val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
- in (distinct (dest_ord triple_int_ord) vs,assig)
- end
-end;
- 
-(* Solve equations by assigning arbitrary numbers.                           *)
-
-fun pi_solve_equations one eqs =
- let 
-  val (vars,assigs) = pi_eliminate_all_equations one eqs
-  val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars 
-            (Inttriplefunc.onefunc(one, Rat.rat_of_int ~1))
-  val ass =
-    Inttriplefunc.combine (curry op +/) (K false) 
-    (Inttriplefunc.mapf (pi_equation_eval vfn) assigs) vfn 
- in if forall (fn e => pi_equation_eval ass e =/ rat_0) eqs
-    then Inttriplefunc.undefine one ass else raise Sanity
- end;
-
-(* Multiply equation-parametrized poly by regular poly and add accumulator.  *)
-
-fun pi_epoly_pmul p q acc =
- Monomialfunc.fold (fn (m1, c) => fn a =>
-  Monomialfunc.fold (fn (m2,e) => fn b =>
-   let val m =  monomial_mul m1 m2
-       val es = Monomialfunc.tryapplyd b m Inttriplefunc.undefined 
-   in Monomialfunc.update (m,pi_equation_add (pi_equation_cmul c e) es) b 
-   end) q a) p acc ;
-
-(* Usual operations on equation-parametrized poly.                           *)
-
-fun pi_epoly_cmul c l =
-  if c =/ rat_0 then Inttriplefunc.undefined else Inttriplefunc.mapf (pi_equation_cmul c) l;;
-
-val pi_epoly_neg = pi_epoly_cmul (Rat.rat_of_int ~1);
-
-val pi_epoly_add = Inttriplefunc.combine pi_equation_add Inttriplefunc.is_undefined;
-
-fun pi_epoly_sub p q = pi_epoly_add p (pi_epoly_neg q);;
-
-fun allpairs f l1 l2 =  fold_rev (fn x => (curry (op @)) (map (f x) l2)) l1 [];
-
-(* Hence produce the "relevant" monomials: those whose squares lie in the    *)
-(* Newton polytope of the monomials in the input. (This is enough according  *)
-(* to Reznik: "Extremal PSD forms with few terms", Duke Math. Journal,       *)
-(* vol 45, pp. 363--374, 1978.                                               *)
-(*                                                                           *)
-(* These are ordered in sort of decreasing degree. In particular the         *)
-(* constant monomial is last; this gives an order in diagonalization of the  *)
-(* quadratic form that will tend to display constants.                       *)
-
-(*
-UNUSED
-
-fun newton_polytope pol =
- let 
-  val vars = poly_variables pol
-  val mons = map (fn m => map (fn x => monomial_degree x m) vars) 
-             (Monomialfunc.dom pol)
-  val ds = map (fn x => (degree x pol + 1) div 2) vars
-  val all = fold_rev (fn n => allpairs cons (0 upto n)) ds [[]]
-  val mons' = minimal_convex_hull mons
-  val all' =
-    filter (fn m => in_convex_hull mons' (map (fn x => 2 * x) m)) all 
- in map (fn m => fold_rev2 (fn v => fn i => fn a => if i = 0 then a else Ctermfunc.update (v,i) a)
-                        vars m monomial_1) (rev all')
- end;
-
-*)
-
-(* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form.  *)
-
-local
-fun diagonalize n i m =
- if Intpairfunc.is_undefined (snd m) then [] 
- else
-  let val a11 = Intpairfunc.tryapplyd (snd m) (i,i) rat_0 
-  in if a11 </ rat_0 then error "diagonalize: not PSD"
-    else if a11 =/ rat_0 then
-          if Intfunc.is_undefined (snd (row i m)) then diagonalize n (i + 1) m
-          else error "diagonalize: not PSD ___ "
-    else
-     let 
-      val v = row i m
-      val v' = (fst v, Intfunc.fold (fn (i, c) => fn a => 
-       let val y = c // a11 
-       in if y = rat_0 then a else Intfunc.update (i,y) a 
-       end)  (snd v) Intfunc.undefined)
