--- a/src/HOL/Finite_Set.thy Tue Sep 22 15:39:46 2009 +0200
+++ b/src/HOL/Finite_Set.thy Wed Sep 23 08:25:51 2009 +0200
@@ -1565,7 +1565,7 @@
apply (rule finite_subset)
prefer 2
apply assumption
- apply auto
+ apply (auto simp add: sup_absorb2)
done
lemma setsum_right_distrib:
--- a/src/HOL/Library/Euclidean_Space.thy Tue Sep 22 15:39:46 2009 +0200
+++ b/src/HOL/Library/Euclidean_Space.thy Wed Sep 23 08:25:51 2009 +0200
@@ -3649,7 +3649,7 @@
from setsum_restrict_set[OF fS, of "\<lambda>v. u v *s v" S', symmetric] SS'
have "setsum (\<lambda>v. ?u v *s v) S = setsum (\<lambda>v. u v *s v) S'"
unfolding cond_value_iff cond_application_beta
- by (simp add: cond_value_iff cong del: if_weak_cong)
+ by (simp add: cond_value_iff inf_absorb2 cong del: if_weak_cong)
hence "setsum (\<lambda>v. ?u v *s v) S = y" by (metis u)
hence "y \<in> ?rhs" by auto}
moreover
--- a/src/HOL/Library/Topology_Euclidean_Space.thy Tue Sep 22 15:39:46 2009 +0200
+++ b/src/HOL/Library/Topology_Euclidean_Space.thy Wed Sep 23 08:25:51 2009 +0200
@@ -99,7 +99,7 @@
lemma Diff_Diff_Int: "A - (A - B) = A \<inter> B" by blast
lemma openin_closedin_eq: "openin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> closedin U (topspace U - S)"
- apply (auto simp add: closedin_def Diff_Diff_Int)
+ apply (auto simp add: closedin_def Diff_Diff_Int inf_absorb2)
apply (metis openin_subset subset_eq)
done