another example for lift_bnf for quotients
Thu, 11 Mar 2021 10:25:04 +0100
changeset 73408 be11fe268b33
parent 73407 603010a9e611
child 73409 fbd69f277699
another example for lift_bnf for quotients
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Datatype_Examples/FAE_Sequence.thy	Thu Mar 11 10:25:04 2021 +0100
@@ -0,0 +1,133 @@
+theory FAE_Sequence
+  imports "HOL-Library.Confluent_Quotient"
+type_synonym 'a seq = "nat \<Rightarrow> 'a"
+abbreviation finite_range :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" where "finite_range f \<equiv> finite (range f)"
+lemma finite_range_pair:
+  assumes 1: "finite_range (\<lambda>x. fst (f x))" and 2: "finite_range (\<lambda>x. snd (f x))"
+  shows "finite_range f"
+proof -
+  have "range f \<subseteq> range (\<lambda>x. fst (f x)) \<times> range (\<lambda>x. snd (f x))"
+    by(auto 4 3 intro: rev_image_eqI dest: sym)
+  then show ?thesis by(rule finite_subset)(use assms in simp)
+definition seq_at :: "'a seq \<Rightarrow> 'a \<Rightarrow> nat set" where "seq_at f x = f -` {x}"
+typedef 'a fseq = "{f :: 'a seq. finite_range f}" morphisms ap_fseq Abs_fseq
+  by(rule exI[where x="\<lambda>_. undefined"]) simp
+setup_lifting type_definition_fseq
+lift_bnf 'a fseq [wits: "\<lambda>x. (\<lambda>_ :: nat. x)"]
+  subgoal by(metis finite_imageI fun.set_map mem_Collect_eq)
+  subgoal by(auto intro: finite_range_pair)
+  subgoal by auto
+  subgoal by auto
+  done
+lemma ap_map_fseq [simp]: "ap_fseq (map_fseq f x) = f \<circ> ap_fseq x"
+  by transfer simp
+lift_definition fseq_eq :: "'a fseq \<Rightarrow> 'a fseq \<Rightarrow> bool" is "\<lambda>f g. finite {n. f n \<noteq> g n}" .
+lemma fseq_eq_unfold: "fseq_eq f g \<longleftrightarrow> finite {n. ap_fseq f n \<noteq> ap_fseq g n}"
+  by transfer simp
+lemma reflp_fseq_eq [simp]: "reflp fseq_eq"
+  by(rule reflpI)(simp add: fseq_eq_unfold)
+lemma symp_fseq_eq [simp]: "symp fseq_eq"
+  by(rule sympI)(simp add: fseq_eq_unfold eq_commute)
+lemma transp_fseq_eq [simp]: "transp fseq_eq"
+  apply(rule transpI)
+  subgoal for f g h unfolding fseq_eq_unfold
+    by(rule finite_subset[where B="{n. ap_fseq f n \<noteq> ap_fseq g n} \<union> {n. ap_fseq g n \<noteq> ap_fseq h n}"]) auto
+  done
+lemma equivp_fseq_eq [simp]: "equivp fseq_eq"
+  by(simp add: equivp_reflp_symp_transp)
+functor map_fseq
+  by(simp_all add: fseq.map_id0 fseq.map_comp fun_eq_iff)
+quotient_type 'a fae_seq = "'a fseq" / fseq_eq by simp
+lemma map_fseq_eq: "fseq_eq f g \<Longrightarrow> fseq_eq (map_fseq h f) (map_fseq h g)"
+  unfolding fseq_eq_unfold by(auto elim!: finite_subset[rotated])
+lemma finite_set_fseq [simp]: "finite (set_fseq x)"
+  by transfer
+interpretation wide_intersection_fseq: wide_intersection_finite fseq_eq map_fseq set_fseq
+  by unfold_locales(simp_all add: map_fseq_eq fseq.map_id[unfolded id_def] fseq.set_map cong: fseq.map_cong)
+lemma fseq_subdistributivity:
+  assumes "A OO B \<noteq> bot"
+  shows "rel_fseq A OO fseq_eq OO rel_fseq B \<le> fseq_eq OO rel_fseq (A OO B) OO fseq_eq"
+proof(rule predicate2I; elim relcomppE; transfer fixing: A B)
+  fix f and g g' :: "'c seq" and h
+  assume fg: "rel_fun(=) A f g" and gg': "finite {n. g n \<noteq> g' n}" and g'h: "rel_fun (=) B g' h"