-      fun upt0 x y a = if y = rat_0 then a else Intpairfunc.update (x,y) a
-      val m' =
-      ((n,n),
-      iter (i+1,n) (fn j =>
-          iter (i+1,n) (fn k =>
-              (upt0 (j,k) (Intpairfunc.tryapplyd (snd m) (j,k) rat_0 -/ Intfunc.tryapplyd (snd v) j rat_0 */ Intfunc.tryapplyd (snd v') k rat_0))))
-          Intpairfunc.undefined)
-     in (a11,v')::diagonalize n (i + 1) m' 
-     end
-  end
-in
-fun diag m =
- let 
-   val nn = dimensions m 
-   val n = fst nn 
- in if snd nn <> n then error "diagonalize: non-square matrix" 
-    else diagonalize n 1 m
- end
-end;
-
-fun gcd_rat a b = Rat.rat_of_int (Integer.gcd (int_of_rat a) (int_of_rat b));
-
-(* Adjust a diagonalization to collect rationals at the start.               *)
-  (* FIXME : Potentially polymorphic keys, but here only: integers!! *)
-local
- fun upd0 x y a = if y =/ rat_0 then a else Intfunc.update(x,y) a;
- fun mapa f (d,v) = 
-  (d, Intfunc.fold (fn (i,c) => fn a => upd0 i (f c) a) v Intfunc.undefined)
- fun adj (c,l) =
- let val a = 
-  Intfunc.fold (fn (i,c) => fn a => lcm_rat a (denominator_rat c)) 
-    (snd l) rat_1 //
-  Intfunc.fold (fn (i,c) => fn a => gcd_rat a (numerator_rat c)) 
-    (snd l) rat_0
-  in ((c // (a */ a)),mapa (fn x => a */ x) l)
-  end
-in
-fun deration d = if null d then (rat_0,d) else
- let val d' = map adj d
-     val a = fold (lcm_rat o denominator_rat o fst) d' rat_1 //
-          fold (gcd_rat o numerator_rat o fst) d' rat_0 
- in ((rat_1 // a),map (fn (c,l) => (a */ c,l)) d')
- end
-end;
- 
-(* Enumeration of monomials with given multidegree bound.                    *)
-
-fun enumerate_monomials d vars = 
- if d < 0 then []
- else if d = 0 then [Ctermfunc.undefined]
- else if null vars then [monomial_1] else
- let val alts =
-  map (fn k => let val oths = enumerate_monomials (d - k) (tl vars) 
-               in map (fn ks => if k = 0 then ks else Ctermfunc.update (hd vars, k) ks) oths end) (0 upto d) 
- in fold1 (curry op @) alts
- end;
-
-(* Enumerate products of distinct input polys with degree <= d.              *)
-(* We ignore any constant input polynomials.                                 *)
-(* Give the output polynomial and a record of how it was derived.            *)
-
-local
- open RealArith
-in
-fun enumerate_products d pols =
-if d = 0 then [(poly_const rat_1,Rational_lt rat_1)] 
-else if d < 0 then [] else
-case pols of 
-   [] => [(poly_const rat_1,Rational_lt rat_1)]
- | (p,b)::ps => 
-    let val e = multidegree p 
-    in if e = 0 then enumerate_products d ps else
-       enumerate_products d ps @
-       map (fn (q,c) => (poly_mul p q,Product(b,c)))
-         (enumerate_products (d - e) ps)
-    end
-end;
-
-(* Convert regular polynomial. Note that we treat (0,0,0) as -1.             *)
-
-fun epoly_of_poly p =
-  Monomialfunc.fold (fn (m,c) => fn a => Monomialfunc.update (m, Inttriplefunc.onefunc ((0,0,0), Rat.neg c)) a) p Monomialfunc.undefined;
-
-(* String for block diagonal matrix numbered k.                              *)
-
-fun sdpa_of_blockdiagonal k m =
- let 
-  val pfx = string_of_int k ^" "
-  val ents =
-    Inttriplefunc.fold 
-      (fn ((b,i,j),c) => fn a => if i > j then a else ((b,i,j),c)::a) 
-      m [] 
-  val entss = sort (increasing fst triple_int_ord) ents 
- in fold_rev (fn ((b,i,j),c) => fn a =>
-     pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
-     " " ^ decimalize 20 c ^ "\n" ^ a) entss ""
- end;
-
-(* SDPA for problem using block diagonal (i.e. multiple SDPs)                *)
