Added Hoare_Op.thy
authornipkow
Fri, 12 Mar 2010 15:48:18 +0100
changeset 35749 bc8637ae91ab
parent 35747 c910fe606829
child 35750 41267aebfa5f
Added Hoare_Op.thy
src/HOL/IMP/Hoare_Op.thy
src/HOL/IMP/ROOT.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/IMP/Hoare_Op.thy	Fri Mar 12 15:48:18 2010 +0100
@@ -0,0 +1,130 @@
+(*  Title:      HOL/IMP/Hoare_Op.thy
+    ID:         $Id$
+    Author:     Tobias Nipkow
+*)
+
+header "Hoare Logic (justified wrt operational semantics)"
+
+theory Hoare_Op imports Natural begin
+
+types assn = "state => bool"
+
+definition
+  hoare_valid :: "[assn,com,assn] => bool" ("|= {(1_)}/ (_)/ {(1_)}" 50) where
+  "|= {P}c{Q} = (!s t. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t --> P s --> Q t)"
+
+inductive
+  hoare :: "assn => com => assn => bool" ("|- ({(1_)}/ (_)/ {(1_)})" 50)
+where
+  skip: "|- {P}\<SKIP>{P}"
+| ass:  "|- {%s. P(s[x\<mapsto>a s])} x:==a {P}"
+| semi: "[| |- {P}c{Q}; |- {Q}d{R} |] ==> |- {P} c;d {R}"
+| If: "[| |- {%s. P s & b s}c{Q}; |- {%s. P s & ~b s}d{Q} |] ==>
+      |- {P} \<IF> b \<THEN> c \<ELSE> d {Q}"
+| While: "|- {%s. P s & b s} c {P} ==>
+         |- {P} \<WHILE> b \<DO> c {%s. P s & ~b s}"
+| conseq: "[| !s. P' s --> P s; |- {P}c{Q}; !s. Q s --> Q' s |] ==>
+          |- {P'}c{Q'}"
+
+lemmas [simp] = skip ass semi If
+
+lemma strengthen_pre: "[| !s. P' s --> P s; |- {P}c{Q} |] ==> |- {P'}c{Q}"
+by (blast intro: conseq)
+
+lemma weaken_post: "[| |- {P}c{Q}; !s. Q s --> Q' s |] ==> |- {P}c{Q'}"
+by (blast intro: conseq)
+
+lemma hoare_sound: "|- {P}c{Q} ==> |= {P}c{Q}"
+proof(induct rule: hoare.induct)
+  case (While P b c)
+  { fix s t
+    assume "\<langle>WHILE b DO c,s\<rangle> \<longrightarrow>\<^sub>c t"
+    hence "P s \<longrightarrow> P t \<and> \<not> b t"
+    proof(induct "WHILE b DO c" s t)
+      case WhileFalse thus ?case by blast
+    next
+      case WhileTrue thus ?case
+        using While(2) unfolding hoare_valid_def by blast
+    qed
+
+  }
+  thus ?case unfolding hoare_valid_def by blast
+qed (auto simp: hoare_valid_def)
+
+
+definition
+  wp :: "com => assn => assn" where
+  "wp c Q = (%s. !t. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t --> Q t)"
+
+lemma wp_SKIP: "wp \<SKIP> Q = Q"
+by (simp add: wp_def)
+
+lemma wp_Ass: "wp (x:==a) Q = (%s. Q(s[x\<mapsto>a s]))"
+by (simp add: wp_def)
+
+lemma wp_Semi: "wp (c;d) Q = wp c (wp d Q)"
+by (rule ext) (auto simp: wp_def)
+
+lemma wp_If:
+ "wp (\<IF> b \<THEN> c \<ELSE> d) Q = (%s. (b s --> wp c Q s) &  (~b s --> wp d Q s))"
+by (rule ext) (auto simp: wp_def)
+
+lemma wp_While_If:
+ "wp (\<WHILE> b \<DO> c) Q s =
+  wp (IF b THEN c;\<WHILE> b \<DO> c ELSE SKIP) Q s"
+unfolding wp_def by (metis equivD1 equivD2 unfold_while)
+
+lemma wp_While_True: "b s ==>
+  wp (\<WHILE> b \<DO> c) Q s = wp (c;\<WHILE> b \<DO> c) Q s"
+by(simp add: wp_While_If wp_If wp_SKIP)
+
+lemma wp_While_False: "~b s ==> wp (\<WHILE> b \<DO> c) Q s = Q s"
+by(simp add: wp_While_If wp_If wp_SKIP)
+
+lemmas [simp] = wp_SKIP wp_Ass wp_Semi wp_If wp_While_True wp_While_False
+
+lemma wp_is_pre: "|- {wp c Q} c {Q}"
+proof(induct c arbitrary: Q)
+  case SKIP show ?case by auto
+next
+  case Assign show ?case by auto
+next
+  case Semi thus ?case by(auto intro: semi)
+next
+  case (Cond b c1 c2)
+  let ?If = "IF b THEN c1 ELSE c2"
+  show ?case
+  proof(rule If)
+    show "|- {\<lambda>s. wp ?If Q s \<and> b s} c1 {Q}"
+    proof(rule strengthen_pre[OF _ Cond(1)])
+      show "\<forall>s. wp ?If Q s \<and> b s \<longrightarrow> wp c1 Q s" by auto
+    qed
+    show "|- {\<lambda>s. wp ?If Q s \<and> \<not> b s} c2 {Q}"
+    proof(rule strengthen_pre[OF _ Cond(2)])
+      show "\<forall>s. wp ?If Q s \<and> \<not> b s \<longrightarrow> wp c2 Q s" by auto
+    qed
+  qed
+next
+  case (While b c)
+  let ?w = "WHILE b DO c"
+  have "|- {wp ?w Q} ?w {\<lambda>s. wp ?w Q s \<and> \<not> b s}"
+  proof(rule hoare.While)
+    show "|- {\<lambda>s. wp ?w Q s \<and> b s} c {wp ?w Q}"
+    proof(rule strengthen_pre[OF _ While(1)])
+      show "\<forall>s. wp ?w Q s \<and> b s \<longrightarrow> wp c (wp ?w Q) s" by auto
+    qed
+  qed
+  thus ?case
+  proof(rule weaken_post)
+    show "\<forall>s. wp ?w Q s \<and> \<not> b s \<longrightarrow> Q s" by auto
+  qed
+qed
+
+lemma hoare_relative_complete: assumes "|= {P}c{Q}" shows "|- {P}c{Q}"
+proof(rule strengthen_pre)
+  show "\<forall>s. P s \<longrightarrow> wp c Q s" using assms
+    by (auto simp: hoare_valid_def wp_def)
+  show "|- {wp c Q} c {Q}" by(rule wp_is_pre)
+qed
+
+end
--- a/src/HOL/IMP/ROOT.ML	Fri Mar 12 12:02:22 2010 +0100
+++ b/src/HOL/IMP/ROOT.ML	Fri Mar 12 15:48:18 2010 +0100
@@ -6,4 +6,4 @@
 Caveat: HOLCF/IMP depends on HOL/IMP
 *)
 
-use_thys ["Expr", "Transition", "VC", "Examples", "Compiler0", "Compiler", "Live"];
+use_thys ["Expr", "Transition", "Hoare_Op", "VC", "Examples", "Compiler0", "Compiler", "Live"];