--- a/src/HOL/Wellfounded.thy Mon Jun 10 08:25:55 2024 +0200
+++ b/src/HOL/Wellfounded.thy Mon Jun 10 08:34:09 2024 +0200
@@ -1065,7 +1065,7 @@
using convertible .
qed
-lemma wfp_if_convertible_to_wfp: "wfP S \<Longrightarrow> (\<And>x y. R x y \<Longrightarrow> S (f x) (f y)) \<Longrightarrow> wfP R"
+lemma wfp_if_convertible_to_wfp: "wfp S \<Longrightarrow> (\<And>x y. R x y \<Longrightarrow> S (f x) (f y)) \<Longrightarrow> wfp R"
using wf_if_convertible_to_wf[to_pred, of S R f] by simp
text \<open>Converting to @{typ nat} is a very common special case that might be found more easily by
@@ -1073,7 +1073,7 @@
lemma wfp_if_convertible_to_nat:
fixes f :: "_ \<Rightarrow> nat"
- shows "(\<And>x y. R x y \<Longrightarrow> f x < f y) \<Longrightarrow> wfP R"
+ shows "(\<And>x y. R x y \<Longrightarrow> f x < f y) \<Longrightarrow> wfp R"
by (rule wfp_if_convertible_to_wfp[of "(<) :: nat \<Rightarrow> nat \<Rightarrow> bool", simplified])