-
-fun sdpa_of_blockproblem nblocks blocksizes obj mats =
- let val m = length mats - 1 
- in
-  string_of_int m ^ "\n" ^
-  string_of_int nblocks ^ "\n" ^
-  (fold1 (fn s => fn t => s^" "^t) (map string_of_int blocksizes)) ^
-  "\n" ^
-  sdpa_of_vector obj ^
-  fold_rev2 (fn k => fn m => fn a => sdpa_of_blockdiagonal (k - 1) m ^ a)
-    (1 upto length mats) mats ""
- end;
-
-(* Run prover on a problem in block diagonal form.                       *)
-
-fun run_blockproblem prover nblocks blocksizes obj mats=
-  parse_csdpoutput (prover (sdpa_of_blockproblem nblocks blocksizes obj mats))
-
-(*
-UNUSED
-
-(* Hence run CSDP on a problem in block diagonal form.                       *)
-
-fun run_csdp dbg nblocks blocksizes obj mats =
- let 
-  val input_file = tmp_file "sos" ".dat-s" 
-  val output_file = tmp_file "sos" ".out"
-  val params_file = tmp_file "param" ".csdp" 
-  val _ = File.write input_file
-   (sdpa_of_blockproblem "" nblocks blocksizes obj mats)
-  val _ = File.write params_file csdp_params
-  val current_dir = File.pwd()
-  val _ = File.cd (Path.variable "ISABELLE_TMP")
-  val rv = system ("csdp "^(Path.implode input_file) ^ " " 
-                   ^ (Path.implode output_file) ^
-                   (if dbg then "" else "> /dev/null"))
-  val  opr = File.read output_file 
-  val res = parse_csdpoutput opr 
- in
-   ((if dbg then ()
-     else (File.rm input_file ; File.rm output_file ; File.cd current_dir));
-    (rv,res))
- end;
-
-fun csdp nblocks blocksizes obj mats =
- let 
-  val (rv,res) = run_csdp (!debugging) nblocks blocksizes obj mats 
- in ((if rv = 1 orelse rv = 2 then error "csdp: Problem is infeasible"
-     else if rv = 3 then writeln "csdp warning: Reduced accuracy"
-     else if rv <> 0 then error ("csdp: error "^string_of_int rv)
-     else ());
-     res)
- end;
-*)
-
-(* 3D versions of matrix operations to consider blocks separately.           *)
-
-val bmatrix_add = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0);
-fun bmatrix_cmul c bm =
-  if c =/ rat_0 then Inttriplefunc.undefined
-  else Inttriplefunc.mapf (fn x => c */ x) bm;
-
-val bmatrix_neg = bmatrix_cmul (Rat.rat_of_int ~1);
-fun bmatrix_sub m1 m2 = bmatrix_add m1 (bmatrix_neg m2);;
-
-(* Smash a block matrix into components.                                     *)
-
-fun blocks blocksizes bm =
- map (fn (bs,b0) =>
-      let val m = Inttriplefunc.fold
-          (fn ((b,i,j),c) => fn a => if b = b0 then Intpairfunc.update ((i,j),c) a else a) bm Intpairfunc.undefined
-          val d = Intpairfunc.fold (fn ((i,j),c) => fn a => max a (max i j)) m 0 
-      in (((bs,bs),m):matrix) end)
- (blocksizes ~~ (1 upto length blocksizes));;
-
-(* FIXME : Get rid of this !!!*)
-local
-  fun tryfind_with msg f [] = error msg
-    | tryfind_with msg f (x::xs) = (f x handle ERROR s => tryfind_with s f xs);
-in 
-  fun tryfind f = tryfind_with "tryfind" f
-end
-
-(*
-fun tryfind f [] = error "tryfind"
-  | tryfind f (x::xs) = (f x handle ERROR _ => tryfind f xs);
-*)
-
-(* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *)
-
- 
-local
- open RealArith
-in
-fun real_positivnullstellensatz_general prover linf d eqs leqs pol =
-let 
- val vars = fold_rev (curry (gen_union (op aconvc)) o poly_variables) 
-              (pol::eqs @ map fst leqs) []
- val monoid = if linf then 
-      (poly_const rat_1,Rational_lt rat_1)::
-      (filter (fn (p,c) => multidegree p <= d) leqs)
-    else enumerate_products d leqs