+    and f: "finite_range f" and g: "finite_range g" and g': "finite_range g'" and h: "finite_range h"
+  from assms obtain a c b where ac: "A a c" and cb: "B c b" by(auto simp add: fun_eq_iff)
+  let ?X = "{n. g n \<noteq> g' n}"
+  let ?f = "\<lambda>n. if n \<in> ?X then a else f n"
+  let ?h = "\<lambda>n. if n \<in> ?X then b else h n"
+  have "range ?f \<subseteq> insert a (range f)" by auto
+  then have "finite_range ?f" by(rule finite_subset)(simp add: f)
+  moreover have "range ?h \<subseteq> insert b (range h)" by auto
+  then have "finite_range ?h" by(rule finite_subset)(simp add: h)
+  moreover have "{n. f n \<noteq> ?f n} \<subseteq> ?X" by auto
+  then have "finite {n. f n \<noteq> ?f n}" by(rule finite_subset)(simp add: gg')
+  moreover have "{n. ?h n \<noteq> h n} \<subseteq> ?X" by auto
+  then have "finite {n. ?h n \<noteq> h n}" by(rule finite_subset)(simp add: gg')
+  moreover have "rel_fun (=) (A OO B) ?f ?h" using fg g'h ac cb by(auto simp add: rel_fun_def)
+  ultimately
+  show "\<exists>ya\<in>{f. finite_range f}. finite {n. f n \<noteq> ya n} \<and> (\<exists>yb\<in>{f. finite_range f}. rel_fun (=) (A OO B) ya yb \<and> finite {n. yb n \<noteq> h n})"
+    unfolding mem_Collect_eq Bex_def by blast
+lift_bnf 'a fae_seq
+  subgoal by(rule fseq_subdistributivity)
+  subgoal by(rule wide_intersection_fseq.wide_intersection)
+  done
+lift_definition fseq_at :: "'a fseq \<Rightarrow> 'a \<Rightarrow> nat set" is seq_at .
+lemma fae_vimage_singleton: "finite (f -` {x}) \<longleftrightarrow> finite (g -` {x})" if "finite {n. f n \<noteq> g n}"
+  assume *: "finite (g -` {x})"
+  have "f -` {x} \<subseteq> g -` {x} \<union> {n. f n \<noteq> g n}" by auto
+  thus "finite (f -` {x})" by(rule finite_subset)(use that * in auto)
+  assume *: "finite (f -` {x})"
+  have "g -` {x} \<subseteq> f -` {x} \<union> {n. f n \<noteq> g n}" by auto
+  thus "finite (g -` {x})" by(rule finite_subset)(use that * in auto)
+lift_definition set_fae_seq_alt :: "'a fae_seq \<Rightarrow> 'a set" is "\<lambda>f. {a. infinite (fseq_at f a)}"
+  by(transfer)(clarsimp simp add: set_eq_iff seq_at_def fae_vimage_singleton)
+lemma fseq_at_infinite_Inr:
+  "\<lbrakk>infinite (fseq_at f x); fseq_eq (map_fseq Inr f) g\<rbrakk> \<Longrightarrow> \<exists>x'\<in>set_fseq g. x \<in> Basic_BNFs.setr x'"
+  by transfer(auto simp add: seq_at_def vimage_def; smt (z3) finite_nat_set_iff_bounded_le mem_Collect_eq setr.intros)
+lemma fseq_at_Inr_infinite:
+  assumes "\<And>g. fseq_eq (map_fseq Inr f) g \<longrightarrow> (\<exists>x'\<in>set_fseq g. x \<in> Basic_BNFs.setr x')"
+  shows "infinite (fseq_at f x)"
+  assume fin: "finite (fseq_at f x)"
+  let ?g = "map_fseq (\<lambda>y. if x = y then Inl undefined else Inr y) f"
+  have "fseq_eq (map_fseq Inr f) ?g" using fin
+    by transfer(simp add: seq_at_def vimage_def eq_commute)
+  with assms[of "?g"] show False by(auto simp add: fseq.set_map)
+lemma set_fae_seq_eq_alt: "set_fae_seq f = set_fae_seq_alt f"
+  by transfer(use fseq_at_Inr_infinite in \<open>force simp add: fseq_at_infinite_Inr\<close>)
--- a/src/HOL/ROOT	Wed Mar 10 21:55:28 2021 +0100
+++ b/src/HOL/ROOT	Thu Mar 11 10:25:04 2021 +0100
@@ -878,6 +878,7 @@
+    FAE_Sequence