- val nblocks = length monoid
- fun mk_idmultiplier k p =
-  let 
-   val e = d - multidegree p
-   val mons = enumerate_monomials e vars
-   val nons = mons ~~ (1 upto length mons) 
-  in (mons,
-      fold_rev (fn (m,n) => Monomialfunc.update(m,Inttriplefunc.onefunc((~k,~n,n),rat_1))) nons Monomialfunc.undefined)
-  end
-
- fun mk_sqmultiplier k (p,c) =
-  let 
-   val e = (d - multidegree p) div 2
-   val mons = enumerate_monomials e vars
-   val nons = mons ~~ (1 upto length mons) 
-  in (mons, 
-      fold_rev (fn (m1,n1) =>
-       fold_rev (fn (m2,n2) => fn  a =>
-        let val m = monomial_mul m1 m2 
-        in if n1 > n2 then a else
-          let val c = if n1 = n2 then rat_1 else rat_2
-              val e = Monomialfunc.tryapplyd a m Inttriplefunc.undefined 
-          in Monomialfunc.update(m, tri_equation_add (Inttriplefunc.onefunc((k,n1,n2), c)) e) a
-          end
-        end)  nons)
-       nons Monomialfunc.undefined)
-  end
-
-  val (sqmonlist,sqs) = split_list (map2 mk_sqmultiplier (1 upto length monoid) monoid)
-  val (idmonlist,ids) =  split_list(map2 mk_idmultiplier (1 upto length eqs) eqs)
-  val blocksizes = map length sqmonlist
-  val bigsum =
-    fold_rev2 (fn p => fn q => fn a => tri_epoly_pmul p q a) eqs ids
-            (fold_rev2 (fn (p,c) => fn s => fn a => tri_epoly_pmul p s a) monoid sqs
-                     (epoly_of_poly(poly_neg pol)))
-  val eqns = Monomialfunc.fold (fn (m,e) => fn a => e::a) bigsum []
-  val (pvs,assig) = tri_eliminate_all_equations (0,0,0) eqns
-  val qvars = (0,0,0)::pvs
-  val allassig = fold_rev (fn v => Inttriplefunc.update(v,(Inttriplefunc.onefunc(v,rat_1)))) pvs assig
-  fun mk_matrix v =
-    Inttriplefunc.fold (fn ((b,i,j), ass) => fn m => 
-        if b < 0 then m else
-         let val c = Inttriplefunc.tryapplyd ass v rat_0
-         in if c = rat_0 then m else
-            Inttriplefunc.update ((b,j,i), c) (Inttriplefunc.update ((b,i,j), c) m)
-         end)
-          allassig Inttriplefunc.undefined
-  val diagents = Inttriplefunc.fold
-    (fn ((b,i,j), e) => fn a => if b > 0 andalso i = j then tri_equation_add e a else a)
-    allassig Inttriplefunc.undefined
-
-  val mats = map mk_matrix qvars
-  val obj = (length pvs,
-            itern 1 pvs (fn v => fn i => Intfunc.updatep iszero (i,Inttriplefunc.tryapplyd diagents v rat_0))
-                        Intfunc.undefined)
-  val raw_vec = if null pvs then vector_0 0
-                else tri_scale_then (run_blockproblem prover nblocks blocksizes) obj mats
-  fun int_element (d,v) i = Intfunc.tryapplyd v i rat_0
-  fun cterm_element (d,v) i = Ctermfunc.tryapplyd v i rat_0
-
-  fun find_rounding d =
-   let 
-    val _ = if !debugging 
-          then writeln ("Trying rounding with limit "^Rat.string_of_rat d ^ "\n") 
-          else ()
-    val vec = nice_vector d raw_vec
-    val blockmat = iter (1,dim vec)
-     (fn i => fn a => bmatrix_add (bmatrix_cmul (int_element vec i) (nth mats i)) a)
-     (bmatrix_neg (nth mats 0))
-    val allmats = blocks blocksizes blockmat 
-   in (vec,map diag allmats)
-   end
-  val (vec,ratdias) =
-    if null pvs then find_rounding rat_1
-    else tryfind find_rounding (map Rat.rat_of_int (1 upto 31) @
-                                map pow2 (5 upto 66))
-  val newassigs =
-    fold_rev (fn k => Inttriplefunc.update (nth pvs (k - 1), int_element vec k))
-           (1 upto dim vec) (Inttriplefunc.onefunc ((0,0,0), Rat.rat_of_int ~1))
-  val finalassigs =
-    Inttriplefunc.fold (fn (v,e) => fn a => Inttriplefunc.update(v, tri_equation_eval newassigs e) a) allassig newassigs
-  fun poly_of_epoly p =
-    Monomialfunc.fold (fn (v,e) => fn a => Monomialfunc.updatep iszero (v,tri_equation_eval finalassigs e) a)
-          p Monomialfunc.undefined
-  fun  mk_sos mons =
-   let fun mk_sq (c,m) =
-    (c,fold_rev (fn k=> fn a => Monomialfunc.updatep iszero (nth mons (k - 1), int_element m k) a)
-                 (1 upto length mons) Monomialfunc.undefined)
-   in map mk_sq
-   end
-  val sqs = map2 mk_sos sqmonlist ratdias
-  val cfs = map poly_of_epoly ids
-  val msq = filter (fn (a,b) => not (null b)) (map2 pair monoid sqs)
-  fun eval_sq sqs = fold_rev (fn (c,q) => poly_add (poly_cmul c (poly_mul q q))) sqs poly_0
-  val sanity =
-    fold_rev (fn ((p,c),s) => poly_add (poly_mul p (eval_sq s))) msq
-           (fold_rev2 (fn p => fn q => poly_add (poly_mul p q)) cfs eqs
-                    (poly_neg pol))
-
-in if not(Monomialfunc.is_undefined sanity) then raise Sanity else
-  (cfs,map (fn (a,b) => (snd a,b)) msq)
- end
-
-
-end;
-
-(* Iterative deepening.                                                      *)
-
-fun deepen f n = 
-  (writeln ("Searching with depth limit " ^ string_of_int n) ; (f n handle ERROR s => (writeln ("failed with message: " ^ s) ; deepen f (n+1))))
-
-(* The ordering so we can create canonical HOL polynomials.                  *)
-
-fun dest_monomial mon = sort (increasing fst cterm_ord) (Ctermfunc.graph mon);
-
-fun monomial_order (m1,m2) =
- if Ctermfunc.is_undefined m2 then LESS 
- else if Ctermfunc.is_undefined m1 then GREATER 
- else
-  let val mon1 = dest_monomial m1 
-      val mon2 = dest_monomial m2
-      val deg1 = fold (curry op + o snd) mon1 0
-      val deg2 = fold (curry op + o snd) mon2 0 
-  in if deg1 < deg2 then GREATER else if deg1 > deg2 then LESS
-     else list_ord (prod_ord cterm_ord int_ord) (mon1,mon2)
-  end;
-
-fun dest_poly p =
-  map (fn (m,c) => (c,dest_monomial m))
-      (sort (prod_ord monomial_order (K EQUAL)) (Monomialfunc.graph p));
-
-(* Map back polynomials and their composites to HOL.                         *)
-
-local
- open Thm Numeral RealArith
-in
-
-fun cterm_of_varpow x k = if k = 1 then x else capply (capply @{cterm "op ^ :: real => _"} x) 
-  (mk_cnumber @{ctyp nat} k)
-
-fun cterm_of_monomial m = 
- if Ctermfunc.is_undefined m then @{cterm "1::real"} 
- else 
-  let 
-   val m' = dest_monomial m
-   val vps = fold_rev (fn (x,k) => cons (cterm_of_varpow x k)) m' [] 
-  in fold1 (fn s => fn t => capply (capply @{cterm "op * :: real => _"} s) t) vps
-  end
-
-fun cterm_of_cmonomial (m,c) = if Ctermfunc.is_undefined m then cterm_of_rat c
-    else if c = Rat.one then cterm_of_monomial m
-    else capply (capply @{cterm "op *::real => _"} (cterm_of_rat c)) (cterm_of_monomial m);
-
-fun cterm_of_poly p = 
- if Monomialfunc.is_undefined p then @{cterm "0::real"} 
- else
-  let 
-   val cms = map cterm_of_cmonomial
-     (sort (prod_ord monomial_order (K EQUAL)) (Monomialfunc.graph p))
-  in fold1 (fn t1 => fn t2 => capply(capply @{cterm "op + :: real => _"} t1) t2) cms
-  end;
-
-fun cterm_of_sqterm (c,p) = Product(Rational_lt c,Square(cterm_of_poly p));
-
-fun cterm_of_sos (pr,sqs) = if null sqs then pr
-  else Product(pr,fold1 (fn a => fn b => Sum(a,b)) (map cterm_of_sqterm sqs));
-
-end
-
-(* Interface to HOL.                                                         *)
-local
-  open Thm Conv RealArith
-  val concl = dest_arg o cprop_of
-  fun simple_cterm_ord t u = TermOrd.fast_term_ord (term_of t, term_of u) = LESS
-in
-  (* FIXME: Replace tryfind by get_first !! *)
-fun real_nonlinear_prover prover ctxt =
- let 
-  val {add,mul,neg,pow,sub,main} =  Normalizer.semiring_normalizers_ord_wrapper ctxt
-      (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) 
-     simple_cterm_ord
-  val (real_poly_add_conv,real_poly_mul_conv,real_poly_neg_conv,
-       real_poly_pow_conv,real_poly_sub_conv,real_poly_conv) = (add,mul,neg,pow,sub,main)
-  fun mainf  translator (eqs,les,lts) = 
-  let 
-   val eq0 = map (poly_of_term o dest_arg1 o concl) eqs
-   val le0 = map (poly_of_term o dest_arg o concl) les
-   val lt0 = map (poly_of_term o dest_arg o concl) lts
-   val eqp0 = map (fn (t,i) => (t,Axiom_eq i)) (eq0 ~~ (0 upto (length eq0 - 1)))
-   val lep0 = map (fn (t,i) => (t,Axiom_le i)) (le0 ~~ (0 upto (length le0 - 1)))
-   val ltp0 = map (fn (t,i) => (t,Axiom_lt i)) (lt0 ~~ (0 upto (length lt0 - 1)))
-   val (keq,eq) = List.partition (fn (p,_) => multidegree p = 0) eqp0
-   val (klep,lep) = List.partition (fn (p,_) => multidegree p = 0) lep0
-   val (kltp,ltp) = List.partition (fn (p,_) => multidegree p = 0) ltp0
-   fun trivial_axiom (p,ax) =
-    case ax of
-       Axiom_eq n => if eval Ctermfunc.undefined p <>/ Rat.zero then nth eqs n 
-                     else error "trivial_axiom: Not a trivial axiom"
-     | Axiom_le n => if eval Ctermfunc.undefined p </ Rat.zero then nth les n 
-                     else error "trivial_axiom: Not a trivial axiom"
-     | Axiom_lt n => if eval Ctermfunc.undefined p <=/ Rat.zero then nth lts n 
-                     else error "trivial_axiom: Not a trivial axiom"
-     | _ => error "trivial_axiom: Not a trivial axiom"
-   in 
-  ((let val th = tryfind trivial_axiom (keq @ klep @ kltp)
-   in fconv_rule (arg_conv (arg1_conv real_poly_conv) then_conv field_comp_conv) th end)
-   handle ERROR _ => (
-    let 
-     val pol = fold_rev poly_mul (map fst ltp) (poly_const Rat.one)
-     val leq = lep @ ltp
-     fun tryall d =
-      let val e = multidegree pol
-          val k = if e = 0 then 0 else d div e
-          val eq' = map fst eq 
-      in tryfind (fn i => (d,i,real_positivnullstellensatz_general prover false d eq' leq
-                            (poly_neg(poly_pow pol i))))
-              (0 upto k)
-      end
-    val (d,i,(cert_ideal,cert_cone)) = deepen tryall 0
-    val proofs_ideal =
-      map2 (fn q => fn (p,ax) => Eqmul(cterm_of_poly q,ax)) cert_ideal eq
-    val proofs_cone = map cterm_of_sos cert_cone
-    val proof_ne = if null ltp then Rational_lt Rat.one else
-      let val p = fold1 (fn s => fn t => Product(s,t)) (map snd ltp) 
-      in  funpow i (fn q => Product(p,q)) (Rational_lt Rat.one)
-      end
-    val proof = fold1 (fn s => fn t => Sum(s,t))
-                           (proof_ne :: proofs_ideal @ proofs_cone) 
-    in writeln "Translating proof certificate to HOL";
-       translator (eqs,les,lts) proof
-    end))
-   end
- in mainf end
-end
-
-fun C f x y = f y x;
-  (* FIXME : This is very bad!!!*)
-fun subst_conv eqs t = 
- let 
-  val t' = fold (Thm.cabs o Thm.lhs_of) eqs t
- in Conv.fconv_rule (Thm.beta_conversion true) (fold (C combination) eqs (reflexive t'))
- end
-
-(* A wrapper that tries to substitute away variables first.                  *)
-
-local
- open Thm Conv RealArith
-  fun simple_cterm_ord t u = TermOrd.fast_term_ord (term_of t, term_of u) = LESS
- val concl = dest_arg o cprop_of
- val shuffle1 = 
-   fconv_rule (rewr_conv @{lemma "(a + x == y) == (x == y - (a::real))" by (atomize (full)) (simp add: ring_simps) })
- val shuffle2 =
-    fconv_rule (rewr_conv @{lemma "(x + a == y) ==  (x == y - (a::real))" by (atomize (full)) (simp add: ring_simps)})
- fun substitutable_monomial fvs tm = case term_of tm of
-    Free(_,@{typ real}) => if not (member (op aconvc) fvs tm) then (Rat.one,tm) 
-                           else error "substitutable_monomial"
-  | @{term "op * :: real => _"}$c$(t as Free _ ) => 
-     if is_ratconst (dest_arg1 tm) andalso not (member (op aconvc) fvs (dest_arg tm))
-         then (dest_ratconst (dest_arg1 tm),dest_arg tm) else error "substitutable_monomial"
-  | @{term "op + :: real => _"}$s$t => 
-       (substitutable_monomial (add_cterm_frees (dest_arg tm) fvs) (dest_arg1 tm)
-        handle ERROR _ => substitutable_monomial (add_cterm_frees (dest_arg1 tm) fvs) (dest_arg tm))
-  | _ => error "substitutable_monomial"
-
-  fun isolate_variable v th = 
-   let val w = dest_arg1 (cprop_of th)
-   in if v aconvc w then th
-      else case term_of w of
-           @{term "op + :: real => _"}$s$t => 
-              if dest_arg1 w aconvc v then shuffle2 th 
-              else isolate_variable v (shuffle1 th)
-          | _ => error "isolate variable : This should not happen?"
-   end 
-in
-
-fun real_nonlinear_subst_prover prover ctxt =
- let 
-  val {add,mul,neg,pow,sub,main} =  Normalizer.semiring_normalizers_ord_wrapper ctxt
-      (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) 
-     simple_cterm_ord
-
-  val (real_poly_add_conv,real_poly_mul_conv,real_poly_neg_conv,
-       real_poly_pow_conv,real_poly_sub_conv,real_poly_conv) = (add,mul,neg,pow,sub,main)
-
-  fun make_substitution th =
-   let 
-    val (c,v) = substitutable_monomial [] (dest_arg1(concl th))
-    val th1 = Drule.arg_cong_rule (capply @{cterm "op * :: real => _"} (cterm_of_rat (Rat.inv c))) (mk_meta_eq th)
-    val th2 = fconv_rule (binop_conv real_poly_mul_conv) th1
-   in fconv_rule (arg_conv real_poly_conv) (isolate_variable v th2)
-   end
-   fun oprconv cv ct = 
-    let val g = Thm.dest_fun2 ct
-    in if g aconvc @{cterm "op <= :: real => _"} 
-         orelse g aconvc @{cterm "op < :: real => _"} 
-       then arg_conv cv ct else arg1_conv cv ct
-    end
-  fun mainf translator =
-   let 
-    fun substfirst(eqs,les,lts) =
-      ((let 
-           val eth = tryfind make_substitution eqs
-           val modify = fconv_rule (arg_conv (oprconv(subst_conv [eth] then_conv real_poly_conv)))
-       in  substfirst
-             (filter_out (fn t => (Thm.dest_arg1 o Thm.dest_arg o cprop_of) t 
-                                   aconvc @{cterm "0::real"}) (map modify eqs),
-                                   map modify les,map modify lts)
-       end)
-       handle ERROR  _ => real_nonlinear_prover prover ctxt translator (rev eqs, rev les, rev lts))
-    in substfirst
-   end
-
-
- in mainf
- end
-
-(* Overall function. *)
-
-fun real_sos prover ctxt t = gen_prover_real_arith ctxt (real_nonlinear_subst_prover prover ctxt) t;
-end;
-
-(* A tactic *)
-fun strip_all ct = 
- case term_of ct of 
-  Const("all",_) $ Abs (xn,xT,p) => 
-   let val (a,(v,t')) = (apsnd (Thm.dest_abs (SOME xn)) o Thm.dest_comb) ct
-   in apfst (cons v) (strip_all t')
-   end
-| _ => ([],ct)
-
-fun core_sos_conv prover ctxt t = Drule.arg_cong_rule @{cterm Trueprop} (real_sos prover ctxt (Thm.dest_arg t) RS @{thm Eq_TrueI})
-
-val known_sos_constants = 
-  [@{term "op ==>"}, @{term "Trueprop"}, 
-   @{term "op -->"}, @{term "op &"}, @{term "op |"}, 
-   @{term "Not"}, @{term "op = :: bool => _"}, 
-   @{term "All :: (real => _) => _"}, @{term "Ex :: (real => _) => _"}, 
-   @{term "op = :: real => _"}, @{term "op < :: real => _"}, 
-   @{term "op <= :: real => _"}, 
-   @{term "op + :: real => _"}, @{term "op - :: real => _"}, 
-   @{term "op * :: real => _"}, @{term "uminus :: real => _"}, 
-   @{term "op / :: real => _"}, @{term "inverse :: real => _"},
-   @{term "op ^ :: real => _"}, @{term "abs :: real => _"}, 
-   @{term "min :: real => _"}, @{term "max :: real => _"},
-   @{term "0::real"}, @{term "1::real"}, @{term "number_of :: int => real"},
-   @{term "number_of :: int => nat"},
-   @{term "Int.Bit0"}, @{term "Int.Bit1"}, 
-   @{term "Int.Pls"}, @{term "Int.Min"}];
-
-fun check_sos kcts ct = 
- let
-  val t = term_of ct
-  val _ = if not (null (Term.add_tfrees t []) 
-                  andalso null (Term.add_tvars t [])) 
-          then error "SOS: not sos. Additional type varables" else ()
-  val fs = Term.add_frees t []
-  val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) fs 
-          then error "SOS: not sos. Variables with type not real" else ()
-  val vs = Term.add_vars t []
-  val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) fs 
-          then error "SOS: not sos. Variables with type not real" else ()
-  val ukcs = subtract (fn (t,p) => Const p aconv t) kcts (Term.add_consts t [])
-  val _ = if  null ukcs then () 
-              else error ("SOSO: Unknown constants in Subgoal:" ^ commas (map fst ukcs))
-in () end
-
-fun core_sos_tac prover ctxt = CSUBGOAL (fn (ct, i) => 
-  let val _ = check_sos known_sos_constants ct
-      val (avs, p) = strip_all ct
-      val th = standard (fold_rev forall_intr avs (real_sos prover ctxt (Thm.dest_arg p)))
-  in rtac th i end);
-
-fun default_SOME f NONE v = SOME v
-  | default_SOME f (SOME v) _ = SOME v;
-
-fun lift_SOME f NONE a = f a
-  | lift_SOME f (SOME a) _ = SOME a;
-
-
-local
- val is_numeral = can (HOLogic.dest_number o term_of)
-in
-fun get_denom b ct = case term_of ct of
-  @{term "op / :: real => _"} $ _ $ _ => 
-     if is_numeral (Thm.dest_arg ct) then get_denom b (Thm.dest_arg1 ct)
-     else default_SOME (get_denom b) (get_denom b (Thm.dest_arg ct))   (Thm.dest_arg ct, b)
- | @{term "op < :: real => _"} $ _ $ _ => lift_SOME (get_denom true) (get_denom true (Thm.dest_arg ct)) (Thm.dest_arg1 ct)
- | @{term "op <= :: real => _"} $ _ $ _ => lift_SOME (get_denom true) (get_denom true (Thm.dest_arg ct)) (Thm.dest_arg1 ct)
- | _ $ _ => lift_SOME (get_denom b) (get_denom b (Thm.dest_fun ct)) (Thm.dest_arg ct)
- | _ => NONE
-end;
-
-fun elim_one_denom_tac ctxt = 
-CSUBGOAL (fn (P,i) => 
- case get_denom false P of 
-   NONE => no_tac
- | SOME (d,ord) => 
-     let 
-      val ss = simpset_of ctxt addsimps @{thms field_simps} 
-               addsimps [@{thm nonzero_power_divide}, @{thm power_divide}]
-      val th = instantiate' [] [SOME d, SOME (Thm.dest_arg P)] 
-         (if ord then @{lemma "(d=0 --> P) & (d>0 --> P) & (d<(0::real) --> P) ==> P" by auto}
-          else @{lemma "(d=0 --> P) & (d ~= (0::real) --> P) ==> P" by blast})
-     in (rtac th i THEN Simplifier.asm_full_simp_tac ss i) end);
-
-fun elim_denom_tac ctxt i = REPEAT (elim_one_denom_tac ctxt i);
-
-fun sos_tac prover ctxt = ObjectLogic.full_atomize_tac THEN' elim_denom_tac ctxt THEN' core_sos_tac prover ctxt
-
-
-end;